
This is a preprint of an article: Lech Madeyski, “The Impact of Pair Programming and
Test-Driven Development on Package Dependencies in Object-Oriented Design — An Experiment”,
in Product Focused Software Process Improvement, ser. Lecture Notes in Computer Science, J.
Münch and M. Vierimaa, Eds., LNCS 4034. Springer, 2006, pp. 278-289
http://dx.doi.org/10.1007/11767718_24

The Impact of Pair Programming and
Test-Driven Development on Package

Dependencies in Object-Oriented Design — An
Experiment

Lech Madeyski

Institute of Applied Informatics, Wroclaw University of Technology,
Wyb.Wyspianskiego 27, 50370 Wroclaw, POLAND

Lech.Madeyski@pwr.wroc.pl,
WWW home page: http://madeyski.e-informatyka.pl/

Abstract. Background: Test-driven development (TDD) and pair pro-
gramming are software development practices popularized by eXtreme
Programming methodology. The aim of the practices is to improve soft-
ware quality.

Objective: Provide an empirical evidence of the impact of both practices
on package dependencies playing a role of package level design quality
indicators.

Method: An experiment with a hundred and eighty eight MSc students
from Wroclaw University of Technology, who developed finance-accounting
system in different ways (CS — classic solo, TS — TDD solo, CP — clas-
sic pairs, TP — TDD pairs).

Results: It appeared that package level design quality indicators (namely
package dependencies in an object-oriented design) were not significantly
affected by development method.

Limitations: Generalization of the results is limited due to the fact that
MSc students participated in the study.

Conclusions: Previous research revealed that using test-driven develop-
ment instead of classic (test-last) testing approach had statistically sig-
nificant positive impact on some class level software quality indicators
(namely CBO and RFC metrics) in case of solo programmers as well as
pairs. Combined results suggest that the positive impact of test-driven
development on software quality may be limited to class level.

1 Introduction

Test-driven development (TDD) [1] and pair programming (PP) [2] have recently
gained a lot of attention as the key software development practices of eXtreme
Programming (XP) methodology [3]. The main idea of test-driven development
is that programmers write tests before production code. Pair programming is
software development practice where two programmers work together, collabo-
rating on the same development tasks. The basic aim of both practices, described

1

http://dx.doi.org/10.1007/11767718_24


in section 3.5, is to improve software quality. The question is whether both prac-
tices (used separately or together) really improve software quality.

Researchers and practitioners have reported numerous, often anecdotal and
favourable studies of XP practices and methodology. Empirical studies on pair
programming often concern productivity [4,5,6,7,8]. A few studies have focused
on pair programming or test-driven development as practices to remove defects
[5,6,9,10], influence external code quality (measured by the number of functional,
blackbox test cases passed) [11,12,13] or reliability of programs (a fraction of the
number of passed tests divided by the number of all tests) [14,15,16]. Janzen [17]
has pointed out that there was no research on the broader efficacy of test-driven
development, nor on its effects on internal design quality outside a small pilot
study [18]. Recently, Madeyski [19] pointed out that using test-driven develop-
ment instead of classic (test-last) development had significant positive impact
on two Chidamber and Kemerer (CK) [20] class level software quality indicators
— Response For a Class (RFC) and Coupling Between Object classes (CBO).
Obtained results did not support similar, positive impact of pair programming
practice [19]. Hulkko and Abrahamsson [21] also suggested that pair program-
ming might not necessarily provide as extensive quality benefits as suggested in
literature. The key findings from empirical studies concerning software quality
are summarized below in table 1.

Table 1. Pair programming and test-driven development literature review.
Abbreviations: S(Solo programmers), P(Pairs), x4(groups of four), T(TDD), C(Classic)

Study Environment Subjects Key findings

PP studies:
[5,6] Academic 41(14P/13S) P had 15% less code defects than S
[15,16] Academic 37(10P/17S) P did not produce more reliable code
[21] Acad./Ind. 4x(4–6) P did not provide extensive quality benefits
TDD studies:
[14] Academic 19(9CS/10TS) T did not produce more reliable code
[11,12] Industrial 24(6CP/6TP) TP products passed 18% more tests than CP
[9,10] Industrial 13(5CS/9TS) Minimal/no difference in LOC per person-month

T reduced defect rate by 40–50%
[18] Academic 8(1Cx4/1Tx4) No meaningful differences in package

dependencies between T and C project
Combined study:
[13,19] Academic 188 TS passed significantly less acc. tests than CS

(28CS/28TS/ TP passed significantly less acc. tests than CP
31CP/35TP) No difference between CS and CP as well as TS

and TP in NATP (Number of Acc.Tests Passed)
T had significant positive impact on RFC and
CBO CK metrics in case of S and P

In spite of a wide range of empirical studies there is still limited evidence con-
cerning the impact of pair programming and test-driven development on quality



of an object-oriented design in terms of dependencies between packages (collec-
tions of related classes), which in turn may have impact on external qualities e.g.
fault-proneness or maintainability. The aim of this paper is to fill in this gap.

An experiment, performed in 2004 at Wroclaw University of Technology,
was aiming to investigate the impact of test-driven development and pair pro-
gramming practices on different aspects of software development. One of the
interesting results of the experiment is that using test-driven development in-
stead of classic testing approach has statistically significant positive impact on
class level software quality indicators (RFC and CBO) in case of solo as well
as pair programming [19]. The interesting research question, investigated in this
paper, is whether the positive impact of test-driven development on software
quality is limited to the class level. It is important question because test-driven
development practice (also known by names such as, test-first design and test
driven design) is considered not only one of the core programming practices of
XP but also one that we use instead of writing detailed design specifications [22].
Practitioners emphasize that test-driven development is primarily a method of
designing software, not just a method of testing [23] and that pair programming
tend to come up with higher quality designs [24].

The quality of an object-oriented design is strongly influenced by a system’s
package relationships. Loosely coupled and highly cohesive packages are qualities
of good design. Therefore to investigate the impact of test-driven development
and pair programming on object-oriented design we used Martin’s package level
dependency metrics [25,26] that can be used to measure the quality of an object-
oriented design in terms of the interdependences between the packages of that
design. Designs which are highly interdependent tend to be rigid, unreusable and
hard to maintain [25].

Martin’s metrics, investigated in this study and measured by our tool [27],
are defined as follows [25]:

– Ca (Afferent Couplings) — The number of classes outside the package that
depend upon classes within the package.

– Ce (Efferent Couplings) — The number of classes inside the package that
depend upon classes outside the package.

– I (Instability) — The ratio (Ce/(Ca+Ce)) of efferent coupling (Ce) to total
coupling (Ce+Ca). This metric is an indicator of the package’s resilience to
change and has the range [0, 1]. I = 0 indicates a maximally stable package.
I = 1 indicates a maximally instable package.

– A (Abstractness) — The ratio of the number of abstract classes to the total
number of classes in package. This metric range is [0, 1]. 0 means concrete
package and 1 means completely abstract package.

– Dn (Normalized Distance from Main Sequence) — This is the normalized
perpendicular distance of the package from the idealized line A + I = 1.
This metric is an indicator of the package’s balance between abstractness
and stability. Dn metric’s results are within a range of [0, 1]. A value of zero
indicates perfect package design.



Underlying theory about a relationship between the object-oriented metrics and
fault-proneness as well as maintainability due to the effect on cognitive complex-
ity has been provided in [28] and [29].

2 Problem Statement

The following definition determines a foundation for the experiment [30]:
Object of study. The objects of study are software development products —
developed code.
Purpose. The purpose is to evaluate the impact of test-driven development and
pair programming practices on software development products.
Quality focus. The quality focus is the object-oriented design quality in terms
of the interdependences between packages of that design.
Perspective. The perspective is from the researcher’s point of view.
Context. The experiment is run using MSc students as subjects involved in
finance-accounting system development.

Summary: The analysis of the developed code for the purpose of evaluation
of the test-driven development and pair programming practices impact on the
developed code with respect to interdependences between packages from the point
of view of the researcher in the context of finance-accounting system development
performed by MSc students.

3 Experiment Planning

The planning phase of the experiment can be divided into seven steps [30]: con-
text selection, hypotheses formulation, variables selection, selection of subjects,
experiment design, instrumentation and validity evaluation.

3.1 Context Selection

The context of the experiment was the Programming in Java (PIJ) course, and
hence the experiment was run off-line [30]. Java was the programming language,
Eclipse 3.0 was the IDE (Integrated Development Environment). All subjects
had prior experience at least in C and C++ programming (using object-oriented
approach). The PIJ course consisted of seven lectures (90 minutes per each) and
fifteen laboratory sessions (also 90 minutes per each). The course introduced
Java programming language using test-driven development and pair program-
ming as the key XP practices. The subjects’ practical skills in programming in
Java using pair programming and test-driven development were evaluated dur-
ing the first seven laboratory sessions. The experiment took place during the last
eight laboratory sessions. The problem (development of the finance-accounting
system) was close to the real one (not toy-size). The requirements specification
consisted of 27 user stories. The subjects participating in the study were mainly
second and third-year (and few fourth and fifth-year) computer science MSc stu-
dents of Wroclaw University of Technology. In total 188 students were involved



in the experiment, see table 2. A few people were involved in the experiment
planning, operation and analysis.

3.2 Quantifiable Hypotheses Formulation

The crucial aspect of the experiment is to know and formally state what we
intend to evaluate in the experiment. This leads us to the formulation of the
following quantifiable hypotheses to be tested:

– H0 X, CS/TS/CP/TP — There is no difference in the mean value of X metric
(where X is Ca, Ce, I, A or Dn) between the software development projects
using any combination of classic (test-last) / TDD (test-first) testing ap-
proach and solo / pair programming development method (CS, TS, CP and
TP are used to denote development methods).

– HA X, CS/TS/CP/TP — There is a difference in the mean value of X metric
between the software development projects using any combination of classic
(test-last) / TDD (test-first) testing approach and solo / pair programming
development method.

If we reject null hypotheses H0 X, CS/TS/CP/TP (where X is Ca, Ce, I, A
or Dn) we can try to investigate more specific hypotheses concerning differences
between development methods (CS vs. TS, CP vs. TP, CS vs. CP, and TS vs.
TP).

3.3 Variables Selection

The independent variable is the software development method used (CS, TS, CP
or TP). The dependent (response) variables are mean values of Ca, Ce, I, A and
Dn (denoted as MX where X is Ca, Ce, I, A or Dn).

3.4 Selection of Subjects

The subjects are chosen based on convenience — the subjects are students taking
the PIJ course. Prior to the experiment, the students filled in a pre-test ques-
tionnaire. The aim of the questionnaire was to get a description of the students’
background, see table 2 for sample results. The ability to generalize from this
context is further elaborated when discussing threats to the experiment.

3.5 Design of the Experiment

The design is one factor (the software development method) with four treatments
(alternatives):

– Solo programming using classic testing approach — tests after implementa-
tion (CS).

– Solo programming using test-driven development (TS).



Table 2. The context of the experiment

Context factor ALL CS TS CP TP

Number of MSc students: 188 28 28 62 70
– on the 2nd year 108 13 16 40 39
– on the 3rd year 68 12 11 18 27
– on the 4th year 10 3 0 3 4
– on the 5th year 2 0 1 1 0
– with industry experience 33 4 6 8 15
Mean value of:
– Programming experience in years 3.8 4.1 3.7 3.6 3.9
– Java experience in months 3.9 7.1 2.8 3.4 3.5
– Another OO language experience in months 20.5 21.8 20.9 19.2 21.1

– Pair programming using classic testing approach — tests after implementa-
tion (CP).

– Pair programming using test-driven development (TP).

Pair programming is a practice in which two programmers (called the driver
and navigator) work together at one computer, collaborating on the same devel-
opment tasks (e.g. design, test, code). The driver, is typing at the computer or
writing down a design. The navigator observes the work of the driver, reviews
the code, proposes test cases and considers the implementations strategic impli-
cations [5,31]. In case of solo programming all activities are performed by one
programmer.

Test-driven development is a practice based on specifying piece of functional-
ity as a low level test before writing production code, implementing the function-
ality so that the test passes, refactoring (e.g. removing duplication) and iterating
the process. Tests are run frequently, while writing production code. In case of
classic (test-last) development tests are specified after writing production code
and less frequently [32].

The assignment of subjects to groups was performed first by stratifying the
subjects with respect to their skill level, measured by graders, and then assigning
them randomly to test-driven development or classic testing approach treatment
groups. However the assignment to solo or pair programming teams took into
account the people preferences (as it seemed to be more natural and close to
agile software development practice).

Students who did not complete the experiment were removed from the anal-
ysis. Sixteen teams dropped out, did not check in the final version of their pro-
gram or did not fill in questionnaires. Therefore, we retained data from 122
teams. The design resulted in an unbalanced design, with 28 solo programmers
and 31 pairs using classic testing approach, 28 solo programmers and 35 pairs
using test-driven development practice.



3.6 Instrumentation

The instrumentation of the experiment consisted of requirements specification
(user stories), pre-test and post-test questionnaires, Eclipse project framework,
detailed description of software development methods (CS, TS, CP, TP) and
duties of subjects, instructions how to use the experiment infrastructure (e.g.
CVS Version Management System) and examples (e.g. sample source code of
applications developed using TDD approach and JUnit tests). Martin’s metrics
were collected using aopmetrics tool [27] developed and supported by members
of e-Informatyka development team at Wroclaw University of Technology.

3.7 Validity Evaluation

The fundamental question concerning results of each experiment is how valid the
results are. When conducting the experiment, there is always a set of threats to
the validity of the results. Shadish, Cook and Campbell [33] defined four types
of threats: statistical conclusion, internal, construct and external validity.

Threats to the statistical conclusion validity are concerned with issues that
affect the ability to draw the correct conclusion about relations between the
treatment and the outcome of the experiment. Threats to the statistical conclu-
sion validity are considered to be under control. Robust statistical techniques,
tools (e.g. Statistica) and large sample sizes to increase statistical power are
used. Measures and treatment implementation are considered reliable. However,
the risk in the treatment implementation is that the experiment was spread
across laboratory sessions. To avoid the risk, access to the CVS repository was
restricted to the specific laboratory sessions (access hours and IP addresses). Va-
lidity of the experiment is highly dependent on the reliability of the measures.
The basic principle is that when you measure a phenomenon twice, the outcome
should be the same. The measures used in the experiment are considered reliable
because they can be repeated with the same outcomes.

Threats to the internal validity are influences that can affect the independent
variable with respect to causality, without the researcher’s knowledge. Concern-
ing the internal validity, the risk of rivalry between groups must be considered.
The group using the traditional method may do their very best to show that
the old method is competitive. On the other hand, subjects receiving less de-
sirable treatments may not perform as well as they generally do. However, the
subjects were informed that the goal of the experiment was to measure different
development methods not the subjects’ skills. Possible diffusion or imitation of
treatments were under control of the graders.

Construct validity concerns generalizing the results of the experiment to
the concepts behind the experiment. Threats to the construct validity are not
considered very harmful. Inadequate explication of constructs does not seem to
be the threat as the constructs were defined, before they were translated into
measures or treatments. The mono-operation bias is a threat as the experiment
was conducted on a single software development project; however, the size of



the project was not a toy-size. Using a single type of measure would be a mono-
method bias threat; however, different measures were used in the experiment.

Threats to external validity are conditions that limit our ability to gener-
alize the results of our experiment to industrial practice. The largest threat is
that students (who had short experience in pair programming and test-driven
development) were used as subjects. However, Kitchenham et al. [34] state that
students are the next generation of software professionals, so, are relatively close
to the population of interest. In summary, the threats are not regarded as being
critical.

4 Experiment Operation

The experiment was run at Wroclaw University of Technology in 2004 during
eight laboratory sessions. The data was primarily collected by automated exper-
iment infrastructure. Additionally, the subjects filled in pre-test and post-test
questionnaires, primarily to evaluate their experience. The package for the ex-
periment was prepared in advance and is described in section 3.6.

5 Analysis of the Experiment

The experiment data are analysed with descriptive analysis and statistical tests.

5.1 Descriptive Statistics

Descriptive statistics of gathered Martin’s metrics are summarized in table 3.
Columns ”Mean”, ”StdDev”, ”Max”, ”Median” and ”Min” state for each met-
ric and development method (”DevMeth”) the mean value, standard deviation,
maximum, median, minimum, respectively.

The first impression is that development methods performed similarly. Re-
sults shown in table 3 also indicate imperfect package design (e.g. values of
normalized distance from main sequence are close to 1), no matter which devel-
opment method was used.

5.2 Hypotheses Testing

Experimental data are analysed using models that relate the dependent vari-
able to the factor under consideration. The use of these models involves making
assumptions concerning the data that need to be validated. Therefore we run
some exploratory analysis on the collected data to check whether they follow the
assumptions of the parametric tests:

– Normal distribution — the collected data come from a population that has
a normal distribution.

– Interval or ratio scale — the collected data must be measured at an interval
or ratio level (since parametric tests work on the arithmetic mean).



Table 3. Descriptive statistics of Martin’s metrics

Metric DevMeth Mean StdDev Max Median Min

Ca CS .46 1.12 4.50 0 0
TS .20 .72 2.75 0 0
CP .31 .98 3.60 0 0
TP .11 .50 2.80 0 0

Ce CS .24 .53 1.67 0 0
TS .17 .53 2.25 0 0
CP .15 .49 2.00 0 0
TP .07 .31 1.60 0 0

I CS .08 .17 .54 0 0
TS .07 .22 1.00 0 0
CP .03 .10 .34 0 0
TP .03 .12 .50 0 0

A CS .00 .02 .08 0 0
TS .01 .02 .08 0 0
CP .01 .03 .17 0 0
TP .00 .02 .09 0 0

Dn CS .92 .18 1.00 1.00 .42
TS .92 .22 1.00 1.00 0
CP .96 .10 1.00 1.00 .66
TP .97 .12 1.00 1.00 .50

Table 4. Tests of Normality

Metric DevMeth Kolmogorov-Smirnov1 Shapiro-Wilk
Statistic df2 Significance Statistic df2 Significance

MCa CS .480 28 .000 .481 28 .000
TS .536 28 .000 .287 28 .000
CP .529 31 .000 .350 31 .000
TP .529 35 .000 .232 35 .000

MCe CS .494 28 .000 .495 28 .000
TS .519 28 .000 .370 28 .000
CP .527 31 .000 .353 31 .000
TP .536 35 .000 .254 35 .000

MI CS .496 28 .000 .494 28 .000
TS .517 28 .000 .366 28 .000
CP .529 31 .000 .348 31 .000
TP .539 35 .000 .251 35 .000

MA CS .509 28 .000 .342 28 .000
TS .535 28 .000 .295 28 .000
CP .539 31 .000 .176 31 .000
TP .539 35 .000 .161 35 .000

MDn CS .466 28 .000 .521 28 .000
TS .455 28 .000 .400 28 .000
CP .514 31 .000 .409 31 .000
TP .518 35 .000 .284 35 .000



– Homogeneity of variance — roughly the same variances between groups or
treatments (as we use different subjects).

We find that — according to the Kolmogorov-Smirnov and Shaprio-Wilk
statistic (see table 4) — the data are not normally distributed. This finding
alerts us to the fact that a nonparametric test should be used.

Hypotheses H0 X, CS/TS/CP/TP (where X is Ca, Ce, I, A or Dn) are eval-
uated using the Kruskal-Wallis one way analysis of variance by ranks. The
Kruskal-Wallis test is used for testing differences between the four experimental
groups (CS, TS, CP, TP) when different subjects are used in each group. Table
5 shows test statistics and significances.

Table 5. Kruskal-Wallis Test Statistics — grouping variable: DevMeth

MCa MCe MI MA MDn

Chi-Square 2.917 2.323 2.402 2.039 2.420
Asymp. Significance .405 .508 .493 .564 .490

We can conclude that the software development method used by the subjects
do not significantly affected interdependencies between the packages.

6 Summary and Conclusions

It appeared that package level design quality indicators (namely package de-
pendencies in an object-oriented design) were not significantly affected by de-
velopment method. Using test-driven development instead of classic (test-last)
testing approach as well as pair programming instead of solo programming had
not significant impact on package dependencies. Previous research revealed that
using test-driven development instead of classic testing approach had statisti-
cally significant positive impact on some class level software quality indicators
(namely CBO and RFC) in case of solo as well as pair programming [19]. Com-
bined results suggest that the positive impact of test-driven development on
software quality may be limited to class level. Therefore software engineers and
academics may benefit from using test-driven development but they should take
care of package level design issues. Further research is needed to replicate the
study, to evaluate the impact in other contexts (e.g. in industry) as well as on
other package level software quality indicators and to establish evidence.

7 Acknowledgments

The author would like to thank the students for participating in the investigation,
the graders and the members of the e-Informatyka team (Micha l Stochmia lek,
1 Lilliefors Significance Correction.
2 Degrees of freedom.



Wojciech Gdela, Tomasz Poradowski, Jacek Owocki, Grzegorz Makosa, Mariusz
Sadal) for their help during development of the measurement infrastructure (e.g.
aopmetrics tool [27]).

References

1. Beck, K.: Test Driven Development: By Example. Addison-Wesley (2002)

2. Williams, L., Kessler, R.: Pair Programming Illuminated. Addison-Wesley (2002)

3. Beck, K.: Extreme Programming Explained: Embrace Change. 2nd edn. Addison-
Wesley (2004)

4. Nosek, J.T.: The case for collaborative programming. Communications of the
ACM 41(3) (1998) 105–108

5. Williams, L., Kessler, R.R., Cunningham, W., Jeffries, R.: Strengthening the case
for pair programming. IEEE Software 17(4) (2000) 19–25

6. Williams, L.: The Collaborative Software Process. PhD thesis, University of Utah
(2000)

7. Nawrocki, J.R., Wojciechowski, A.: Experimental evaluation of pair programming.
In: ESCOM ’01: European Software Control and Metrics. (2001) 269–276

8. Nawrocki, J.R., Jasiński, M., Olek, L., Lange, B.: Pair Programming vs. Side-
by-Side Programming. In Richardson, I., Abrahamsson, P., Messnarz, R., eds.:
EuroSPI. Volume 3792 of Lecture Notes in Computer Science., Springer (2005)
28–38

9. Williams, L., Maximilien, E.M., Vouk, M.: Test-Driven Development as a Defect-
Reduction Practice. In: ISSRE ’03: Proceedings of the 14th International Sympo-
sium on Software Reliability Engineering, Washington, DC, USA, IEEE Computer
Society (2003) 34–48

10. Maximilien, E.M., Williams, L.A.: Assessing Test-Driven Development at IBM.
In: ICSE ’03: Proceedings of the 25th International Conference on Software Engi-
neering, IEEE Computer Society (2003) 564–569

11. George, B., Williams, L.A.: An Initial Investigation of Test Driven Development
in Industry. In: SAC ’03: Proceedings of the 2003 ACM Symposium on Applied
Computing, ACM (2003) 1135–1139

12. George, B., Williams, L.A.: A structured experiment of test-driven development.
Information and Software Technology 46(5) (2004) 337–342

13. Madeyski, L.: Preliminary Analysis of the Effects of Pair Programming and Test-
Driven Development on the External Code Quality. In Zieliński, K., Szmuc, T.,
eds.: Software Engineering: Evolution and Emerging Technologies. Volume 130 of
Frontiers in Artificial Intelligence and Applications. IOS Press (2005) 113–123

14. Müller, M.M., Hagner, O.: Experiment about test-first programming. IEE Pro-
ceedings - Software 149(5) (2002) 131–136

15. Müller, M.M.: Are Reviews an Alternative to Pair Programming? In: EASE ’03:
Conference on Empirical Assessment In Software Engineering. (2003)

16. Müller, M.M.: Are Reviews an Alternative to Pair Programming? Empirical Soft-
ware Engineering 9(4) (2004) 335–351

17. Janzen, D.S.: Software Architecture Improvement through Test-Driven Develop-
ment. In: OOPSLA ’05: Companion to the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, New York,
NY, USA, ACM Press (2005) 222–223



18. Kaufmann, R., Janzen, D.: Implications of Test-Driven Development: A Pilot
Study. In: OOPSLA ’03: Companion of the 18th annual ACM SIGPLAN confer-
ence on Object-oriented programming, systems, languages, and applications, New
York, NY, USA, ACM Press (2003) 298–299

19. Madeyski, L.: An empirical analysis of the impact of pair programming and test-
driven development on CK design complexity metrics. Technical Report PRE
I31/05/P-004, Institute of Applied Informatics, Wroclaw University of Technology
(2005)

20. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object Oriented Design.
IEEE Transactions on Software Engineering 20(6) (1994) 476–493

21. Hulkko, H., Abrahamsson, P.: A Multiple Case Study on the Impact of Pair Pro-
gramming on Product Quality. In: ICSE ’05: Proceedings of the 27th International
Conference on Software Engineering, New York, NY, USA, ACM Press (2005)
495–504

22. Object Mentor, Inc.: Test Driven Development (2005)
http://www.objectmentor.com/writeUps/TestDrivenDevelopment.

23. Wikipedia, the free encyclopedia: Test-driven development (2005)
http://en.wikipedia.org/wiki/Test driven development.

24. Wikipedia, the free encyclopedia: Pair programming (2005)
http://en.wikipedia.org/wiki/Pair programming.

25. Martin, R.C.: OO Design Quality Metrics, An Analysis of Dependencies (1994)
26. Martin, R.C.: Agile Software Development, Principles, Patterns, and Practices.

Prentice Hall (2004)
27. Wroclaw University of Technology, e-Informatyka and Tigris developers: aopmet-

rics project (2005) http://aopmetrics.tigris.org/.
28. Briand, L.C., Wüst, J., Ikonomovski, S.V., Lounis, H.: Investigating quality factors

in object-oriented designs: an industrial case study. In: ICSE ’99: Proceedings of
the 21st International Conference on Software Engineering, Los Alamitos, CA,
USA, IEEE Computer Society Press (1999) 345–354

29. Emam, K.E., Melo, W.L., Machado, J.C.: The Prediction of Faulty Classes Using
Object-Oriented Design Metrics. Journal of Systems and Software 56(1) (2001)
63–75

30. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experi-
mentation in Software Engineering: An Introduction. Kluwer Academic Publishers,
Norwell, MA, USA (2000)

31. Williams, L.A., Kessler, R.R.: All I really need to know about pair programming
I learned in kindergarten. Commun. ACM 43(5) (2000) 108–114

32. Erdogmus, H., Morisio, M., Torchiano, M.: On the Effectiveness of the Test-First
Approach to Programming. IEEE Transactions on Software Engineering 31(3)
(2005) 226–237

33. Shadish, W.R., Cook, T.D., Campbell, D.T.: Experimental and Quasi-
Experimental Designs for Generalized Causal Inference. Houghton Mifflin (2002)

34. Kitchenham, B., Pfleeger, S.L., Pickard, L., Jones, P., Hoaglin, D.C., Emam, K.E.,
Rosenberg, J.: Preliminary Guidelines for Empirical Research in Software Engi-
neering. IEEE Transactions on Software Engineering 28(8) (2002) 721–734


	The Impact of Pair Programming and Test-Driven Development on Package Dependencies in Object-Oriented Design --- An Experiment
	Lech Madeyski (Wroclaw University of Technology)

