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Abstract. Software defect prediction is a promising, new approach to
increase both, software quality and development pace. Unfortunately,
the cost effectiveness of software defect prediction in industrial settings
is not eagerly shared by the pioneering companies. In particular, the
cost effectiveness of using the DePress open source software measurement
framework, developed by Wroclaw University of Science and Technology,
and Capgemini software development company, for defect prediction in
commercial software development projects have not been previously in-
vestigated. Thus, in this paper, we explore whether defect prediction can
positively impact an industrial software development project by gener-
ating profits. To meet this goal, we conducted a defect prediction and
simulated potential quality assurance costs based on the best predic-
tion result, as well as the proposed Quality Assurance (QA) strategy.
Results of our investigation were optimistic: we estimated that quality
assurance costs can be reduced by almost 30% when proposed approach
will be used, while estimated DePress tool usage Return on Investment
(ROI) is fully 73 (7300%), and Benefits Cost Ratio (BCR) is 74. Such
promising results have caused the acceptance of continued usage of the
DePress-based software defect prediction for actual industrial projects
run by Volvo Group.

1 Introduction

Until recently, software defect prediction process has been considered to be too
complex, expensive and time-consuming, as well as there have been lack of solu-
tions for wrapping required tools into one, universal, defect prediction framework
which could be used for different software projects.

To fill this gap, Madeyski and Majchrzak [16] proposed a new, extensible
(plugin-based) framework called DePress. DePress (Defect Prediction for Soft-
ware Systems) builds upon the KNIME framework [13] and allows development
of graphical workflows and uses an intuitive, user-friendly interface. Being intu-
itive and highly customizable, the DePress makes itself a perfect tool which can
be conveniently utilized (thanks to its user-friendly interface and a wide range
of plugins) in different commercial software development projects for software
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defect prediction. Detailed description of DePress framework and its capabili-
ties can be found on DePress website [17] or in the article by Madeyski and
Majchrzak [16].

Potential benefits of using the DePress framework for defect prediction in
commercial software development projects have not been investigated [16]. To
fill this gap, our study aimed to answer the following research questions:

RQ1: What is the highest level of defect prediction, measured by F-measure,
achievable by the DePress tool (using a default, non-tweaked configuration) in
an industrial software project?

The possible benefit varies, depending on the potential prediction effective-
ness. This implies the need of first verifying what is the highest F-measure (har-
monic mean of precision and recall [26]) value of the defect prediction process
handled entirely by the DePress tool. DePress can be highly customizable thanks
to its plugin-based architecture, as well as its open source nature. However, such
adjustments can generate additional costs. Therefore, for the sake of simplicity,
we decided to restrict the DePress usage only to its default set-up.

RQ2: How cost effective is defect prediction using the DePress framework,
in the default configuration, for defect prediction in an industrial software devel-
opment project?

The next step is to verify what will be the profit from the best prediction
achievable using the default DePress’ set-up. To achieve this, we used value of
the recall measure corresponding to the highest F-measure value.

RQ3: Will usage of the DePress framework pay off for an industrial project?

To answer this question, we had to compare the costs of introducing and
using the DePress based defect prediction to the potential benefits generated by
its introduction. To achieve this, we used values such as return on investment
(ROI) and benefit-cost ratio (BCR) [21].

1.1 Project Context and Target Software

Volvo Group, one of the leading automotive companies, was invited to take
part in this research. The primary motivation for Volvo Group’s interest was
to verify, if their company can use DePress and its software defect prediction to
increase quality and cost-effectiveness of quality assurance (QA) in their software
development projects.

During our previous research, we recognized elements occurring in software
projects that hindered or prevented completion of defect prediction [4]. A project
selected finally as a research subject – an initiative which develops and main-
tains an application called Texas – was chosen due to absence of aforementioned
elements.

Within the considered project, we can observe three stages of the software
life-cycle (project phases): development, testing, and post-release phase.



1.2 Related Work

The first publication related to an industrial application of defect prediction
was published in 1997 by Khoshgoftaar et al. [8]. It was a case study of quality
modeling for a very large telecommunications system. Two other publications of
Khoshgoftaar and Seliya from 2004 [10] and 2005 [11] continued with the pre-
vious concept and focused on commercial data analysis, but were not applied
to a real-world environment. A similar approach can be found in publications
by Ostrand and Weyuker [22], Ostrand et al. [24], Tosun et al. [32], Turhan et
al. [34,35]. Examples of industrial applications of information gathered by us-
ing defect prediction can be found in publications by Wong et al. [37], Succi et
al. [31] and Kläs et al. [12]. Complete cases describing the introduction of defect
prediction in industrial environments were presented by Ostrand et al. [23], Li et
al. [14] and Tosun et al. [33]. Unfortunately, none of the aforementioned works
contain information on cost effectiveness of applied prediction techniques and
tools. To the best of our knowledge, the only research focused on the cost effec-
tiveness of software defect prediction in an industrial project, is conducted by
Monden et al. [19]. However, they investigated cost effectiveness only from the
acceptance testing effort perspective and do not use any quantitative measure
of potential cost of quality assurance-focused work and cost of investment dur-
ing the entire software life-cycle period. Thus, in our research we also followed
approaches used when cost effectiveness of other than defect prediction quality
assurance technique was investigated, such as Test-Driven Development return
on investment research conducted by Müller and Padberg [21].

2 Assessment Method

To investigate the cost effectiveness of defect prediction applied to an industrial
software development project using the DePress framework, we developed the
following plan to follow:

1. Development of a QA effort allocation strategy, based on defect prediction
provided by DePress;

2. Analysis of actual, real-life costs of quality assurance for the selected release
of the Texas project (4.0.0);

3. Building software prediction models for the chosen release;
4. Selection of the highest prediction F-measure and the corresponding recall

measure;
5. Usage of an effort allocation strategy, based on the prediction effectiveness

characterized by recall, to simulate a prediction-based quality assurance sce-
nario;

6. Results analysis.

2.1 Quality Assurance Effort Allocation Strategy

In the case investigated (the release 4.0.0 of the Texas software), developers
agreed that all the modules that caused 2 and more registered defects are con-



sidered as “high risk” modules. These modules accounted for 22.4% of all mod-
ules and were responsible for 80.36% of all registered errors and the aim was to
eliminate the maximum number of software defects using the available resources
within a limited time period. A similar distribution of defects in the software
modules was observed by different authors [2,25,27] and can be interpreted as
the Pareto principle existence in software quality. Additionally, in 1976 Boehm
argued that defect fixing costs are the more expensive the later defects are re-
moved [1]. That observation, which is widely called Boehm’s Law [2], results in
another important consequence of smart quality assurance efforts allocation: the
earlier the QA actions will take place, the better it is from the perspective of
the software development project’s budget.

Considering the above facts, we proposed a strategy which would use the
prediction model to indicate as much as possible of the mentioned “high risk”
software modules (22.4% in our case) responsible for most of the defects (80.36%
in our case), therefore helping to integrate as much as possible the QA efforts
into the coding stage of the software development, while defect fixing cost is still
relatively low. Such an approach should ideally decrease the total cost of bug
fixing in the project and generate savings for the total project’s budget [29].

If we denote Mtotal as the total number of testable software modules and
Htotal as the total number of discoverable defects, we can say that, in the project
we analyzed, approximately 0.8Htotal comes from approximately 0.22Mtotal.

The impact of the prediction effectiveness on the overall effort allocation
strategy can be reflected by using the recall measure (Rec) – the proportion of
code units predicted as defective that were actually defective [36].

We can expect that:
0 < Rec < 1 (1)

Where Rec is the measured recall value corresponding to highest possible F-
measure of defect prediction performed using the DePress framework [16]. Then,
expected number of predicted modules Mi, responsible for 80% of discoverable
defects, should be:

Mi = 0.22 ×Rec×Mtotal (2)

Accordingly, we should expect that if the machine learning mechanism will
be able to point out the “high risk” 22% of software modules with the measured
recall (Rec), the number of defects which can be avoided by allocation of the
best quality assurance efforts on the first (development) project’s phase, shall
be:

H ′
1 = 0.8 ×Rec×Htotal (3)

Number of defects expected to be detected in the second and the third phase of
the project:

H ′
2+3 = Htotal −H ′

1 (4)

Return on Investment To investigate if usage of the DePress will pay off, we
will use Return on Investment (ROI) [21]:

ROI =
Benefit− Investment

Investment
(5)



If the investment will not pay off, ROI is negative, otherwise positive. In
our evaluation of defect prediction cost-effectiveness we will focus on potential
benefits that method will generate:

Benefit = Ctotal − C ′
total (6)

Where C ′
total is the simulated total quality assurance cost in the project with

defect prediction applied, and Ctotal is the actual QA cost in the project, without
defect prediction.

Investment is defined as the total cost of defect prediction introduction.
Moreover, NetReturn is calculated as Benefit reduced by Investment:

NetReturn = Ctotal − (C ′
total + Investment) = Benefit− Investment (7)

Benefit Cost Ratio To analyze potential benefits from the usage of defect
prediction, we will use the Benefit Cost Ratio (BCR) [21]:

BCR =
Benefit

Investment
(8)

Values larger than 1 for the BCR mean a monetary gain from the DePress
based defect prediction usage, while values smaller than 1 mean denote a loss.

2.2 Actual Project’s Quality Assurance Costs

The Volvo Group policy did not allow us to publish the real costs of work invested
in the project. For the purpose of research, we agreed that the man-hour cost of
work by a software developer Cd will be marked as:

Cd = x (9)

In that case, the average man-hour cost of work by a software tester Ct shall
be, calculated according to current labor market data rates [30]:

Ct = 0.85x (10)

That means, that when a tester and a developer are working together on
bug fixing during the later stages of the project (not in the coding phase), the
average cost per man-hour should be:

Cd+t =
Cd + Ct

2
= 0.925x (11)

Other costs, such as infrastructure and hardware, will remain constant for
the real-life and alternative (prediction-based) scenario, so they will be omitted.

Time spent on project work was traced by every team member using the JIRA
tool. As a result of analysis of that data, we could obtain an average of the total
time spent on fixing a single defect for each phase of the project (Table 1). The



amount of time spent on quality assurance, together with the number of hours
spent and number of defects fixed, divided by phases, are shown in Table 2.

According to the data in Table 2, the total number of defects discovered in
release 4.0.0 are:

Htotal =
∑

Hphase = 190 + 383 + 264 = 837 (12)

Accordingly, the total quality assurance cost is:

Ctotal =
∑

Cphase = 190x + 1063x + 733x = 1985x (13)

The ratio between defects fixed in testing and those fixed during the post-
release stages is:

H2

H3
=

383

264
≈ 3

2
(14)

Table 1. Average defect fixing costs

Phase 1.Development 2.Testing 3.Post-release

Team members involved Developer Developer
Tester

Developer
Tester

Average fixing time
per one defect
[hours], T

1 3 3

Assumed cost
of man-hour
Chour

Cd Cd+t Cd+t

Cost per one defect
Cdefect = T × Chour

x 2.775x 2.775x

Table 2. Actual resources consumed on defect fixing

Phase 1.Development 2.Testing 3.Post-release

Number of defects discovered
Hphase

190 383 264

QA cost per one defect
Cdefect

x 2.775x 2.775x

QA cost per phase
Cphase = Hphase × Cdefect

190x 1063x 733x



2.3 Model Construction and Prediction

Since prediction results are categorical (faulty or not-faulty), we decided to use
F-measure and recall to evaluate classifiers often used in software defect pre-
diction [3,20,9,28], which are available in the basic package of KNIME: Naive
Bayes, Probabilistic Neural Network and Decision Tree.

For each classifier, four different experimental setup preparations were pos-
sible, thanks to the module-based architecture of the DePress tool.

Table 3. Prediction results: F-measure values for all experimental set-ups

Classifier
Without Feature Selection With Feature Selection

Class
Imbalance

Class
Balance

Class
Imbalance

Class
Balance

Probabilistic
Neural
Network

0.167 0.72 0.24 0.74

Decision Tree 0.279 0.667 0.357 0.682
Naive Bayes 0.237 0.621 0.412 0.766

2.4 The Highest F-measure Value and the Corresponding Recall

Using the approach described in the previous section, defect prediction was per-
formed and its F-measure collected (Table 3) for all four experimental set-ups,
classifiers and samples. The best prediction results (the highest F-measure val-
ues) were obtained for the balanced class sample, slightly better with the feature
selection step. Hence, we are able to answer RQ1: The highest F-measure (based
on the Naive Bayes algorithm) was 0.766. The corresponding recall was:

Rec = 0.783 (15)

2.5 Prediction-based costs simulation

For the purpose of cost simulation in this scenario, where defect prediction is
introduced to the project using the DePress framework, we assumed that:

– The total number of discoverable defects in release 4.0.0 (Equation (12)) is
a constant value;

– The defects distribution among code is preserved;
– Average fixing cost per one defect (Table 1) is also true for the considered

scenario;
– Information on location of “high risk” software modules, with recall Rec,

will be available in the first phase of the project;



– Ratio (Equation (14)) is preserved.

Considering the recall value for best prediction achieved (characterized by
the highest F-measure value) for release 4.0.0 as a result of the prediction models
development (Equation (15)) and the total number of discovered defects in that
release (Equation (12)), based on the proposed strategy (Equation (3)) we should
expect, that the number of software issues which can be solved by allocation of
the best quality assurance practices in the first, development phase of the project
is:

H ′
1 = 0.8 × 0.783 × 837 = 524 (16)

Regarding the number of defects which are expected to be found in later
phases of the project (Equation (4)):

H ′
2+3 = 837 − 524 = 313 (17)

As we assumed that ratio in Equation (14) is preserved, the number of de-
fects which are expected to be found in the project’s second and third phase
(connected) are:

H ′
2 = 313 × 0.6 = 188 (18)

H ′
3 = 313 × 0.4 = 125 (19)

Considering the above values, we simulated quality assurance costs assuming
that the machine learning mechanism will be able to point out the “high risk”
22% of software modules with the measured recall (Equation (15)), and the best
quality assurance efforts will be allocated to the development phase to avoid
the calculated number of defects (Equation (16)). Results of that simulation are
presented in Table 4.

Table 4. Simulated QA costs, with defect prediction used

Phase 1.Development 2.Testing 3.Post-release

Number of defects fixed
H ′

phase

524 188 125

QA cost per one defect
Cdefect

x 2.775x 2.775x

QA cost per phase
C′

phase = H ′
phase × Cdefect

524x 522x 347x

Total quality assurance cost in this scenario will be:

C ′
total =

∑
C ′

phase = 524x + 522x + 347x = 1393x (20)



Cost of investment Costs of defect prediction introduction were calculated as
the sum of such elementary costs:

Tool acquisition and installation costs of the case investigated shall be con-
sidered as zero costs. In Volvo’s organization, the DePress can be ordered and
installed on user’s computers without any additional costs for the project.

Training time costs – after measuring time spent on training a single person,
we can state that: a developer needs to spend a maximum of 4 hours on training,
1-2 hours of general introduction plus another 1-2 hours of training in DePress
tool usage.

Data collection cost is mostly the man-hour cost of exporting the proper data
from data sources and code metrics generation for two selected releases. After
measuring time spent on that activity, we found that it took no more than 2
man-hours.

Defect prediction preparation cost is the man-hour cost of defect prediction
preparation (workflow creation) using the DePress tool. Results of time mea-
surement say that creation of a proper workflow should not take more than one
man-hour.

Summary of investment costs is presented in Table 5.

Table 5. Defect Prediction Investment Costs

Activity Time required
[hours]

Cost
[man-hours]

The DePress tool acquiring
and installation costs

0 0

Training time costs 4 4x
Data collection cost 3 3x
Defect prediction preparation cost 1 x
TOTAL (Investment) 8 8x

2.6 Results Analysis

Here, with respect to research questions RQ2 and RQ3 we summarize the results
of our simulation (research question RQ1 was answered in Section 2.4).

RQ2: How cost effective is defect prediction using the DePress framework,
in the default configuration, for defect prediction in an industrial software devel-
opment project?

As shown in Table 5, the expected total investment cost of the DePress tool-
based defect prediction application in software development project is:

Investment = 8x (21)

Benefit Cost Ratio (8) calculated using (6) and (21) values:

BCR =
592x

8x
= 74 (22)



Such BCR value shows that we should expect a high monetary gain from
the DePress tool usage for supporting quality assurance with defect prediction.
Moreover, NetReturn (Equation (7)) from the simulated defect prediction ap-
plication is:

NetReturn = 592x− 8x = 584x (23)

Answering research question RQ2, when the defect prediction application
strategy proposed in Section 2.1 is applied and recall of the prediction model
will be 0.783, such an approach can result in reduction of final QA costs by
almost 30%:

1 − C ′
total

Ctotal
= 1 − 1393x

1985x
= 0.298 (24)

Such result can be achieved only after fixing 62.6% of the detectable bugs
(Equation (16)) by effective use of quality assurance practices in the first, devel-
opmental phase of the project, on predicted “high risk” software modules.

RQ3: Will usage of the DePress framework pay off for an industrial project?

Simulation shows, that we should expect Benefit (Equation (6)) from the
DePress usage in the project:

Benefit = 1985x− 1393x = 592x (25)

Accordingly, expected Return on Investment (5):

ROI =
592x− 8x

8x
= 73 (26)

As ROI is positive, we can state that investment will pay off.

3 Threats to Validity

In this paper, defects are not distinguished according to their severity (minor,
major, etc.) and use an average, fixed time for each single defect. Omitting the
severity measure in defect prediction studies is a frequent practice [18], however
it can be important when simulated QA cost calculation will be compared to
real-life values. In our simulation we assumed equal severity for each defect,
which is reflected in an equal, average cost (see Table 1). However, when we
apply the proposed effort allocation strategy into a real-life environment, we
can deal with the situation when defects left undetected until the later phases
of testing and after-deployment will be characterized by higher severities than
defects resolved while within the coding phase. Such a situation would negatively
impact overall quality assurance costs, when the DePress tool would be used for
defect prediction purposes, in comparison to simulated values. This threat opens
an interesting opportunity for further research.



4 Discussion

Cost effectiveness within the simulated scenario is strictly related to the quality
of prediction when measured with recall (Rec). Based on the simulation pre-
sented, it is possible to calculate the NetReturn of using a proposed quality
assurance effort allocation strategy for a series of defect prediction recall values.
In such a way, we can observe how NetReturn depends on Rec in terms of the
proposed QA effort allocation strategy.

In industrial software development projects, quality assurance (defect fixing)
consumes a significant amount of time and resources. By using the defect predic-
tion technique, project members can obtain information on possible defect-prone
elements of the software, before defects will occur, to optimally plan their quality
assurance process. What is proposed in this paper, is a simple effort allocation
strategy which is based on the DePress framework-driven defect prediction, de-
fects distribution and the Boehm’s Law, and which eliminates most of the qual-
ity assurance work during late (after-development) project’s phases. Such an
approach significantly increases quality assurance costs in development phase,
however overall, QA costs will decrease in comparison to actual, real-life costs
observed in the investigated project, as significantly less discoverable defects are
left to be fixed in the later phases, where, according to Boehm’s Law, bug-fixing
costs are considerably higher. At the same time, we need to mention the low
investment costs, when the open source DePress framework is used for defect
prediction purposes. Low investment costs and high recall of even simple defect
prediction performed by default in DePress, can result with high NetReturn
of DePress-aided quality assurance planned on a basis of the proposed effort
allocation strategy. More sophisticated prediction models, especially ones using
software process metrics [15,6], may help to achieve even more impressive results.
It is also worth mentioning that cross-project software defect prediction [7,5] is
sometimes used to reduce costs.
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