
Preprint of a chapter: Tomasz Lewowski and Lech Madeyski, Integrating Research and Practice in Software
Engineering, vol. 851 of Studies in Computational Intelligence, chapter ”Creating evolving project data sets in
software engineering”, pp. 1–14. Springer, 2020. DOI: 10.1007/978-3-030-26574-8_1 [BibTeX]
Draft: http://madeyski.e-informatyka.pl/download/LewowskiMadeyski20SCI.pdf

Creating evolving project data sets in software
engineering

Tomasz Lewowski and Lech Madeyski

Abstract While the amount of research in the area of software engineering is ever
increasing, it is still a challenge to select a research data set. Quite a number of
data sets have been proposed, but we still lack a systematic approach to creating
ones that would evolve together with the industry. We aim to present a systematic
method of selecting data sets of industry-relevant software projects for the purposes
of software engineering research. We present a set of guidelines for filtering GitHub
projects and implement those guidelines in a form of an R script. In particular, we
select mostly projects from the biggest industrial open source contributors and re-
move projects in the first quartile in any of several categories from the data set. We
use the latest GitHub GraphQL API to select the desired set of repositories. We
evaluate the technique on Java projects. Presented technique systematizes methods
for creating software development data sets and their evolution. Proposed algorithm
has reasonable precision—between 0.65 and 0.80—and can be used as a baseline
for further refinements.

Tomasz Lewowski
Wroclaw University of Science and Technology
Faculty of Computer Science and Management
ORCiD: 0000-0003-4897-1263
e-mail: tomasz.lewowski@pwr.edu.pl

Lech Madeyski
Wroclaw University of Science and Technology
Faculty of Computer Science and Management
ORCiD: 0000-0003-3907-3357
e-mail: lech.madeyski@pwr.edu.pl

http://dx.doi.org/10.1007/978-3-030-26574-8_1
http://madeyski.e-informatyka.pl/download/MadeyskiRefs.bib
http://madeyski.e-informatyka.pl/download/LewowskiMadeyski20SCI.pdf
tomasz.lewowski@pwr.edu.pl
lech.madeyski@pwr.edu.pl


2 Tomasz Lewowski and Lech Madeyski

1 Introduction

Software engineering (SE) body of knowledge expands at an amazing pace, and a lot
of concepts investigated by researchers become incorporated into industrial practice
— Test-Driven Development (TDD) [22, 34], Continuous TDD (CTDD) [24], pair
programming [5] and Agile [10], just to name a few. Obviously, research requires
data sets, and data sets on all kinds of software-related issues are ubiquitous. How-
ever, even when data sets are published, they often contain data that was selected
manually [39] or do not contain runnable scripts that recreate the data set [30].

While there are often legal restrictions which constrain researchers to publish
data sets based only on open source software, a comparison between open source
code and proprietary code was already made in [32, 19, 21]. While features of the
code do not differ substantially between both types of projects, differences may
become substantial for project management-related metrics and processes—open
source projects tend to have rather flat structure, with spontaneously formed sub-
communities [8].

Still, even mitigating problems with those metrics would not be sufficient to make
a data set future-proof. Due to unbelievable rate of industry evolution, data sets be-
come obsolete incredibly quickly. There are many reasons for that—including re-
search being successful in solving some problem, abandoning a specific technology
or simply changing industrial practices [40]. Regardless of the reasons, this is nei-
ther an issue that can be ignored, nor one that can be addressed in a setup with a
fixed data set.

Some data cannot be obtained automatically and require manual inspection. In
particular, manual data labeling or classification is often needed for data sets meant
for machine learning. In data sets meant for machine learning we generally cannot
avoid manual work, simply because if we had an algorithm that classifies data and
is able to create the data set, we would not need to create this algorithm any more1.
Since human input is the core of the data set, said data set cannot be recreated au-
tomatically. However, even for this kind of data, the data set should evolve together
with the domain.

Yet there is also another type of data set—one that is created purely from static
data. Examples of such data sets include excerpts from existing source code reposi-
tories or issue trackers. This kind of data set does not require any additional modifi-
cation except API calls to fetch proper records. We argue that this kind of data sets
should not be published as static data sets but as regularly updated snapshots, prefer-
ably together with tools for automatic refreshing. This would allow researchers to
analyze the evolution of the data set (and thus—represented context) and evolve
techniques used to tackle their problem. We still perceive value in static data sets,
but we believe that their main purpose should be to guarantee research reproducibil-
ity.

1 except for specific cases like insufficient performance or for reverse-engineering, which we ignore
in this discussion



Creating evolving project data sets in software engineering 3

Since researchers are interested in various properties and populations, it is under-
standable that data set creation rules will vary between studies. Some researchers
will be interested in all Java projects, others only in Android projects, Python or
JavaScript. Some will only want projects of certain scale, others only ones that ad-
here to some predefined architecture (e.g. MVC) or using some specific construc-
tions or tools. We notice the need for various data sets created for various popu-
lations. At the same time, we believe that publishing a static data set for further
research (as opposed to providing it for study reproducibility) is not a sound strat-
egy. Instead of providing only the data set, one should also provide a procedure
for creating this data set, preferably in form of a runnable script. Only this will
provide reproducibility level required to really advance software engineering and
enable solid, scientific cross-checks. This is not to say that this script will always
generate the same data set—this is never possible to guarantee when using external
data sources. However, data sets generated using same method share some charac-
teristics, and these characteristics should be the core concept of an evolving data set,
not the records alone.

In this study we present a technique for selecting projects which we believe are
relevant for industrial usage in software development companies. This study builds
upon one of the internal reports [23] in a research project (supported by National
Centre for Research and Development) conducted in code quest sp. z o.o. software
development company where, e.g., selection of industry relevant projects was pro-
posed. We focus purely on the code repository, which means that data sets created
using this method may be used for mining code changes, co-changes, code smells
and anti-patterns, but are unlikely to be sufficient for defect prediction or effort esti-
mation. We present and evaluate a data set for Java, but presented technique is sound
and, with minor adjustments, can be used equally well for Python, C, Ruby or any
other programming language.

The rest of the work is structured as follows: Section 2 describes work in this
area already done by other authors. Section 3 contains details of the problem state-
ment and solution. Section 4 describes evaluation of example data set obtained using
presented algorithm, then in Section 5 we analyze details of achieved solution. In
Section 6 we discuss threats to validity of the study. Section 7 contains the work that
will be done next. We conclude the paper in Section 8

2 Related work

There were many attempts to provide a reasonable project data set for software
engineering research. Published data sets generally include code repositories [39,
33], issue trackers [20, 16, 29, 30] or only associated metrics [12]. They present
a snapshot of projects (or their history), sometimes together with the method used
to obtain those. There are also open source tools for experiment management that
allow also tracking of data set (e.g. DVC [3]) or ones that work on versioning data
alone (e.g. Dat [2]).



4 Tomasz Lewowski and Lech Madeyski

GitHub itself is a common platform for creating project data sets—for example, a
complete dump of one year activity of GitHub was published as a result of GHTor-
rent project [14]. Using GitHub as main data source has a number of limitations,
which were discussed in detail in [9, 18]. GitHub platform is used not only for ana-
lyzing code but also, for example, for analysing sentiment [15, 31], API usage [35]
and contribution patterns [7].

A comprehensive list of software engineering-related data sets and resources can
be found in [1]. Not mentioned there, but often cited repository software defect
prediction data sets can be found in [17].

There were several attempts at defining recommended uses of GitHub for data
mining for software engineering projects. For example, authors of [28] manually
evaluated 200 repositories and used those to create a machine-learning based tool
that extracts repositories that contain common software development practices.
Technique for selecting open source projects for teaching software engineering in
presented in [37], while authors of [38] focused on community patterns—how de-
velopers interact and what social structures they create. Finally, a tool for selecting
projects matching certain characteristics from both product and process perspective,
integrated not only with Git but also with Jira, is proposed in [11].

In [13] authors propose delivering data sets for machine learning purposes to-
gether with data sheets that contain standardized metadata. Technically speaking,
this metadata includes also maintenance techniques and evolution rules—however,
the paper does not focus in detail on this way of data sheet usage. Presented data
sheet is quite informal and meant mostly for human readers, not for automation.
Regardless, it is still a sound concept that should make its way into the industry.

3 Research setup

Initially, we aimed to provide another static data set for software engineering re-
search. However, after creating such a data set we found out that in 6 months about
1% of projects were either deleted or moved, thus no longer accessible for repro-
duction. As a result, the data set cannot be used again to reproduce whole research.
Since forking all repositories is not an option due to sheer volume, the data set rusts
with time.

We also discovered that many well-known data sets (such as Qualitas Corpus
[39]) contain data that is largely irrelevant now—for example it contains projects
written in Java 5. The Long Term Support versions now are Java 8 and 11, thus Java
5 patterns should not be used to assess quality of Java code any more. That is simply
because the language has evolved so much (generics, lambdas and streams just to
name a few new features) that previously used patterns became irrelevant.

After we discovered that providing a static data set is set for failure (or at least
providing a very short usefulness period), we concluded that we must be able to
easily update the created data sets. However, to do this, data set has to be created in
a systematic way, preferably via an automated script. With throughput of contem-



Creating evolving project data sets in software engineering 5

porary servers any reasonable cloning for research purposes can be easily handled,
therefore loading the data and calculating all needed metrics does not need to be
cached for any reasons other than archiving and providing reproducibility.

We decided to design such a script in a way that would be maximally flexible
and would allow researchers to regenerate the data set easily. We concentrate solely
on source code management and ignore any data related to project releases, issue
management, licensing etc.

It is important to note that, while providing such a script will substantially im-
prove study reproducibility, it is not a full substitute for including data set used dur-
ing the research. That is because any script will refer to external APIs and databases
which are out of researcher’s control. Due to that, their content may (and will)
change, and responses will typically yield different results, especially months or
years after the original study is completed.

Our main requirement was making the rules completely self-tuning, so that it
would not be important whether they are applied to languages with massive com-
munities or to ones with modest communities. Therefore, we decided to base nearly
all filters on the data.

We decided to use the following numerical parameters for filtering:

• number of stargazers for a repository as a measure of popularity,
• number of forks of the repository2 as a measure of popularity,
• number of commits in the main branch of a repository as a measure of maturity,
• total size (in bytes) of code in chosen language as a measure of project scale.

To simplify development we restricted ourselves to using GitHub as project
source. Since we believe that most research should be performed only on ac-
tive projects, we also added two conditions that assert that: the project is not
archived (archived projects are no longer developed) and last push was dur-
ing previous year and a half. We also use one more condition, this one related to
project maturity—since we wanted to examine only projects which have some back-
ground, it became necessary to filter out ones that were created only recently. We—
arbitrarily—decided that a ”mature” project should be available online for at least
one full year, from the beginning to the end. As a result, in our study we selected 15
months (search was performed in March) to be the minimal lifetime of a project to
be included in result data set. We also decided that it would be a reasonable assump-
tion that companies provide industry-quality projects and therefore restricted our
search for repositories to 30 biggest open source contributors amongst companies.
This list of companies was created by [6] and we did not attempt to further validate
it. We did manually extract organizations that belong to given companies—for ex-
ample, both amzn and aws belong to Amazon. We also added two big open source
organizations - Apache Software Foundation and Eclipse Software Foundation.

For all numerical parameters we decided to remove the first quartile from the
data set. Quartile is auto-tuned by existing projects, so we believe it is sufficient to
filter out the most irrelevant repositories.

2 this also means that we rejected all forks and only left the main repository



6 Tomasz Lewowski and Lech Madeyski

A separate issue is the data actually provided in the data set—we firmly believe
that no data that is easy to obtain should be included in a public data set for reasons
other than study reproduction. Only fields that should be included in such a data
set should be ones that either require lengthy computation, substantial expenses to
obtain (for example proprietary tools or even manual inspection) or are likely to be
gone or change location after some time. This means that a data set of classes should
contain full paths to classes and their versions (commit SHA in Git) rather than their
individual metrics, provided that classes are expected to be accessible during whole
lifetime of a data set. On the other hand, number of forks, watchers or stargazers for
a repository is likely to differ on another query, so it should be included in the data
set.

There are several reasons why we believe that this is the right approach: first,
such data sets are smaller and easier to maintain. Second, other researchers do not
replicate data that could be wrong (for example due to a defect in metric calculation
software). Third, it allows researchers to use arbitrary metrics. Of course, there are
also downsides to this: data sets on proprietary data cannot be published, some data
may not be accessible any more and researchers need to put more effort into gather-
ing data. The last problem can be mitigated if data set-creating script contains also
scripts that are used for metrics calculations.

In the next section we are going to answer the following research question:

RQ How efficient is our algorithm is finding industry-relevant Java projects?

To do that, we are going to create a data set for Java projects and manually assess
the amount of them that can be classified as industry-relevant projects.

The performance metric that we will use to assess quality of created data set will
be precision, defined as:

Pr

Pa
(1)

Where Pr is the number of industry-relevant projects in the data set and Pa is the
number of all projects in the data set.

We believe that precision is by far the best metric for our use case. First, the re-
search is conducted on open source software, which means that most industrial (i.e.,
by definition, industry-relevant) projects will not be retrieved. Second, we further re-
strict ourselves to GitHub, abandoning any potential industry-relevant repositories
that are hosted on BitBucket, Gitlab, SourceForge, Savannah or any other server.
Since we have no chance of accessing a lot of relevant repositories, the real recall
will be low even if we retrieve all relevant repositories from GitHub.

We believe this is not an issue, because in industry we do not expect develop-
ers to be familiar with hundreds of projects. Since recall cannot be critical for real
developers to learn concepts in software engineering, it also should not be critical
for machine learning models. Consequently, we are only interested in two aspects:
that the data set would represent what it is supposed to (whatever that means for
a specific data set) and that precision of the data set is high (again: whatever that
means for any specific case).



Creating evolving project data sets in software engineering 7

To answer our research question we manually inspect a data set of Java projects
obtained using our algorithm. The data set contains 792 projects. What is necessary
to reproduce or build upon our research is publicly available in the 0.3.0 version of
reproducer R package accessible from CRAN [27], the official repository of R
packages, as our goal is to promote reproducibility of research in software engineer-
ing [25] by supporting research papers by the related R package (e.g., see [26]). We
do not include data acquisition and processing script in the paper, as it would greatly
increase the volume of it without adding significant value.

We define industry-relevant projects as ones that fulfill all of the following re-
quirements:

• has a project website with documentation or reasonable in-repository documen-
tation,

• provides an installer, package in a package repository (e.g. Maven Central or
npm.org) or detailed installation instructions,

• has a way of reporting defects or providing support (e.g. Google Groups, GitHub
Issues, Gitter),

• is not a set of samples, exercises and example code.

We do not set any other requirements for a project to be considered industry-
relevant. In particular, we put no constraints on project domain and we do not re-
quire any specific development techniques (e.g. usage of Continuous Integration or
any specific build system). The rationale for such approach is that, while we do
not exactly know what characteristics do industrial projects have when it comes to
source code, they definitely are treated differently than proof-of-concepts and pet
projects in the area of project and product management. Therefore, we are look-
ing for projects that present a decent level of maturity and newcomer-friendliness.
These are projects that have documentation, relatively simple way of trying out and
some way of reporting defects. Having a support channel is an additional plus, but
not a must.

Some of the projects are graded as half-industrial—for example ones that have
poor documentation but are very simple projects (still important, so may be industry-
relevant) or ones that have everything else set up, but repository does not mention
any support.

4 Results

During research we encountered several interesting repositories: ones that turned
out to be copies, ones that were discontinued, ones that are clones of each other.
Each such case was clearly marked in the source data and can be inspected at any
time.

Our data set contained a total of 792 repositories from 37 GitHub organiza-
tions, with a minimum of 1 repository (baidu, greenplum) and maximum of 334
(apache). 365 repositories came from companies, the biggest contributors being



8 Tomasz Lewowski and Lech Madeyski

Pivotal, Google, Amazon and Microsoft, while 427 came from biggest software
foundations—Apache, Eclipse and Mozilla.

Entire data set with acquired industry-relevance values is published in 0.3.0 ver-
sion of reproducer R package accessible from CRAN [27], the official reposi-
tory of R packages.

4.1 RQ: How efficient is our algorithm is finding industry-relevant
projects?

Out of 792 projects, 517 were assessed entirely industry-relevant and another
118 were assessed semi-relevant. Out of remaining 157 projects 52 were already
obsolete—either due to pushing old commits or deprecated during the year— 61
were samples, examples, playgrounds, tests or other kind of non-stable code, and
remaining 44 did not contain proper documentation, means of installation and sup-
port. Out of the 61 sample repositories, 33 contained at least one of words: ”sample”,
”example”, ”demo” in repository or organization name.

Precision calculated from numbers above is 0.65 for entirely industry-relevant
projects and 0.80 for semi-relevant projects.

5 Discussion

The technique we provided lets researchers describe some basic features of a data set
without constraining them to static values. While research done on different data sets
will obviously yield slightly different results, those can be interpreted as a change
in industry trends, which is an extremely important issue for software engineering.

Presented method achieves precision between 0.65 and 0.80 on Java projects,
which means that it can be used for creating project data sets and as a baseline tech-
nique. This result can still be substantially improved, but it is a reasonable starting
point for future research.

Interestingly, most industry-relevant projects come from Apache Foundation.
While at first this seems surprising, many companies donate mature open source
projects to open source foundations. For example, Apache Hive was donated by
Facebook, and Kafka was donated by LinkedIn. Apache Foundation provides some
infrastructure for projects which company-driven ones may lack—for example a
public Jira instance and mailing lists. Additionally, both Apache and Eclipse foun-
dations require projects to go through incubation phase, which may also improve
overall rating of their projects.

We argue that even though precision of this technique may be lower than preci-
sion of simply picking a number of repositories with highest stargazer/fork count, it
yields data set with much more variety.

Projects that were not analyzed in this study belong to two main groups:



Creating evolving project data sets in software engineering 9

1. projects developed by a company that is not one of top open-source committers,
2. projects too small or too niche to be included.

While we intentionally omitted group 2, group 1 is something we might want
to consider including in future versions of the script. In particular, companies
that develop only a single, big product—product like Neo4J, Nexus, OrientDB or
ElasticSearch—are excluded from the data set, regardless of the fact that they are
absolutely industrial-grade projects, sometimes top of their domain.

6 Threats to validity

Like every research, this one also has its drawbacks.

6.1 Construct validity

We claim that data set obtained with the technique described in this paper should
be a reasonable choice for industry-relevant data set. However, it should not be un-
derstood as universally the best choice for any research on software engineering—
even if it is a good starting point due to industry-relevance. Of course, since the
assessment of industry-relevance is performed manually, there is always a risk of
misclassification—to address this issue, we provide used data set, together with
gathered values for manually assessed fields.

6.2 Internal validity

One may rightly argue that the boundary set on the first quartile is arbitrary the
second or third one would be just as good. Perhaps some other percentile might do
as well—while each of those approaches would be technically valid, some initial
cutoff point had to be selected. We do envision further extending this research with
verifying the best cutoff point.

The range of active projects is also something that is open for discussion—
depending on the range the research is made on, half a year may be either too long
or too short period. Obviously, other fixed parts of the query (such as cutoff creation
date or cutting off only the first quartile) are also subject to further tuning and are
more of an reasonable assumption than a fixed rule.

Some of the conditions we chose may filter out projects that are relevant—for
example, creation date refers to project, and not repository. This means that if a
project is migrated from a different platform recently, it will not be detected. Since
GitHub is the biggest open source platform [36] and companies analyzed already do



10 Tomasz Lewowski and Lech Madeyski

have GitHub accounts, we believe that amount of projects that fall into this category
is negligible.

Manual verification is always a point of failure, omission and mistake, and we
probably did not manage to avoid them. However, we performed the process scruti-
nously and provide full replication package and verification data set, so other re-
searchers can vet us.

As always with dedicated software, there is a risk that the application we wrote
contains undiscovered defects. While we did our best to test it and peer-reviewed
it, possibility of defects cannot be diminished. For example, one of activity filters
we set up—last push to the repository after beginning of 2018—did not work as in-
tended. While it did find relevant pushes from GitHub perspective, the actual com-
mit could have been implemented months or even years earlier. Unfortunately, that
is an intrinsic problem which cannot be rectified by using date of last commit—Git
commits use local system clock, thus are also not entirely reliable.

6.3 External validity

Obtained data set contains only projects in which Java is the dominant language.
However, there are no fixed constraints on language in the method—as long as
GitHub API provides all the fields needed and language is recognized (and virtu-
ally all are recognized), projects from any language can be fetched.

While we do rely on open source projects, we also constrain ourselves to projects
hosted or mirrored on GitHub. While GitHub is the biggest repository of open source
projects [36], there are also other significant players like SourceForge, GitLab and
BitBucket.

The study utilizes lists of repositories from the companies that have most open
source activity. However, this list will change in time, and its size is not set in stone.
To acquire the freshest version of this list, the research done in [6] must be redone.
In particular, we omit relatively small companies with substantial industry impact,
such as JFrog or Neo4J. Our study used Java as language for validation—while we
believe that is a reasonable choice, that may unintentionally mask a bias problem—
companies that invest most in open source do not necessarily invest most in open
source projects matching required profiles. This should not be a big problem for
Java—ranked in the TOP3 TIOBE index for many years now [4], but will become a
problem once we start creating data sets for less popular technologies, for example
Rust or Ruby.



Creating evolving project data sets in software engineering 11

7 Future work

It is still necessary to utilize the technique in real research to prove its usefulness.
We encourage all researchers to not only use the example data set but also provided
script to create their own data sets.

A huge chunk of work that needs to be done is to provide a reasonable way
to provide access to evolving data sets. For source code this function is done by
version control systems and binary artifact repositories. Similar techniques are also
used in some databases and document stores. However, for data sets we would need
to focus on the metadata of the data set. An open repository for evolving data sets is
something still to be published.

As for the project data set creation technique we presented here—initial assess-
ment of industry-relevance was done and successful, but further research is still
needed. In particular, we will verify whether the industry-relevance property holds
for other programming languages and whether precision alone is indeed sufficient
metric to make data set usable. While this was our initial assumption, it is by no
means obvious and requires further verification.

As for the provided script itself, its big drawback is a hard-coded list of used
groups and users. While these groups and users were taken from previous research
[6], open-source involvement of companies changes with time, and we should take
this into account as well when creating a project data set. List of groups and users
from which repositories are analyzed should also be dynamic and decided in run
time, or it could be another evolving data set.

8 Conclusions

We firmly believe that the model of evolving data sets presented in this paper is
the way to shape the future of software engineering research. Providing this kind
of facility would allow us, researchers, to investigate not only state of software de-
velopment at given point of time, but also its evolution on large scale, in many di-
mensions. This already happens for source code with version control, it is the right
time for it to enter data science. This kind of data sets would have to co-exist with
traditional, static data sets—still required for study reproduction.

We also presented a technique for obtaining industry-relevant data sets from
GitHub open source repository. We focused only on the source code repository, ig-
noring anything else related to the project (such as issue tracker, mailing list or sup-
port forums). We carefully evaluated returned projects and manually assessed pre-
cision of algorithm was between 0.65 and 0.80 for Java repositories, which means
that between 0.65 and 0.80 of returned projects are industry-relevant.

Acknowledgements This work has been conducted as a part of research and development project
POIR.01.01.01-00-0792/16 supported by the National Centre for Research and Development
(NCBiR). We would like to thank Tomasz Korzeniowski and Marek Skrajnowski from code quest



12 Tomasz Lewowski and Lech Madeyski

sp. z o.o. for all of the comments and feedback from the real-world software engineering environ-
ment.

References

1. Awesome empirical software engineering resources. https://github.com/
dspinellis/awesome-msr. Accessed: 2019-03-31

2. dat:// — a peer-to-peer protocol. https://datproject.org/. Accessed: 2019-04-23
3. Open-source version control system for machine learning projects. https://dvc.org/.

Accessed: 2019-04-23
4. Tiobe index. https://www.tiobe.com/tiobe-index/. Accessed: 2019-04-24
5. Arisholm, E., Gallis, H., Dybå, T., Sjøberg, D.I.K.: Evaluating Pair Programming with Respect

to System Complexity and Programmer Expertise. IEEE Transactions on Software Engineer-
ing 33(2), 65–86 (2007)

6. Asay, M.: Who really contributes to open source (2018).
URL https://www.infoworld.com/article/3253948/
who-really-contributes-to-open-source.html. [Online; posted 7-February-
2018; Accessed 23-April-2019]

7. Badashian, A.S., Esteki, A., Gholipour, A., Hindle, A., Stroulia, E.: Involvement, contribution
and influence in github and stack overflow. In: Proceedings of 24th Annual International
Conference on Computer Science and Software Engineering, CASCON ’14, pp. 19–33. IBM
Corp., Riverton, NJ, USA (2014). URL http://dl.acm.org/citation.cfm?id=
2735522.2735527

8. Bird, C., Pattison, D., D’Souza, R., Filkov, V., Devanbu, P.: Latent social structure in open
source projects. In: Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, SIGSOFT ’08/FSE-16, pp. 24–35. ACM, New York,
NY, USA (2008). DOI 10.1145/1453101.1453107. URL http://doi.acm.org/10.
1145/1453101.1453107

9. Cosentino, V., Izquierdo, J.L.C., Cabot, J.: Findings from github: Methods, datasets and lim-
itations. In: 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories
(MSR), pp. 137–141 (2016). DOI 10.1109/MSR.2016.023

10. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: A systematic review.
Information and Software Technology 50(9-10), 833–859 (2008)

11. Falessi, D., Smith, W., Serebrenik, A.: Stress: A semi-automated, fully replicable approach
for project selection. In: 2017 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), pp. 151–156 (2017)

12. Filó, T.G., Bigonha, M.A., Ferreira, K.A.: Statistical dataset on software metrics in object-
oriented systems. SIGSOFT Softw. Eng. Notes 39(5), 1–6 (2014). DOI 10.1145/2659118.
2659130. URL http://doi.acm.org/10.1145/2659118.2659130

13. Gebru, T., Morgenstern, J.H., Vecchione, B., Vaughan, J.W., Wallach, H.M., Daumé, H., Craw-
ford, K.: Datasheets for datasets. CoRR abs/1803.09010 (2018)

14. Gousios, G.: The ghtorent dataset and tool suite. In: Proceedings of the 10th Working Confer-
ence on Mining Software Repositories, MSR ’13, pp. 233–236. IEEE Press, Piscataway, NJ,
USA (2013). URL http://dl.acm.org/citation.cfm?id=2487085.2487132

15. Guzman, E., Azócar, D., Li, Y.: Sentiment analysis of commit comments in github: An empir-
ical study. In: Proceedings of the 11th Working Conference on Mining Software Repositories,
MSR 2014, pp. 352–355. ACM, New York, NY, USA (2014). DOI 10.1145/2597073.2597118.
URL http://doi.acm.org/10.1145/2597073.2597118

16. Habayeb, M., Miranskyy, A., Murtaza, S.S., Buchanan, L., Bener, A.: The firefox tempo-
ral defect dataset. In: Proceedings of the 12th Working Conference on Mining Software
Repositories, MSR ’15, pp. 498–501. IEEE Press, Piscataway, NJ, USA (2015). URL
http://dl.acm.org/citation.cfm?id=2820518.2820597

https://github.com/dspinellis/awesome-msr
https://github.com/dspinellis/awesome-msr
https://datproject.org/
https://dvc.org/
https://www.tiobe.com/tiobe-index/
https://www.infoworld.com/article/3253948/who-really-contributes-to-open-source.html
https://www.infoworld.com/article/3253948/who-really-contributes-to-open-source.html
http://dl.acm.org/citation.cfm?id=2735522.2735527
http://dl.acm.org/citation.cfm?id=2735522.2735527
http://doi.acm.org/10.1145/1453101.1453107
http://doi.acm.org/10.1145/1453101.1453107
http://doi.acm.org/10.1145/2659118.2659130
http://dl.acm.org/citation.cfm?id=2487085.2487132
http://doi.acm.org/10.1145/2597073.2597118
http://dl.acm.org/citation.cfm?id=2820518.2820597


Creating evolving project data sets in software engineering 13

17. Jureczko, M., Madeyski, L.: Towards identifying software project clusters with regard to de-
fect prediction. In: PROMISE’2010: Proceedings of the 6th International Conference on Pre-
dictive Models in Software Engineering, pp. 9:1–9:10. ACM (2010). DOI 10.1145/1868328.
1868342

18. Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian, D.: The
promises and perils of mining github. In: Proceedings of the 11th Working Conference on
Mining Software Repositories, MSR 2014, pp. 92–101. ACM, New York, NY, USA (2014).
DOI 10.1145/2597073.2597074. URL http://doi.acm.org/10.1145/2597073.
2597074

19. Lamastra, C.R.: Software innovativeness. a comparison between proprietary and free/open
source solutions offered by italian smes. R&D Management 39(2), 153–169 (2009). DOI 10.
1111/j.1467-9310.2009.00547.x. URL https://onlinelibrary.wiley.com/doi/
abs/10.1111/j.1467-9310.2009.00547.x

20. Lamkanfi, A., Pérez, J., Demeyer, S.: The eclipse and mozilla defect tracking dataset: A gen-
uine dataset for mining bug information. In: 2013 10th Working Conference on Mining Soft-
ware Repositories (MSR), pp. 203–206 (2013). DOI 10.1109/MSR.2013.6624028

21. MacCormack, A., Rusnak, J., Baldwin, C.Y.: Exploring the structure of complex software
designs: An empirical study of open source and proprietary code. Management Science 52(7),
1015–1030 (2006). DOI 10.1287/mnsc.1060.0552. URL https://doi.org/10.1287/
mnsc.1060.0552

22. Madeyski, L.: Test-Driven Development: An Empirical Evaluation of Agile Practice. Springer,
(Heidelberg, London, New York) (2010). DOI 10.1007/978-3-642-04288-1

23. Madeyski, L.: Training data preparation method. Tech. rep., code quest (research project
NCBiR POIR.01.01.01-00-0792/16) (2019)

24. Madeyski, L., Kawalerowicz, M.: Continuous Test-Driven Development: A Preliminary Em-
pirical Evaluation using Agile Experimentation in Industrial Settings. In: Towards a Synergis-
tic Combination of Research and Practice in Software Engineering, Studies in Computational
Intelligence, vol. 733, pp. 105–118. Springer (2018). DOI {10.1007/978-3-319-65208-5\
textunderscore8}

25. Madeyski, L., Kitchenham, B.: Would wider adoption of reproducible research be beneficial
for empirical software engineering research? Journal of Intelligent & Fuzzy Systems 32(2),
1509–1521 (2017). DOI 10.3233/JIFS-169146

26. Madeyski, L., Kitchenham, B.: Effect Sizes and their Variance for AB/BA Crossover De-
sign Studies. Empirical Software Engineering 23(4), 1982–2017 (2018). DOI 10.1007/
s10664-017-9574-5

27. Madeyski, L., Kitchenham, B.: reproducer: Reproduce Statistical Analyses
and Meta-Analyses (2019). URL http://madeyski.e-informatyka.
pl/reproducible-research/. R package version (http://CRAN.R-
project.org/package=reproducer)

28. Munaiah, N., Kroh, S., Cabrey, C., Nagappan, M.: Curating github for engineered software
projects. Empirical Software Engineering 22(6), 3219–3253 (2017)

29. Ohira, M., Kashiwa, Y., Yamatani, Y., Yoshiyuki, H., Maeda, Y., Limsettho, N., Fujino, K.,
Hata, H., Ihara, A., Matsumoto, K.: A dataset of high impact bugs: Manually-classified issue
reports. In: 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories, pp.
518–521 (2015). DOI 10.1109/MSR.2015.78

30. Ortu, M., Destefanis, G., Adams, B., Murgia, A., Marchesi, M., Tonelli, R.: The jira repository
dataset: Understanding social aspects of software development. In: Proceedings of the 11th
International Conference on Predictive Models and Data Analytics in Software Engineering,
PROMISE ’15, pp. 1:1–1:4. ACM, New York, NY, USA (2015). DOI 10.1145/2810146.
2810147. URL http://doi.acm.org/10.1145/2810146.2810147

31. Pletea, D., Vasilescu, B., Serebrenik, A.: Security and emotion: Sentiment analysis of security
discussions on github. In: Proceedings of the 11th Working Conference on Mining Software
Repositories, MSR 2014, pp. 348–351. ACM, New York, NY, USA (2014). DOI 10.1145/
2597073.2597117. URL http://doi.acm.org/10.1145/2597073.2597117

http://doi.acm.org/10.1145/2597073.2597074
http://doi.acm.org/10.1145/2597073.2597074
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9310.2009.00547.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9310.2009.00547.x
https://doi.org/10.1287/mnsc.1060.0552
https://doi.org/10.1287/mnsc.1060.0552
http://madeyski.e-informatyka.pl/reproducible-research/
http://madeyski.e-informatyka.pl/reproducible-research/
http://doi.acm.org/10.1145/2810146.2810147
http://doi.acm.org/10.1145/2597073.2597117


14 Tomasz Lewowski and Lech Madeyski

32. Pruett, J., Choi, N.: A comparison between select open source and proprietary integrated li-
brary systems. Library Hi Tech 31(3), 435–454 (2013). DOI 10.1108/LHT-01-2013-0003.
URL https://doi.org/10.1108/LHT-01-2013-0003

33. Raemaekers, S., van Deursen, A., Visser, J.: The maven repository dataset of metrics, changes,
and dependencies. In: 2013 10th Working Conference on Mining Software Repositories
(MSR), pp. 221–224 (2013). DOI 10.1109/MSR.2013.6624031

34. Rafique, Y., Misic, V.B.: The effects of test-driven development on external quality and pro-
ductivity: A meta-analysis. IEEE Trans. Softw. Eng. 39(6), 835–856 (2013)

35. Sawant, A.A., Bacchelli, A.: A dataset for api usage. In: Proceedings of the 12th Working Con-
ference on Mining Software Repositories, MSR ’15, pp. 506–509. IEEE Press, Piscataway, NJ,
USA (2015). URL http://dl.acm.org/citation.cfm?id=2820518.2820599

36. Sharma, A., Thung, F., Kochhar, P.S., Sulistya, A., Lo, D.: Cataloging github repositories. In:
Proceedings of the 21st International Conference on Evaluation and Assessment in Software
Engineering, EASE’17, pp. 314–319. ACM, New York, NY, USA (2017)

37. Smith, T.M., McCartney, R., Gokhale, S.S., Kaczmarczyk, L.C.: Selecting open source soft-
ware projects to teach software engineering. In: Proceedings of the 45th ACM Technical
Symposium on Computer Science Education, SIGCSE ’14, pp. 397–402. ACM, New York,
NY, USA (2014)

38. Tamburri, D.A., Palomba, F., Serebrenik, A., Zaidman, A.: Discovering community patterns
in open-source: a systematic approach and its evaluation. Empirical Software Engineering
(2018)

39. Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H., Noble, J.: The
qualitas corpus: A curated collection of java code for empirical studies. In: 2010 Asia Pacific
Software Engineering Conference, pp. 336–345 (2010). DOI 10.1109/APSEC.2010.46

40. Vasudevan, A.R., Harshini, E., Selvakumar, S.: Ssenet-2011: A network intrusion detection
system dataset and its comparison with kdd cup 99 dataset. In: 2011 Second Asian Himalayas
International Conference on Internet (AH-ICI), pp. 1–5 (2011). DOI 10.1109/AHICI.2011.
6113948

https://doi.org/10.1108/LHT-01-2013-0003
http://dl.acm.org/citation.cfm?id=2820518.2820599

	Creating evolving project data sets in software engineering
	Tomasz Lewowski and Lech Madeyski
	Introduction
	Related work
	Research setup
	Results
	RQ: How efficient is our algorithm is finding industry-relevant projects?

	Discussion
	Threats to validity
	Construct validity
	Internal validity
	External validity

	Future work
	Conclusions
	References



