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ABSTRACT
Background Examples of questionable statistical practice, when
published in high quality software engineering (SE) journals, may
lead to novice researchers adopting incorrect statistical practices.
Objective Our goal is to highlight issues contributing to poor sta-
tistical practice in human-centric SE experiments.
Method We reviewed the statistical analysis practices used in the
13 papers that reported families of human-centric SE experiments
and were published in high quality journals.
Results Reviewed papers related to 45 experiments and involved a
total of 1303 human participants. We searched for issues that were
related to questionable statistical practice that were found in more
than one paper. We observed three types of bad practice: incorrect
use of terminology, incorrect analysis of repeated measures designs,
and post-hoc power testing. We also found two analysis practices
(i.e., multiple testing and pre-testing for normality) where statisti-
cians disagree about good practice.
Conclusions Identified issues pose a problem because readers
may expect the statistical methods used in papers published in
top quality, peer-reviewed journals to be correct. We explain why
the practices are problematic and provide recommendations for
improved practice.

CCS CONCEPTS
• General and reference → Empirical studies; Experimenta-
tion; • Software and its engineering→ Software creation and
management.
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1 INTRODUCTION
As part of a study of the use of meta-analysis in families of human-
centric software engineering (SE) experiments1, we identified 13
papers that had been published in high quality journals [29]. During
our assessment of each paper, we reviewed aspects of the statistical
design of the individual experiments in the family. We observed a
variety of terminology errors and misunderstandings of statistical
practice in individual papers that were duplicated in other papers.

We report and discuss these issues for three main reasons:
(1) The issues we discuss occurred in more than one paper after

a peer review process. This suggests that they may be exam-
ples of issues that are not well-understood by experienced
SE researchers and reviewers of top SE journals.

(2) The papers were published in leading SE journals, so there
is an expectation that the reported methodology would be
correct. Thus, if incorrect terminology or methodology is
reported in such papers it may lead to the propagation of
bad practice as novice researchers assume the methodology
must be correct.

(3) Families of experiments usually involve many human partic-
ipants. Scientific ethics are clear that we need to be careful
to avoid abusing our participants, even if it is just wasting
their time and effort by incorrectly analysing their data.

The issues we observed were a mixture of incorrect use of ter-
minology and misunderstanding statistical principles. Specifically,
the issues we consider in this paper are:

(1) Misuse of statistical terminology.
(2) Incorrect analysis of repeated measures experiments.
(3) Performing post-hoc power analysis.
(4) The use of pretesting for normality and variance stability.
(5) Testing multiple hypotheses.
After a brief discussion of our methodology in Section 2, we

discuss each issue in a separate section. We discuss our findings in
Section 8 and present our recommendations in Section 9.

1By human-centricwemean experiments that depend on human participants
to perform skill-based software engineering tasks.

https://doi.org/10.1145/3319008.3319009
https://doi.org/10.1145/3319008.3319009
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Compared with [29], in this paper, we concentrate on statistical
issues related to the analysis of the individual experiments. In [29],
we concentrate on issues related tometa-analysis. The contributions
of this paper are:

(1) To identify a set of statistical problems and issues that we
observed in papers published in high quality software engi-
neering journals.

(2) To explain issues that indicatemisunderstanding of statistical
principles, and to discuss issues where statistical advice is
contradictory.

(3) To provide practical recommendations based on our discus-
sion.

2 MATERIALS AND METHODS
Our search process was done independently of the mapping study
by Santos et al. which aimed to classify all software engineering
families of experiments (i.e. [50]). However, we used Santos et al.’s
mapping as a means of validating the completeness of our search
and selection process. Our search was intended to find families of
experiments in top ranked software engineering journals that un-
dertook meta-analysis to aggregate the results of each experiment.

We restricted our search to papers in the following five journals
that were published between 1999 (when the first paper on SE
families of experiments was published [3]) and 2017:

• IEEE Transactions on Software Engineering (TSE).
• Empirical Software Engineering (ESE).
• Journal of Systems and Software (JSS).
• Information and Software Technology (IST).
• ACM Transactions on Software Engineering Methodology
(TOSEM).

We searched SCOPUS for studies with the term "family of experi-
ment*" and restricted the search to the five specified journals. This
missed a paper that we knew was relevant which did not use the
main search term [31]. So then we used the search term, “repli-
cat” AND “meta-analysis” with the same journal restrictions. This
found [31] and another relevant paper [44]. Applying our inclusion
criteria: families of three our more studies that compared software
engineering techniques by asking human participants perform soft-
ware engineering tasks, we found 13 candidate studies. We repeated
these searches on Semantic Scholar and did not find any additional
relevant studies. Comparedwith [50], we found one extra paper [39]
and rejected three (two because they were not published in the five
selected journal and one because it was observational correlation
study correlating team personality and climate to satisfaction and
quality [2].)

Overall, the maximum number of experiments per family was
five and the 13 papers reported analysis of 45 experiments, that
involved a total of 1303 human participants. In all the papers, the
authors attempted to meta-analyse the results of the individual
experiments comprising the family of experiments.

All three authors read the full text of these papers. The first
author extracted detailed data about the experimental methodology
from the papers which was validated by the third author. The first
author identified possible issues during data extraction, that were
reviewed and agreed by the second author.

A limitation of this paper is that the set of papers we studied is
a subset of the papers identified in [50]. A review of the titles of
the studies found by Santos et al. indicates that another 12 papers
conformed with all our search criteria except that they did not
undertake meta-analysis. Obviously we cannot be sure that the
issues we identified applied to the other papers nor that there are
other issues in those papers that we have not detected in the papers
we reviewed.

Please note that our aim is not to criticize specific papers, but
to identify general problems with current statistical practices in
software engineering. We note that all the authors reported their
procedures in sufficient detail for us to understand how they ana-
lyzed their experimental results. There is clearly no intention on
the part of the authors to mislead their readers, but it seems that
the authors have not benefited as much as we all might hope from
the peer review process.

3 INCORRECT TERMINOLOGY
It may be considered unnecessary to worry about the misuse of
statistical terminology, but we believe using the right terminology
is important because:

• Using the wrong terminology may be indicative of a deeper
misunderstanding of statistical methods.

• If researchers do not understand statistical terminology, they
will have problems understanding existing statistical text
books and new statistical results.

• If junior researchers adopt incorrect terminology, this may
cause problems if they move on to work in other disciplines
or build their own research teams.

Table 1 reports the names that researchers gave to the methods
they used to analyze their experiments. In our opinion only two
studies used completely correct terminology to describe their exper-
iment (see [22, 44]). Four papers referred to crossover experiments
as “counterbalanced” designs, which although not incorrect, does
not fully specify the design. Six papers referred to the design as
a factorial which is inconsistent with the usual use of the term
factorial in applied statistics (see below).

Most of the studies actually used crossover designs and Vegas
et al. [57]2 have already reported problems with the terminology
used for crossover experiments. The basic AB/BA crossover design
is shown in Table 2. The term AB/BA crossover is used to describe
this design in the medical literature (e.g., [52]). In a medical ap-
plication such as comparing the effectiveness of different drugs,
the conditions in the experiment would simply be the drug being
used in each time period. In a software engineering context, we ask
participants to perform a task such as finding defects or adding a
new requirement using one technique, and then perform the same
task using another technique. If we asked software engineers to
repeat the same task using the same software document, they might
simply remember what to do without applying the technique. For
that reason, it is necessary to change the materials used in the
second time period. However, the experiment we call a 4-group
crossover (which is shown in Table 3), does not appear to be used
2Our study includes the time period 2015-2017 which was not covered by
Vegas’s review and three sources that were not searched by Vegas: ESE, IST
and JSS.
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Table 1: Experimental Designs Reported and Actual

Claimed Design Actual Design

Counterbalanced design organizing partici-
pants into 4-groups [1]

4-Group crossover

Within-participants counter-balanced de-
sign [51]

4-Group crossover

2 by 2 Factorial with dependent variables [12] AB/BA crossover
A balanced within-subject design with a con-
founding effect [20]

4-Group crossover

A balanced factorial design with group-
interaction as a confounding factor [21]

4-Group crossover

Counterbalanced design [24] 4-Group crossover
2 by 2 factorial design with confounded inter-
action [55]

AB/BA crossover

A balanced within-participants design with a
confounding effect [23]

4-Group crossover

Between-subjects balanced design [22] Between subjects de-
sign

A balanced factorial design [13] 4-Group crossover
2 by 2 factorial design with confounded inter-
action [39]

AB/BA crossover

2 by 2 factorial Counterbalanced Repeated-
Measures Design [31]

AB/BA crossover

Pre-test and post-test control group [44] Pre-test and post-test
control group

in other disciplines, so does not have a well-defined name in the
statistical literature. Vegas et al. call this a “two-treatment factorial
crossover design where the experimental object is a two-level block-
ing variable”. We agree that the design is a two-treatment crossover
with an additional blocking variable. However, we do not agree
with referring to this sort of design as a “factorial” experiment.

Table 2: AB/BA Crossover Design

Group Period 1 Period 2

A Technique 1 Technique 2
Materials 1 Materials 2

B Technique 2 Technique 1
Materials 1 Materials 2

Table 3: 4-Group Crossover Design

Group Period 1 Period 2

A Technique 1 Technique 2
Materials 1 Materials 2

B Technique 2 Technique 1
Materials 1 Materials 2

C Technique 1 Technique 2
Materials 2 Materials 1

D Technique 2 Technique 1
Materials 2 Materials 1

The term factorial experiment is used to describe a design where
two or more treatment factors (usually those that can be applied
at different levels such as the weight in tons of different fertilisers,
e.g., phosphate and nitrate, applied to plots in an agricultural ex-
periment) are investigated together (see for example, [5, 37, 53]). In
industrial experiments, this type of design is used with multiple
levels of multiple factors to assess the combination of treatment
levels that achieve maximum output [4]. Importantly, understand-
ing the interaction between the treatments is the essential goal of
the experiment.

Darcy et al. [14] report an example of a software engineering
study (which included replication) that was a factorial study. The
main hypothesis concerned the impact of coupling and cohesion on
maintenance. For this they asked participants to perform a main-
tenance task on objects with different levels of complexity and
cohesion as shown in Table 4. Each of the four experimental condi-
tions involve one of two levels of cohesion: low cohesion (“LCoh”)
and high cohesion (“HCoh”), and one of two levels of coupling: Low
coupling (“LCou”) and high coupling (“HCou”), and all four possible
combinations are used. Although their experiment involves other
conditions (and repeated measures), the basic treatment conditions
comprise a factorial experiment. Furthermore the interaction be-
tween coupling and cohesion was an important element of the
experiment.

Table 4: Factorial Design for Investigation of Code Complex-
ity

Coupling Level
Low High

Cohesion Level
Low LCoh, LCou LCoh, HCou
High HCoh, LCou HCoh, HCou

However, in our opinion, factors such as different software doc-
uments used to perform software development tasks in a software
experiment are best considered as blocking factors not treatment
factors, where blocking factors are defined as sources of variability
that are not of primary interest to the experimenter (and are often
referred to as nuisance factors). In general, interactions between
nuisance blocking factors are usually not included in any analysis.
The treatment factor in crossover designs comprises two levels i.e.,
technique 1 and technique 2 and the levels do not interact (i.e., each
cell3 in a crossover design uses only one technique).

A type of blocking factor that is not a nuisance factor is a block-
ing factor that partitions the participant population, for example,
skill or experience levels in software engineering, and male or fe-
male in medical studies. In studies where skill or experience is an
issue, it may be important to investigate whether the impact of a
new technique is influenced by the experience of the participants.
This type of factor can be incorporated into a crossover style de-
sign, but it would lead to additional sequence groups and might
be better addressed as a between participants randomized block
3A cell is a combination of experimental conditions from which a set of
comparable observations are obtained.
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experiment, if the factor of interest is categorical, or, as recommend
by Maxwell [37], if the factor of interest is better considered as a
continuous variable, it can be measured for each participant and
used as a covariate in an analysis of covariance (ANCOVA).

In general, experimental design terminology of experiments
which do not have repeated measures is relatively straightforward.
An experiment without blocks is called a randomized experiment,
and experiment with blocking factors is called a randomized blocks
experiment. Specific blocks may have more than two levels. Ran-
domized blocks experiments can have more that one type of block-
ing factor and more than two treatments to compare. A Latin
squares design has three or more treatments and three or more dif-
ferent types of block, both of which must have the same number of
levels as the number of treatments. A Latin squares design ensures
that each treatment is trialled under each combination of block
levels. Graeco-Latin squares can be used if there are three types
of blocking variable. However, we recommend keeping to compar-
isons of two treatments, with only the most important blocking
factors included in the design.

4 INCORRECT ANALYSIS OF REPEATED
MEASURES STUDIES

Vegas et al. [57] reported that crossover designs were sometimes
incorrectly analyzed. We observed the same problem. Out of 12
studies that used repeated measures designs, 8 studies did not use a
statistical analysis method that catered for repeated measures. They
used analysis methods suitable for testing independent groups. As
discussed in [36], the impact of this is that researchers:

• Over-estimated their degrees of freedom (basing them incor-
rectly on the number of observations rather than the number
of participants). This would increase the risk of detecting
false positives, by incorrectly reducing both the standard
error of the mean difference and the critical value of the
t-test.

• Obtained an estimate of the variance based on the between-
participants variation rather than the within-participants
variation. The between-participants variance should bemuch
larger than the within-participants variance if there is a cor-
relation between the outcomes that participants obtained
in the first time period and the outcomes they obtained in
the second time period. Correlation between outcomes from
the same participant is an indication that ability influences
the experiment outcomes. Using the between-participant
variance will increase the risk of failing to detect genuine
effects.

Another impact is that researchers who did not understand how
to correctly analyze their study also undertook additional tests
to check factors that should have been addressed already by an
appropriate analysis:

• 8 papers investigated order and time period effects and inter-
actions for each of their experiments, although, in general,
statisticians do not test for interactions among blocking fac-
tors.

• 4 papers investigated the impact of different participant abil-
ity in each of their experiments, although for appropriate

analysis of crossover designs, participants are their own
controls removing the impact of ability differences.

• 6 papers that used the 4-group design investigated the differ-
ence between materials, although the experimental design
was designed to balance such effects and a statistical anal-
ysis based on that design would have accounted for any
difference between materials.

The main problem is that undertaking extra (and unnecessary)
tests compromises the power of experiments and can increase the
risk of obtaining spurious positive results. This is discussed further
in Section 7.

5 POST-HOC POWER ANALYSIS
Five studies performed post-hoc power analysis, although power
analysis should be used during experimental design (i.e., when
pre-planning the sample size), not after the experiment has been
completed and analyzed (as indeed was mentioned in one of the
papers).

Power is the probability of rejecting the null hypothesis when it
is false. As explained by Dybå et al. [16], it is determined by three
factors:

• The required significance level α and its directionality, where
the smaller the value of α , the lower the power. In addition,
a non-directional two tailed test will have lower power than
a directional one-tailed test at the same α .

• The effect size. The larger the effect size, the higher the
power.

• The sample size. The larger the sample size the higher the
power.

When planning an experiment, researchers need to determine
the sample size needed to ensure an adequate power level, where
0.8 is often considered to be an appropriate level. However, during
planning, the effect size is unknown, which has led to researchers
mistakenly reporting the power of their experiment from the ob-
served effect size. This is an error because:

(1) Once the experiment has been performed, a post-hoc anal-
ysis of power only confirms that if we find a statistically
significant effect size, the calculated power is large and if we
find a non-significant effect the calculated power is small.
Thus, the power analysis has told us nothing of interest about
our experiment.

(2) In the event that there is no significant effect, we might
wrongly assume this is due to the low power of the experi-
ment, even if the sample size is large. In fact, a non-significant
effect size with a large power is strong evidence in favour of
the null hypothesis.

(3) In the event that there is a statistically significant effect and
a small sample size, post-hoc analysis will indicate a high
power value, but it is far more likely that the experiment has
overestimated the true effect size. Furthermore, subsequent
replications using the same sample size on the assumption
that it is sufficiently powerful, will then be under-powered
leading to further misleading results [25].

See Button et al. [9] for a more detailed explanation of the problems
of low power.
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As pointed out by Jørgensen et al. [26], what we need to do is de-
cide in advance what standardized effect size we think is important,
in terms of Cohen’s large, medium and small criteria (see [11]), and
use a power analysis to determine what sample size is necessary to
achieve a power level of 0.8 (i.e., 80% chance of detecting an effect
if one genuinely exists). Then, given sufficient power a priori to
detect, for example, a medium effect size, a non-significant effect is
much more likely to indicate a negligible effect size, and a signifi-
cant effect more likely to provide an unbiased estimate of the true
effect size. Only in the case of a relatively large but not statistically
significant effect size, should a post-hoc power analysis be used to
indicate the sample sizes needed in subsequent experiments.

It should also be noted that the significance tests for repeated
measures experiments should be based on the within-participant
variance, which itself depends on the correlation between the re-
peatedmeasures, such as crossover designs. The guidelines reported
by Cohen do not cover these types of experiment, and researchers
need to ensure that any power analysis tools they use can handle
such studies.

6 PRE-TESTING FOR NORMALITY AND
VARIANCE HETEROGENEITY

Six studies pretested their data for normality before decidingwhether
to use non-parametric or parametric analyses. Two other studies
performed non-parametric and parametric tests and reported the
parametric test results, since both tests gave similar results. In addi-
tion five studies (including four of the studies that tested their data
for normality) reported that they tested for variance stability.

The issue of pre-testing for normality and heterogeneity is com-
plex and there is considerable disagreement in the literature. The
theoretical problem with pre-testing is that as with any statistical
process that uses multiple testing the Type 1 and Type 2 errors of
the analysis may be affected by the multiple tests.

As reported by Rochon et al. [48], historically, most medical re-
searchers used t-tests for statistical testing. However, during the
1980s and 1990s, there was concern about the number of statisti-
cal errors in the medical literature, with violation of assumptions
being one of the most common problems. As a result, guidelines
for publication in medical journals emphasized the importance
of distributional assumptions. To address this issue, researchers
started to adopt the process of pre-testing for normality and vari-
ance heterogeneity. However, Rochon et al. also point out that other
researchers questioned the validity of pre-testing, for a number of
theoretical reasons:

(1) Failure to reject the assumption of normality, or the assump-
tion of equal variances does not mean that the assumption
is true. This is a particular problem for software engineer-
ing experiments since tests of normality have low power to
detect significant deviations from normality when sample
sizes are small.

(2) Some preliminary tests come with their own assumptions,
which may need testing.

(3) Preliminary tests are usually applied to the data to be anal-
ysed, which can result in uncontrolled Type 1 and Type 2
error rates.

Arguments for and against pre-testing, have given rise to many
simulation studies intended to investigate the practical implications
of pretesting. We present the results from three such studies to
illustrate the variety of current opinions4.

Rasch et al. [45] performed simulation studies based on two inde-
pendent groups design using 5 combinations of equal and unequal
group sizes (n1 = n2 = 10,n1 = n2 = 30,n1 = 10 and n2 = 30,
n1 = 30 and n2 = 10, n1 = 30 and n2 = 100) with both equal
and unequal variances. They simulated data from five distributions,
one of them was the standard normal distribution, while the others
were selected from different combinations of skewness and kurtosis.
They tested for normality first using the Kolmogoroff-Smirnov test,
and then for heterogeneity using the Levene test [33]. If the data re-
jected normality, they used the Wilcoxon-Mann-Whitney (WMW)
U -test. If the data passed the test for normality, but failed the test
for heterogeneity, they usedWelch’s test ([58]), otherwise they used
a t-test. They simulated 100,000 data sets for each combination of
distribution, size, variance and effect size

They showed that such pre-testing leads to unknown final Type
1- and Type-2 risks if the respective statistical tests are performed
using the same set of observations. They concluded that:

• It is preferable to apply no pretests, and to use theWelch-test
as a standard.

• The WMWU test could not be recommended for most cases.

Rochon et al. [48] simulated an independent groups experiment,
using equal sample sizes, three different underlying distributions
and two different pretest strategies. Strategy 1 involved testing data
from each of the groups for normality using the Shapiro-Wilk test
and then using a t-test if both tests suggested the data as normal,
and theWMWU test if either test indicated non-normality. Strategy
2 involved calculating the residual from the mean in each group and
then pooling the data to test it for normality. They did not test for
unequal variances nor did they consider unequal variances in their
simulations. They considered only equal sample sizes of 10, 20 30,
40, and 50 per group and three underlying distributions: the normal,
uniform and exponential distributions. They used the Shapiro-Wilk
test to check for normality. They simulated 100,000 data sets for
each combination of sample size, distribution and effect size.

They reported “dramatic effects of preliminary testing for nor-
mality on the conditional Type 1 error rate of the main test” which
although similar for the two strategies were more pronounced for
Strategy 2. However, the effect of the unconditional decision strat-
egy was very small for both Type 1 and Type 2 errors. The definition
of a conditional probability of a Type 1 error using a t-test, in the
context of pre-testing for normality, is the probability that a data
set that has passed a test for normality subsequently reports a
significant effect from a t-test when none exits. Basically it is the
probability of a t-test reporting a false positive after the data set has
passed a test for normality. A similar definition applies to the con-
ditional probability of a Type 1 error using a non-parametric test.
The unconditional probability of a Type 1 error using a pre-testing
process is the probability of Type 1 error using the statistical test
decided by the pre-test results.

4All the tests for normality discussed in this section are described in [46].
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Operationally, the process used to estimate the conditional prob-
ability of Type 1 error for a t-test, is obtain N samples of an indepen-
dent groups experiment with the mean difference of zero that pass
the test for normality (irrespective of the true underlying distribu-
tion). This means N is set in advance (to say 100000) and sampling
continues until N data set samples pass the test for normality, then
each of the N samples is tested using a t-test and the number of
false positives at a pre-decided alpha level are counted, then:

PCond (Type1Error ) =
NumFalsePositives

N
(1)

A similar process is used to calculate the probability of a Type 1
error given the use of a non-parametric test.

In contrast, to estimate the unconditional probability of a Type
1 error given a pre-test for normality, N samples (with mean differ-
ence=0) are obtained and each is tested for normality. Samples that
pass are subjected to a t-test, samples that do not are subjected to a
non-parametric test, then:

PUncond (Type1Error ) =
NtFalsePosit ives + NnpFalsePosit ives

N
(2)

where NtFalsePosit ives is the number of false positives obtained
from t-tests and NnpFalsePosit ives is the number of false positives
obtained from the non-parametric tests.

They concluded that:
• Although theoretically incorrect, pre-testing did not cause
much harm.

• At worst it was unnecessary for large samples, e.g., samples
with more that 40 observations in each group, since the
t−test was sufficiently robust.

• In the case of small samples, the Shapiro-Wilk test is insuf-
ficiently powerful to detect deviations from normality, so
non-parametric methods should be preferred.

Lantz et al. [32] used simulation to investigate pre-testing of
three independent groups design. They used equal sample sizes
in each group with three sizes: n=15, n=30 and n=60 per group.
They assessed each group for normality using the Shapiro-Wilk
test, and if any one of the groups failed the normality test, they used
the Kruskal-Wallis test, otherwise they used a one-way ANOVA.
They did not test for heterogeneity, neither did they simulate un-
equal variances. They simulated data from 4 distributions: normal,
exponential, Laplace and uniform. They simulated data for five
different standardized mean difference effect sizes: 0, 0.10, 0.25, 0.40,
0.65. They also considered four different significance levels for the
Shapiro-Wilk test. They simulated 100000 data sets for each set of
conditions. They mentioned that Rochon et al. found differences
between the conditional error rates and the unconditional errors
rates, and used the unconditional error rates to assess the overall
two-stage process.

They reported that the two stage process seemed to be a better
choice for testing the difference between means of three groups:

• Simply using either ANOVA or the Kruskal-Wallis test as a
one stage process did not perform noticeably better than the
two stage procedure.

• For strong non-normality the two stage process was much
better than simply using ANOVA.

Thus, three fairly recent simulation studies managed to come to
rather conflicting results. The studies all used different simulation
methods. For example only one considered unequal variances as
well as normality, and while two studies used the Shapiro-Wilk
test for normality, the other used the Kolmogoroff-Smirnov test.
They used different distributions to simulate non-normal data. The
only commonality between the studies is that they all used 100,000
simulations for each condition they investigated.

In terms of their relevance to SE experiments, the experimen-
tal conditions investigated were simple compared with crossover
designs and did not include any repeated measures studies. The
researchers also used sample sizes rather larger than we usually
use in SE research. In the 13 papers we studied, there were 45 dif-
ferent experiments with the average number of participants per
experimental group being 10.7 and the median being 6.4. For the
seven papers that used the 4-group crossover design, there were 25
separate experiments with a mean group size of 6.1 and a median
of 6.

With respect to tests for non-normality, many researchers have
reported that the Shapiro-Wilk test has more power to detect depar-
tures from normality than the Kolmogoroff-Smirnov test, thus the
former is more reliable than the latter [34, 38, 46, 56]. As a result, it
is possible to have a situation when the Shapiro-Wilk test is signif-
icant but the Kolmogoroff-Smirnov test is not [34]. Furthermore,
the larger the samples, the easier it is to obtain significant results
from even small departures from normality. Hence, a significant
test result in such a situation should be interpreted with an under-
standing of this effect. However, in spite of many studies favouring
the Shapiro-Wilk test, recently, several other studies have suggested
that the Anderson-Darling test is to be preferred [27, 28, 43].

Finally, the three simulation studies, [32, 45, 48], did not explic-
itly consider the impact of outliers, although a recent paper by
Derrick et al. [15] identified problems for paired studies with ex-
treme observations. They demonstrated that for small sample sizes
a single extreme outlier could reduce the power of the standard t
test, even if the outlier is in the same direction as the effect size of the
other observations. This occurs because the estimated variance can
be inflated enough to undermine the ability of the t test to detect a
genuine effect. After a simulation study, they reported that Yuen’s
paired samples t-test (i.e., a test performed on trimmed data) and
the Wilcoxon signed rank sum test both exhibited robust behaviour
in the presence of a single outlying observation.

Rietveld and van Hout’s tutorial [47] provides a good discus-
sion of the problems associated with testing assumptions, and the
advantages and disadvantages of various analysis methods in the
presence of non-normality. They conclude that we should:

• Report more information about our data (means, medians,
variance, skewness, tailedness (i.e., kurtosis), outliers etc.).

• Not routinely use conventional non-parametric tests like the
WMW test in case one or more of the assumptions of t tests
are not met.

• Consider using less conventional, but robust statistics which
have been developed and tested in the last decades, for ex-
ample, the probability of superiority [6] or Cliff’s d [10]..
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We agree with these recommendations and, additionally, are
strong advocates of reproducible research [35] and robust statisti-
cal methods [30] in empirical software engineering research. If we
reported more detailed information about human-centric experi-
ments in software engineering research, we would be in a better
position to choose appropriate analysis methods.5

Also, there is considerable evidence suggesting conventional
analysis of ranked data such as the WMW test and the Kruskall-
Wallis test, are not robust, see for example [17–19, 60]. So, if we
have small non-normal data sets we need to use robust tests such
as those developed by Brunner and his colleagues (see [7] or [8])
or Cliff [10].

7 TESTING MULTIPLE HYPOTHESES
All but two of the 13 papers we studied included multiple main
hypotheses. The largest number of main hypotheses tested was
6 (which happened twice). The multiple tests occurred when re-
searchers investigated several different outcome measures. How-
ever, most studies performed other ancillary tests, such as testing
for normality and variance equality and testing for factors such as
participant skill, the impact of blocking factors such as time period
and materials and interactions between such factors.

The problem with multiple tests on the same data set is that
multiple testing increases the risk of detecting spurious significant
results. However, as Nakagawa points out [41], using adjustments
such as the Bonferroni adjustment or its less stringent sequential
variants decrease the power of experiments and increase the risk
of missing significant results. The problem with multiple compar-
isons, the Bonferroni correction and interesting alternatives to the
Bonferroni correction are further discussed by Madeyski [34] and
Maxwell [37].

There are several valid methods to address this issue in general:
• We can state in advance our main hypothesis and report
all other tests as exploratory. However, for auditability, this
depends on publishing our detailed analysis plan before per-
forming our experiments.

• As proposed by Nakagawa, we should report effect sizes
and their confidence intervals, rather than just the results of
significance tests.

• We can apply less stringent adjustment methods to maintain
an experiment-wide control of Type 1 errors, such as the
method proposed by Rom [49]. Rom’s method was judged
the best of five methods (in terms of power) in a comparative
study [42].

• Nakagawa also mentions the possibility of controlling the
false discovery (FDR), which is intended to balance the prob-
ability of a Type 1 error, while maintaining a reasonable
power level (see [37, 54])6.

5If researchers report more information about the properties of their data
sets, they must make it clear whether they are reporting statistics obtained
from raw data or from residuals.
6Maxwell provides a very detailed discussion of the concepts underlying
FDR and identifies that a number of researchers believe it to be a useful
concept. However, he does not include FDR in the flow chat he presents to
indicate the most appropriate methods of adjusting for multiple tests under
different circumstances.

What we should never do is to report only statistically significant
results. It is encouraging to note that there is no evidence that any
of the authors of the 13 papers we reviewed failed to report any
results. Authors reported non-significant results as well as signifi-
cant results. In terms, of individual hypothesis tests, we identified
130 hypothesis tests across all the primary studies of which 80 (i.e.,
61%) were reported to be non-significant.

However, we, as researchers, need to take pains to minimize the
number of tests we perform on individual data sets. We should
always analyze our data in a manner that is appropriate given the
basic experimental design, to avoid performing unnecessary tests
of factors that are addressed by, or balanced by, the design. We
should also try to avoid the use of multiple outcome measures. For
example:

(1) If we have been collecting data about different aspects of a
characteristic, such as measuring understandability andmod-
ifiability as aspects of maintainability, it may be preferable to
analyze the average of the two outcomes. This is particularly
important if the aspects are likely to be correlated where
it may be misleading to analyze the results separately. For
example, in the case of understandability, there is a strong
a priori probability that a participant’s score for an under-
standability task would be correlated to their score for a
modifiability test. So obtaining positive results for tests for
understandability and modifiablity does not give additional
support for a new technique compared with a single test of
the average outcome.

(2) If we have been collecting data about effectiveness and ef-
ficiency, we would suggest nominating effectiveness as the
main outcome criteria. There are several reasons. Firstly, if a
technique is new to the participants, we would not expect
them to use it as efficiently (i.e., quickly) as possible, the first
few times they use it. Secondly, if efficiency is measured as
the number of correct answers or correctly performed tasks
per unit time, it does not properly penalize incorrect answers.
The impact of an mistake in an experiment is not the same
as the impact of a mistake while maintaining a real software
product, where, if software tasks are incorrectly performed,
there can be substantial rework costs. So the ratio of cor-
rect answers to total time could be very misleading, since
it would not distinguish between a participant who only
attempted to answer eight of ten questions in the allotted
time period and got all of them correct, from a participant
who answered ten questions in the allotted time period but
only got eight correct.7

8 DISCUSSION
Based on a study of 13 papers published in high quality journals,
which reported using families of experiments, we found a number
of issues related to statistical analysis of human-centric SE experi-
ments. Some of the issues related to misunderstanding statistical
methods (i.e., wrong terminology, failure to consider the impact of

7This argument could also be applied to effectiveness, where it might be
preferable to measure effectiveness in terms of correct answers minus in-
correct answers.
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repeated measures during analysis, performing unnecessary statis-
tical tests, and post-hoc power analysis), others related to issues
where there is disagreement among statisticians as to what con-
stitutes best practice (i.e., pre-testing normality assumptions and
performing multiple tests on the same data set). In the case of incor-
rect analysis we have proposed more valid methods, in the case of
statistical controversies, we have discussed the issues and provided
some advice.

We believe one of the underlying problems is the adoption of
complicated statistical designs, without fully appreciating that com-
plicated designs will imply complicated analysis methods. In par-
ticular, in the case of the 4-group crossover design, the number
of participants per group is likely to be small, which leads to low
powered experiments. In the case of families of experiments, the
intention is to use the replications to counter the small sample
sizes in individual experiments, but the small sample size per group
means that the results from each experiment may be unreliable
and aggregation of individual experimental results may likewise be
unreliable.

We would also draw attention to one experimental design that
addresses the issues that crossover designs are intended to address
with fewer analysis complications. This is the pretest-posttest de-
sign with a control group which was used by one paper we studied
(i.e., [44]). This design is shown in Table 5. Like a crossover, it is
a repeated measures design intended to cater for skill differences,
however, there is no crossover. All participants use the same tech-
nique in the first time period using the samematerials. In the second
time period all participants use the second set of materials. How-
ever, half the participants use the control technique, while the other
half use the alternative technique (after appropriate training).

Table 5: PreTest-PostTest Design

Group Period 1 Period 2

A Control
Technique

Control
Technique

Materials 1 Materials 2
B Control

Technique
Alternative
Technique

Materials 1 Materials 2

Skill differences are catered for, either by using a covariance
analysis, or by analysing the difference data (i.e., the outcome for
each participant in time period 2 minus the outcome for the same
participant in time period 1) as an independent groups design.
Furthermore if we have two new techniques, in the second period
Group A can use alternative technique 1 and Group B can use
the alternative technique 2. This design increases the number of
participants within each group compared with a 4-group crossover,
and does not introduce a possible time period bymethod interaction
like all crossover designs [44]. This design is also particularly well-
suited to covariance analysis.

9 RECOMMENDATIONS
Overall we recommend the following guidelines for human-centric
SE experiments:

• Use, whenever possible, simple experimental designs which
are easier to understand andmay also encourage larger group
sizes. Such designs are also easier for the reader to under-
stand.

• Avoid unnecessary tests and post-hoc power analysis.
• With multiple outcome measures, if the different outcomes
measure different aspects of a specific characteristic using
the same unit of measurement (e.g. percentage of correct
answers), use the average value. Give preference to mea-
suring effectiveness over efficiency in formal experiments
(assuming efficiency can be measured on a long ordinal scale,
rather than a binary scale of correct or not correct).

• When dealing with software engineering tasks, where the
skills of individual participants will significantly affect ex-
perimental outcomes, consider the pretest-posttest control
design. Information concerning effect sizes and their vari-
ances for this design can be found in [40].

• If the number of participants per group is small (perhaps less
than 15), and there is no a priori reason to assume normality,
use robust non-parametric methods (e.g., [7, 8, 10]) without
pre-testing [30].

• Formoderate to large samples, use the Yuen-Welchmethod [59],
which is based on trimmed data and assumes unequal vari-
ances, without pre-testing.

• Report more statistics about data sets at an appropriate level
of granularity, usually based on raw data for each group, and,
in the case of crossover designs, based on difference data
for each sequence group. Include means, medians, variances,
kurtosis and skewness statistics, number of outliers, and
correlations between repeated measures.

ACKNOWLEDGMENTS
Lech Madeyski was partially supported by the Polish Ministry of
Science and Higher Education underWroclaw University of Science
and Technology Grant 0401/0201/18.

REFERENCES
[1] S. Abrahão, C. Gravino, E. Insfran Pelozo, G Scanniello, and G. Tortora. 2013.

Assessing the Effectiveness of Sequence Diagrams in the Comprehension of
Functional Requirements: Results from a Family of Five Experiments. IEEE
Transactions on Software Engineering 39, 3 (2013), 327–342.

[2] Silvia T. Acuña, Marta N. Gómez, Jo E. Hannay, Natalia Juristo, and Dietmar
Pfahl. 2015. Are team personality and climate related to satisfaction and software
quality? Aggregating results from a twice replicated experiment. Information
and Software Technology 57, 1 (2015), 141–156.

[3] V.R. Basili, F.Shull, and E. Lanubile. 1999. Building knowledge through families
of experiments. IEEE Transactions on Software Engineering 25, 4 (1999), 456–473.

[4] G.E.P. Box and K.B. Wilson. 1951. On the Experimental Attainment of Optimum
Conditions (with discussion). Journal of the Royal Statistical Society Series B 13, 1
(1951), 1–45.

[5] George E.P. Box, J. Stuart Hunter, and William G. Hunter. 2005. Statistics for
Experimenters Design, Innovation and Discovery (second edition ed.). Wiley-
InterScience, Hoboken, NJ, USA.

[6] Edgar Brunner and Ullrich Munzel. 2000. The Nonparametric Behrens-Fisher
Problem: Asymptotic Theory and a Small-Sample Approximation. Biometrical
Journal 42, 1 (2000), 17–25. https://doi.org/10.1002/(SICI)1521-4036(200001)42:
1<17::AID-BIMJ17>3.0.CO;2-U

[7] Edgar Brunner and Ullrich Munzel. 2000. The multivariate nonparametric
Behrens–Fisher problem: Asymptotic theory and and small sample approxima-
tion. Biometrical Journal 42 (2000), 17 – 25. https://doi.org/10.1016/S0378-3758(02)
00269-0

[8] Edgar Brunner, Ullrich Munzel, and Madan L. Puri. 2002. The multivariate
nonparametric Behrens–Fisher problem. Journal of Statistical Planning and
Inference 108, 1–2 (2002), 37 – 53. https://doi.org/10.1016/S0378-3758(02)00269-0

https://doi.org/10.1002/(SICI)1521-4036(200001)42:1<17::AID-BIMJ17>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1521-4036(200001)42:1<17::AID-BIMJ17>3.0.CO;2-U
https://doi.org/10.1016/S0378-3758(02)00269-0
https://doi.org/10.1016/S0378-3758(02)00269-0
https://doi.org/10.1016/S0378-3758(02)00269-0


Problems with Statistical Practice in Human-Centric
Software Engineering Experiments EASE ’19, April 15–17, 2019, Copenhagen, Denmark

[9] Katherine S. Button, John P. A. Ioannidis, Claire Mokrysz, Brian A. Nosek,
Jonathan Flint, Emma S. J. Robinson, and Marcus R. Munafo. 2013. Power failure:
why small sample size undermines the reliability of neuroscience. Nature Reviews
Neuroscience 14 (2013), 365–376.

[10] Norman Cliff. 1993. Dominance statistics: Ordinal analyses to answer ordinal
questions. Psychological Bulletin 114 (1993), 494—509.

[11] Jacob Cohen. 1992. A power primer. Psychological Bulletin 112, 1 (1992), 155–159.
[12] J.A. Cruz-Lemus, M. Genero, M.E. Manso, S. Morasca, and M. Piattini. 2009.

Assessing the understandability of UML statechart diagrams with composite
states—A family of empirical studies. Empirical Software Engineering 14, 6 (2009),
685–719. https://doi.org/10.1007/s10664-009-9106-z cited By 35.

[13] José A. Cruz-Lemus, Marcela Genero, Danilo Caivano, Silvia Abrahão, Emilio
Insfrán, and José A. Carsí. 2011. Assessing the influence of stereotypes on the
comprehension of UML sequence diagrams: A family of experiments. Information
and Software Technology 53, 12 (2011), 1391–1403.

[14] David P. Darcy, Chris F. Kemerer, Sandra A. Slaughter, and James E. Tomayko.
2005. The Structural Complexity of Software: An Experimental Test. IEEE
Transactions on Software Engineering 31, 11 (Nov. 2005), 982–995. https://doi.org/
10.1109/TSE.2005.130

[15] Ben Derrick, A. Broad, D. Toher, and P. White. 2017. The impact of an extreme ob-
servation in a paired samples design.Metodoloki Zvezki - Advances in Methodology
and Statistics 14, 2 (2017), 1–17.

[16] Tore Dybå, Vigdis By Kampenes, and Dag I. K. Sjøberg. 2006. A systematic
review of statistical power in software engineering experiments. Information
and Software Technology 48, 8 (2006), 745–755.

[17] Morten W. Fagerland. 2012. t-tests, non-parametric tests, and large studies—a
paradox of statistical practice? BMC Medical Research Methodology 12, 1 (2012),
1–7.

[18] Morten W. Fagerland and Leiv Sandvik. 2009. Performance of five two-sample
location tests for skewed distributions with unequal variances. Contemporary
Clinical Trials 30 (2009), 490–496.

[19] Morten W. Fagerland and Leiv Sandvik. 2009. The Wilcoxon–Mann–Whitney
test under scrutiny. Statistics in Medicine 28, 10 (2009), 1487–1497.

[20] A. Fernandez, S. Abrahão, and E. Insfran. 2013. Empirical validation of a usability
inspection method for model-driven Web development. Journal of Systems and
Software 86, 1 (2013), 161–186. https://doi.org/10.1016/j.jss.2012.07.043

[21] Ana M. Fernández-Sáez, Marcela Genero, Danilo Caivano, and Michel R. V. Chau-
dron. 2016. Does the level of detail of UML diagrams affect the maintainability
of source code?: A family of experiments. Empirical Software Engineering 21, 1
(2016), 212–259.

[22] Ana M. Fernández-Sáez, Marcela Genero, Michel R. V. Chaudronand, Danilo
Caivano, and Isabel Ramos. 2015. Are Forward Design or Reverse-Engineered
UML diagrams more helpful for code maintenance?: A family of experiments.
Information and Software Technology 57 (2015), 644–663.

[23] Javier Gonzalez-Huerta, Emilio Insfrán, Silvia Mara Abrahão, and Giuseppe
Scanniello. 2015. Validating a model-driven software architecture evaluation
and improvement method: A family of experiments. Information and Software
Technology 57 (2015), 405–429.

[24] I. Hadar, I. Reinhartz-Berger, T. Kuflik, A. Perini, F. Ricca, and A. Susi. 2013.
Comparing the comprehensibility of requirements models expressed in Use Case
and Tropos: Results from a family of experiments. Information and Software
Technology 55, 10 (2013), 1823–1843. https://doi.org/10.1016/j.infsof.2013.05.003

[25] John P. A. Ioannidis and Claire Mokrysz. 2008. Why Most Discovered True
Associations are Inflated. Epidemiology 19, 5 (2008), 640–648.

[26] Magne Jørgensen, Tore Dybå, Knut Liestøl, and Dag I.K. Sjøberg. 2016. Incorrect
results in software engineering experiments: How to improve research practices.
The Journal of Systems and Software 116 (2016), 133–145.

[27] H. J. Keselman, Abdul R. Othman, and Rand Wilcox. 2013. Preliminary testing
for normality: Is it a good practice? Journal of Modern Applied Statistical Methods
12, 2 (2013), 53–65.

[28] H. J. Keselman, Abdul R. Othman, and Rand Wilcox. 2014. Testing normality in
the multi-group problem: Is it a good practice? Clinical Dermatology 2, 1 (2014),
53–65.

[29] Barbara Kitchenham, Lech Madeyski, and Pearl Brereton. [n. d.]. Meta-analysis
for Families of Experiments in Software Engineering: A Systematic Review and
Reproducibility and Validity Assessment. Empirical Software Engineering ([n. d.]).
In Review.

[30] Barbara Kitchenham, Lech Madeyski, David Budgen, Jacky Keung, Pearl Brereton,
Stuart Charters, Shirley Gibbs, and Amnart Pohthong. 2017. Robust Statistical
Methods for Empirical Software Engineering. Empirical Software Engineering 22,
2 (2017), 579–630. https://doi.org/10.1007/s10664-016-9437-5

[31] Oliver Laitenberger, Khaled El Emam, and Thomas G. Harbich. 2001. An internally
replicated quasi-experimental comparison of checklist and perspective-based
reading of code documents. IEEE Transactions on Software Engineering 27, 5
(2001), 387–418.

[32] Björn Lantz, Roy Andersson, and Peter Manfredsson. 2016. Preliminary Tests
of Normality When Comparing Three Independent Samples. Journal of Modern
Applied Statistical Methods 15, 2 (2016), 135–148.

[33] H. Levene. 1960. Robust tests for equality of variances. In Contributions to proba-
bility and statistics. Essays in honor of Harold Hotelling, I. Olkin (Ed.). University
Press Stanford, USA, 279–292.

[34] Lech Madeyski. 2010. Test-Driven Development: An Empirical Evaluation of Agile
Practice. Springer, (Heidelberg, London, New York). https://doi.org/10.1007/
978-3-642-04288-1

[35] Lech Madeyski and Barbara Kitchenham. 2017. Would Wider Adoption of
Reproducible Research be Beneficial for Empirical Software Engineering Re-
search? Journal of Intelligent & Fuzzy Systems 32 (2017), 1509–1521. https:
//doi.org/10.3233/JIFS-169146

[36] Lech Madeyski and Barbara Kitchenham. 2018. Effect Sizes and their Variance
for AB/BA Crossover Design Studies. Empirical Software Engineering 23, 4 (2018),
1982–2017. https://doi.org/10.1007/s10664-017-9574-5

[37] Scott E. Maxwell, Harold D.Delany, and Ken Kelley. 2018. Designing Experiments
and Analyzing Data A model Comparison Perspective (third edition ed.). Routledge,
New York, NY, USA.

[38] Rupert G. Miller. 1997. Beyond ANOVA: Basics of Applied Statistics. CRC Press,
Boca Raton, FL, USA.

[39] José Miguel Morales, Elena Navarro, Pedro Sánchez-Palma, and Diego Alonso.
2016. A family of experiments to evaluate the understandability of TRiStar and i*
for modeling teleo-reactive systems. Journal of Systems and Software 114 (2016),
82–100.

[40] Scott B. Morris and Richard P. DeShon. 2002. Combining Effect Size Estimates
in Meta-Analysis With Repeated Measures and Independent-Groups Designs.
Psychological Methods 7, 1 (2002), 105–125. https://doi.org/10.1037//1082-989X.7.
1.105

[41] Shinichi Nakagawa. 2004. A farewell to Bonferroni: the problems of low statistical
power and publication bias. Behavioral Ecology 15, 6 (2004), 1044–1045.

[42] Stephen Olejnik, Jianmin Li, Suchada Supattathum, and Carl J. Huberty. 1997.
Multiple testing and statistical power with modified Bonferroni procedures.
Journal of Educational and Behavioural Statistics 22 (1997), 389–406.

[43] Abdul R. Othman, H. J. Keselman, and Rand Wilcox. 2015. Assessing Normality:
Applications in Multi-Group Designs. Malaysian Journal of Mathematical Sciences
9, 1 (2015), 53–65.

[44] Dietmar Pfahl, Oliver Laitenberger, Günther Ruhe, Jörg Dorsch, and Tatyana
Krivobokova. 2004. Evaluating the learning effectiveness of using simula-
tions in software project management education: results from a twice repli-
cated experiment. Information and Software Technology 46, 2 (2004), 127–147.
https://doi.org/10.1016/S0950-5849(03)00115-0

[45] Dieter Rasch and Klaus D. Kubinger Âůand Karl Moder. 2011. The two-sample t
test: pre-testing its assumptions does not pay off. Stats Papers 52 (2011), 219–2–31.

[46] Nornadiah Mohd Razali and Yap Bee Wah. 2011. Power comparisons of Shapiro-
Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of
Statistical Modeling and Analytics 2, 1 (2011), 21–33.

[47] Toni Rietveld and Roeland van Hout. 2015. The t test and beyond: Recommenda-
tions for testing the central tendencies of two independent samples in research
on speech, language and hearing pathology. Journal of Communication Disorders
58 (2015), 158–168.

[48] Justine Rochon, Matthias Gondan, and Meinhard Kieser. 2012. To test or not
to test: Preliminary assessment of normality when comparing two independent
samples. BMC Medical Research Methodology 12, 81 (2012), 1471–2288.

[49] D.M. Rom. 1990. A sequentially rejective test procedure based on a modified
Bonferroni inequality. Biometrika), 77 (1990), 663–666.

[50] Adrian Santos, Omar S. Gómez, and Natalia Juristo. 2018. Analyzing Families of
Experiments in SE: A Systematic Mapping Study. CoRR abs/1805.09009 (2018),
1–18. arXiv:1805.09009 http://arxiv.org/abs/1805.09009

[51] Guiseppi Scanniello, Carmine Gravino, Marcela Genero, José A. Cruz-Lemus, and
Genovetta Tortora. 2014. On the impact of UML analysis models on source-code
comprehensibility and modifiability. ACM Transactions on Software Engineering
and Methodology 23, 2, Article 13 (2014), 26 pages.

[52] Stephen Senn. 2002. Cross-over Trials in Clinical Research (2nd ed.). John Wiley
and Sons, Ltd., Indianapolis, Indiana, USA.

[53] George W. Snedecor and William G. Cochran. 1980. Statistical Methods. The
Iowa State University Press, Ames, Iowa, USA.

[54] John D. Storey. 2002. A Direct Approach to False Discovery Rates. Journal of the
Royal Statistical Society. Series B (Statistical Methodology), 64, 3 (2002), 1479–498.

[55] M.A. Teruel, E. Navarro, V. López-Jaquero, F. Montero, J. Jaen, and P. González.
2012. Analyzing the understandability of Requirements Engineering languages
for CSW systems: A family of experiments. Information and Software Technology
54, 11 (2012), 1215–1228. https://doi.org/10.1016/j.infsof.2012.06.001

[56] H. C. Thode. 2002. Testing for normality. Marcel Dekker, New York, NY, USA.
[57] Sira Vegas, Cecilia Apa, and Natalia Juristo. 2016. Crossover Designs in Software

Engineering Experiments: Benefits and Perils. IEEE Transactions on Software
Engineering 42, 2 (2016), 120–135. https://doi.org/10.1109/TSE.2015.2467378

[58] B. L. Welch. 1938. The Significance of the Difference Between Two Means
when the Population Variances are Unequal. Biometrika 29, 3-4 (1938), 350–362.
https://doi.org/10.1093/biomet/29.3-4.350

https://doi.org/10.1007/s10664-009-9106-z
https://doi.org/10.1109/TSE.2005.130
https://doi.org/10.1109/TSE.2005.130
https://doi.org/10.1016/j.jss.2012.07.043
https://doi.org/10.1016/j.infsof.2013.05.003
https://doi.org/10.1007/s10664-016-9437-5
https://doi.org/10.1007/978-3-642-04288-1
https://doi.org/10.1007/978-3-642-04288-1
https://doi.org/10.3233/JIFS-169146
https://doi.org/10.3233/JIFS-169146
https://doi.org/10.1007/s10664-017-9574-5
https://doi.org/10.1037//1082-989X.7.1.105
https://doi.org/10.1037//1082-989X.7.1.105
https://doi.org/10.1016/S0950-5849(03)00115-0
http://arxiv.org/abs/1805.09009
http://arxiv.org/abs/1805.09009
https://doi.org/10.1016/j.infsof.2012.06.001
https://doi.org/10.1109/TSE.2015.2467378
https://doi.org/10.1093/biomet/29.3-4.350


EASE ’19, April 15–17, 2019, Copenhagen, Denmark Barbara Kitchenham, Lech Madeyski, and Pearl Brereton

[59] Rand R. Wilcox. 2012. Introduction to Robust Estimation & Hypothesis Testing (3rd
edition ed.). Elsevier, Amsterdam, The Netherlands.

[60] Donald W. Zimmerman. 2003. A Warning about the Large-Sample Wilcoxon-
Mann-Whitney Test. Understanding Statistics 2, 4 (2003), 267–280.


	Abstract
	1 Introduction
	2 Materials and Methods
	3 Incorrect Terminology
	4 Incorrect Analysis of Repeated Measures Studies
	5 Post-hoc Power Analysis
	6 Pre-testing for Normality and Variance Heterogeneity
	7 Testing Multiple Hypotheses
	8 Discussion
	9 Recommendations
	References

