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Abstract. Code coverage and mutation score measure how thoroughly
tests exercise programs and how effective they are, respectively. The
objective is to provide empirical evidence on the impact of pair pro-
gramming on both, thoroughness and effectiveness of test suites, as pair
programming is considered one of the practices that can make testing
more rigorous, thorough and effective. A large experiment with MSc stu-
dents working solo and in pairs was conducted. The subjects were asked
to write unit tests using JUnit, and to follow test-driven development
approach, as suggested by eXtreme Programming methodology. It ap-
peared that branch coverage, as well as mutation score indicator (the
lower bound on mutation score), was not significantly affected by us-
ing pair programming, instead of solo programming. However, slight but
insignificant positive impact of pair programming on mutations score in-
dicator was noticeable. The results do not support the positive impact of
pair programming on testing to make it more effective and thorough. The
generalization of the results is limited due to the fact that MSc students
participated in the study. It is possible that the benefits of pair program-
ming will exceed the results obtained in this experiment for larger, more
complex and longer projects.

1 Introduction

Pair programming (PP) [1] is key software development practice of eXtreme Pro-
gramming (XP) methodology [2] which has recently gained a lot of attention.
Pair programming is a practice in which two distinct roles, called a driver and
a navigator, are distinguished. They contribute to a synergy of the individuals
in a pair working together at one computer and collaborating on the same de-
velopment tasks (e.g. design, test, code). The driver is typing at the keyboard
and focusing on the details of the production code or tests. The navigator ob-
serves the work of the driver, reviews the code, proposes test cases, considers
the strategic implications [3,4] and is looking for tactical and strategic defects
or alternatives [5]. The rule is that all production code is written by two people
sitting at one machine [2]. In the case of solo programming, all activities are
performed by one programmer.
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Test-driven development (TDD) [6,2], also known as test-first programming,
is another important and well known software development practice of XP
methodology, supposed to be used with pair programming. TDD is a practice
based on specifying piece of functionality as a test (usually low-level unit test),
before writing production code, implementing the functionality, so that the test
passes, refactoring (e.g. removing duplication), and iterating the process. The
tests are run frequently, while writing production code. Kobayashi et al. [7] sug-
gested that pair programming, test-driven development and refactoring, which
is the inherent part of TDD development cycle, had a very good synergy. There-
fore, it seems reasonable to evaluate pair programming practice in the context
of TDD.

Pair programming is supposed to be software development practice that can
influence unit testing to make it more rigorous, thorough, and effective. The
question is whether the impact of pair programming is significant or not.

2 Measures

Programmers who write unit tests should have a set of guidelines indicating
whether their software has been thoroughly and effectively tested.

2.1 Code Coverage

Measuring code coverage is one of such guidelines which can be applied, as code
coverage tools measure how thoroughly tests exercise programs [8]. However, it
remains a controversial issue whether code coverage is a good indicator for fault
detection capability of test cases [9]. Marick [8] shows that code coverage may
be misused, but code coverage tools are still helpful if they are used to enhance
thought, and not to replace it. Cai and Lyu [10] found that code coverage was a
good estimator for fault detection of exceptional test cases, but a poor one for
test cases in normal operations.

Kaner [9] lists 101 coverage measures. The important question is which code
coverage measure should be used. Useful insights concerning this question are
given by Cornett [11]. Statement coverage, also known as line coverage, reports
whether each executable statement is encountered. The main disadvantage of
statement coverage is that it is insensitive to some control structures. To avoid
this problem, decision coverage, also known as branch coverage, has been de-
vised. Decision coverage is a measure based on whether decision points, such
as if and while statements, evaluate to both true and false during test exe-
cution, thus exercising both execution paths. Decision coverage includes state-
ment coverage, since exercising every branch must lead to exercising every state-
ment. However, a shortcoming of this measure is that it ignores branches within
boolean expressions which occur due to short-circuit operators. For example, it
can preclude calls to some methods. Unfortunately, the most powerful measures
as Modified Condition/Decision Coverage (MC/DC), created at Boeing and re-
quired for aviation software, or Condition/Decision Coverage are not available



for Java software. Therefore, branch coverage measure was used in our analysis,
as the best of available code coverage measures. This measure is offered by sev-
eral tools e.g. Clover, JCoverage, Cobertura. A detailed analysis revealed that
Clover, JCoverage and Cobertura calculate branch coverage in slightly differ-
ent ways. Therefore, to validate the results obtained by Clover, which has the
market leader status, branch coverage results were collected by JCoverage and
Cobertura as well. Finally, it appeared that the branch coverage results obtained
by JCoverage and Cobertura were in line with the results obtained by Clover,
and therefore only Clover results were included in further analysis.

2.2 Mutation Score

A way to measure the effectiveness of test suites is a fault-based technique, called
mutation testing, originally proposed by DeMillo et al. [12] and Hamlet [13]. Mu-
tation analysis is a way to measure the quality of the test cases, and the actual
testing of the software is a side effect [14]. The effectiveness of test suites for fault
localization is estimated on the seeded faults. The faults are introduced into the
program by creating a collection of faulty versions, called mutants. These mu-
tants are created from the original program by applying mutation operators
which describe syntactic changes to the programming language. The tests are
used to execute these mutants with the goal of causing each mutant to produce
incorrect output. Mutation score (or mutation adequacy), defined as a ratio of
the number of killed mutants to the total number of non-equivalent mutants,
is a kind of quantitative measurement of tests quality [15]. The total number
of non-equivalent mutants is a difference between total number of mutants and
the number of equivalent mutants. Equivalent mutants always produce the same
output as the original program, so they cannot be killed. Unfortunately, deter-
mining which mutant programs are equivalent to the original program is a very
tedious and error-prone activity, so even ignoring equivalent mutants is some-
times suggested [14]. Ignoring equivalent mutants means, we are ready to accept
the lower bound on mutation score (named mutation score indicator). Accepting
it results in cost-effective application of a mutation analysis and still provides
meaningful information about fault-finding effectiveness of test suites.

Empirical studies have supported the effectiveness of mutation testing. Walsh
[16] found empirically that mutation testing is more powerful than statement and
branch coverage. Frankl et al. [17] and Offutt et al. [18] found that mutation
testing was more effective at finding faults than data-flow. Fowler [19] found
mutation testing tool support useful in practice.

Although mutation testing is powerful, it is not meant as a replacement for
code coverage, only as a complementary approach useful to find code that is exe-
cuted by running tests, but not actually tested. Moreover, it is time-consuming,
and impractical to use without a reliable, fast and automated tool that gener-
ates mutants, runs the mutants against a suite of tests, and reports the mutation
score of the test suite. Unfortunately, mutation tools for Java, proposed so far,
have several limitations that prevent practitioners from using them. They are
too slow to be used in large software projects (e.g. Jester [20]), modify source



code of the software components and may break the code making operation risky
(e.g. Jester). They do not work with JUnit [21] tests, the most widely used unit
testing framework (e.g. MuJava [22,23]), do not support the execution of mu-
tants and are not freely available for download (e.g. JAVAMUT [24]). Therefore,
a new mutation tool, called Judy, has been developed, using aspect-oriented ap-
proach to speed up mutation testing [25]. Judy has a build-in support of JUnit
unit tests, and is under active development to offer a wide range of mutations.
Mutations set, used in the experiment, consists of 14 mutations, see Table 1.

Table 1. Judy Mutation Operators

ABS – Absolute value insertion AOR – Arithmetic operator replacement
LCR – Logical connector replacement ROR – Relational operator replacement
UOI – Unary operator insertion UOD – Unary operator deletion
SOR – Shift operator replacement LOR – Logical operator replacement
COR – Conditional operator replacement ASR – Assignment operator replacement
EOA – Reference and content assignment EOC – Reference and content assignment
replacement replacement
EAM – Accessor method change EMM – Modifier method change

The first five operators (ABS, AOR, LCR, ROR, UOI) were taken from Of-
futt et al.’s research [26] on identifying a set of sufficient mutation operators.
The idea of sufficient mutation operators is to minimize the number of muta-
tion operators, whilst getting as much testing strength as possible. Recently,
Ammann and Offutt [27] presented these five mutation operators along with
UOD, SOR, LOR, COR, ASR as program level mutation operators dedicated
to Java language. Ma et al. [28] found that EOA and EOC mutation operators
can model object-oriented (OO) faults that are difficult to detect and therefore,
can be thought of as good mutation operators for OO programs. Finally, EAM
and EMM mutation operators were added, as there is still no determined set
of selective mutation operators for class mutation operators. Thus, there is no
strong reason to exclude these operators [28].

Branch coverage and mutation score indicator were used as measures to de-
termine thoroughness and fault-finding effectiveness of the test suites.

3 Related Work

Researchers and practitioners have reported numerous, sometimes anecdotal and
favourable studies of pair programming. Beck and Andres wrote that a pair is
even more than twice as effective as the same two people programming solo [2].
However, empirical evidence concerning pair programming practice effort over-
head and speedup ratio often points to, more or less, the opposite, see Table 2.
The results of empirical studies suggest that the effort overhead is probably some-
where between 15% and 60%, and speedup ratio is between 20% and over 40%.



Table 2. Empirical evidence on pair programming practice effort overhead
Approaches: S(Solo), P(Pair), SbS(side-by-side)

Study Environment Subjects Effort overhead and speedup ratio
associated with pair programming

[29] Industry 15(5P/5S) 42% overhead, 29% speed up
[3] Academic 41(14P/13S) 15%–60% overhead, 20%–42.5% speed up
[30] Academic 21(5P/5+6S) 60% overhead, 20% speed up
[31] Academic 25(5P/5SbS/5S) 50% overhead (but only 20% overhead

in the case of SbS programming
i.e. everyone has their own PC)

[32] Acad./Ind. 4 case projects Neither P nor S had consistently
(4/5.5/4/4-6) higher productivity.

[5] Industry 295(98P/99S) P in general did not reduce the time
required to solve the tasks correctly.

Another important question concerning pair programming practice is whether
it improves the quality of software products. Empirical results concerning the
impact of pair programming practice on quality of software products are sum-
marized in Table 3. The results of empirical studies suggest that the the positive
impact of pair programming on software quality is questionable.

Table 3. Empirical evidence on the impact of pair programming practice on
software quality
Approaches: S(Solo), P(Pair), T(TDD), C(Classic, test-last)

Study Environment Subjects Impact on software quality

[33] Academic 37(10P/17S) P did not produce more reliable code than S
whose code was reviewed.

[34,35] Academic 188 There was no difference in NATP(Number of
(28CS/28TS/ Acceptance Tests Passed) between S and P.
31CP/35TP) Package dependencies were not significantly

affected by P.
[32] Acad./Ind. 4 case projects Lower level of defect density in the case of P

(4/5.5/4/4-6) was not supported.
[5] Industry 295(98P/99S) P in general did not increase the proportion

of correct solutions.

To the author’s knowledge, there is no empirical evidence concerning the
impact of pair programming on thoroughness and fault-finding effectiveness of
unit tests. Therefore, the aim of this paper is to fill in this gap.



4 Experiment Description

The definition, design, as well as operation of the experiment are described in
this section.

4.1 Experiment Definition

The following definition determines the foundation for the experiment [36]:
Object of study. The objects of study are software development products
(developed code).
Purpose. The purpose is to evaluate the impact of pair programming practice
on software development products.
Quality focus. The quality focus is thoroughness and fault-finding effectiveness
of unit test suites, measured by code coverage and mutation score indicator,
respectively.
Perspective. The perspective is from the researcher’s point of view.
Context. The experiment is run using MSc students as subjects involved in the
development of finance accounting system in Java.

4.2 Context Selection

The context of the experiment was the Programming in Java course, and hence
the experiment was run off-line (not industrial software development) [36]. Java
was a programming language and Eclipse was an Integrated Development En-
vironment (IDE). All the subjects had prior experience, at least in C and C++
programming (using object-oriented approach). The course consisted of seven
lectures and fifteen laboratory sessions (90 minutes each), and introduced Java
programming language, using pair programming and test-driven development
as the key XP practices. The subjects’ practical skills in programming in Java,
using pair programming and test-driven development, were evaluated during the
first seven laboratory sessions. The experiment took place during the last eight
laboratory sessions. The problem, development of the finance accounting sys-
tem, was as close to a real one, as it is possible in academic environment. The
requirements specification consisted of 27 user stories. The subjects participating
in the study were mainly second and third-year (and few fourth and fifth-year)
computer science MSc students. MSc programme of Wroclaw University of Tech-
nology is a 5-year programme after high school. The experiment was part of a
research, conducted at Wroclaw University of Technology, with the aim of ob-
taining empirical evidence on the impact of pair programming and test-driven
development on different aspects of software products and processes [34,35,37].
The experiment analysis was run with subjects involved in 63 projects conducted,
using test-driven development approach, by 28 solo programmers (denoted as S)
and 35 pairs (denoted as P).



4.3 Variables Selection

The independent variable is the software development method used. The exper-
iment groups used solo (S) or pair programming (P) development method. The
dependent (response) variables are mean values of branch coverage (denoted as
BC) and mutation score indicator (denoted as MSI), described in Section 2.

4.4 Hypotheses Formulation

The crucial aspect of the experiment is to get to know and formally state what
is intended to evaluate in it. The following null hypotheses are to be tested:

– H0 BC, S/P — There is no difference in the mean value of branch coverage
(BC) between solo programmers and pairs (S and P).

– H0 MSI, S/P — There is no difference in the mean value of mutation score
indicator (MSI) between solo programmers and pairs (S and P).

4.5 Selection of Subjects

The subjects are chosen based on convenience. They are students taking the
Programming in Java course. Prior to the experiment, the students filled in a
pre-test questionnaire. The aim of the questionnaire was to get a picture of
the students’ background. It appeared that the mean value of programming
experience in calendar years was 3.7 for solos and 3.9 for pairs. The ability to
generalize from this context is further elaborated, when discussing threats to the
experiment.

4.6 Design of the Experiment

The design is one factor (the software development method), with two treatments
(S and P). The assignment to pair programming teams took into account the
subjects’ preferences (i.e. they were allowed to suggest partners), as it seemed
to be more natural and close to the real world practice. Thus this is a quasi-
experiment [38]. In the case of two solo projects questionnaires were not filled in.
In the case of one solo project, tests were not written and checked-in properly.
These projects were not included in the analysis. The design resulted in an
unbalanced design, with 28 solo programmers and 35 pairs.

4.7 Instrumentation and Measurement

The instruments [36] and materials for the experiment were prepared in advance,
and consisted of requirements specification (user stories), pre-test and post-test
questionnaires, Eclipse project framework, a detailed description of software de-
velopment approaches (S and P), duties of subjects, and instructions how to use
the experiment infrastructure (e.g. CVS version control system). Branch cov-
erage and mutation score indicator values were collected using Clover [39] and
Judy [25] tools, respectively.



4.8 Validity Evaluation

When conducting the experiment, there is always a set of threats to the validity
of the results. Cook and Campbell [40] defined statistical conclusion, internal,
construct, and external validity threats. To enable an analysis of the validity of
the current study, the possible threats are discussed, based on Wohlin et al. [36].

Threats to the statistical conclusion validity are concerned with the issues
that affect the ability to draw the correct conclusion about relations between the
treatment and the outcome of the experiment, e.g. choice of statistical tests, tools
and samples sizes, and care taken in the implementation and measurement of
the experiment [36]. Threats to the statistical conclusion validity are considered
to be under control. Robust statistical techniques, tools (e.g. SPSS) and large
sample sizes to increase statistical power are used. Non-parametric tests are used
which do not require a certain underlying distribution of the data. Measures
and treatment implementation are considered reliable. However, the risk in the
treatment implementation is that the experiment was spread across laboratory
sessions. To minimize the risk, access to the Concurrent Versions System (CVS)
repository was restricted to specific laboratory sessions (access hours and IP
addresses). The validity of the experiment is highly dependent on the reliability
of the measures. The basic principle is that when one measures a phenomenon
twice, the outcome should be the same. The measures used in the experiment
are considered reliable, because they can be repeated with the same outcomes.

The internal validity of the experiment concerns the question whether the
effect is caused by independent variables, or by other factors. Concerning the
internal validity, the risk of compensatory rivalry, or demoralization of subjects
receiving less desirable treatments must be considered. The group using the clas-
sical method (i.e. solo programming) may do their very best to show that the
old method is competitive. On the other hand, subjects receiving less desirable
treatments may perform not so well as they generally do. However, the subjects
were informed that the goal of the experiment was to measure different devel-
opment methods, not the subjects’ skills. A possible diffusion or imitation of
treatments were under control of the assistant lecturers. The threat of selection
was also under control, as the experiment was a mandatory part of the course.
It was also checked that mean programming experience (in calendar years) was
similar in each group (S and P). Moreover, according to questionnaires, mean
programming experience of the subjects who took part in the experiment, and
three solo subjects who were excluded from the analysis, were almost the same.

Construct validity concerns the ability to generalize from the experiment
result to the concept behind the experiment. Some threats relate to the design
of the experiment, and others to social factors [36]. Threats to the construct
validity are considered not very harmful. The mono-operation bias is a threat,
as the experiment was conducted on a single software development project. Using
a single type of measure is a mono-method bias threat. To reduce mono-method
threats, the post-test questionnaire was added, to enable qualitative validation
of the results. It appeared that subjects slightly favoured a pair programming
approach. Thus, there seems to be no apparent contradiction between qualitative



and quantitative results. Interaction of different treatments is limited due to
the fact that the subjects were involved in one study only. Other threats to
construct validity are social threats (e.g. hypothesis guessing and experimenter
expectancies). As neither the subjects nor the experimenters have any interest
in favour of one technique or another, we do not expect it to be a large threat.

As with most empirical studies in software engineering, an important threat
is the process conformance represented by the level of conformance of the sub-
jects to the prescribed techniques. Process conformance is a threat to statistical
conclusion validity, through the variance in the way the processes are actually
carried out, and also to construct validity, through possible discrepancies be-
tween the processes as prescribed, and the processes as carried out [41]. The
process conformance threat was handled by attempting to keep deviations from
occurring, with the help of assistant lecturers. They controlled how development
methods were carried out and forced subjects to follow the prescribed techniques.
Moreover, the subjects were informed of the importance of following proper de-
velopment methods.

Threats to external validity are the conditions that limit our ability to gen-
eralize the results of our experiment to industrial practice. The largest threat is
that the subjects were students, who had short experience in pair programming.
However, Kitchenham et al.[42] states that students are the next generation of
software professionals and thus, are relatively close to the population of interest.
Some indications on the similarities between student subjects and professionals
are also given by Höst et al. [43]. Moreover, Tichy argues why it is acceptable to
use students as subjects [44]. The threads to external validity were reduced by
making the experimental environment as realistic as possible (e.g. requirements
specification came from an external client).

4.9 Experiment Operation

The experiment was run at Wroclaw University of Technology and consisted
of a preparation phase and an execution phase. The preparation phase of the
experiment included lectures and training exercises, given directly before the
experiment, in order to improve skills and practice in the areas of pair pro-
gramming, test-driven development, and unit testing using JUnit. Lectures and
exercises were given by the author, as well as by assistant lecturers. The goal of
this preparation phase was to train student subjects sufficiently well to perform
the tasks asked of them. They had to not be overwhelmed by the complexity of,
or unfamiliarity with the tasks [44]. Therefore, it took seven laboratory sessions
(90 minutes each) to achieve the goal. Then, the subjects were given an introduc-
tory presentation of a finance accounting system and were asked to implement
it during eight laboratory sessions of the execution phase. Both, the preparation
phase and the execution phase, were conducted in classroom settings under con-
tinuous supervision of assistant lecturers. The subjects were divided into S and
P groups. In the experiment up-to-date development environment composed of
Java Development Kit, Eclipse development environment, JUnit testing frame-
work and also CVS repository were used. Additionally, the subjects filled in



pre-test and post-test questionnaires, to evaluate their experience and opinions,
as well as to enable qualitative validation of the results. The subjects were not
aware of the actual hypotheses stated. The data were collected automatically
by tools such as Clover and Judy (tool developed at the Wroclaw University of
Technology).

5 Analysis of the Experiment

The experiment data are analysed with descriptive analysis and statistical tests.

5.1 Descriptive Statistics

Descriptive statistics of gathered measures are summarized in Table 4. Columns
”Mean”, ”Std.Deviation”, ”Std.Error”, ”Max”, ”Median” and ”Min” state for
each measure and development method the mean value, standard deviation,
standard error, maximum, median and minimum, respectively.

Table 4. Descriptive statistics for branch coverage (BC) and mutation score
indicator (MSI)

Measure Development Mean Std.Deviation Std.Error Max Median Min
Method (M) (SD) (SE) (Mdn)

Branch Coverage S .38 .22 .042 .90 .39 .00
(BC) P .39 .21 .036 .83 .32 .09

Mutation Score S .39 .22 .042 .72 .43 .04
Indicator (MSI) P .47 .29 .049 .98 .44 .09

The first impression is that developers working in pairs (denoted as P), and
developers working solo (S) performed similarly. However, it appears that pair
programming seems to have some positive impact on mutation score indicator, as
there is over 20% increase in the mean value of MSI (.47 vs. .39). This difference
is supported by differences in minimum and maximum values of MSI but not
the median. However, it is worthwhile to mention that the mean is resistant to
sampling variation, whilst the median is more likely to differ across samples. This
is important, as we want to infer something about the entire population. The
accuracy of the mean as a model of the data can be assessed by the standard
deviation which, unfortunately, is rather large (compared to the mean). The
standard deviation, as well as boxplots in Figures 1 and 2 tell us more about the
shape of the distribution of the results.

Summarizing descriptive statistics in correct APA (American Psychological
Association) format [45], we can conclude that pairs achieved slightly higher
mutation score indicator (M = .47, SD = .29) than solo programmers (M =
.39, SD = .22), whilst branch coverage for pairs (M = .39, SD = .21) was
similar to solo programmers (M = .38, SD = .22). It is worth noting that
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mutation analysis required about 30000 mutants to be created for 63 projects.
To answer the question whether the impact of pair programming on mutation
score indicator and branch coverage is significant, or not, statistical tests must
be performed.

5.2 Hypotheses Testing

We start from exploratory analyses on the collected data to check whether they
follow the assumptions of the parametric tests (i.e. normal distribution, interval
or ratio scale, homogeneity of variance). The first assumption of parametric
tests is that our data have come from a population that has normal distribution.
Objective tests of the distribution are Kolmogorov-Smirnov and Shapiro-Wilk
tests. We find that the data are not normally distributed, see Table 5.

Table 5. Tests of Normality

Development Kolmogorov-Smirnov1 Shapiro-Wilk
Method Statistic df2 Significance Statistic df2 Significance

Branch Coverage S .121 28 .2003 .964 28 .423
(BC) P .147 35 .053 .936 35 .043

Mutation Score S .113 28 .2003 .933 28 .072
Indicator (MSI) P .125 35 .179 .922 35 .016

1 Lilliefors Significance Correction.
2 Degrees of freedom.
3 This is a lower bound of the true significance.

For the branch coverage data the distribution for pairs appears to be non-
normal (p < .05), whereas that for solos is normal according to the Shapiro-
Wilk test. It is worth noting that the Shapiro-Wilk test yields exact significance



values and is thus more accurate (though less widely used) than the Kolmogorov-
Smirnov test. For the mutation score indicator data results are similar. The
Shapiro-Wilk test is in fact significant for pairs but not for solos. This finding
alerts us to the fact that a non-parametric test should be used. Therefore the
hypotheses from section 4.4 are evaluated using the Mann-Whitney one way
analysis of variance by ranks. The Mann-Whitney non-parametric tests are used
for testing differences between the two experimental groups (S and P), when
different subjects are used in each group.

Table 6. Mann-Whitney Test Statistics (grouping variable: Development Method)

Branch Coverage Mutation Score
(BC) Indicator (MSI)

Mann-Whitney U 471.500 423.000
Wilcoxon W 877.500 829.000
Z -.256 -.927
Asymp. Sig. (1-tailed) .399 .177

Table 6 shows test statistics and significances. It appeared that branch cov-
erage was not significantly affected by pair programming approach (the Mann-
Whitney test statistics: U = 471.5, non-significant, z = −.26). Mutation score in-
dicator was not significantly affected by pair programming approach (the Mann-
Whitney test statistics: U = 423.0, non-significant, z = −.93), either. An effect
size (r = Z√

N
where Z is the z-score in Table 6, and N is the size of the study

i.e. 63) is an objective and standardized measure of the magnitude of observed
effect. The effect size is extremely small for branch coverage (r = −.03) and a
bit higher, but still rather small, for mutation score indicator (r = −.12). The
later result may suggest the need for further experimentation.

Why did not pair programming result in a significant increase of testing
thoroughness or fault-finding effectiveness, measured by branch coverage and
mutation score indicator, respectively? The plausible explanation is that when
software project is not big enough, and the requirements are decomposed into
small features (user stories), the impact of pair programming practice on branch
coverage and mutation score indicator may be insignificant, because development
skill may, to a certain extent, compensate for the lack of a second pair of eyes.

Another possible explanation is that when the scope of the project is limited,
the impact of pair programming practice on branch coverage and mutation score
indicator may be insignificant, because of the limited number of tests.

6 Summary and Conclusions

The unique aspect of an experiment conducted at Wroclaw University of Tech-
nology was that it included the first ever assessment of the impact of pair pro-
gramming on thoroughness and fault-finding effectiveness of unit tests. Branch



coverage and mutation score indicator were examined to find how thoroughly
tests exercise programs, and how effective they are, respectively. It appeared that
the pair programming practice used by the subjects, instead of solo program-
ming, did not significantly affect branch coverage (U = 471.5, non-significant,
r = −.03), or mutation score indicator (U = 423.0, non-significant, r = −.12). It
means that the impact of pair programming on thoroughness and fault-finding
effectiveness of unit test suites was not confirmed. The validity of the results
must be considered within the context of the limitations discussed in the valid-
ity evaluation section. The study can benefit from several improvements before
replication is attempted. The most significant one is conducting a larger project,
while securing a sample of large enough size to guarantee a high-power design.
Further experimentation in other contexts (e.g. in industry, on larger projects)
is needed to establish evidence-based recommendations for the impact of pair
programming practice on thoroughness and effectiveness of test suites.
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