
Towards identifying software project clusters with regard
to defect prediction

Marian Jureczko
Institute of Computer Engineering, Control and Robotics

Wrocław University of Technology
Wybrzeże Wyspiańskiego 27

50-370, Wrocław - Poland
+48 71 320 27 45

marian.jureczko@pwr.wroc.pl

Lech Madeyski
Institute of Informatics

Wrocław University of Technology
Wybrzeże Wyspiańskiego 27

50-370, Wrocław - Poland
lech.madeyski@pwr.wroc.pl

http://madeyski.e-informatyka.pl/
ABSTRACT
Background: This paper describes an analysisthat was conducted
on newly collected repository with 92 versions of 38 proprietary,
open-source and academic projects. A preliminary study
perfomed before showed the need for a further in-depth analysis
in order to identify project clusters.
Aims: The goal of this research is to perform clustering on
software projects in order to identify groups of software projects
with similar characteristic from the defect prediction point of
view. One defect prediction model should work well for all
projects that belong to such group. The existence of those groups
was investigated with statistical tests and by comparing the mean
value of prediction efficiency.
Method: Hierarchical and k-means clustering, as well as
Kohonen’s neural network was used to find groups of similar
projects. The obtained clusters were investigated with the
discriminant analysis. For each of the identified group a statistical
analysis has been conducted in order to distinguish whether this
group really exists. Two defect prediction models were created for
each of the identified groups. The first one was based on the
projects that belong to a given group, and the second one - on all
the projects. Then, both models were applied to all versions of
projects from the investigated group. If the predictions from the
model based on projects that belong to the identified group are
significantly better than the all-projects model (the mean values
were compared and statistical tests were used), we conclude that
the group really exists.
Results: Six different clusters were identified and the existence of
two of them was statistically proven: 1) cluster proprietary B –
T=19, p=0.035, r=0.40; 2) cluster proprietary/open – t(17)=3.18,
p=0.05, r=0.59. The obtained effect sizes (r) represent large
effects according to Cohen’s benchmark, which is a substantial
finding.
Conclusions: The two identified clusters were described and
compared with results obtained by other researchers. The results
of this work makes next step towards defining formal methods of
reuse defect prediction models by identifying groups of projects
within which the same defect prediction model may be used.
Furthermore, a method of clustering was suggested and applied.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – complexity measures,
product metrics, software science.

General Terms
Measurement

Keywords
Defect Prediction, Design Metrics, Size Metrics, Clustering.

INTRODUCTION
Testing of software systems is an activity that consumes time and
resources. Applying the same testing effort to all modules of a
system is not the optimal approach, because the distribution of
defects among individual parts of a software system is not
uniform. Therefore, testers should be able to identify fault-prone
classes. With such knowledge they would be able to prioritize the
tests, and therefore, work more efficiently. Accorindg to Weyuker
et al. [24,25] typically 20% of modules contain upwards of 80%
of defects. Testers with good defect predicator may be able to
spare a lot of test effort by testing only 20% of system modules
and still finding up to 80% of the software defects. Defect
prediction studies usually use historical data of previous versions
of software to build the defect prediction models. Such approach
can be applied neither in the first release of a software system, nor
by companies that do not collect historical data. Therefore, it is
vital to identify methods of constructing models that do not
require historical data is vital.

Considerable research has been performed on the defect
prediction methods; see the surveys by Purao and Vaishnavi [19],
or by Wahyudin et al. and [23], but the methods of reusing of
defect prediction model have not been discovered yet. There are
only works where the same model has been used in similar
projects (Watanabe et al. [22], Bell, Ostrand and Weyuker
[2,18,24] or Nagappan et al. [16]), but without identifying the
borders of similarity. According to the authors' knowledge there
are only two studies where cross project validation of defect
prediction models were performed [21, 26]; both are described in
the next section. The goal of this research is to fulfill that gap by
identifying clusters of software projects. Defect prediction in all
projects that belong to one cluster should be possible to make by
using only one defect prediction model. A preliminary study was
already conducted [11], where existence of three clusters was
investigated: proprietary projects, open-source projects and

academic projects. Only the defect prediction model created for
the open-source cluster was statistically better. Therefore, only
one cluster was proved to exist whereasit is extremely unlikely
that the other clusters do not exist. Further studies could reveal
other clusters, and it is also possible that the identified cluster
may be successfully split into several smaller clusters.

The paper is organized as follows: in Section 2 related works are
described. Section 3 presents the suite of OO metrics that were
used, the investigated projects, definition of the study and
discusses threats to validity of the study. The obtained results are
shown in Section 4. Conclusions are given in Section 6 and the
prospects for future research in Section 7.

RELATED WORKS
Typical approach in studies connected with defect prediction
models is to build a model according to data from an old version
of a project and then validate or use this model on a new version
of the same project. Such approach was used [2,8,17,18,24 ,25] as
well as advocated [5,23] by many researchers. Some experiments
were also reported where the cross-project reusability of a defect
prediction models was investigated.

Koru and Liu [12] came to interesting conclusions: “Normally,
defect prediction models will change from one development
environment to another according to specific defect patterns.” But
in their opinion, it does not mean that building generalizable
defect prediction model is not possible. In fact, such models may
be extremely useful and may serve as a starting point in
development environments that have no historical data.

Nagappan et al. [16] extended the state of the art through
analyzing whether predictors obtained from one project history
are applicable to other projects. The authors investigated five
proprietary software projects. The performed analyze showed that
there is no single set of metrics that fits to all five projects, but the
defect prediction models may be accurate when obtained form
similar projects (the similarity were not precisely defined). The
authors evaluated this problem by building one predictor for each
project and applying it to the entities of each of the other four
projects. Then the correlations between the actual and predicted
rankings were compared. It turned out that the projects histories
cannot serve as predictors for other projects in most cases. The
study was extended in [26], where 622 cross-project predictions
were performed for 12 real world applications. A project was
considered as a strong predictor for another project, when all
precision, recall, and accuracy were greater than 0.75. Only 21
cross-project validations satisfied this criterion – success rate
3.4%. Subsequently, guidelines that enable assessing the chance
of the success of a cross-project prediction were given. The
guidelines were summarized in a decision tree. The authors
constructed separate trees for assessing prediction precision,
recall, and accuracy, but only the tree for precision was given in
the paper.

Watanabe et al. [22] tried to apply in a C++ project a defect
prediction model that has been constructed according to the data
from a Java project. The reusability study in the opposite
direction was conducted as well. Sakura Editor and JEdit were
used as the investigated projects. Metrics from only one release
were collected, so the authors stratified 10-fold cross validation
model in order to count two metrics of models accuracy: precision
and recall. In intra project prediction they obtained precision

0.828 and 0.733 and recall 0.897 and 0.702. In inter project
prediction they obtained precision 0.872 and 0.622 and recall
0.596 and 0.402. According to obtained results, authors concluded
that in the case of a similar domain and a similar size, it is
possible to reuse the prediction model between languages; despite
the fact the precision/recall is not very high. The authors admitted
that their results were based on only two projects, so the
generality is not clear and in order to increase the generalization
level they were going to evaluate the reusability with other
projects whose domain is text editor.

Relevant to this study are experiments conducted by Ostrand et al.
[18], where two large industrial systems with separately seventeen
and nine releases were investigated. A negative binomial
regression model was used. The predictions were based on the
source code of current release, and fault and modification history
from previous release. The study was extended in [24] by
analyzing the third project (it increased the number of used
programming languages to ten). Applying the defect prediction
model to the third project gave good results – 20% of the files that
would contain the largest number of faults contained, on average,
83% of the faults. Further findings were presented in [25], where
the number of the investigated projects was increased to four.
According to the obtained results, the authors said: “Our
prediction methodology is designed for large industrial systems
with a succession of releases over years of development” but later
it “was successfully adapted to a system without release”.
However, it must be mentioned that Weyuker et al. used another
approach as the one that is presented in this paper. They had no
fixed model structure, the model equation was adjusted according
to data from the history of the analyzed system. Only the model
building procedure was fixed.

A comprehensive study of cross company defect prediction was
conducted by Turhan et al. [21]. Ten different software projects
were investigated. Turhan et al. concluded that there is no single
set of static code features (metrics) that may serve as defect
predictor for all software projects. The defect prediction models
effectiveness was measured using probability of detection (pd)
and probability of false alarm (pf). Cross company defect
prediction dramatically increased the pd as well as the pf. The
authors were also able to decrease the pf by applying the nearest
neighbor filtering. The similarity measure was the Euclidean
distance between the static code features. The project features that
may influence the effectiveness of cross company predictions
were not identified.

Wahyudin et al. [23] suggested a framework for defect prediction.
In the context of their framework they discussed the possibility of
reusing historical data in defect prediction for other projects. They
concluded that: “A prediction model models the context of a
particular project. As a consequence, predictors obtained from one
project are usually not applicable to other projects”. When the
predictors are applicable or whether there exist such groups of
projects within which one predicator may be applied to all
projects was not discussed.

STUDY DESIGN
Metrics and Tools
There is a number of size and complexity metrics that may be
used in defect prediction models. All metrics that are calculated

by the Ckjm1 tool were used in thisstudy. The reported in [8]
version of ckjm was used. This is the version that calculated 19
metrics that has been reported as good quality indicators. Those
metrics were selected according to some reported experiments
[3,17] and own researches [9,10]. The utilized metrics comes
from several metrics suites.

The metrics suite suggested by Chidamber and Kemerer [4]:

• Weighted methods per class (WMC). The value of the WMC is
equal to the number of methods in the class (assuming unity
weights for all methods).

• Depth of Inheritance Tree (DIT). The DIT metric provides for
each class a measure of the inheritance levels from the object
hierarchy top.

• Number of Children (NOC). The NOC metric simply measures
the number of immediate descendants of the class.

• Coupling between object classes (CBO). The CBO metric
represents the number of classes coupled to a given class
(efferent couplings and afferent couplings). These couplings can
occur through method calls, field accesses, inheritance, method
arguments, return types, and exceptions.

• Response for a Class (RFC). The RFC metric measures the
number of different methods that can be executed when an object
of that class receives a message. Ideally, we would want to find,
for each method of the class, the methods that class will call, and
repeat this for each called method, calculating what is called the
transitive closure of the method call graph. This process can
however be both expensive and quite inaccurate. Ckjm calculates
a rough approximation to the response set by simply inspecting
method calls within the class method bodies. The value of RFC is
the sum of number of methods called within the class method
bodies and the number of class methods. This simplification was
also used in the original description of the metric.

• Lack of cohesion in methods (LCOM). The LCOM metric
counts the sets of methods in a class that are not related through
the sharing of some of the class fields. The original definition of
this metric (which is the one used in Ckjm) considers all pairs of
class methods. In some of these pairs both methods access at least
one common field of the class, while in other pairs the two
methods do not share any common field accesses. The lack of
cohesion in methods is then calculated by subtracting from the
number of method pairs that do not share a field access the
number of method pairs that do.

One metric suggested by Henderson-Sellers [6]:

• Lack of cohesion in methods (LCOM3).
m - number of methods in a class;
a - number of attributes in a class;
μ(A) - number of methods that access
the attribute A.

The metrics suite suggested by Bansiy and Davis [1]:

• Number of Public Methods (NPM). The NPM metric simply
counts all the methods in a class that are declared as public. The
metric is known also as Class Interface Size (CIS)

1 http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm

• Data Access Metric (DAM). This metric is the ratio of the
number of private (protected) attributes to the total number of
attributes declared in the class.

• Measure of Aggregation (MOA). The metric measures the
extent of the part-whole relationship, realized by using attributes.
The metric is a count of the number of class fields whose types
are user defined classes.

• Measure of Functional Abstraction (MFA). This metric is the
ratio of the number of methods inherited by a class to the total
number of methods accessible by the member methods of the
class. The constructors and the java.lang.Object (as parent) are
ignored.

• Cohesion Among Methods of Class (CAM). This metric
computes the relatedness among methods of a class based upon
the parameter list of the methods. The metric is computed using
the summation of number of different types of method
parameters in every method divided by a multiplication of
number of different method parameter types in whole class and
number of methods.

The quality oriented extension to Chidamber & Kemerer metrics
suite suggested by Tang et al. [20]:

• Inheritance Coupling (IC). This metric provides the number of
parent classes to which a given class is coupled. A class is
coupled to its parent class if one of its inherited methods is
functionally dependent on the new or redefined methods in the
class. A class is coupled to its parent class if one of the following
conditions is satisfied:
- One of its inherited methods uses an attribute that is defined in
a new/redefined method.
- One of its inherited methods calls a redefined method.
- One of its inherited methods is called by a redefined method
and uses a parameter that is defined in the redefined method.

• Coupling Between Methods (CBM). The metric measures the
total number of new/redefined methods to which all the inherited
methods are coupled. There is a coupling when at least one of the
conditions given in the IC metric is held.

• Average Method Complexity (AMC). This metric measures the
average method size for each class. The size of a method is equal
to the number of Java binary codes in the method.

Two metrics suggested by Martin [15]:

• Afferent couplings (Ca). The Ca metric represents the number
of classes that depend upon the measured class.

• Efferent couplings (Ce). The Ca metric represents the number
of classes that the measured class is depended upon.

One McCabe's metric [14]:

• McCabe's cyclomatic complexity (CC). CC is equal to the
number of different paths in a method (function) plus one. The
cyclomatic complexity is defined as: CC = E–N+P; where E - the
number of edges of the graph, N - the number of nodes of the
graph, P - the number of connected components. CC is the only
method size metric. The constructed models make the class size
predictions. Therefore, the metric had to be converted to a class
size metric. Two metrics has been derived:

m

mA
a

LCOM

a

j
j

−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
∑
=

1

)(1

3 1
μ

- Max(CC) - the greatest value of CC among methods of the
investigated class.
- Avg(CC) - the arithmetic mean of the CC value in the
investigated class.

Those metrics were complemented with one more, very popular
metric:

• Lines of Code (LOC). The LOC metric calculates the number
of lines of code in the Java binary code of the class under
investigation.

The information about defects occurrence was collected with a
tool called BugInfo. BugInfo analyses the logs from source code
repository (SVN or CVS) and according to the log content decides
whether a commit is a bugfix. A commit is interpreted as a bugfix
when it solves an issue reported in the bug tracking system. Each
of the projects had been investigated in order to identify bugfixes
commenting guidelines that were used in the source code
repository. The guidelines were formalized in regular expressions.
Buginfo compares the regular expressions with comments of the
commits. When a comment matches the regular expression,
BugInfo increments the defect count for all classes that have been
modified in the commit. The BugInfo tool has had no official
release yet, but we are going to implement some improvements,
especially in the user interface, and then make an official release.
Its current version is available at:
http://kenai.com/projects/buginfo. There is no formal evaluation
regarding the efficiency of this tool in mapping defects yet, but
comprehensive functional tests were conducted and many of the
tests are available as JUnit tests in the source code package. All
collected data is available online at:
http://purl.org/MarianJureczko/MetricsRepo.

Investigated projects
48 releases of 15 open source projects were investigated: Apache
Ant (1.3 – 1.7), Apache Camel (1.0 – 1.6), Ckjm (1.8), Apache
Forrest (0.6 – 0.8), Apache Ivy (1.1 – 2.0), JEdit (3.2.1 – 4.3),
Apache Log4j (1.0 – 1.2), Apache Lucene (2.0 – 2.2), PBeans (1.0
and 2.0), Apache POI (1.5 – 3.0), Apache Synapse (1.0 – 1.2),
Apache Tomcat (6.0), Apache Velocity (1.4 – 1.6.1), Apache
Xalan-Java (2.4.0 – 2.7.0), Apache Xerces (1.1.0 – 1.4.4). A more
comprehensive discussion of most of those projects was given in
[8].

27 releases of 6 proprietary software projects were investigated.
Five of them are custom build solutions that had been already
successfully installed in the customer environment. Those five
projects belong to the same domain: insurances. The 6th
proprietary project is a standard tool that supports quality
assurances in software development. All six projects were
developed by the same company.

Moreover, 17 academic software projects were investigated. Each
of them had exactly one release. Those projects were
implemented by 8th or 9th semester computer science students.
The students worked in groups of 3 to 6 persons during one year.
A highly iterative software development process was used. A
UML documentation was prepared and high level of test code
coverage were obtained for each of those projects. JUnit and
FitNesse were used as test tools. Some of those projects had been
already investigated in [9,10].

All of the investigated projects were written in Java.

Analysis method employed
It had been assumed that character of a defect predictor strongly
depends on the correlation between metrics and number of defects
in a class. A correlation vector was calculated for each of the
investigated releases of projects. The correlation between each of
metric (the metrics are given in 3.1) and the number of defects
were calculated. The vectors were than extended by adding the
ratio of defects per class.

In order to uncover the project clusters, hierarchical clustering
procedure and then k-means clustering were used. The complete
linkage clustering indicated a two-group solution. Additionally
Kohonen's neural network was used. The results returned by the
Kohonen's neural network differ between separate runs of the
network. Therefore, the network was executed several times and
those releases of projects that were predominantly classified into
the same neuron (cluster) were later investigated in order to
distinguish whether it is a cluster from the defect prediction point
of view. The obtained results were investigated with the
discriminant analysis. Several different configurations of the
Kohonen’s network with different number of the output neurons
were used, but no more than 4 clusters were obtained, even when
the number of output neurons was increased up to 16.

For each of the identified cluster a defect prediction model was
created. In order to create the model, all metrics were used and
the stepwise linear regression was applied. Due to the stepwise
regression, a typical model used five to ten metrics (not all of
them). Subsequently, the models were evaluated by being applied
to all releases of projects that belonged to the investigated cluster.
In order to evaluate the efficiency of predicting defects in a
release of project of a model, all classes that belong to the given
release were sorted according to the model output. Descending
predicted number of defects was used as sorting order. Next, the
number of classes that must be visited in order to find 80% of
defects were calculated and used as the model efficiency in
predicting defects in a given release of the project. A general
defect prediction model was build too. The general model used
data from all the releases of all the projects as training set. In
order to distinguish whether a cluster exists from the defect
prediction point of view the efficiency of a model created for the
cluster was compared with the efficiency of the general model.
Those two models were applied only to those releases of software
projects that belonged to the investigated cluster. When the
efficiency of the model created for the cluster is significantly
better than the efficiency of the general model one may assume
that the cluster exists. In order to investigate whether the
difference was significant, statistical test were used.

To render that in a more formally way, it is necessary to assume
that R is a set of all releases of all projects and r is a single release
of a project. C is a set of all r that were selected in a cluster. C is a
subset of R (C⊂R). There are two defect prediction models MR
and MC. MR is the general model that was trained with all r∈R.
MC is a cluster model that was trained with all r∈C. E(M,r) is the
evaluation of efficiency of model M in predicting defects in
release r. Let c1, c2, …, cn be the classes from release r in
descending order of predicted defects according to the model MX,
and d1, d2, …, dn be the number of defects in each class. Di is
sum(d1, …, di), i.e., the total defects in the first i classes. Let k be

the smallest index such that Dk > 0.8*Dn, then E(MX,r)= Dk.
E(MR,r) and E(MC,r) were calculated for all r∈C. In order to
decide whether the cluster exists from the defect prediction point
of view a hypothesis must be defined:

H0 – There is no difference in the efficiency of defect prediction
between the general model and the cluster model:
E(MR,r)=E(MC,r): r∈C.

H1 – There is a difference in the efficiency of defect prediction
between the general model and the cluster model:
E(MR,r)>E(MC,r): r∈C.

The hypotheses are evaluated by the parametric t-test for
dependent samples. Following general assumptions should be
checked in order to use a parametric test: level of measurement
(the variables must be measured at the interval or ratio level
scale), independence of observations, homogeneity of variance
and the normal distribution of the sample. The homogeneity of
variance is checked by Levene's test, while the assumption that
the sample came from a normally distributed population is tested
by the Shapiro-Wilk test [13]. When some of the assumptions are
violated, the Wilcoxon matched pairs test is used.

There is an overlap between training and testing sets. In order to
avoid this overlap, a separate model must be created for each of
the releases from the investigated model: MC-r. In such case we
would get n different models (where n is the number of cluster
members) and each of the models would be using different set of
the releases as the training set. As a result, the definition of the
cluster would be fuzzy. On the other hand, excluding one release
from the training set affects the model very slightly. Therefore,
we decided to use the overlaping approach.

Threats to validity
A number of limitations that may compromise to some extent the
quality of the results of this study are listed below.

It is possible that there are mistakes in the defect identification.
The comments in the source code version control system are not
always well written and, therefore, it was sometimes very hard to
decide whether a change is connected with a defect or not. In
some cases the comment could be confronted with a bug tracking
system, but unfortunately it was not possible in all projects.

The defects are assigned to classes according to the bugfix date. It
could be probably better to assign the defect to the version, where
the defect has been found, but unfortunately, the source code
version control system does not contain such information.

We were not able to track operations like changing class name or
moving class between packages. Therefore, after such a change,
the class is interpreted as a new class. Similar difficulties were
created by anonymous classes. Hence, the anonymous classes
were ignored in the analysis.

The defects are identified according to the comments in the
source code version control system. The guidelines of
commenting bugfixes may vary among different projects.
Therefore, it is possible that interpretation of the term defect is
not unique among the investigated projects.

RESULTS
The results of two different approaches to clustering, using
hierarchical and k-means clustering as well as Kohonen's neural
network, are presented below.

Study 1 – two clusters
In the first study all the releases of all the projects were divided
into two clusters, since the complete linkage hierarchical
clustering has suggested the possibility of a “natural” partition
into two sets of projects. Hence, the k-means two group solution
is analyzed and the results are presented in Tables 1-3.

Table 1. Descriptive statistics – cluster 1st of 2

 Num. of cases Mean Std deviation

E(MR,r): r∈C 61 49.73 19.64

E(MC,r): r∈C 61 49.67 18.37

Table 2. Hypothesis tests – cluster 1st of 2

 E(MR,r): r∈C E(MC,r): r∈C

Shapiro
- W

ilk
test

W 0.987 0.991

p 0.782 0.931

L
evene's
test

df 118

F(1,df) 0.434

P 0.511

T
-test

T 0.057

df 60

P 0.954

According to Tables 1-2, the cluster 1st of 2 does not exist from
the defect prediction point of view.

Table 3. Descriptive statistics – cluster 2nd of 2

 Num. of cases Mean Std deviation

E(MR,r): r∈C 31 47.18 17.80

E(MC,r): r∈C 31 47.41 17.29

According to Table 3, on average 47.18% of classes must be
tested in order to find 80% of defects when the general model is
used and 47.41% of classes when the 2nd cluster model is used.
Therefore, the mean efficiency of the 2nd cluster model was worse
than the mean efficiency of the general model. In consequence,
there is no point in testing the hypothesis.

The conducted analysis showed that none of the two investigated
clusters exists in the defect prediction point of view.

Study 2 – Kohonen's neural network
In the second approach Kohonen's neural network was used. Four
clusters were identified according to the network's output. There
are releases that were classified into none of those clusters.

According to Table 4, the mean efficiency of the proprietary A
cluster model was worse than the mean efficiency of the general
model. Therefore, there is no point in testing the hypothesis.

Table 4. Descriptive statistics – cluster proprietary A

 Num. of cases Mean Std deviation

E(MR,r): r∈C 11 54.16 9.54

E(MC,r): r∈C 11 58.18 7.73

According to Tables 5-6, there exists a cluster called proprietary
B.

Table 5. Descriptive statistics – cluster proprietary B

 Num. of cases Mean Std deviation

E(MR,r): r∈C 14 56.35 16.59

E(MC,r): r∈C 14 45.05 7.81

Table 6. Hypothesis tests – cluster proprietary B

 E(MR,r): r∈C E(MC,r): r∈C

Shapiro
- W

ilk
test

W 0.923 0.985

p 0.243 0.995

L
evene's
test

df 26

F(1,df) 12.778

p 0,001

W
ilcoxon

m
atched

pairs test

Z 2.103

T 19

p 0.035

According to Tables 7-8, there exists a cluster called proprietary /
open.

Table 7. Descriptive statistics – cluster proprietary / open

 Num. of cases Mean Std deviation

E(MR,r): r∈C 18 55.81 22.97

E(MC,r): r∈C 18 50.74 20.01

Table 8. Hypothesis tests – cluster proprietary / open

 E(MR,r): r∈C E(MC,r): r∈C

Shapiro
- W

ilk
test

W 0.971 0.954

p 0.824 0.499

L
evene's
test

df 34

F(1,df) 0.155

p 0.696

T
-test

t 3.180

df 17

p 0.005

The mean efficiency of the open-source cluster model was worse
than the mean efficiency of the general model. Therefore, there is
no point in testing the hypothesis.

Table 9. Descriptive statistics – cluster open-source

 Num. of cases Mean Std deviation

E(MR,r): r∈C 15 44.09 14.08

E(MC,r): r∈C 15 45.9 13.25

The existence of two clusters was proven: proprietary B and
open-source / proprietary. The proprietary B cluster consists of
custom build solutions that had been already successfully
installed in the customer environment. The open-source /
proprietary cluster consist of: Apache Forrest versions 0.7 and
0.8; Apache POI versions 2.5.1 and 3.0; Apache Xalan versions
2.4.0, 2.5.0, 2.6.0 and 2.7.0; Apache Xerces versions 1.1.0, 1.2.0,
1.3.0 and 1.4.4; jEdit versions 3.2.1, 4.1, 4.2 and 4.3; two versions
of the proprietary standard tool that supports quality assurances in
software development.

Discriminant Analysis
All of the identified clusters come from the Kohonen’s network.

We now turn to use Fisher’s linear discriminant function to derive
a classification rule for assigning projects to one of the predefined
groups (clusters) on the basis of the correlation vectors mentioned
in Section 3.3. Means and SDs for each type of projects and
overall are given in Table 10.

Table 10. Group statistics

Cluster

Mean

Std.
Dev.

Cluster

Mean

Std.
Dev.

2

wmc .19 .089 4

Wmc .13 .092
dit -.04 .067 Dit -.05 .048
noc .01 .023 Noc .00 .022
cbo .32 .073 Cbo .26 .098
rfc .34 .062 Rfc .20 .065
lcom .13 .106 Lcom .07 .092
ca .18 .087 Ca .22 .159
ce .31 .079 Ce .16 .147
npm .13 .090 Npm .10 .101
lcom3 -.05 .046 lcom3 -.04 .074
loc .32 .070 Loc .22 .068
dam .02 .059 Dam .06 .069
moa .04 .054 Moa .04 .025
mfa -.07 .054 Mfa -.04 .073
cam -.15 .053 Cam -.10 .063
ic -.02 .052 Ic .02 .127
cbm -.01 .035 cbm .02 .085
amc .18 .056 amc .14 .132
max_cc .18 .048 max_cc .15 .089
avg_cc .13 .050 avg_cc .09 .095
bugs/classes .24 .202 bugs/classes .18 .157

3

wmc .35 .152 5 wmc .45 .221
dit -.01 .082 dit .01 .067
noc .01 .065 noc .06 .096
cbo .30 .176 cbo .29 .177
rfc .46 .193 rfc .50 .218
lcom .33 .184 lcom .40 .262
ca .13 .227 ca .16 .142
ce .37 .181 ce .41 .164
npm .32 .215 npm .40 .211
lcom3 -.08 .078 lcom3 -.06 .054
loc .34 .125 loc .44 .208
dam .12 .072 dam .11 .073
moa .30 .156 moa .29 .134
mfa -.02 .075 mfa -.02 .070
cam -.20 .096 cam -.25 .097
ic .07 .114 ic .08 .102
cbm .12 .134 cbm .09 .098
amc .09 .104 amc .11 .091
max_cc .18 .161 max_cc .20 .144
avg_cc .10 .125 avg_cc .11 .090
bugs/classes .73 .669 bugs/classes .71 .697

Box’s test for equality of covariance cannot be performed due to
fewer than two nonsingular group covariance matrices. However,
even if Box's test suggests a departure for the equality hypothesis,
the linear discriminant may still be preferable over a quadratic
function. Here we will assume normality for our data relying on
the robustness of Fisher's approach to deal with any minor
departure from the assumption [7].

The eigenvalues (here 4.66, 3.13 and .76 presented in Table 11)
represent the ratios of the between-group sums of squares to the
within-group sum of squares of the discriminant scores. The
canonical (Pearson) correlations are correlations between the
discriminant function scores and group membership coded as 2
(cluster proprietary B), 3 (cluster proprietary / open), 4 (cluster
proprietary A) and 5 (cluster open source). The canonical
correlation values (0.907, 0.871 and 0.656) are presented in Table
11. First 3 canonical discriminant functions were used in the
analysis.

Table 11. Eigenvalues

Function Eigenvalue
% of

Variance
Cumulative

%
Canonical
Correlation

1 4.663a 54.5 54.5 0.907
2 3.132 a 36.6 91.1 0.871
3 0.757 a 8.9 100.0 0.656

As a result, 82.2%, 75.9% and 43% of the variance in the
discriminant function scores can be explained by group
differences. The Wilk's Lambda, presented in Table 12, provides
a test for assessing the null hypotheses that in the population the
vectors of means of the measurements are the same in groups.

Table 12. Wilks' Lambda

Test of
Function(s)

Wilks'
Lambda

Chi-
square df Sig.

1 through 3 0.024 157.939 63 0.000
2 through 3 0.138 84.249 40 0.000
3 0.569 23.955 19 0.198

The lambda coefficient is defined as the proportion of the total
variance in the discriminant scores not explained by differences
among groups, here 0.02%, 13.8% and 56.9% respectively. The
formal test confirms that the sets of measurements (correlations
between software metrics and faulty classes) differ significantly
between the clusters with exception of the last one (Chi-square
(63)=157.939, p=0.000; Chi-square(40)=84.249, p=0.000; Chi-
square(19)=23.955, p=0.198). An important question about a
discriminant function is: how well does it perform? According to
the obtained results presented in Table 13, 96.4% of cases can be
correctly classified as type 2, 3, 4 or 5. However, estimating
misclassification rates in this way is known to be too optimistic
and different alternatives for estimating misclassification rates in
discriminant analysis have been proposed. Leaving one out
method is one of these alternatives in which the discriminant
function is first derived from only n - 1 sample members, and then
used to classify the observation left out. The aforementioned
procedure is repeated n times, each time omitting a different
observation. As a result, the classification rate drops to 71.4%.

Table 13. Classification Results

PRACTICAL IMPLICATION
The conducted analysis revealed two clusters. In order to increase
the value of those findings, the characteristic of those clusters
must be given and the obtained results should be compared with
the other studies.

Characteristic of revealed clusters
Cluster proprietary B. This cluster consists of slightly more than
half of the proprietary custom solutions. All custom build

Classification Resultsb,c

15 0 0 0 15
1 17 0 0 18
0 0 8 0 8
0 1 0 14 15
5 14 2 15 36

100.0 .0 .0 .0 100.0
5.6 94.4 .0 .0 100.0
.0 .0 100.0 .0 100.0
.0 6.7 .0 93.3 100.0

13.9 38.9 5.6 41.7 100.0
13 0 2 0 15
1 12 2 3 18
3 1 4 0 8
1 3 0 11 15

86.7 .0 13.3 .0 100.0
5.6 66.7 11.1 16.7 100.0

37.5 12.5 50.0 .0 100.0
6.7 20.0 .0 73.3 100.0

clusterJur4
2
3
4
5
Ungrouped cases
2
3
4
5
Ungrouped cases
2
3
4
5
2
3
4
5

Count

%

Count

%

Original

Cross-validateda

2 3 4 5
Predicted Group Membership

Total

Cross validation is done only for those cases in the analysis. In cross validation, each case is classified
by the functions derived from all cases other than that case.

a.

96.4% of original grouped cases correctly classified.b.

71.4% of cross-validated grouped cases correctly classified.c.

solutions (not only those that belongs to the proprietary B cluster)
were developed in heavy weight, plan-driven development
process, all of them had already been successfully installed in the
customer environment (the investigated releases were developed
after the installation, but the releases consisted not only of
bugfixes - there were included many new features as well) and all
of them came from the same domain – insurances. The interviews
with people involved in the development process of the
proprietary projects were conducted in order to find the factor that
might settle whether a project release belongs to the proprietary B
cluster or not. The interviews revealed that there was a difference
in the testing process on the level of functional system tests.
Almost all the releases from cluster proprietary B were tested
manually, when almost all the releases that were not selected to
the cluster proprietary B were tested automatically. The testing
factor explained cluster membership of all except three releases.
There were three releases that were tested manually, but were not
selected to the cluster proprietary B. The absence of those three
releases was easy to explain. Those three releases had much
smaller defect rate, which was a result of a shorter development
period.

Cluster proprietary / open. The cluster consist of: Apache Forrest
versions 0.7 and 0.8; Apache POI versions 2.5.1 and 3.0; Apache
Xalan versions 2.4.0, 2.5.0, 2.6.0 and 2.7.0; Apache Xerces
versions 1.1.0, 1.2.0, 1.3.0 and 1.4.4; jEdit versions 3.2.1, 4.1, 4.2
and 4.3; two versions of the proprietary standard tool that
supports quality assurances in software development. This cluster
consists of several different projects that were developed by
different companies in different software development processes.
The domain of those projects is not uniform, but all of them are
more or less connected with text processing. All members of this
cluster, except JEdit, use Jira or Bugzilla (or both) as the bug
tracking system, all (again except JEdit) are developed by
medium size international team – the greater team consists of 25
persons, but in most cases it was exactly 11 persons. High level of
automatization in the testing process (the data about testing
process were not available for all releases) was applied in most
cases, and in all of them SVN repositories were used as the source
code version control system.

Common features of the identified clusters are summarized in
Table 14.

Table 14. Common features of the identified clusters

Cluster Common features

Cluster
proprietary B

custom build solutions; heavy weight, plan-
driven development process; already installed
in the customer environment; insurance
domain; manual tests; similar development
period; use databse; proprietary – the same
company

Cluster
proprietary / open

text processing domain; SVN and Jira or
Bugzilla used; medium size international
team; automatization in the testing process;
do not use database

Comparison with other studies
Zimmermann et al. [25] provided a decision tree that helps to
evaluate the precision of cross projects defect predictions. If our
results are compatible with the Zimmermann's findings then many

cluster members should share the features that, according to the
decision tree, increase the precision and few of them should share
features that - according to the decision tree - decrease the
precision.

According to the decision tree, projects or releases with more or
the same Number of observations (in our case that is the number
of classes) should better predict defects in projects with fewer
Number of observations. This finding does not fit in the concept
of clusters. All the members of a well identified cluster should be
transitive and this finding is strongly connected with lack of
transitivity – in [25] were identified such projects that project A
was a good defect predictor for project B, but project B was a bad
defect predictor for the project A. The Number of observations
finding can be only partly verified. Projects with equal size
should be good defect predictors for each other. The size of
releases from cluster proprietary B varies from 2286 to 4057, but
there are also two outliers: 1694 and 4622. The relative difference
is not big in the cluster. Number of cases in releases selected to
cluster proprietary / open vary from 162 to 909 with two outliers:
29 and 32.

The second factor that, influences defect prediction precision is
according to [25], Uses database. When both projects do not use
the database, the prediction precision should be increased. All
members of the cluster proprietary B use database. None of the
members of the cluster proprietary / open uses database.

The third factor according to [25] is Company. Zimmermann et al.
listed peculiar companies that have positive or negative influence
on prediction precision. Only two factors are relevant for us: cross
prediction within Apache products increases the precision and
cross company prediction decreases the precision. All members of
the proprietary B cluster come from the same company –
Capgemini-sd&m. 12 members of the cluster proprietary / open
come from Apache, 4 from JEdit community and 2 from
Capgemini-sd&m.

The adequacy of clustering
The discriminant analysis showed that the clusters explain most of
the variety. Discriminant analysis of clusters obtained from
Kohonen’s network is given in 4.4. Analysis of other clusters was
omitted because of the lack of space, but was also conducted and
the obtained results were, according to the discriminant analysis,
even more adequate. The clustering was based on correlation
vectors. One may argue if the correlation vectors are the optimal
base for clustering because the effectiveness of defect prediction
models built for most of the clusters was not significantly better
than the effectiveness of the general model.

CONCLUSIONS
Metrics from 92 releases of 38 proprietary, open-source and
academic projects were collected, stored in a repository
(http://purl.org/MarianJureczko/MetricsRepo) and analyzed. The
conducted analysis reveals that there exist clusters from the defect
prediction point of view and two of those clusters were
successfully identified. The existence of those two clusters was
proven with statistical tests. The features of cluster members were
described and compared with findings of other studies. The
comparison showed that there are no major inconsistencies with
the other studies and our findings partly overlap the results
obtained by other researchers [25]. Reproducing the study in an

industrial environment is difficult because in order to construct
the correlation vectors the information about defects (that one is
going to predict) is necessary. Therefore, we strongly recommend
using the factors presented in section 5.1 as cluster indicators
instead of the correlation vectors.

The obtained results are not astonishing. The existence of only
two clusters was proven. According to other studies the cross
project defect prediction is a complicated issue. Zimmermann et
al. [25] reported success rate 3.4% in cross project predictions.
Turhan et al. [21] obtained probability of false alarm greater than
50% in most of the cross project predictions. Therefore the
presented results may be considered as interesting ones, but hey
definitely point to the need of further research.

FUTURE RESEARCH
The identified clusters are far away from covering all software
projects. Further research is necessary to identify more clusters.
The clusters that were identified are very wide and therefore it is
possible that those clusters may be successfully divided into
smaller ones. In both cases, it is necessary to collect and analyze
more data about software projects in order to reach those goals.

There may be conducted a cross validation for the study. One may
build one defect prediction model per each release and then use
the models to predict defects for other releases. If the clusters are
correctly identified the within cluster prediction will be better
than the cross cluster predictions. That approach would be similar
to the one that was used in [22,25]. With such approach, it is
possible to identify outliers that were classified to a cluster, but do
not fit to the cluster very well.

ACKNOWLEDGMENTS
The authors are very grateful to the Capgemini Polska Company
that allowed analyzing five of their proprietary projects. Thus, the
research has been better validated – the authors could use not only
open source, but also industrial projects.

REFERENCES
[1] Bansiya, J. and Davis, C. G. 2002. A Hierarchical Model for

Object-Oriented Design Quality Assessment. IEEE Trans. on
Software Engineering, 28, 1, (January 2002). 4-17. DOI=
http://doi.ieeecomputersociety.org/10.1109/32.979986

[2] Bell, R., Ostrand T., Weyuker E. 2006. Looking for Bugs in
all the right places. In Proceeding of the 2006 International
Symposium on Software Testing and Analysis (Portland,
USA, July 17-20, 2006). ISSTA 2006. ACM Press New
Your, NY, 61-72. DOI=
http://doi.acm.org/10.1145/1146238.1146246

[3] Catal, C., Diri, B., Ozumut, B. 2007. An Artificial Immune
System Approach for Fault Prediction in Object-Oriented
Software. In Proceedings of the 2nd International Conference
on Dependability of Computer Systems (Szklarska Poręba,
Poland, 14-16 June, 2007). DepCoS-RELCOMEX 2007.
IEEE. 238-245. DOI=
http://doi.ieeecomputersociety.org/10.1109/DEPCOS-
RELCOMEX.2007.8

[4] Chidamber, S. R., and Kemerer, C. F. A metrics suite for
object oriented design. IEEE Transaction on Software

Engineering, 20, 6, (June 1994). 476–493. DOI=
http://doi.ieeecomputersociety.org/10.1109/32.295895

[5] Fenton, E., Neil, M. 1999. A Critique of Software Defect
Prediction Models. IEEE Transaction on Software
Engineering, 25, 5, (September 1999). 675-689. DOI=
http://dx.doi.org/10.1109/32.815326

[6] Henderson-Sellers, B., Object-Oriented Metrics, measures of
Complexity. Prentice Hall, 1996.

[7] Hand, D. J. 1998. Discriminant Analysis, Linear. In
Encyclopedia of Biostatistics Volume 2 (P. Armitage and T.
Colton, Eds.). Chichester: Wiley.

[8] Jureczko, M., Spinellis D. 2010. Using Object-Oriented
Design Metrics to Predict Software Defects. In Models and
Methods of System Dependability. Oficyna Wydawnicza
Politechniki Wrocławskiej. 69-81.

[9] Jureczko, M. 2007. Use of software metrics for finding weak
points of object oriented projects. Proceeding of Metody i
narzędzia wytwarzania oprogramowania (Szklarska Poręba,
Poland, 14-16 May, 2007). 133-144.

[10] Jureczko, M., 2008. Ocena jakości obiektowo
zorientowanego projektu programistycznego na podstawie
metryk oprogramowania. In Inżynieria oprogramowania –
metody wytwarzania i wybrane zastosowania. PWN. 364-
377.

[11] Jureczko, M., Madeyski, L. 2010. Predykcja defektów na
podstawie metryk oprogramowania – identyfikacja klas
projektów. Submitted on KKIO 2010.

[12] Koru, A.G., Liu, H. 2005. Building Defect Prediction
Models in Practice. IEEE Software 22, 6, (December 2005).
23-29. DOI= http://dx.doi.org/10.1109/MS.2005.149

[13] Madeyski, L., Test-Driven Development: An Empirical
Evaluation of Agile Practice. Springer, 2010. DOI=
http://dx.doi.org/10.1007/978-3-642-04288-1

[14] McCabe, T. J. 1976. A complexity measure. IEEE Trans. on
Software Engineering, 2, 4, (1976). 308-320.

[15] Martin, R. 1994. OO Design Quality Metrics - An Analysis
of Dependencies. Proceeding of Workshop Pragmatic and
Theoretical Directions in Object-Oriented Software Metrics,
OOPSLA’94.

[16] Nagappan N., Ball T., Zeller A. 2006. Mining Metrics to
Predict Component Failures. In Proceedings of the 28th
International Conference on Software Engineering.
(Shanghai, China, May 20-28, 2006). ICSE’06. ACM Press
New Your, NY, 452-461. DOI=
http://doi.acm.org/10.1145/1134285.1134349

[17] Olague, H., Etzkorn, L., Gholston S., Quattlebaum S. 2007.
Empirical Validation of Three Software Metrics Suites to
Predict Fault-Proneness of Object-Oriented Classes
Developed Using Highly Iterative or Agile Software
Development Processes. IEEE Transaction on Software
Engineering 33, 6, (June 2007). 402-419. DOI=
http://doi.ieeecomputersociety.org/10.1109/TSE.2007.1015

[18] Ostrand, T., Weyuker, E., Bell, R. 2005. Predicting the
Location and Number of Faults in Large Software Systems.

IEEE Trans. on Software Engineering 31, 4, (April 2005).
340-355. DOI= http://dx.doi.org/10.1109/TSE.2005.49

[19] Purao, S. and Vaishnavi V. K. 2003. Product metrics for
object-oriented systems. ACM Computing Surveys 35, 2
(June 2003).191-221.
DOI=http://doi.acm.org/10.1145/857076.857090

[20] Tang, M-H., Kao, M-H., and Chen, M-H. 1999. An
Empirical Study on Object-Oriented Metrics. In Proceedings
of the Sixth International Software Metrics Symposium
(Boca Raton, USA, 4-6 November, 1999). 242-249. DOI=
http://dx.doi.org/10.1109/METRIC.1999.809718

[21] Turhan, B., Menzies, T., Bener, A., Distefano, J. 2009. On
the Relative Value of Cross-Company and Within-Company
Data for Defect Prediction. Empirical Software Engineering
14, 5, (October 2009). 540-578.
DOI=http://dx.doi.org/10.1007/s10664-008-9103-7

[22] Watanabe, S., Kaiya, H., Kaijiri K. 2008. Adapting a Fault
Prediction Model to Allow Inter Language Reuse. In
Proceedings of the 4th International Workshop on Predictive
Models in Software Engineering (Leipzig, Germany, May
12-13, 2008). PROMISE’08.

[23] Wahyudin, D., Ramler, R. and Biffl S. 2008. A framework
for Defect Prediction in Specific Software Project Contexts.
In Proceedings of the 3rd IFIP Central and East European
Conference on Software Engineering Techniques (Brno,
Czech Republic, October 13-15, 2008). CEE-SET 2008.

[24] Weyuker, E., Ostrand T., Bell R. 2008. Adapting a Fault
Prediction Model to Allow Widespread Usage. In
Proceedings of the the International Workshop on Predictive
Models in Software Engineering (Leipzig, Germany, May
12-13, 2008). PROMISE’08.

[25] Weyuker, E., Ostrand T., Bell R. 2008. Do too many cooks
spoil the broth? Using the number of developers to enhance
defect prediction models. Empirical Software Engineering,
13, 5 (October 2008). 539-559. DOI=
http://dx.doi.org/10.1007/s10664-008-9082-8

[26] Zimmermann, T., Nagappan, N., Gall, H., Giger, E.,
Murphy, B. 2009. Cross-project Defect Prediction. In
Proceedings of the 7th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(Amsterdam, The Netherlands, August 24-28 2009).
ESEC/FSE 2009. 91-100.

