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Code smell prediction employing machine learning meets emerging
Java language constructs

Hanna Grodzicka, Arkadiusz Ziobrowski, Zofia Łakomiak, Michał Kawa, Lech Madeyski (B)

Abstract — Background: Defining code smell is not a trivial task. Their recognition tends to be highly
subjective. Nevertheless some code smells detection tools have been proposed. Other recent approaches incline
towards machine learning (ML) techniques to overcome disadvantages of using automatic detection tools.
Objectives: We aim to develop a research infrastructure and reproduce the process of code smell prediction
proposed by Arcelli Fontana et al. We investigate ML algorithms performance for samples including major
modern Java language features. Those such as lambdas can shorten the code causing code smell presence not
as obvious to detect and thus pose a challenge to both existing code smell detection tools and ML algorithms.
Method:We extend the study with dataset consisting of 281 Java projects. For driving samples selection we
define metrics considering lambdas and method reference, derived using custom JavaParser-based solution.
Tagged samples with new constructions are used as an input for the utilized detection techniques.
Results: Detection rules derived from the best performing algorithms like J48 and JRip incorporate newly
introduced metrics.
Conclusions: Presence of certain new Java language constructs may hide Long Method code smell or indicate
a God Class. On the other hand, their absence or low number can suggest a Data Class
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1 Introduction

Ever-shifting environment of software development introduces a variety of factors that can affect software
quality. Changing requirements, high time pressure and sometimes lack of experience may contribute to creation
of code of inferior quality. Code affected by these factors may bring an attentive developer to a conclusion that
it "smells". As it is beneficial to be able to grasp the subtleties of such issues, an efficient detection of poor
programming habits is a subject of intensive scientific research.
Code smell term was spread by Fowler [3]. He defined smells as something easy to spot (just like real smells)
and indicators of a problem since the smells are not inherently bad. Since then, many publications concerning
the subject of code smells have been released. A considerable amount of them refer to tools and algorithms for
their detection in software projects.

We performed preliminary review of literature on code smell prediction and existing open access datasets
of code smells.
One recent publication in this field was published by Arcelli Fontana et al. [1] in the article Comparing and
experimenting machine learning techniques for code smell detection. In the study attention was paid to four
code smells: Data Class, God Class, Feature Envy and Long Method. They conduct an extensive comparison
of 16 different machine learning algorithms to aid the detection of code smells. They discovered that the best
performance was obtained by J48 and Random Forest models. Detection of code smells employing these
techniques can provide a very high accuracy – over 96%. There are some premises for imprecision of their
research though – these issues will be referred to in the upcoming sections of this paper.

Palomba et al. [10] used the LANDFILL dataset presented in another publication (Palomba et al. [11]) and proposed
Historical Information for Smell deTection (HIST) approach exploiting change history information to detect
instances of five different code smells (Divergent Change, Shotgun Surgery, Parallel Inheritance, Blob, and
Feature Envy). The results indicate that the precision of HIST is between 72 and 86 percent, while its recall is
between 58 and 100 percent.
Many papers have introduced a number of tools for detection of code smells. For instance, Arcelli Fontana
et al. [1] used iPlasma, PMD, Fluid Tool, Marinescu and Antipattern Scanner. In other publication, Arcelli
Fontana et al. [2] additionally used JDeodorant and StenchBlossom to compare tools for code smells detection.
Another way to discover presence of smells is Textual Analysis, which was described by Palomba [9].
Palomba et al. [11] contributed the dataset containing 243 instances of five smell types from 20 open source
projects manually verified by two MSc students. They also presented LANDFILL, a web-based platform aimed
to promote the collection and to share code smell datasets.
There is yet another tool for detection of code smells. Designite was created and developed by Sharma [12]. It
focuses on C# code, but the author provided a version for Java as well. In our research we have used it to verify
its detection capabilities on Qualitas Corpus datasets (Tempero et al. [13]) and within new Java structures. This
will be described in one of the following chapters.

Tempero et al. [13] created a web page containing open source Java projects. Arcelli Fontana et al. [1] used
74 projects from this set in order to conduct their research. The biggest drawback of this collection is that
the newest version comes from 1 September 2013.

The paper consists of six sections, that are organized in the following manner: in Section 2 we describe the
reference work and analyze the approach of Arcelli Fontana et al. [1]. Then we discuss the reproduction of
Arcelli Fontana et al. [1] experiment. In Section 3 we go through the empirical study conducted by our team.
In Section 4 we present the obtained results which are then augmented by an analysis in the Section 5. We
conclude the research and indicate future directions in Section 6.
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2 The reference work

Instead of using automated tools for code smell prediction Arcelli Fontana et al. [1] decided on machine
learning approach that we aim to reproduce.

2.1 Collecting the datasets

We began the reproduction of the Arcelli Fontana et al. [1] experiment with obtaining used datasets. Arcelli
Fontana et al. [1] sourced datasets from Qualitas Corpus (Tempero et al. [13]), a curated collection of various
software systems. As of the date of writing this paper, the current release of Qualitas Corpus is 20130901.
Datasets’ last modification dates were retrieved. The results are presented below.
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Fig. 1: Histogram presenting last modification dates for the Qualitas Corpus dataset

Arcelli Fontana et al. [1] used Qualitas Corpus distribution from 2012-01-04 which contains source code even
from 2002.
State of the art software systems could have completely diverged from design concepts, that were widespread
during the creation of such systems. Therefore in the following sections of this paper, we attempted to reason
with the usage of such systems as giving reliable results.
We had to filter out Qualitas Corpus systems, which did not appear in the Arcelli Fontana’s experiment and
augment the source code collection with missing ones. To obtain these results, a set of bash scripts has been
written. Individual scripts attempt to tackle problems such as filtering out the incorrect datasets and generating
a list of missing systems. We have found that six systems were missing from the newest distribution of the
Qualitas Corpus: freecol, jmeter, jpf, junit, lucene, weka.
Following systems had differing versions: freecol, jmeter, junit, lucene and weka, but jpf was not present in
the Qualitas Corpus newest distribution, despite being attached there in the version, that was used by Arcelli
Fontana et al. [1].
The missing systems were manually retrieved from available repositories hosted on Sourceforge or system
manufacturer’s website. We were successful in obtaining every single one of the systems used in Arcelli
Fontana’s experiment in the proper version. The archive containing mentioned datasets is available online along
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Table 1: Summary of Qualitas Corpus last modification dates

Date
Min. 2002-09-02 17:33:14
1st Qu. 2008-08-19 02:07:16
Median 2010-01-03 13:30:36
Mean 2009-05-19 17:18:00
3rd Qu. 2010-08-04 01:26:36
Max. 2011-12-15 21:26:14

with the summary of missing systems (Table 1) prior to their manual supplementation. Additionally, a version
of the archive without the test source code has been prepared and shared online likewise1.

2.2 Tooling approach

Arcelli Fontana et al. [1] introduced some inconsistencies in their paper. One of the most vital challenges for the
reproduction of the results were choosing the proper version of tools. Arcelli Fontana et al. [1] did not specify
advisors nor weka versions. Therefore it was needed for us to come up with the most approximate approach.
We decided to choose R language to build the reproduction infrastructure with usage of caret and RWeka
packages, since they are ones of the most popular tooling2 choices. As for advisors, we used PMD which date
of release was closest to the expected date of creation of Arcelli Fontana et al. [1].
Another downside is the lack of parameter specification, that were obtained by the means of hyperparameter
optimization, for the models employed by Arcelli Fontana et al. [1]. Therefore it is not trivial to put the obtained
results in the proper context.

2.3 caret vs RWeka approach

Both caret and RWeka [6] R packages have been used during Arcelli Fontana et al. [1] experiment reproduction.
Following subsections describe approaches in use of each of the packages.

2.3.1 caret

Package caret (short for Classification And Regression Training) is a set of functions that attempt to streamline
the process for creating predictive models. The package significantly simplifies data-splitting, pre-processing,
feature selection, model tuning using resampling, variable importance estimation and others.
In order to reproduce Arcelli Fontana et al. [1] experiment, the caret package has been used. Unfortunately,
not all of the models used in the experiment are available in the package, especially caret does not include
models with the boosting technique AdaBoostM1.
Nevertheless, caret has been used because of an ease of cross-validation and grid search (Hsu et al. [7])
parameter estimation technique usage, which has been employed in Arcelli Fontana et al. [1] experiment.
Parameters obtained by means of grid search in Arcelli Fontana et al. [1] have not been published in the paper.
Table 2 shows models used from the caret package. The rest of algorithms have not been run in caret due
to limitations of their availability in the package. Parameters presented in the Tuning parameters column
in Table 2 have been computed with the default caret grid search settings. Tune grid used for grid search is

1 Datasets – sources.tar.gz for full datasets
2 https://www.kdnuggets.com/2015/06/top-20-r-machine-learning-packages.html, access: 2019-04-09

https://mega.nz/#F!fiQ1ySgA!0QQ7GexzNsx_MDNiaGIfAA
https://www.kdnuggets.com/2015/06/top-20-r-machine-learning-packages.html


Code smell prediction employing machine learning meets emerging Java language constructs 5

derived exclusively for each of the algorithms, based on the model tuning parameters provided by the library,
which includes the model.
The granularity in the tuning parameter grid is based on tuneLength parameter in the train function, which
defaults to the division of parameter value space equally on three values. One can specify it manually, but
we decided to omit the manual specification of tuneLength parameter for sake of performance. Moreover
choosing the best tuning parameter is driven by the best strategy of train function, that selects parameters
associated with the best performance in terms of area under the ROC (Receiver Operating Characteristics)
curve.

Table 2: Models from caret

# Model Method Value Type Library Tuning Parameters
1 C4.5-like Trees J48 Classification RWeka C=0.01, M=3
2 Naive Bayes naive_bayes Classification naivebayes laplace=0, usekernel=FALSE, adjust=1
3 Random Forest rf Classification,

Regression
randomForest mtry=1011

4 Rule-Based Classifier JRip Classification RWeka NumOpt=3, NumFolds=3, MinWeights=2

2.3.2 RWeka

Package RWeka is an interface to machine learning library Weka, a collection of machine learning algorithms
for data mining tasks written in Java, containing tools for data pre-processing, classification, regression,
clustering, association rules, and visualization (RWeka [14], Hall et al. [5]).
In order to reproduce Arcelli Fontana et al. [1] experiment, the RWeka package has been used as well. The package
allows to use the exact algorithms Arcelli Fontana et al. [1] used, including their boosted versions. Downside
of using the package directly is a fact, that it does not provide a simple method for grid search, which
has been applied as a parameter optimization technique in the experiment we have reproduced.
Table 3 includes models used from RWeka. The rest of algorithms have not been run with RWeka due to their
unavailability in the package.

Table 3: Models from RWeka

# Algorithm name Default parameters
1 B-J48 Pruned iterations=10, C=0.25, M=2
2 B-J48 Unpruned iterations=10, C=0.25, M=2
3 B-J48 Reduced Error Pruning iterations=10, C=0.25, M=2
4 B-JRIP iterations=10, F=3, N=2.0, O=2
5 B-SMO RBF Kernel iterations=10, C=250007, G=0.01
6 B-SMO Poly Kernel iterations=10, C=250007, E=1.0
7 J48 Pruned C=0.25, M=2
8 J48 Unpruned C=0.25, M=2
9 J48 Reduced Error Pruning C=0.25, M=2
10 JRIP F=3, N=2.0, O=2
11 SMO RBF Kernel C=250007, G=0.01
12 SMO Poly Kernel C=250007, E=1.0
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2.4 Reproduction strategy overview

We attempted to reproduce the results with the approach adequate to Arcelli Fontana et al. [1]. Manually
evaluated datasets provided by Arcelli Fontana et al. [1], alongside with available models from caret and RWeka
packages were used.
Firstly, the hyperparameter optimization was done by means of grid search. Method trainControl from caret
employs this method by specifying its search parameter as grid.
Models were trained using 10-fold cross-validation – for every model there were ten iterations of 10-fold
cross-validation, that were later averaged.
ARFF files contain missing values for various metrics – they are marked with explanation mark within a file.

Table 4: Missing values overview in Arcelli Fontana et al. [1] datasets

File No. of missing values
data-class.arff 75
feature-envy.arff 92
god-class.arff 76
long-method.arff 92

Unfortunately, we do not know the strategy to deal with missing values in our reproduction, since Arcelli
Fontana et al. [1] does not specify any particular method. It could be therefore crucial to recognize a proper
technique to supplement missing values in order to fully reproduce the original results. Based on the trained
model, a confusion matrix was computed, thanks to which an accuracy and F-measure were obtained and
compared with the results from Arcelli Fontana et al. [1]. The results were augmented with standard deviation
and area under ROC as well.

2.5 Classifier comparison

For reproduction we used ARFF files provided by Arcelli Fontana et al. [1] as an input.
Altogether, 18 algorithms were tested: 16 from RWeka3 and 6 from Caret4. The common classifiers for both
libraries are JRip and J48 Unpruned.
Results marked green are those that came out better compared to Arcelli Fontana et al. [1].
In RWeka, for the accuracy the results differ no more than 2% except SMO RBF Kernel (bold font) that
is unquestionably worse, by 6.53%. Standard deviation for accuracy is always lower for our results – mostly
rounds up to zero. In original work it was between 1 and 3 for the given classifiers.
F-measure has similar outcome to accuracy. Our results tend to be nearly the same. The most notable difference
is 1.16% excluding SMO RBF Kernel that has lower score by 4.81%. Similarly to the accuracy, F measure
standard deviation is rounded up to 0 in nearly every case.
Area under the ROC has very similar results to the original ones. In few cases it is even better. Its standard
deviation is approximately two times lower than in Arcelli Fontana et al. [1] research.
The best algorithms from Table 5 are B-J48 and B-JRip, what agrees with Arcelli Fontana’s results. All the
SMO-based classifiers came out worse in reproduction.
As for caret library, J48 Unpruned, JRip and Random Forest resemble scores achieved by Arcelli Fontana
et al. [1]. SVM-based classifiers showed considerable deterioration. Whereas Naive Bayes seems unreliable,
it is giving us similarly bad results every time (Table 6).
In conclusion, the reproduction has given consistent results of cross validation for classifiers based on J48,
JRip and Random Bayes. SMO and SVM went worse than expected. Naive Bayes gave clearly bad results.
The results can be affected by the choice of the libraries and following default behaviour of its components.

3 https://cran.r-project.org/web/packages/RWeka/index.html, access: 2019-04-09
4 http://topepo.github.io/caret/index.html, access: 2019-04-09

https://cran.r-project.org/web/packages/RWeka/index.html
http://topepo.github.io/caret/index.html


Code smell prediction employing machine learning meets emerging Java language constructs 7

Table 5: RWeka results for Long Method (grey) compared with Arcelli Fontana’s (white)

# Classifier Accuracy Std dev. F measure Std dev. AUROC Std dev.
1 B-J48 Pruned 99.20% 0.00 99.40% 0.00 0.9913 0.0083
2 B-J48 Pruned 99.43% 1.36 99.49% 1.00 0.9969 0.0127
3 B-J48 Unpruned 99.41% 0.00 99.56% 0.00 0.9962 0.0042
4 B-J48 Unpruned 99.20% 1.18 99.63% 0.99 0.9969 0.0126
5 B-J48 Reduced Er-
ror Pruning

98.99% 0.00 99.24% 0.00 0.9967 0.0027

6 B-J48 Reduced Er-
ror Pruning

99.19% 1.31 99.39% 0.87 0.9967 0.0100

7 B-JRip 99.05% 0.00 99.29% 0.00 0.9890 0.0058
8 B-JRip 99.03% 1.26 99.50% 0.94 0.9937 0.0144
9 B-Random Forest 98.99% 0.00 99.25% 0.00 0.9996 2e-04
10 B-Random Forest 99.23% 1.17 99.57% 1.91 0.9998 0.0006
11 B-Naive Bayes 95.52% 0.00 96.57% 0.00 0.9780 0.0035
12 B-Naive Bayes 97.86% 2.37 98.35% 2.02 0.9950 0.0084
13 B-SMO RBF Ker-

nel
95.49% 0.01 96.56% 0.01 0.9900 0.0022

14 B-SMO RBF Ker-
nel

97.00% 2.49 97.75% 2.38 0.9930 0.0116

15 B-SMOPolyKernel 97.42% 0.00 98.07% 0.00 0.9704 0.0047
16 B-SMOPolyKernel 98.67% 1.76 99.00% 2.17 0.9852 0.0208
17 J48 Pruned 98.94% 0.00 99.21% 0.00 0.9938 0.0034
18 J48 Pruned 99.10% 1.38 99.32% 1.04 0.9930 0.0151
19 J48 Unpruned 98.92% 0.00 99.19% 0.00 0.9933 0.0035
20 J48 Unpruned 99.05% 1.51 99.28% 1.54 0.9925 0.0168
21 J48 Reduced Error

Pruning
98.07% 0.01 98.55% 0.00 0.9887 0.0068

22 J48 Reduced Error
Pruning

98.40% 2.02 98.80% 1.13 0.9868 0.0222

23 JRip 98.89% 0.00 99.17% 0.00 0.9880 0.0047
24 JRip 99.02% 1.62 99.26% 1.79 0.9884 0.0181
25 Random Forest 99.23% 0.00 99.42% 0.00 0.9996 1e-04
26 Random Forest 99.18% 1.20 99.54% 1.62 0.9998 0.0011
27 Naive Bayes 93.35% 0.00 94.80% 0.00 0.9649 0.0027
28 Naive Bayes 96.24% 2.39 97.09% 1.72 0.9921 0.0086
29 SMO RBF Kernel 90.44% 0.00 93.29% 0.00 0.8583 0.0066
30 SMO RBF Kernel 97.57% 2.02 98.17% 1.61 0.9732 0.0235
31 SMO Poly Kernel 97.06% 0.00 97.81% 0.00 0.9653 0.0060
32 SMO Poly Kernel 98.67% 1.76 99.00% 1.69 0.9852 0.0208

Comparison tables for other code smells can by found in Appendix (Section 6).

2.6 Learning curves

Learning curves present the behaviour of models’ accuracy with incremental change in number of training
examples. Figures 2a, 2b, 3a and 3b present results obtained with use of the RWeka package.
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Table 6: Caret results for Long Method (grey) compared with Arcelli Fontana’s (white)

# Classifier Accuracy Std dev. F measure Std dev. AUROC Std dev.
1 SVM C-SVC Linear Kernel 89.70% 0.02 92.62% 0.01 0.9225 0.0228
2 LibSVM C-SVC Linear Ker-
nel

97.31% 2.22 97.97% 1.88 0.9978 0.0044

3 SVM C-SVC Radial Kernel 71.16% 0.01 81.54% 0.01 0.7562 0.0255
4 LibSVM C-SVC Radial Ker-
nel

97.43% 2.09 98.05% 1.32 0.9972 0.0045

5 J48 Unpruned 98.07% 0.01 98.56% 0.00 0.9842 0.0067
6 J48 Unpruned 99.05% 1.51 99.28% 1.54 0.9925 0.0168
7 Random Forest 98.90 0.00 99.17% 0.00 0.9997 0.0003
8 Random Forest 99.18% 1.20 99.54% 1.62 0.9998 0.0011
9 Naive Bayes 32.65% 0.00 NA NA 0.7450 0.0141

10 Naive Bayes 96.24% 2.39 97.09% 1.72 0.9921 0.0086
11 JRip 98.70 0.00 99.03% 0.00 0.9861 0.0014
12 JRip 99.02% 1.62 99.26% 1.79 0.9884 0.0181

Method used for generating the learning curves was equivalent to the one used by Arcelli Fontana et al. [1].
Starting from the dataset of size 20, ten iterations of 10-fold cross validation has been made with constant
increment in the number of training examples after each iteration. Accuracy of a model for a given dataset
was computed as a mean from mentioned ten iterations.
Obtained learning curves are non-monotonic, although the trend seems to be similar to the results of Arcelli
Fontana et al. [1]. Additionally, there appears to be more significant jitter and deviation from the Arcelli Fontana’s
results. A deciding factor for such learning curves behaviour might be the tooling approach or the dataset
partitioning method, that was used to produce incremental datasets.

(a) Data Class (b) God Class

Fig. 2: Learning curves for Data Class and God Class code smells
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(a) Feature Envy (b) Long Method

Fig. 3: Learning curves for Feature Envy and Long Method code smells
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2.7 Extracted Rules

For sake of completeness we show the extracted rules from decision-tree based model J48 and from rule-based
JRip.
All appearing differences in extracted rules might be due to different grid search approach, since caret default
grid search explores only a limited space of parameters and no grid search has been employed for RWeka.
Metrics’ abbreviations can be found in Section 3.4.

2.7.1 Long Method

For Long Method, J48 Pruned generates a decision tree that can be expressed as the following set of rules:

!$� > 79 and �.�!$ > 9 (1)

The detection rule declares a method as code smell, when its size is large and it is complex. Obtained results for
J48 are identical with Arcelli Fontana et al. [1].
As for JRip, the computed rule is as follows:

!$� ≥ 91 and �.�!$ ≥ 10 (2)

It differs from the Arcelli Fontana’s results by a small margin – we can observe increment by 10 for !$�
metric and by 2 for �.�!$ metric.

2.7.2 Data Class

For Data Class code smell, detection rule derived from the J48 classifier is yet again identical with the results
obtained by Arcelli Fontana. The following Boolean logic expression describes the code smell in terms of J48
decision tree:

#$�" > 2 and,"�#�"" ≤ 21 and #�" ≤ 30 (3)

JRip classifier produces the following expression:

(,$� ≤ 0.352941) and (#$�" ≥ 3) and ('�� ≤ 39)
or (�", ≤ 1.181818) and (#$" ≥ 8) and (#$�" ≥ 4)

or (#$" ≤ 27) and (#$�" ≥ 4) (4)

The first operand of logical disjunction is nearly the same as Arcelli Fontana’s, but unfortunately the rest
of logical expression diverges. Obtained results introduce #$" metric and omit ��#�"" and #$%+�
metrics.

2.7.3 God Class

Results obtained for God Class code smell are convergent for both J48 and JRip. The detection rule of J48 for
God Class is:

,"�#�"" > 47 (5)

and for JRip:
,"�#�"" ≥ 48 (6)

Both rules are the same. They are coincident with Arcelli Fontana’s results for this code smell.
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2.7.4 Feature Envy

Detection rules for Feature Envy code smell appear to be the most divergent from the results of Arcelli Fontana
et al. [1]. J48 Pruned produces the following decision tree:

�)�� > 4 and #"$ > 8 and ��% > 5 (7)

This expression introduces ��% and #"$ as the metrics that constitute whether a sample source code is
influenced by Feature Envy code smell. ��% metric describe number of foreign data providers and #"$
shows the number of overridden methods in a class. Number of overridden methods provides that class uses
data in differences ways. So it could use data from other class than from its own as well. However, Arcelli
Fontana’s J48 decision tree rule had made use of !�� and #$� metrics.
Same results has been observed for the detection rule extracted from JRip:

(�)�� ≥ 9) or (�)�� ≥ 3 and !�� ≤ 0.) and !$� ≥ 20)
or (��% ≥ 3 and !�� ≤ 0.578947) (8)

First operand of the disjunction is identical with Arcelli Fontana’s, however the rest of operands differ.
Probable reason of differences in extracted rules is that we used grip search after RWeka computed. Additionally,
some rules was extracted by caret functions. Arcelli Fontana et al. [1] used only RWeka.

3 Empirical study definition

Arcelli Fontana et al. [1] carried out research on obsolete dataset. We investigated that only fifty are still
supported (as of 2019-06-10).

Acquisition of 792 projects
(Madeyski et al. [8])

Datasets

Filtering 281 projects by Java
version from Maven build

Filtering samples with JavaMetrics tool
for highest number of new Java con-
structions from subset of 281 projects

Code smells detection

Manual validation by 4 Msc stu-
dents & professional developers

Obtaining metrics for 375 sam-
ples for each smell (125 with spe-

cific smell and 250 without it)

Machine learning algo-
rithms utilizing code metrics

Fig. 4: Steps taken during our research
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3.1 Objective

The aim is to take similar steps to Arcelli Fontana et al. [1] but for more recent and still active projects involving
new major Java constructs. We want to find out whether proposed algorithms cope with different dataset and
how they perform with new language features. Are they still as effective?

3.2 Extending code smell detection with Designite

In our research we decided to compare results from a new code smell detection tool (advisor) on the same
datasets as Arcelli Fontana et al. [1], consisting of 74 system from Qualitas Corpus (Tempero et al. [13]). Long
Method code smell was exclusively explored, since it is the only one that complies with the newly introduced
advisor – Designite for Java Sharma [12].
Our results have been made available online5 for each of the datasets used by Arcelli Fontana et al. [1].
PMD advisor has detected the highest number of smells (see Figure 5) and Designite detections coincide the
most with Arcelli Fontana’s PMD (Figure 6). One of the factors affecting such result is that PMD and Designite
detected the highest number of smells overall. On the other hand, there are notable differences among PMD
and Designite comparison and comparisons between following pairs: iPlasma and Designite, Marinescu and
Designite. AND/OR ratio for Designite and PMD suggests the closest match between this pair of advisors.
However, due to large number of detections for those, the ratio may not be the best accuracy indicator.

Marinescu

12%

iPlasma

20% Designite

24%

PMD

44%

Fig. 5: Ratio of detected smells – PMD, Marinescu,
iPlasma, Designite

PMD iPlasma Marinescu
0

20

40

60

A
N
D
/O

R
ra
tio

Fig. 6: AND/OR ratio of detected smells – Designite
compared with other advisors

3.3 Introducing datasets containing projects with newer Java constructions

Despite the fact that the Qualitas Corpus dataset (Tempero et al. [13]) once had been a proper dataset containing
Java projects, nowadays it shows several weaknesses such as:

• it is not updated (the current release is 20130901),
• due to lack of updates it contains projects with very old source codes (Table 1),
• old source codes mean that new Java constructions cannot be observed nor examined.

For a solution to these problems, we decided to introduce a new dataset containing 792 projects Madeyski
et al. [8]. The main aim of creating the dataset is to study the impact of newer Java constructions on code
smells detection. We concluded, that the current breakthrough Java version is the Java 8. Java 8 has been chosen

5 http://madeyski.e-informatyka.pl/download/GrodzickaEtAl19DataSet.zip

http://madeyski.e-informatyka.pl/download/GrodzickaEtAl19DataSet.zip
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as the determinant of the freshness of the projects, due to the multitude of new constructions it introduces and
its long-term support (LTS) status.

3.3.1 Information about the new dataset

All of the projects in the base dataset Madeyski et al. [8] are open source and available on GitHub. Not all
of them are plain Java projects and, additionally, not necessarily use at least Java 8. For this reason the base
dataset had to go through filtering.
The R package reproducer [8] contains basic information to obtain the projects in their specific versions
from GitHub and had been used while collecting them. Further description can be found in the Appendix [4].
The dataset contains actively developed projects (see Table 7, Figure 7). A substantial difference can be observed
comparing the datasets’ summary with the Qualitas Corpus datasets’ summary (see Table1).

Table 7: Summary of last modification dates of 792 projects from the new dataset

Date
Min. 2002-02-28 13:58:11
1st Qu. 2016-06-18 19:45:16
Median 2018-03-06 08:29:50
Mean 2017-03-21 00:46:19
3rd Qu. 2018-12-04 15:49:56
Max. 2019-04-16 22:55:47
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Fig. 7: Overview of last modification dates of 792 projects from the new dataset

3.3.2 Filtering Java Maven projects from the base dataset

In order to ensure that projects comprise Java, we decided to filter them upon Maven build tool. Using Maven
build information allowed Java version retrieval aside. Although the base dataset contains constantly updated
projects, we were particularly interested in ones with the Java version equal to or higher than the Java 8 version.
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3.3.3 Checking Java version in the Maven build tool

The first step to obtain new constructions is filtering projects’ build tools by Java version used in builds. Figure 8,
Table 8 show distribution of build tools among projects.
There are 439 plain Maven projects, others combine different or multiple build tools. Projects marked as other
or lack of indicate use of other build scripts and tools than pom.xml for Maven, build.gradle for Gradle
or build.xml for Ant.
Additionally, build.properties and .travis.yml files have been searched for Java versions.
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Fig. 8: Projects’ build tools

Table 8: Projects’ build tools

Build tool(s) Number of projects
Maven 439
Gradle 147
Ant & Maven 88
Gradle & Maven 52
Ant 21
Ant & Gradle & Maven 14
Ant & Gradle 5
other or lack of 26

The Maven build tool, as the most frequently used, has been selected to retrieve information about the Java
version from Maven-based projects. Maven configuration file (pom.xml) has been searched for Java version
used during the projects’ builds. Extracting the version from Maven build script was not always straightforward
because of multiple ways of encoding it. Moreover, non-Maven projects or these with unconventionally specified
build were omitted and Java version for them was marked as unknown (Figure 9, Table 9).
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Fig. 9: Projects’ Java versions

Table 9: Projects’ Java versions

Java version Number of projects
8 273
7 95
6 65
1.5 16
11 4
9 4
1.4 3
1.1 2
1.3 1
unknown 329

After filtering the 792 projects for at least Java 8 version, the following results were obtained (Table 12,
Figure 12).
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As for summary of original datasets’ subset, following information can be observed (Table 10, Figure 10).

Table 10: Summary of last modification dates of 281 projects from the new dataset

Date
Min. 2005-02-03 22:37:19
1st Qu. 2017-08-28 17:23:51
Median 2018-08-02 11:18:04
Mean 2017-10-28 07:30:51
3rd Qu. 2019-01-03 05:27:38
Max. 2019-04-16 18:01:42
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Fig. 10: Overview of last modification dates of 281 projects from the new dataset

Appendix [4] contains details required to obtain the filtered projects in their specific versions from GitHub.
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Table 11: Filtered projects’ build tools

Build tool(s) Number of projects
Maven 218
Ant & Maven 31
Gradle & Maven 27
Ant & Gradle & Maven 5
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Fig. 12: Filtered projects’ Java versions

Table 12: Filtered projects’ Java versions

Java version Number of projects
8 273
11 4
9 4

3.4 Filtering and retrieving information about the actual use of new Java constructions
using the JavaParser

JavaMetrics is our custom solution that employs JavaParser6 to automate metric derivation. It exposes the
following metrics that can be run against the provided project:

• Access to Foreign Data (�)��)
• Cyclomatic Complexity (�.�!$)
• Foreign Data Providers (��%)
• Locality of Attribute Access (!��)
• Lambda Density (!�)
• Lines of Code (!$�)
• Method Reference Density ("'�)
• Number of Inherited Methods (#�")
• Number of Accessor Methods (#$�")
• Number of Lambdas (#$!)
• Number of Methods (#$")
• Number of Mutator Methods (#$"")
• Number of Method Reference (#$"')
• Number of Public Attributes (#$%�)
• Number of Private Attributes (#$%+)
• Weighted Method Count (,"�)
• Weighted Method Count of Not Accessor or Mutator Methods (,"�#�"")
• Weight of Class (,$�)

Custom metrics are written in bold. Both !� and "'� refer to constructions (lambda and method reference)
density in class, for instance !� = #$!/!$� ∗100 (result in percent). #$! and #$"' are implemented
for methods separately to use them for Long Method detection.
JavaMetrics utilizes visiting the Abstract Syntax Tree (AST) nodes in deriving the metrics. JavaParser allows
to traverse the AST with callback invocation only for certain types of nodes. Thanks to robust JavaParser API,
it is possible to detect Java language constructs and process them accordingly.
The tool is flexible enough to implement other custom metrics without changing the existing code structure
(open-closed principle). A CSV file is generated as the result of the JavaMetrics run. The output consists of
parsed unit details such as package, class, method signature and additional information whether methods and
fields are final or static. Moreover it provides the selected metrics values as the succeeding columns in the
output.
Unfortunately, even though the metrics derivation works as expected, the ergonomics of the JavaParser may
pose a challenge to completely automate metric derivation process. Missing part involves the resolution of

6 https://javaparser.org, access: 2019-06-10

https://javaparser.org
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classes. For example the #�" metric expects information about the superclass that is most likely in the separate
file. JavaParser tool has incorporated a second tool called JavaSymbolSolver as a part of the library. It allows to
resolve classes by means of the import clauses and referenced files. Both the directory containing the packages
under the resolution and external dependencies in the form of JAR files shall be provided.
In order for JavaMetrics to work seamlessly, we would have to parse the provided directory to find the directories
enclosing the packages and parse the build automation tool files (such as pom.xml for Maven) to identify
the external dependencies. Those external dependencies would have to be downloaded and appropriately
registered within the JavaMetrics. This issue is the matter of the future directions of work.

3.5 Manual tagging

Our tool named JavaMetrics was used for initial filtering of samples from dataset (Madeyski et al. [8])
with the highest number of lambdas and method references. JavaMetrics let us conduct in-depth analysis
of the selected samples by bringing metrics.
Code smell recognition was performed mostly by us, 4th year Software Engineering students and junior
developers with approximately one year of professional experience. We were validating selected samples till
reaching 125 Long Methods. Our judgement was partly based on metrics from JavaMetrics that gave us overview
for each sample.
Tagged samples have been replenished with some tagged by professional developers (Table 13) mentioned
inAcknowledgement 6.Due to similarities in their specification,we have treatedBlob asGodClass for the purpose
of our research.

Table 13: Tagged samples from professional developers

Code smell Minor or higher severity Nonsevere
Long Method 0 3
Data Class 5 26
Blob 15 16

Eventually 125 samples were selected for Long Method, Data Class and God Class along with complementary
250 samples without those smells. All of professionally tagged samples were used. Such datasets (with resulting
metrics) were used as an input for the machine learning algorithms.

4 Results

Results of manual tagging consist of 375 samples – 125 samples with specific code smell and 250 without it.
Each 375 samples along with their metrics were used as an input to build code smell prediction rules employing
machine learning algorithms.
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4.1 Classifier performance

Table 14: caret results for Long Method

# Classifier Accuracy Std dev. F measure Std dev. AUROC Std dev.
1 J48 96.1% NA 97.08% NA 0.955 NA
2 rf 96.81% NA 97.63% NA 0.9963 NA
3 naive_bayes 94.68% NA 96% NA 0.9778 NA
4 JRip 96.81% NA 97.61% NA 0.9632 NA

Table 15: caret results for God Class

# Classifier Accuracy Std dev. F measure Std dev. AUROC Std dev.
1 J48 89.01% NA 91.46% NA 0.8947 NA
2 rf 86.52% NA 89.73% NA 0.9462 NA
3 naive_bayes 83.69% NA 88.32% NA 0.9135 NA
4 JRip 86.88% NA 89.52% NA 0.903 NA

Table 16: caret results for Data Class

# Classifier Accuracy Std dev. F measure Std dev. AUROC Std dev.
1 J48 91.13% NA 93.54% NA 0.9036 NA
2 rf 93.62% NA 95.24% NA 0.976 NA
3 naive_bayes 89.72% NA 92.14% NA 0.9436 NA
4 JRip 92.2% NA 94.18% NA 0.9177 NA

4.2 Extracted rules

The J48 and JRip algorithms provide human readable detection rules as the part of the output. We present them
to show significant metrics used for certain code smells detection.

4.2.1 Long Method

For Long Method, J48 generated a decision tree that can be expressed as:

!$�_" > 51 (9)

JRip classifier computed the following rule:

!$�_" ≥ 52 (10)
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4.2.2 God Class

J48 generated a decision tree that can be expressed as following set of rules:

(,"�#�"" ≤ 49 and,"�#�"" > 8 and !� ≤ 2.028986 and #$" ≤ 14)
or (,"�#�"" ≤ 49 and,"�#�"" > 32 and !� ≤ 2.028986 and #$" > 14 and "'� > 0.470958)

or (,"�#�"" > 49 and #$!_� > 13)
or (,"�#�"" > 49 and #$!_� ≤ 5)

or (,"�#�"" > 49 and #$!_� ≤ 6 and #$!_� > 5 and #$"" ≤ 2 and !� > 1.595745)
or (,"�#�"" > 49 and #$!_� ≤ 13 and #$!_� > 6 and #$"" ≤ 0)

or (,"�#�"" > 49 and #$!_� ≤ 13 and #$!_� > 6 and #$"" ≤ 2 and #$"" > 0 and !� ≤ 1.647059)
or (,"�#�"" > 49 and #$!_� > 13)

or (,"�#�"" > 49 and #$!_� ≤ 13 and #$!_� > 5 and #$"" > 2) (11)

As for JRip, the detection rule is as follows:

(,"�#�"" ≥ 51) or (#$!_� ≤ 5 and,"�#�"" ≥ 32) (12)

4.2.3 Data Class

The detection rule derived from J48 can be expressed as:

(#$!_� ≤ 6 and,$� ≤ 0.769231)
or (#$!_� ≤ 6 and,$� > 0.769231 and #$%� ≤ 3 and #$"" > 1)

or (#$!_� ≤ 6 and,$� > 0.769231 and #$%� > 3) (13)

JRip classifer produces the following expression:

(#$!_� ≤ 6 and,$� ≤ 0.76) or (!� ≤ 2.083333 and #$%� ≥ 4) (14)
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4.3 Learning curves

(a) Data Class (b) God Class

(c) Long Method

Fig. 13: Learning curves for code smells

5 Discussion

During manual tagging we have found that Long Method code smell occurs approximately two times less
frequently than God Class. This might be due to new constructions contributing to shorten overall code length.
J48 for God Class (Equation 11) shows that high lambda count and high ,"�#�"" metric values
with �.�!$ as the embedded metric may indicate a God Class. Lambdas concise syntax contributes
to the class complexity, since more operations can be expressed with less code.
Data Classes usually incorporate no logic and this is noticeable in their equation which discards higher number
of lambdas. JRip detection rule (Equation 14) introduces #$!_� metric. It might be due to data classes having
little to no business logic embedded in their code. Therefore low values of #$!_� metric might be used
to recognize the smelly samples.
Learning curves on figures 13a, 13b and 13c depicts the performance of the classifier depending on the number
of training samples. It was generated starting with 20 samples with a constant increment of 20 samples up to total
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of 375 samples. All of the learning curves have non-monotonic, oscillatory trend with a slight stabilization
noticeable as the number of samples increases.
An obvious weakness of our research is that we are not experienced developers and yet had to perform manual
tagging for the majority of samples. Tagging is a crucial part of research that determines extracted rules. We
admit that our tagging process was guided by result metrics from JavaMetrics tool, hence the outcome might
not be quite accurate.
Another uncertainty relates to extracting Java version from build tools. There are multiple build tools in different
versions for diverse Java releases specification methods that makes them hard to obtain. Moreover, repositories
often consist of many projects, which build tools may also vary.
Despite the results, one should be concerned as using datasets from actively developed projects may carry
potential risk in validity of the study and increase difficulty of code smell prediction.
In recent years we can observe growing awareness of the importance of writing clean code. Thus more recent
dataset may bring consistently less code smells (or at least not such distinct ones) due to its better design.
Advances in building applications in Java language may contribute to a difficulty in detection of certain code
smells. Using various libraries and frameworks can affect the detection of code smells as well. As an example,
Lombok7 can completely exclude presumable Data Classes from the detected instances due to a slight decrease
in,$� metric. Therefore our approach may not be suitable for every project and shall not be taken as a generic
way to predict code smells.

6 Conclusions and future directions

Using lambda constructs contributes naturally to more concise syntax which may obfuscate certain code smells
like Long Method. Moreover, using Java Streams does not affect the increase of �.�!$ metric, which may
further distort the predictions for code smells indicated by such metric.
In addition to extending the tool with more metrics concerning emerging Java language constructs and
creating the external dependency parsing approach, we have identified the possible future directions of research
and development:

• Tagging. Employing professional developers for manual tagging.
• Algorithms. Involving more ML algorithms in creating predictive models.
• Metrics. Extend JavaMetrics tool to correctly parse external dependencies.
• Constructions. Considering wider range of modern Java features than lambda expressions and method

reference.
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Table 17: RWeka results for Data Class (grey) compared with Arcelli Fontana’s (white)

# Classifier Accuracy Std dev. F measure Std dev. AUROC Std dev.
1 B-J48 Pruned 98.78% 0.00 99.05% 0.00 0.9910 0.0050
2 B-J48 Pruned 99.02% 1.51 99.26% 1.15 0.9985 0.0064
3 B-J48 Unpruned 97.55% 0.01 98.10% 0.01 0.9856 0.0073
4 B-J48 Unpruned 98.67% 1.79 98.99% 1.86 0.9984 0.0064
5 B-J48 Reduced Error
Pruning

98.09% 0.01 98.52% 0.01 0.9930 0.0045

6 B-J48 Reduced Error
Pruning

98.07% 2.47 98.55% 1.36 0.9951 0.0103

7 B-JRip 98.55% 0.00 98.87% 0.00 0.9950 0.0037
8 B-JRip 98.83% 1.60 99.12% 1.21 0.9959 0.0111
9 B-Random Forest 97.55% 0.00 98.12% 0.00 0.9988 4e-04
10 B-Random Forest 98.57% 1.68 98.94% 2.08 0.9993 0.0017
11 B-Naive Bayes 86.17% 0.01 88.34% 0.01 0.9221 0.0117
12 B-Naive Bayes 97.33% 2.29 98.02% 2.01 0.9955 0.0091
13 B-SMO RBF Kernel 94.21% 0.01 95.48% 0.00 0.9848 0.0033
14 B-SMO RBF Kernel 97.14% 2.61 97.86% 2.11 0.9782 0.0286
15 B-SMO Poly Kernel 94.34% 0.00 95.59% 0.00 0.9387 0.0036
16 B-SMO Poly Kernel 96.90% 2.25 97.65% 2.35 0.9862 0.0173
17 J48 Pruned 98.47% 0.01 98.81% 0.00 0.9834 0.0076
18 J48 Pruned 98.55% 1.84 98.91% 1.39 0.9864 0.0219
19 J48 Unpruned 98.52% 0.00 98.85% 0.00 0.9816 0.0043
20 J48 Unpruned 98.38% 1.87 98.79% 1.90 0.9873 0.0208
21 J48 Reduced Error Prun-

ing
96.86% 0.01 97.55% 0.01 0.9795 0.0081

22 J48 Reduced Error Prun-
ing

97.98% 2.46 98.46% 1.40 0.9839 0.0211

23 JRip 97.5% 0.01 98.05% 0.01 0.9782 0.0089
24 JRip 98.17% 2.18 98.62% 2.07 0.9809 0.0241
25 Random Forest 97.55% 0.00 98.12% 0.00 0.9989 5e-04
26 Random Forest 98.95% 1.51 99.29% 2.05 0.9996 0.0014
27 Naive Bayes 79.69% 0.01 81.99% 0.01 0.9475 0.0063
28 Naive Bayes 96.12% 2.95 97.04% 1.95 0.9938 0.0099
29 SMO RBF Kernel 95.43% 0.00 96.54% 0.00 0.9394 0.0039
30 SMO RBF Kernel 97.05% 2.38 97.78% 2.11 0.9686 0.0286
31 SMO Poly Kernel 94.23% 0.00 95.51% 0.00 0.9379 0.0031
32 SMO Poly Kernel 96.60% 2.76 97.41% 2.13 0.9912 0.0138
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Table 18: RWeka results for Feature Envy (grey) compared with Arcelli Fontana’s (white)

# Classifier Accuracy Std dev. F measure Std dev. AUROC
1 B-J48 Pruned 96.01% 0.01 97.01% 0.00 0.9880
2 B-J48 Pruned 96.62% 2.78 97.41% 2.16 0.9900
3 B-J48 Unpruned 93.79% 0.01 95.39% 0.01 0.9684
4 B-J48 Unpruned 96.50% 2.96 97.37% 2.37 0.9899
5 B-J48 Reduced Error Pruning 95.28% 0.01 96.48% 0.01 0.9829
6 B-J48 Reduced Error Pruning 95.90% 3.11 96.90% 2.24 0.9866
7 B-JRip 96.19% 0.01 97.15% 0.00 0.9869
8 B-JRip 96.64% 2.84 97.44% 2.16 0.9891
9 B-Random Forest 92.14% 0.01 94.24% 0.01 0.9817
10 B-Random Forest 96.40% 2.70 97.29% 2.73 0.9886
11 B-Naive Bayes 90.44% 0.01 92.73% 0.01 0.9496
12 B-Naive Bayes 91.50% 4.20 93.56% 2.93 0.9527
13 B-SMO RBF Kernel 89.38% 0.01 92.17% 0.01 0.9467
14 B-SMO RBF Kernel 93.88% 3.20 95.40% 3.17 0.9369
15 B-SMO Poly Kernel 90.82% 0.01 93.34% 0.01 0.8816
16 B-SMO Poly Kernel 92.05% 3.50 94.06% 3.07 0.9541
17 J48 Pruned 95.31% 0.01 96.47% 0.00 0.9517
18 J48 Pruned 95.95% 2.77 96.91% 2.16 0.9647
19 J48 Unpruned 95.03% 0.01 96.26% 0.01 0.9523
20 J48 Unpruned 96.12% 2.71 97.04% 2.17 0.9661
21 J48 Reduced Error Pruning 95.10% 0.01 96.31% 0.01 0.9567
22 J48 Reduced Error Pruning 95.93% 2.80 96.89% 2.10 0.9646
23 JRip 94.95% 0.00 96.18% 0.00 0.9534
24 JRip 95.67% 3.13 96.69% 2.34 0.9584
25 Random Forest 92.04% 0.01 94.16% 0.01 0.9813
26 Random Forest 96.26% 2.86 97.19% 2.57 0.9902
27 Naive Bayes 86.26% 0.01 89.76% 0.00 0.9241
28 Naive Bayes 85.50% 6.09 89.17% 2.46 0.9194
29 SMO RBF Kernel 80.15% 0.00 87.07% 0.00 0.7008
30 SMO RBF Kernel 93.83% 3.39 95.36% 3.15 0.9309
31 SMO Poly Kernel 90.90% 0.00 93.41% 0.00 0.8817
32 SMO Poly Kernel 95.45% 3.61 96.58% 2.80 0.9484
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Table 19: RWeka results for God Class (grey) compared with Arcelli Fontana’s (white)

# Classifier Accuracy Std dev. F measure Std dev. AUROC
1 B-J48 Pruned 97.14% 0.00 97.86% 0.00 0.9834
2 B-J48 Pruned 97.02% 2.82 97.75% 2.14 0.9923
3 B-J48 Unpruned 96.68% 0.01 97.51% 0.01 0.9794
4 B-J48 Unpruned 97.02% 2.88 97.75% 2.00 0.9925
5 B-J48 Reduced Error Pruning 97.37% 0.00 98.03% 0.00 0.9885
6 B-J48 Reduced Error Pruning 97.26% 2.64 97.94% 2.18 0.9861
7 B-JRip 96.73% 0.00 97.55% 0.00 0.9879
8 B-JRip 96.90% 3.15 97.67% 2.39 0.9916
9 B-Random Forest 97.55% 0.00 98.17% 0.00 0.9951
10 B-Random Forest 96.95% 2.86 97.70% 2.67 0.9890
11 B-Naive Bayes 94.59% 0.00 95.91% 0.00 0.9757
12 B-Naive Bayes 97.54% 2.65 97.70% 2.72 0.9871
13 B-SMO RBF Kernel 94.92% 0.01 96.21% 0.01 0.9835
14 B-SMO RBF Kernel 94.62% 3.34 95.98% 2.89 0.9838
15 B-SMO Poly Kernel 95.20% 0.00 96.45% 0.00 0.9399
16 B-SMO Poly Kernel 94.33% 3.58 95.75% 2.48 0.9799
17 J48 Pruned 96.61% 0.00 97.46% 0.00 0.9600
18 J48 Pruned 97.31% 2.51 97.98% 1.89 0.9783
19 J48 Unpruned 96.58% 0.00 97.45% 0.00 0.9718
20 J48 Unpruned 97.31% 2.51 97.98% 1.93 0.9783
21 J48 Reduced Error Pruning 97.73% 0.00 98.29% 0.00 0.9761
22 J48 Reduced Error Pruning 97.29% 2.52 97.94% 1.89 0.9742
23 JRip 97.65% 0.00 98.24% 0.00 0.9694
24 JRip 97.12% 2.70 97.81% 2.48 0.9717
25 Random Forest 97.27% 0.01 97.96% 0.00 0.9953
26 Random Forest 97.33% 2.64 97.98% 2.24 0.9927
27 Naive Bayes 94.03% 0.01 95.41% 0.00 0.9820
28 Naive Bayes 97.55% 2.51 98.14% 2.20 0.9916
29 SMO RBF Kernel 89.36% 0.00 92.58% 0.00 0.8435
30 SMO RBF Kernel 95.43% 3.26 96.62% 2.40 0.9427
31 SMO Poly Kernel 95.38% 0.00 96.59% 0.00 0.9410
32 SMO Poly Kernel 95.71% 3.14 96.83% 2.40 0.9459
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