
Preliminary Analysis of the Effects of Pair
Programming and Test-Driven Development on

the External Code Quality

Lech Madeyski

Wroclaw University of Technology, Institute of Applied Informatics,
Wyb.Wyspianskiego 27, 50-370 Wroclaw, POLAND

Lech.Madeyski@pwr.wroc.pl,
http://madeyski.e-informatyka.pl

Abstract. Test-driven development (TDD) and pair programming (PP)
are the key practices of eXtreme Programming methodology that have
caught the attention of software engineers and researchers worldwide.
One of the aims of the large experiment performed at Wroclaw Univer-
sity of Technology was to investigate the difference between test-driven
development and the traditional, test-last development as well as pair
programming and solo programming with respect to the external code
quality. It appeared that the external code quality was lower when test-
driven development was used instead of the classic, test-last software de-
velopment approach in case of solo programmers (p = 0.028) and pairs
(p = 0.013). There was no difference in the external code quality when
pair programming was used instead of solo programming.

1 Introduction

Test-driven development (TDD) [1] and pair programming (PP) [15] have gained
a lot of attention recently as the key software development practices of eXtreme
Programming (XP) methodology [2].

Researchers and practitioners have reported numerous, often anecdotal and
favourable studies of XP practices and XP methodology. Only some of them
concern the external code quality (measured by the number of functional, black-
box test cases passed) [3], [4] or reliability of programs (the fraction of the number
of passed tests divided by the number of all tests) [8], [9], [7]. Systematic review
of empirical studies concerning, for example, PP or TDD productivity is out of
the scope of this paper but some of these studies are also included in table 1.

Key findings from empirical studies:

FP1 — Prediction that it takes less time on average to solve the problem by pairs
than by individuals working alone was not statistically supported, however
the average time for completion was more than 12 minutes (41%) longer for
individuals than for pairs [11].

FP2 — Pairs completed their assignments 40–50% faster than individuals [13],
[14].

Table 1. Pair programming and test-driven development literature review

STUDY ENVIRONMENT SUBJECTS FINDINGS

Nosek [11] Industrial 15(5Pairs/5Solo) FP1
Williams [13][14] Academic 41(14Pairs/13Solo) FP2
Nawrocki [10] Academic 21(5Pairs/5+6Solo) FP3
Müller [8][9] Academic 37(10Pairs/17Solo) FP4
Müller [7] Academic 19(9Classic/10TDD) FT1
George [3][4] Industrial 24(6Classic/6TDD) in 3 trials FT2
Williams [16][6] Industrial 13(5Classic/9TDD) FT3

FP3 — Almost no difference in development time between XP-like pairs and solo
programmers [10]. PP appeared less efficient than it was reported in [11],
[13].

FP4 — A pair of developers does not produce more reliable code than a single
developer whose code was reviewed. Although pairs of developers tend to
cost more than single developers equipped with reviews, the increased cost
is too small to be seen in practice [8], [9].

FT1 — TDD does not accelerate the implementation (working time in minutes)
and the resulting programs are not more reliable, but TDD seems to support
better program understanding [7].

FT2 — TDD developers produced higher quality code, which passed 18% more
functional black box test cases. However, TDD developer pairs took 16%
more time for development [3], [4].

FT3 — The productivity (LOC per person-month) of the team was not impacted
by the additional focus on producing automated test cases [16] or the impact
was minimal [6].

Results of the existing empirical work on PP and TDD are contradictory.
This may be explained by the differences in the context in which the studies
were conducted. Therefore the context of our experiment is expressed in details
to support the development of cause-effect theories and to enable meta-analysis.

In 2004 a large experiment was conducted at Wroclaw University of Tech-
nology to study the impact of TDD and PP practices on different aspects of the
software development process. This paper examines the impact of TDD and PP
on the external code quality.

2 Experiment definition

The following definition determines the foundation for the experiment:
Object of study. The object of study is the software development process.
Purpose. The purpose is to evaluate the impact of TDD and PP practices on
the software development process.
Quality focus. The quality focus is the external code quality.

Perspective. The perspective is from the researcher’s point of view.
Context. The experiment is run using MSc students as subjects and finance-
accounting system as an object.

Summary: Analyze the software development process for the purpose of eval-
uation of the TDD and PP practices impact on the software development process
with respect to external code quality from the point of view of the researcher in
the context of finance-accounting system development by MSc students.

3 Experiment Planning

The planning phase of the experiment can be divided into seven steps: con-
text selection, hypotheses formulation, variables selection, selection of subjects,
experiment design, instrumentation and validity evaluation.

3.1 Context Selection

The context of the experiment was the Programming in Java (PIJ) course,
and hence the experiment was run off-line. Java was the programming lan-
guage, Eclipse was the IDE (Integrated Development Environment). All subjects
had experience at least in C and C++ programming (using object-oriented ap-
proach). The course consisted of seven lectures and fifteen laboratory sessions.
The course introduced Java programming language using TDD and PP as the key
XP practices. The subjects’ skills were evaluated during the first seven laboratory
sessions. The experiment took place during the last eight laboratory sessions (90
minutes per each). The problem (development of the finance-accounting system)
was close to the real problem (not toy size). The requirements specification con-
sisted of 27 user stories. In total 188 students were involved in the experiment.
The subjects participating in the study were mainly second and third-year (and
a few fourth and fifth-year) computer science master’s students at Wroclaw Uni-
versity of Technology. A few people were involved in the experiment planning,
operation and analysis.

3.2 Quantifiable Hypotheses Formulation

The crucial aspect of the experiment is to know and formally state what we
intend to evaluate in the experiment. This leads us to the formulation of the
following quantifiable hypothesis to be tested:

– H0 CS/TS/CP/TP — There is no difference in the external code quality be-
tween the software development teams using any combination of classic (test
last) / TDD (test first) development and solo / pair programming approach
(CS, TS, CP and TP are used to denote approaches).

– HA CS/TS/CP/TP — There is a difference in the external code quality be-
tween the software development teams using any combination of classic (test
last) / TDD (test first) development and solo / pair programming approach
(CS, TS, CP and TP).

– H0 CS/TS — There is no difference in the external code quality between solo
programmers using classic and TDD testing approach (CS, TS).

– HA CS/TS — There is a difference in the external code quality between solo
programmers using classic and TDD testing approach (CS, TS).

– H0 CP/TP — There is no difference in the external code quality between
pairs using classic and TDD testing approach (CP, TP).

– HA CP/TP — There is a difference in the external code quality between pairs
using classic and TDD testing approach (CP, TP).

– H0 CS/CP — There is no difference in the external code quality between solo
programmers and pairs when classic testing approach is used (CS, CP).

– HA CS/CP — There is a difference in the external code quality between solo
programmers and pairs when classic testing approach is used (CS, CP).

– H0 TS/TP — There is no difference in the external code quality between solo
and pairs when TDD testing approach is used (TS, TP).

– HA TS/TP — There is a difference in the external code quality between solo
and pairs when TDD testing approach is used (TS, TP).

If we reject the null hypothesis H0 CS/TS/CP/TP we can try to investigate
more specific hypotheses.

NATP (Number of Acceptance Tests Passed) was used as a measure of ex-
ternal code quality. The same measure was used by George and Williams [3], [4].
In contrast to some productivity measures, e.g. source lines of code (SLOC) per
person-month, NATP takes into account functionality and quality of software
development products. SLOC per unit of effort tend to emphasize longer rather
than efficient or high-quality programs. Refactoring effort may even results in
negative productivity measured by SLOC.

3.3 Variables Selection

The independent variable is the software development method used. The exper-
iment groups used CS, TS, CP or TP approach.

The dependent (or response) variable is characteristic of the software prod-
ucts on which the factors under examination are expected to have an effect. In
our case the dependent variable is NATP.

3.4 Selection of Subjects

The subjects are chosen based on convenience — the subjects are students taking
the PIJ course. Prior to the experiment, the students filled in a questionnaire.
The aim of the questionnaire was to get a picture of the students’ background,
see table 2. The ability to generalize from this context is further elaborated when
discussing threats to the experiment. The use of the course as an experimental
context provides other researchers opportunities to replicate the experiment.

Table 2. The context of the experiment

CONTEXT FACTOR ALL CS TS CP TP

Number of :
- MSc students: 188 28 28 62 70
— 2nd year students 108 13 16 40 39
— 3rd year students 68 12 11 18 27
— 4th year students 10 3 0 3 4
— 5th year students 2 0 1 1 0
- Students with not only academic but also
industry experience

33 4 6 8 15

Mean value of :
- Programming experience [in years] 3.8 4.1 3.7 3.6 3.9
- Java programming experience [in months] 3.9 7.1 2.8 3.4 3.5
- Programming experience in another OO
language than Java [in months]

20.5 21.8 20.9 19.2 21.1

3.5 Design of the Experiment

The design is one factor (the software development method) with four treatments
(alternatives):

– Solo programming using classic testing approach — tests after implementa-
tion (CS).

– Solo programming using test-driven development (TS).
– Pair programming using classic testing approach — tests after implementa-

tion (CP).
– Pair programming using test-driven development (TP).

The students were divided into groups based on their skills (measured by
graders on an ordinal scale) and then randomized within TDD or classic testing
approach groups. However the assignment to pair programming teams took into
account the people preferences (as it seemed to be more natural and close to
the real world practice). Students who did not complete the experiment were
removed from the analysis. The design resulted in an unbalanced design, with
28 solo programmers and 31 pairs using classic testing approach, 28 solo pro-
grammers and 35 pairs using TDD practice.

3.6 Instrumentation

The instrumentation of the experiment consisted of requirements specification
(user stories), pre-test and post-test questionnaires, Eclipse project framework,
detailed description of software development approaches (CS, TS, CP, TP), du-
ties of subjects, instructions how to use the experiment infrastructure (e.g. CVS
Version Management System) and examples (e.g. sample applications developed
using TDD approach).

3.7 Validity Evaluation

The fundamental question concerning results from an experiment is how valid
the results are. When conducting an experiment, there is always a set of threats
to the validity of the results. Shadish, Cook and Campbell [12] defined four types
of threats: statistical conclusion, internal, construct and external validity.

Threats to the statistical conclusion validity are concerned with issues that
effect the ability to draw the correct conclusion about relations between the
treatment and the outcome of an experiment. Threats to the statistical conclu-
sion validity are considered to be under control. Robust statistical techniques,
tools (e.g. Statistica) and large sample sizes to increase statistical power are
used. Measures and treatment implementation are considered reliable. However
the risk in the treatment implementation is that the experiment was spread
across laboratory sessions. To avoid the risk access to the CVS repository was
restricted to the specific laboratory sessions (access hours and IP addresses).
The validity of the experiment is highly dependent on the reliability of the mea-
sures. The measure used in the experiment is considered reliable because it can
be repeated with the same outcome. Heterogeneity of the subjects is blocked,
based on their grades.

Threats to internal validity are influences that can affect the independent
variable with respect to causality, without the researcher’s knowledge. Concern-
ing the internal validity, the risk of rivalry between groups must be considered.
The group using the traditional method may do their very best to show that
the old method is competitive. On the other hand subjects receiving less desir-
able treatments may not perform as well as they generally does. However, the
subjects were informed that the goal of the experiment was to measure different
approaches to software development not the subjects skills. Possible diffusion or
imitation of treatments were under control of the graders.

Construct validity concerns generalizing the results of the experiment to
the concepts behind the experiment. Threats to the construct validity are not
considered very harmful. Inadequate explication of constructs does not seem
to be a threat as the constructs were defined, before they were translated into
measures or treatments — it was clearly stated what having higher external
code quality means. The mono-operation bias is a threat as the experiment was
conducted on a single software development project, however the size of the
project was not toy size. Using a single type of measures is a mono-method bias
threat, however the measure used in the experiment was rather objective.

Threats to external validity are conditions that limit our ability to generalize
the results of our experiment to industrial practice. The largest threat is that
students (who had short experience in PP and TDD) were used as subjects.
Especially TDD possesses a fairly steep learning curve that must be surmounted
before the benefits begin to accrue. However, study by Höst [5] suggest that
students may provide an adequate model of the professional population. Fur-
thermore, some of the subjects had also industry experience, see table 2. In
summary, the threats are not considered large in this experiment.

4 Experiment Operation

The experiment was run at Wroclaw University of Technology in 2004 dur-
ing eight laboratory sessions. The data was primarily collected by automated
experiment infrastructure. Additionally the subjects filled in pre-test and post-
test questionnaires, primarily to evaluate their experience and preferences. The
package for the experiment was prepared in advance and is described in section
3.6.

5 Analysis of the Experiment

The experiment data are analyzed with descriptive analysis and statistical tests.

5.1 Descriptive Statistics

A good way to display the results of the experiment is by using a box and whisker
diagram or box plot shown in figure 1. The box represents the range within which
50% of the data fall. The point within the box is the median. The ’I’ shape shows
us the limits within which all of the data fall. The first impression is that classic
approaches performed better than TDD approaches.

Box-whisker diagram

 Median 25%-75% Min.-Max.

CP TS CS TP

Development Method

-5

0

5

10

15

20

25

30

35

40

N
um

be
r o

f A
cc

ep
ta

nc
e

Te
st

s
P

as
se

d

Fig. 1. Box-whisker plot for the number of acceptance tests passed in different devel-
opment methods

5.2 Hypotheses Testing

Experimental data are analysed using models that relate the dependent vari-
able and factor under consideration. The use of these models involves making
assumptions about the data that need to be validated. Therefore we run some
exploratory analysis on the collected data to check whether they follow the as-
sumptions of the parametric tests:

– Interval or ratio scale — the collected data must be measured at an interval
or ratio level (since parametric tests work on the arithmetic mean).

– Homogeneity of variance — roughly the same variances between groups or
treatments (if we use different subjects).

– Normal distribution — the collected data come from a population that has
a normal distribution.

The first assumption is met. The second assumption of homogeneity of vari-
ance is tested using Levene’s test, see table 3. The Levene test is non-significant
(p > 0.05) so we accept the null hypothesis that the difference between the
variances is roughly zero — the variances are more or less equal.

Table 3. Test of Homogeneity of Variances

Levene Statistic Significance

1.199 0.313

Having checked the two assumptions we have to test the third one — normal-
ity assumption using the Kolmogorov-Smirnov test as well as the Shapiro-Wilk
test.

Table 4. Tests of Normality

Approach Kolmogorov-Smirnov1 Shapiro-Wilk
Statistic df2 Significance Statistic df2 Significance

CS 0.182 28 0.018 0.931 28 0.066
TS 0.157 28 0.075 0.893 28 0.008
CP 0.116 31 0.2003 0.912 31 0.014
TP 0.111 35 0.2003 0.960 35 0.222

1 Lilliefors Significance Correction.
2 Degrees of freedom.
3 This is a lower bound of the true significance.

We find that the data are not normally distributed in case of CS approach
(according to the Kolmogorov-Smirnov statistic), TS and CP (according to the
Shaprio-Wilk statistic), see table 4. This finding alerts us to the fact that a
nonparametric test should be used.

The hypothesis regarding the difference in external code quality between the
software development teams using CS, TS, CP and TP approach is evaluated
using the Kruskal-Wallis one way analysis of variance by ranks. The Kruskal-
Wallis test is a non-parametric alternative to the parametric ANOVA and can
always be used instead of the ANOVA if it is not sure that the assumptions of
ANOVA are met. The Kruskal-Wallis test is used for testing differences between
the four experimental groups (CS, TS, CP, TP) when different subjects are used
in each group.

The Kruskal-Wallis test analyses the ranked data. Table 5 shows a summary
of these ranked data and tells us the mean rank in each treatment. The test
statistic is a function of these ranks.

Table 5. Ranks

Treatment N Mean Rank

CS 28 69.46
TS 28 50.79
CP 31 74.58
TP 35 52.11
Total 122

Table 6 shows this test statistic and its associated degrees of freedom (in this
case we had 4 groups so 4− 1 degrees of freedom), and the significance.

Table 6. Kruskal-Wallis Test Statistics [grouping variable: Approach(CS,TS,CP,TP)]

NATP

Chi-Square 10.714
df 3
Asymp. Significance 0.013

We can conclude that the software development approach used by the sub-
jects significantly affected the external code quality (measured by NATP). This
test tells us only that a difference exists, however it does not tell us exactly
where the difference lies.

One way to see which groups differ is to look at the box plot diagram of
the groups (see figure 1). The first thing to note is that classic approaches (CS,
CP) achieved better results (higher numbers of acceptance tests passed) than
TDD approaches (TS, TP). However, this conclusion is subjective. We need to
perform planned comparisons (contrasts) or multiple independent comparisons
(Mann-Whitney tests) for specific hypotheses from section 3.2. It is justified as
we identified the comparisons (specific hypotheses) as valid at the design stage
of our investigation. The planned comparisons, instead of comparing everything
with everything else, have the advantage that we can conduct fewer tests, and
therefore, we don’t have to be quite strict to control the type I error rate (the
probability that a true null hypothesis is incorrectly rejected).

Tables 7, 8, 9 and 10 show the test statistics of Mann-Whitney tests on the
four focused comparisons. When CP and TP approaches are compared the ob-
served significance value is 0.013, see table 8. When CS and TS approaches are
compared the observed significance value is 0.028, see table 7. The planned con-
trasts also suggest that using TDD instead of classic testing approach decreases
the external code quality in case of pairs as well as solo programmers (p < 0.05).

Table 7. Mann-Whitney Test Statistics (CS vs. TS)

NATP

Mann-Whitney U 258.000
Wilcoxon W 664.000
Z −2.198
Asymp. Significance (2-tailed) 0.028

Table 8. Mann-Whitney Test Statistics (CP vs. TP)

NATP

Mann-Whitney U 348.500
Wilcoxon W 978.500
Z −2.495
Asymp. Significance (2-tailed) 0.013

Table 9. Mann-Whitney Test Statistics (CS vs. CP)

NATP

Mann-Whitney U 393.500
Wilcoxon W 799.500
Z −0.615
Asymp. Significance (2-tailed) 0.538

Table 10. Mann-Whitney Test Statistics (TS vs. TP)

NATP

Mann-Whitney U 485.000
Wilcoxon W 1115.000
Z −0.069
Asymp. Significance (2-tailed) 0.945

6 Summary and Conclusions

The external code quality (measured by a number of acceptance tests passed) was
significantly affected by the software development approach (the Kruskal-Wallis
test statistics: H(3) = 10.71, p < 0.05 where H is the test statistic function
with 3 degrees of freedom and p is the significance). This means that there is a
difference in the external code quality between the software development teams
using CS, TS, CP and TP approach. Mann-Whitney tests were used to follow-up
this finding. It appeared that the external code quality was lower when TDD was
used instead of the classic, test-last software development approach in case of
solo programmers (Mann-Whitney CS vs. TS test significance value p = 0.028)
and pairs (Mann-Whitney CP vs. TP test significance value p = 0.013). There
was no difference in the external code quality when pair programming was used
instead of solo programming (Mann-Whitney CS vs. CP test significance value
p = 0.538, Mann-Whitney TS vs. TP test significance value p = 0.945). The
validity of the results must be considered within the context of the limitations
discussed in the validity evaluation section.

Future research is needed to evaluate other properties than the external code
quality as well as to evaluate PP and TDD in other contexts (e.g. in industry).

7 Acknowledgments

The author would like to thank the students for participating in the investigation,
the graders for their help and the members of the e-Informatyka team (Wojciech
Gdela, Tomasz Poradowski, Jacek Owocki, Grzegorz Makosa, Mariusz Sadal and

Micha l Stochmia lek) for support and preparation of the infrastructure for the
experiment to automate measurements which appeared extremely helpful.

The author also wants to thank prof. Zbigniew Huzar and dr Malgorzata
Bogdan for helpful suggestions.

References

1. Beck, K.: Test Driven Development: By Example. Addison-Wesley (2002)
2. Beck, K.: Extreme Programming Explained: Embrace Change. 2nd edn. Addison-

Wesley (2004)
3. George, B., Williams, L.A.: An initial investigation of test driven development in

industry. In: Proceedings of the 2003 ACM Symposium on Applied Computing
(SAC), ACM (2003) 1135–1139

4. George, B., Williams, L.A.: A structured experiment of test-driven development.
Information & Software Technology 46 (2004) 337–342

5. Höst, M., Regnell, B., Wohlin, C.: Using students as subjects — a comparative
study of students and professionals in lead-time impact assessment. Empirical
Software Engineering 5 (2000) 201–214

6. Maximilien, E.M., Williams, L.A.: Assessing Test-Driven Development at IBM.
In: Proceedings of the 25th International Conference on Software Engineering
(ICSE), IEEE Computer Society (2003) 564–569

7. Müller, M.M., Hagner, O.: Experiment about test-first programming. IEE Pro-
ceedings - Software 149 (2002) 131–136

8. Müller, M.M.: Are reviews an alternative to pair programming? In: Proceedings of
the Conference on Empirical Assessment In Software Engineering (EASE). (2003)

9. Müller, M.M.: Are reviews an alternative to pair programming? Empirical Soft-
ware Engineering 9 (2004) 335–351

10. Nawrocki, J.R., Wojciechowski, A.: Experimental evaluation of pair program-
ming. In: Proceedings of the European Software Control and Metrics Conference
(ESCOM) (2001) 269–276

11. Nosek, J.T.: The case for collaborative programming. Communications of the
ACM 41 (1998) 105–108

12. Shadish, W.R., Cook, T.D., Campbell, D.T.: Experimental and Quasi-
Experimental Designs for Generalized Causal Inference. Houghton Mifflin (2002)

13. Williams, L., Kessler, R.R., Cunningham, W., Jeffries, R.: Strengthening the case
for pair programming. IEEE Software 17 (2000) 19–25

14. Williams, L.: The Collaborative Software Process. PhD thesis, University of Utah
(2000)

15. Williams, L., Kessler, R.: Pair Programming Illuminated. Addison-Wesley (2002)
16. Williams, L.A., Maximilien, E.M., Vouk, M.: Test-driven development as a defect-

reduction practice. In: Proceedings of the 14th International Symposium on Soft-
ware Reliability Engineering (ISSRE 2003), IEEE Computer Society (2003) 34–48

