
Software product metrics used to build defect

prediction models

Marian Jureczko

Institute of Computer Engineering, Control and Robotics,

Wrocßlaw University of Technology,

Wyb.Wyspianskiego 27, 50370 Wrocßlaw, Poland

Lech Madeyski

Institute of Informatics,

Wrocßlaw University of Technology,

Wyb.Wyspianskiego 27, 50370 Wrocßlaw, Poland

M. Jureczko and L. Madeyski, �Software product metrics used to build defect prediction

models,� SPR 2/2014, Faculty of Computer Science and Management, Wroclaw University

of Technology, April 2011.

http://madeyski.e-informatyka.pl/download/JureczkoMadeyskiSoftwareProductMetrics.pdf

Rev. 1: 2011, Rev. 2: 2014

Abstract

This document presents software product metrics we usually use to

build software defect prediction models.

1 Software product metrics

This document presents software product metrics we usually use to build soft-
ware defect prediction models, especially those built by Madeyski and Ju-
reczko [6, 5, 4].

• The metrics suite suggested by Chidamber and Kemerer [2]:

� Weighted Methods per Class (WMC). The value of the WMC is equal
to the number of methods in the class (assuming unity weights for
all methods).

� Depth of Inheritance Tree (DIT). The DIT metric provides for each
class a measure of the inheritance levels from the object hierarchy
top.

� Number of Children (NOC). The NOC metric simply measures the
number of immediate descendants of the class.

� Coupling between object classes (CBO). The CBO metric represents
the number of classes coupled to a given class (e�erent couplings
and a�erent couplings). These couplings can occur through method
calls, �eld accesses, inheritance, method arguments, return types,
and exceptions.

1

� Response for a Class (RFC). The RFC metric measures the number
of di�erent methods that can be executed when an object of that class
receives a message. Ideally, we would want to �nd for each method
of the class, the methods that class will call, and repeat this for each
called method, calculating what is called the transitive closure of the
method call graph. This process can however be both expensive and
quite inaccurate. Ckjm calculates a rough approximation to the re-
sponse set by simply inspecting method calls within the class method
bodies. The value of RFC is the sum of number of methods called
within the class method bodies and the number of class methods.
This simpli�cation was also used in the original description of the
metric.

� Lack of cohesion in methods (LCOM). The LCOM metric counts the
sets of methods in a class that are not related through the sharing of
some of the class �elds. The original de�nition of this metric (which
is the one used in Ckjm) considers all pairs of class methods. In some
of these pairs both methods access at least one common �eld of the
class, while in other pairs the two methods do not share any common
�eld accesses. The lack of cohesion in methods is then calculated by
subtracting from the number of method pairs that do not share a
�eld access the number of method pairs that do.

• Lack of Cohesion in Methods (LCOM3) suggested by Henderson-Sellers [3].
LCOM3 is a normalized version of the Chidamber and Kemerer's LCOM
metric and can be calculated using the following equation:

LCOM3 =

(1a

a∑
j=1

µ(Aj))−m

1−m
(1)

where m is the number of methods in a class; a is the number of attributes
in a class and µ(A) is the number of methods that access the attribute A.

• The metrics suite suggested by Bansiy and Davis [1]:

� Number of Public Methods (NPM). The NPM metric simply counts
all the methods in a class that are declared as public. The metric is
known also as Class Interface Size (CIS)

� Data Access Metric (DAM). This metric is the ratio of the number
of private (protected) attributes to the total number of attributes
declared in the class.

� Measure of Aggregation (MOA). The metric measures the extent of
the part-whole relationship, realized by using attributes. The metric
is a count of the number of class �elds whose types are user de�ned
classes.

� Measure of Functional Abstraction (MFA). This metric is the ratio
of the number of methods inherited by a class to the total number
of methods accessible by the member methods of the class. The
constructors and the java.lang.Object (as parent) are ignored.

2

� Cohesion Among Methods of Class (CAM). This metric computes
the relatedness among methods of a class based upon the parameter
list of the methods. The metric is computed using the summation
of number of di�erent types of method parameters in every method
divided by a multiplication of number of di�erent method parameter
types in whole class and number of methods.

• The quality oriented extension to Chidamber & Kemerer metrics suite
suggested by Tang et al. [9].

� Inheritance Coupling (IC). This metric provides the number of parent
classes to which a given class is coupled. A class is coupled to its
parent class if one of its inherited methods functionally dependent
on the new or rede�ned methods in the class. A class is coupled to
its parent class if one of the following conditions is satis�ed:

∗ One of its inherited methods uses an attribute that is de�ned in
a new/rede�ned method.

∗ One of its inherited methods calls a rede�ned method.

∗ One of its inherited methods is called by a rede�ned method and
uses a parameter that is de�ned in the rede�ned method.

� Coupling Between Methods (CBM). The metric measures the total
number of new/rede�ned methods to which all the inherited methods
are coupled. There is a coupling when at least one of the given in
the IC metric de�nition conditions is held.

� Average Method Complexity (AMC). This metric measures the av-
erage method size for each class. Size of a method is equal to the
number of Java binary codes in the method.

• Two metrics suggested by Martin [7]:

� A�erent couplings (Ca). The Ca metric represents the number of
classes that depend upon the measured class.

� E�erent couplings (Ce). The Ca metric represents the number of
classes that the measured class is depended upon.

• Class level metrics built on the basis of McCabe's complexity metric [8]
� Max(CC) (the greatest value of CC among methods of the investigated
class) and Avg(CC) (the arithmetic mean of the CC value in the inves-
tigated class). McCabe's cyclomatic complexity (CC) is equal to number
of di�erent paths in a method (function) plus one. The cyclomatic com-
plexity is de�ned as: CC = E�N+P; where E - the number of edges of the
graph, N - the number of nodes of the graph, P - the number of connected
components. CC is the only method size metric. For the sake of prediction
models class level metrics Max(CC) and Avg(CC) have been derived.

• Lines of Code (LOC).

3

References

[1] Jagdish Bansiya and Carl G. Davis. A hierarchical model for object-oriented
design quality assessment. IEEE Transactions on Software Engineering,
28(1):4�17, 2002.

[2] Shyam R. Chidamber and Chris F. Kemerer. A Metrics Suite for Object
Oriented Design. IEEE Transactions on Software Engineering, 20(6):476�
493, 1994.

[3] Brian Henderson-Sellers. Object-oriented metrics: measures of complexity.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[4] Marian Jureczko and Lech Madeyski. Predykcja defekt�ow na pod-
stawie metryk oprogramowania - identy�kacja klas projekt�ow. In
In
zynieria Oprogramowania w procesach integracji system�ow informaty-

cznych, pages 185�192. Wydawnictwo Komunikacji i ßL�aczno�sci, 2010. Draft:
http://madeyski.e-informatyka.pl/download/JureczkoMadeyski10e.pdf.

[5] Marian Jureczko and Lech Madeyski. Towards identifying software project
clusters with regard to defect prediction. In PROMISE'2010: Proceed-

ings of the 6th International Conference on Predictive Models in Soft-

ware Engineering, pages 9:1�9:10. ACM, 2010. Draft: http://madeyski.e-
informatyka.pl/download/JureczkoMadeyski10f.pdf.

[6] Lech Madeyski and Marian Jureczko. Which Process Metrics Can Signi�-
cantly Improve Defect Prediction Models? An Empirical Study. Software

Quality Journal, 2014 (DOI: 10.1007/s11219-014-9241-7) (accepted).

[7] Robert C. Martin. OO Design Quality Metrics: An Analysis of Dependen-
cies. In OOPSLA'94: Proceedings of Workshop Pragmatic and Theoretical

Directions in Object-Oriented Software Metrics, pages 1�8. Object Mentor,
Inc., 1994.

[8] T.J. McCabe. A complexity measure. IEEE Transactions on Software En-

gineering, 2:308�320, 1976.

[9] Mei-Huei Tang, Ming-Hung Kao, and Mei-Hwa Chen. An empirical study
on object-oriented metrics. In METRICS '99: Proceedings of the 6th Inter-

national Symposium on Software Metrics, page 242, Washington, DC, USA,
1999. IEEE Computer Society.

4

