
 

 

Chapter 9 

How to Improve Linking Between Issues and 
Commits for the Sake of Software Defect  

Prediction? 

1. Introduction 

Bug predictions and defect predictions can save a lot of money which 
otherwise would be spent on bug fixes. Commit logs and bug reports are very 
often not linked with each other [1] although those links can provide very 
valuable information which can help in software defect predictions and project 
evolution. According to bugs prone – by counting the number of bug reports 
that are matched with them. For the project evolution, those links can generate 
defect data – for example the number of defects related to various classes in a 
project. As a result, it is possible to develop defect prediction models for soft-
ware projects, e.g., [3, 4, 5]. 

The other problem is misclassification between bugs and non-bugs – 
many issues which are classified as ’bugs’ refer to maintenance, refactoring or 
enhancements. Regarding to one of the reports regarding how misclassification 
impacts bug prediction [1] this problem is very common. Authors of the article 
[1] have conducted a manual examination of more than 700 issue reports of 
five open source projects. Their result revealed that 33,8% bug reports were 
misclassified – being not code fixes, but rather new features, refactorings or 
documentation updates. There are many simple approaches in matching links 
with issues, mainly based on simple textual matching. However, there are also 
three promising approaches (ReLink, MLink and RCLinker) which are based 
on repository changes and features extraction from bugs and issue trackers 
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metadata. One of the approaches (RCLinker) is based on the machine learning 
too which is described in the section below. 

In Section 2 we have described those three approaches to link issues 
with commits. Defect Prediction in Software Systems (DePress) [6] Extensible 
Framework allows building workflows in graphical manner. DePress is based 
on the KNIME project. The main aim of the DePress Framework is the support 
for empirical software analysis. It allows collecting, combining and analysing 
data from various data sources like software repositories or software metrics. 

Our work provides the following contributions:  
1) We wanted to find a way to link effectively commit logs and bug re-

ports. That is why we have decided to use modified by us RCLinker ap-
proach. To achieve this, we have decided to use Defect Prediction in 
Software Systems and implement our approach of the RCLinker algo-
rithm as a new node in the workflow. We used machine learning too. 

2) To validate and check our approach we have tested it on the three pro-
jects – two open source projects by Pivotal Software: Spring Data Redis, 
Spring OSGi and the proprietary commercial project provided by Cap-
gemini.  

3) The RClinker approach uses metadata and textual features. We have 
proposed new features based on the JIRA metadata to check if they will 
improve the results.  

2. Related Work 

There are many approaches to linking issues with commit. We have re-
viewed literature using snowball sampling, described by Wohlin in [7]. De-
scriptions of the relevant articles are presented in the subsequent subsections. 

2.1. ReLink: recovering links between bugs and changes 

ReLink [8] is the simplest algorithm on which we will base our work. 
Traditional approaches for linking issues with commits presuppose that devel-
opers are on three properties: 
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1) Time interval – it is a time difference between commit date and issue 
modification date. After each fix, developer must update issue in track-
ing system, so the time difference will be small. 

2) Issue owner and commit author – if issue owner is the same as commit 
author, this issue is probably connected with the commit  

3) Text similarity – commit message should be similar to the issue descrip-
tion if they are linked. To normalize text in issue and commit message, 
ReLink uses the following techniques: removing stop-words, stemming 
and using synonyms – for example, change "additional" to "extra". 
 
ReLink has a "learning" phase. To learn its model we must follow these 

steps:  
1) Assign a very small value to time interval.  

(a) Assign a very small value to the text similarity threshold. 
(b) Discover links with traditional heuristics for given time interval and 

similarity threshold, then count number of discovered links and then 
calculate F-measure using metrics like "Percent of commits that fixes 
bugs" (more possibilities are below). 

(c) Increase text similarity threshold a little bit 
(d) Repeat steps 3 to 4 until we reach a maximum value of threshold 

2) Increase time interval a little bit. 
3) Repeat steps 3 to 6 until we reach a maximum value of time interval. 
4) Choose threshold for two "properties" with the highest F-measure. 
5) Return threshold and time interval. 

 
To start discovering new connections, we must run two algorithms to 

get proper criteria and then ReLink will "learn" these criteria. After that, Re-
Link checks links that fulfils criteria. After checking all links, ReLink returns 
its list. 

ReLink discovers up to 26% more links than the traditional approach 
[8]. It is often used with the following metrics: percent of commits that fixes 
bugs, percent of files with defects and average time of bug fixing. 
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2.2. MLink: multi-layered approach for recovering links between bug reports 
and Fixes 

MLink [9] is a multi-layered approach to automatically recover issue 
links. In comparison to ReLink, it is not only based on the terms-linking 
method but it checks the changes in the code repository too and tries to link 
them with the issues metadata. 

MLink uses cascading layers – each layer has a detector with its own set 
of textual and code features. The layers’ input is a filtered set of the candidate 
links which comes from the previous layer – it means that each detector can be 
used as a filter. It reduces the amount of the links and passes the set to the next 
layer. Layers which have filters with higher levels of confidence on accurate 
detection are applied at earlier levels. 

This model consists of six detectors: 
1) Pattern-based detector – this is similar to ReLink approach – issues 

metadata and commits logs messages are checked if they contain some 
typical patterns such as ’fix the issue ...’, ’fix the bug ID...’ etc. 

2) Filtering layer – the remaining links from the previous layer are ana-
lyzed if they violate time constraint – it means that the commit time for 
the fix must be between open and close time of the corresponding issue. 

3) Patch-based detector – it extracts the patch code recommended by the 
bug reporters or people who have mentioned it in the issues comments. 

4) Name-based detector – it detects if the entities or other components 
mentioned in the issue are the same as these which are in the commit 
log. 

5) Text-based detector – it is similar to the previous layer but extracts 
comments in the changed code to and tries to link them with the issue 
metadata. 

6) Association-based detector – it is the last layer which is used if the text 
used in the texts or entities names cannot be matched with the issue (the 
texts are not similar). It uses association strengths between the terms in 
the issue and the entity names.  
 
MLink is better than ReLink because it checks and compares not only 

terms but changes in the code repository too. It achieves high accuracy level: 
F-score: 87-93%, recall: 85-90%, precision: 82-97% as outlined in [8].  
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2.3. RCLinker: Automated Linking of Issue Reports and Commits Leverag-
ing Rich Contextual Information 

RCLinker’s [2] authors discovered, that many commits are not contain-
ing relevant information in commit messages. It means that if we want to im-
prove linking issues with commits, we must use other contextual information. 

RCLinker uses ChangeScribe [10] to generate additional messages 
about commits. ChangeScribe adds information in following format (real ex-
ample from [2]): 

This change set is mainly composed of: 
1. Changes to package org.apache.solr.common.cloud: 

(a) Modifications to ClusterState.java: 
i. Remove an unused functionality to get shared 

 
Messages, created by ChangeScribe, are then appended to each commit 

message. RCLinker also uses other contextual information like commit date, 
issue update date, issue comments’ date. 

RCLinker uses machine learning – trained Random Forest. Authors de-
fined 9 text features (which are basing mostly on cosine distance between 
texts) and 11 metadata features (which are basing mostly on issue, commit and 
comments dates). We use this features to train Random Forest. 

Usage of RCLinker is divided into two phases:  
1) Learn phase – extending commit messages with ChangeScribe, extract-

ing features (T1 – T9 and M1 – M11) and training model with i.e. Weka 
implementation of Random Forest. 

2) Production phase – extending commit message with ChangeScribe, ex-
tracting features (T1 – T9 and M1 – M11) and using on created model to 
choose proper issues for commit. 
RCLinker is much better in case of very poor developers’ commit mes-

sages. It has approximately 136 % better results of F-measure than MLink, 
however precision is lower than in MLink. 

We have also checked articles that are citing [2, 8] or [9]. Most of them 
are not related with linking issues with commits. 

Empirical Evaluation of Bug Linking [11] is an empirical evaluation 
with benchmark of ReLink algorithm. It does not propose any new tool. How-
ever this article shows that usage of ReLink is reasonable. 
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In The Missing Links: Bugs and Bug-fix Commits [12] there is an analy-
sis of problems with issue-commit linking. Authors used Linkster tool and 
expert knowledge to check 493 commits and link them to issues. Despite this 
work did not propose any new tool or algorithm, it is a good article to under-
stand problems in linking issues with commits. 

2.4. When do changes induce fixes? 

This article [13] describes one of the simplest algorithms which we use 
in our approach. In this case it is described how to link bugs from the bug da-
tabase with commits. This method is quite simple – every commit message is 
split into a stream of tokens (syntactic analysis). Each token could be one of 
the items: bug number (it is based on a simple regex), a plain number, a key-
word such as fixed, defects etc. and a word. After that, the syntactic confi-
dence is being counted – it is always an integer number between values 0 to 2. 

This linking method is based on a semantic analysis too. There is also a 
score if some of the following conditions were resolved: the bug has been re-
solved as fixed at least once, the bug description is used in the commit mes-
sage, the author of the commits has been assigned to it or one or more files 
affected by the commit has been attached to the bug. 

In our approach we use pattern matching and semantic analysis too.  

3. Experimental Setup 

In this section we want to describe why we have decided to use 
RCLinker approach. According to MLink article [9], MLink is better than Re-
Link by 6-11% in F-score, 4-13% in recall, and 5-8% in precision. In 
RCLinker article [2] authors sustain that RCLinker has gained far much better 
results in F-measure by 138.66% in comparison to MLink. That is why we 
have decided to use RCLinker approach. 
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3.1. Research questions  

x RQ1: How effective RCLinker is in recovering missing links between 
issues and commits? In this RQ we will check how effective solutions 
from literature are. 

x RQ2: Is it possible to pick versatile machine learning settings giving 
good effects for all kinds of projects? In this RQ we will check how 
RCLinker’s results can be changed when we adjust classifiers’ set-
tings. We will try to check if it is possible to gain better results than 
original authors. 

x RQ3: Will RCLinker will be effective on projects with various diffi-
culty levels? We will run defect prediction on datasets that vary on 
number of issues that could be matched with commit logs. 

x RQ4: How to improve RCLinker algorithm? We will add new metrics 
based on Jira metadata and evaluate on various machine learning 
classifiers. 

3.2. Datasets 

The research will be performed using two open source projects by Piv-
otal Software: Spring Data Redis, Spring OSGi and the proprietary commer-
cial project provided by Capgemini. 

To check commits and issue linking we have looked through Git history 
of selected projects to find out if they contain Jira ticket numbers. 

Outlined projects were chosen by discovering Spring’s projects cata-
logue. We chose projects which were created recently. The projects were com-
pared with each other minding commits coverage with Jira tags and overall 
commits number. This dataset will be split into two parts. First one will be 
used as training set, second one will have its Jira tags removed and used for 
validation of output. 

Spring OSGi will be used as dataset with higher complexity. This data 
set is bigger and not fully tagged with Jira issues. Specific thing for Spring 
OSGi commit history is tagging multiple commits with the same Jira issue 
number. It is two times bigger than Spring Data Redis – consists of over two 
thousands commits, while Spring Data Redis of around one thousand. 
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Commercial project provided by Capgemini will be used in final devel-
opment of the algorithm. The data set used for the research comes from a sys-
tem produced for one of the biggest automotive companies in Europe and it 
covers all aspects of car purchasing. The project is developed using agile 
methodologies. Support and bug fixing is hierarchically organised using Kan-
ban technique as described in [14].  

3.3. Knime workflow description 

Our main goal is to implement a new DePress plugin. To supply data-
sets for the plugin (issues from JIRA and commit logs from GitHub) we 
needed to prepare workspace and provide links to JIRA and GitHub reposi-
tory. More detailed information about reproduction (i.e. detailed steps of in-
stallation) can be found in Appendix A. 

3.4. Metrics – model input 

We will use two categories of metrics: based on commit message and 
based on commit metadata. Metrics are similar to those used in RCLinker arti-
cle [2]. We have used them as a model input – independent predictors. As 
dependent variable we predict if the given pair commit-issue is a true link or 
not. For a list of notations, used in metrics table, please see Table 1. We will 
use metrics described in Table 2. 

Metrics J1a, J1b, J1c, J1d, J2a, J2b, J3a, J3b, J3c are metrics designed 
by us, which are based on JIRA changes and metadata. 

Model input consists of two additional indicators: realLink  – valued as 
1 if given pair of commit-issue exists in golden set, otherwise 0, and under-
sampled RealLink, which is output of undersampling process described in 
RCLinker article [2]. Golden set is extracted from version control system re-
pository by traversing all the existing commit descriptions and matching issue 
tracking IDs in them. If such ID is found in description of commit, it is consid-
ered as a part of golden set. 

During first phase of experiment, we have learned model using Random 
Forest. Next, we have tried to improve results using also the following classi-
fiers from Weka library: MultilayerPerceptron, BayesNet, NaiveBayes, SGD, 
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AdaBoostM1, RealAdaBoost and changing default parameters’ values to get 
better results. Unfortunately it did not improve the results, so we have decided 
to use Random Forest classifier. 

Table 1. List of notations used in metrics description 

Msg Human-written commit message 
Csmsg Commit message generated by ChangeScribe 
cmtDate Commit date 
summary Summary of an issue 
Desc Description of an issue 
Prio Priority of an issue 
noCom Number of comments in issue 
comi Comment (1 <= comi <= noCom) 
words(D) Number of distinct words in document D 
+ text concatenation 
reportedDate Report date of an issue 
updatedDate Last update date of an issue 
date (commi) Date of ith comment in issue 

3.5. Prediction model and measures 

During experiment we have used a model to predict if the given issue 
should be linked with the given commit. For each pair (issue, commit) we have 
analysed if there is a link between them or not.  

As an output of program returns a list of linked issues with commits – 
pairs (issue, commit). We have evaluated the result in the matter of measures 
such as precision, recall and F-measure. 

4. Results 

In this section are presented results which we have achieved by using 
RCLinker approach without the ChangeScribe tool. In the first two tables can 
be found results for open source projects, in the last one – for the commercial 
Capgemini project. 
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Table 2. Used textual and metadata metrics 
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4.1. Spring Data Redis 

Results for Spring Data Redis project are presented in Table 3. 

Table 3. Spring Data Redis evaluation results 

Description  Recall  Precision  F-measure 
no cross validation,  
2 nearest neighbours 

0.63  0.17  0.27 

10 iterational cross validation, 10 
nearest neighbours 

0.52  0.10  0.16 

10 iterational cross validation,  
2 nearest neighbours 

0.48  0.38  0.42 

15 iterational cross validation,  
2 nearest neighbours 

0.46  0.37  0.40 

10 iterational cross validation,  
1 nearest neighbour 

0.41  0.54  0.47 

10 iterational cross validation,  
0 nearest neighbours 

0.38  0.79  0.51 

 
The best achieved results processing Spring Data Redis project were re-

call: 0.38, precision 0.79 giving F-measure at point of 0.51. 
During evaluation it turned out that producing nearest neighbours actu-

ally does not impact results in the positive way. It makes recall slightly rise, 
but with cost of huge precision drop. 

Using cross validation instead of random splitting data set into two 
fixed-size subsets improved the result. When no cross validation was used, 
with two nearest neighbours generated, there were F-measure equal to 0.27. 
With the same nearest neighbour setting and cross validation used, the F-
measure raised to level of 0.42. 

Increasing number of cross validation iterations did not bring significant 
improvement comparing to extended computation time needed to process data. 
Adding 5 iterations enhanced F-measure by 0.02. 

4.2. Spring OSGi 

Results for Spring OSGi project are presented in Table 4. 
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Table 4. Spring OSGi evaluation results 

Description Recall  Precision  F-measure  
10 iterational cross validation, 1 near-
est neighbour 

0.19  0.22  0.20 

10 iterational cross validation, 0 near-
est neighbours 

0.17  0.58  0.26 

15 iterational cross validation, 0 
nearest neighbours 

0.19  0.60  0.29 

 
In comparison to Spring Data Redis, Spring OSGi has far more less cor-

rect commits descriptions. While Spring Data Redis has almost all of them 
well described, Spring OSGi has more or less 50%. That is why, the results are 
much worse. Slightly better result we got by increasing the number of itera-
tions. 

4.3. Capgemini project 

Results for the commercial Capgemini project are presented in Table 5. 

Table 5. Capgemini project evaluation results 

Description Recall Precision F-measure 
10 iterational cross validation, 2 near-
est neighbours 

0.58  0.41  0.48 

10 iterational cross validation, 1 near-
est neighbour 

0.54  0.56  0.55 

15 iterational cross validation, 0 near-
est neighbours 

0.49  0.86  0.62 

10 iterational cross validation, 0 
nearest neighbours 

0.49  0.88  0.63 

 
Proprietary commercial project provided by Capgemini has quite good 

results. First of all the dataset with commits and issues was not too big – this 
was a period of 6 months. The other thing why results are good is caused by 
good described commits’ messages – about 95% has good commit description. 
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In comparison to Spring Data Redis – the best results were achieved when 
nearest neighbours equalled 0. The recall and F-measure raised significantly: 
recall from 0,56 to 0,88 and F-measure from 0,55 to 0,63. 

5. Discussion 

In this section, we have described why we have not used ChangeScribe 
in our implementation of the RCLinker algorithm. ChangeScribe caused many 
performance and implementation problems which are described below. 

5.1. General discussion 

As we can see in the results, RCLinker algorithm performs the best in 
Capgemini proprietary project. Also results for the Spring Data Redis are still 
quite good, however they are much worse than in the original RCLinker [2] 
approach. 

5.2. Problems 

During implementation of RCLinker algorithm we have encountered 
many performance and implementation problems. 

First problem was with executing ChangeScribe in non-eclipse envi-
ronment. ChangeScribe was not describing properly all changes. We wrote to 
ChangeScribe’s authors and created an issue on the GitHub repository. They 
helped us and gave access to special, modified version of ChangeDistiller. 

Second problem was memory complexity of ChangeDistiller. We have 
tried to run application with various heap sizes, however even 15 GB of RAM 
was not enough. 

5.3. Validity threats 

Golden set is extracted from version control system repository by pat-
tern matching potential issue IDs in commits’ description. This is a threat to 
validity since there may be some mistakenly tagged descriptions and the 
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golden set acquired this way may not be full. There is no other fully credible 
way of achieving such a golden set in projects evaluated by us. Manual crea-
tion of golden set would be extremely time consuming and would not plausi-
bility of it would be arguable as well. 

6. Conclusions 

Connections between issues and commits are very valuable in defect 
prediction. Unfortunately commit logs are often missing clear disclosure of 
these links. 

Our implementation of RCLinker was able to achieve results with F-
measure equal to 0.62 on the commercial project. This is promising result, but 
is not enough for enterprise use of this tool. The result indicates need for fur-
ther development of the algorithm itself. 

Due to problems with ChangeScribe results are inconclusive. Compar-
ing to the RCLinker paper our implementation achieves significantly worse 
results. There is a possibility, that using ChangeScribe, the results would be 
comparable to original RCLinker’s evaluation. 

We wanted to check which features are significant and important for the 
results. T1, T2 and T3 were good indicators when it comes to textual relevance 
between commits and issues. Features T4 and T5 are normalized forms of T1-
T3 respectively and that is why we supposed that they may be not very essen-
tial — we have checked this assumption using different classifiers described 
below. Features T6-T7 were used to compute the number of common words 
between issue and commit bringing new information to the classifier so they 
are relevant for classifier. Because T8 and T9 are the ratio of T6 to the number 
of distinct word in issue and commit we consider them as not useful. Metadata 
features M9, M10, M11 were based on the comments and dates between them 
and did not provide valuable information for machine learning algorithms. 
After evaluation we consider JIRA features J1a, J1b, J1c, J1d, J2a, J2b, J3a, 
J3b, J3c as not relevant, as they were not improving result of machine learn-
ing. 

Concluding the revision we decided to leave significant metrics T1, T2, 
T3, T6, T7, M1-M8 and not use features: T4, T5, T8, T9, M9, M10, M11, J1a, 
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J1b, J1c, J1d, J2a, J2b, J3a, J3b, J3c. We have tested it on the Spring Data 
Redis dataset. The results were comparable: Recall: 0,36, Precision: 0,79, F-
measure: 0,49. With the previous features set we got: Recall: 0,38, Precision: 
0,79 and F-measure: 0,51. 

We have also tested our implementation using the following classifiers 
from Weka library: MultilayerPerceptron, BayesNet, NaiveBayes, SGD, 
AdaBoostM1, RealAdaBoost and Random Forest. However, Random Forest, 
used in original paper [2], gave us the best results. We have checked how vari-
ous parameters will change the results. For Random Forest, the best parameter 
set is: Max Depth: unlimited, number of trees: 10. 

7. Future works 

We were not able to gain such a good results as described in the article 
about RCLinker [2]. We suppose that a tool which will be similar to 
ChangeScribe can improve the results. Additional features which were based 
on JIRA metadata did not improve the results. It is likely that a tool which 
generates additional messages about commits will give significant information 
about changes in the repository code — it will be possible to create a new set 
of features. The decision to create a new tool instead of using ChangeScribe is 
associated with the problems described in the subsection 5.2. 
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