
This is a preprint of an article: Lech Madeyski and Lukasz Sza la, “The Impact of Test-Driven
Development on Software Development Productivity — An Empirical Study”, in Software Process
Improvement, ser. Lecture Notes in Computer Science, P. Abrahamsson, N. Baddoo, T. Margaria,
R. Messnarz, Eds., LNCS 4764. Springer, 2007, pp.200-211
http://dx.doi.org/10.1007/978-3-540-75381-0_18

The Impact of Test-Driven Development on
Software Development Productivity — An

Empirical Study

Lech Madeyski, Lukasz Sza la

Institute of Applied Informatics, Wroc law University of Technology,
Wyb.Wyspiańskiego 27, 50370 Wroc law, POLAND

Lech.Madeyski@pwr.wroc.pl, Lukasz.Szala@e-informatyka.pl

Abstract. Test-driven development (TDD) is entering the mainstream
of software development. We examined the software development pro-
cess for the purpose of evaluation of the TDD impact, with respect to
software development productivity, in the context of a web based system
development. The design of the study is based on Goal-Question-Metric
approach, and may be easily replicated in different industrial contexts
where the number of subjects involved in the study is limited. The study
reveals that TDD may have positive impact on software development
productivity. Moreover, TDD is characterized by the higher ratio of ac-
tive development time (described as typing and producing code) in total
development time than test-last development approach.

1 Introduction

Experimentation in software engineering is a relatively young field. Nev-
ertheless, relevance of experimentation to software engineering practi-
tioners is growing because empirical results can help practitioners make
better decisions and improve their products and processes. Beck suggests
treating each software development practice as an experiment in improv-
ing effectiveness, productivity etc. [1]. Productivity is usually defined as
output divided by the effort required to produce that output [2]. An in-
teresting survey of productivity measures is also presented by Fowler [3].
Test-driven development (TDD) practice [4], also called test-first pro-
gramming (TFP) [1], is a software development practice that has re-
cently gained a lot of attention from both software practitioners and
researchers, and is becoming a primary means of developing software
worldwide [5,6,7,8,9,10,11,12,13,14]. Moreover, one of the most impor-
tant advantages of TDD is high coverage rate. In this paper, we present
how we evaluated the impact of TDD practice on software development
productivity and activity. The design of the study is based on Goal-
Question-Metric (GQM) approach [15], and can be easily replicated in
different industrial contexts, where the number of subjects that may be
involved in an empirical study is often limited and the generalization of
the results is not the key issue.

1

http://dx.doi.org/10.1007/978-3-540-75381-0_18

2 Related work

Several empirical studies have focused on TDD, as promising alterna-
tive to traditional, test-last development (TLD), also called test-last
programming (TLP). Some of them concern productivity. Müller and
Hagner [5] report that TDD does not accelerate the implementation,
and the resulting programs are not more reliable, but TDD seems to
support better program understanding. George and Williams [6,7] show
that TDD developer pairs took 16% more time for development. How-
ever, the TDD developers produced higher quality code, which passed
18% more functional black box test cases. Other empirical results ob-
tained by Williams et al. [8,9] are more optimistic, as TDD practice had
minimal impact on developer productivity, while positive one on defect
density. Geras et al. [10] report that TDD had little or no impact on
developer productivity. However, developers tended to run tests more
frequently when using TDD. Erdogmus et al. [16] conclude that students
using test-first approach on average wrote more tests than students using
test-last approach and, in turn, students who wrote more tests tended
to be more productive. Madeyski [11] conducted a large experiment in
academic environment with 188 students and reports that solo program-
mers, as well as pairs using TDD, passed significantly fewer acceptance
tests than solo programmers and pairs using test-last approach, (p = .028
and p = .013 respectively). Bhat and Nagappan [12] conducted two case
studies in Microsoft and report that TDD slowed down the development
process 15%-35%, and decreased defects/KLOC 2.6-4.2 times.. Canfora
et al. [13] report that TDD significantly slowed down the development
process. Müller [14] conducted a unique empirical study and concludes
that the TDD practice leads to better-testable programs.
Summarizing, existing studies on TDD are contradictory. The differences
in the context in which the studies were conducted may be one explana-
tion for such results. Thus, case study conducted and valid in a project’s
specific context is a possible solution that can be applied in industrial
projects.

3 Empirical study

It is important to present the context of the project. Java and AspectJ

programming languages, and hence aspect-oriented programming (AOP)
[17], were used to implement the web-based system. The presentation tier
was provided by Java Server Pages and Servlets. The persistence layer
was used to store and retrieve data from XML files. An experienced
programmer, with 8 years of programming experience and recent indus-
trial experience, classified as E4 according to Höst et al. [18] classification
scheme (i.e. recent industrial experience, between 3 months and 2 years),
was asked to develop a web-based system for academic institution.
The whole development project consisted of 30 user stories. Additionally,
three phases (with random number of users stories in each phase) could
be distinguished. The first phase (10 user stories) was developed with
traditional, TLD approach, the second (14 user stories) with TDD and
the last 6 user stories again with TLD approach, see Figure 1.

Fig. 1. User stories divided into development phases

3.1 User requirements

The project was led with the eXtreme Programming (XP) methodology,
as TDD is a key practice of XP. Therefore, it seems reasonable to eval-
uate TDD practice in the context of XP. Although some practices (such
as pair programming) were neglected, user stories were used for intro-
ducing requirements concerning the developed system. The whole set of
30 user stories was prepared to outline the system, which is a web-based
paper submission and review system. It defines different user roles such
as Author, Reviewer, Chair and Content Manager, and specifies multi-
level authentication functionality. The system involves the management
of papers and their reviews on each step in their life cycle. Additionally
the application provides access to accepted and published papers to all
registered and unregistered users allowing users to select lists of articles
based on earlier defined set of criteria (e.g. published, accepted works).
The system supports a simple repository of articles with uploading of
text files and versioning.

3.2 Procedure

The Theme/Doc approach [19] provides support for identifying crosscut-
ting behaviour and was used to decompose the system into aspects and
classes. Themes are encapsulations of concerns and therefore are more
general than classes and aspects. They may represent a core concept of
a domain or behaviour triggered by other themes. The procedure used
during the TLD phase is presented in Figure 2, and the analogous one
for the TDD phase in Figure 3. In TLD phase the participant chooses
a user story and then develops its themes (only these parts which are
valid for a specified user story). After finishing each theme, a set of unit
tests is written. When the whole user story is complete, the participant
may perform a system refactoring. The TDD phase differs in first steps.
After choosing a user story, the participant chooses a theme and writes
tests as well as production code to the specified theme in small test first,
then code cycles. The activity is repeated (for other themes related to
the selected user story) until the user story is completed. From this point
the procedure is the same as in traditional approach.

Fig. 2. Development procedure in the TLD phase

3.3 Validity evaluation

There are always threats to the validity of an empirical study. In evalu-
ating the validity of the study, we follow the schema presented in [20].
As a statistical conclusion validity threat, we see the lack of inferential
statistics in the analysis of the results. However, the points at which
TDD is introduced and withdrawn are randomly determined to facili-
tate analysis. As with most empirical studies in software engineering,
an important threat is process conformance, represented by the level of
conformance of the subject (i.e. developer) to the prescribed approach.
Process conformance is a threat to statistical conclusion validity, through
the variance in the way the processes are actually carried out [21]. It is
also a threat to construct validity, through possible discrepancies be-
tween the processes as prescribed, and the processes as carried out [21].
Process conformance threat was handled by monitoring possible devi-
ations, with the help of ActivitySensor plugin integrated with Eclipse
IDE (Integrated Development Environment). ActivitySensor controlled
how development approaches (i.e. TDD or TLD) were carried out (e.g.
whether tests were written before related pieces of a production code).

Fig. 3. Development procedure in the TDD phase

Moreover, the subject was informed of the importance of following as-
signed development approach in each phase.

The mono-operation bias is a construct validity threat, as the study was
conducted on a single requirements set. Using a single type of measures
is a mono-method bias threat. To reduce this threat, different measures
(e.g. number of acceptance tests, user stories, lines of code per unit of
effort) were used in the study, as well as the post-test questionnaire was
added to enable qualitative validation of the results. It appeared that the
subject was very much in favour of TDD approach, which is in line with
the overall results. Interaction of different treatments is limited, due to
the fact that the subject was involved in one study only. Other threats
to construct validity are social threats (e.g. hypothesis guessing and ex-
perimenter’s expectances). As neither the subject, nor the experimenters
have any interest in favour of one approach or another, we do not expect
it to be a large threat.

Internal validity of the experiment concerns the question whether the
effect is caused by independent variables, or by other factors. A natural
variation in human performance, as well as maturation, is a threat. Pos-

sible diffusion, or imitation of treatments were under control with the
help of ActivitySensor Eclipse plugin.

The main threat to the external validity is related to the fact that sub-
ject population may not be representative to the population we want to
generalize. However, the programmer’s experience is typical of a young
programmer, with solid software engineering academic background and
recent industrial experience. Thus, it seems to be relatively close to the
population of interest.

4 Measurements definition

The empirical study was conducted using the GQM method, described
in [15]. The measurement definition relates to the programmer’s produc-
tivity (in terms of source code lines written, implemented user stories,
and number of acceptance tests passed).

Goal: The analysis of the software development process for the purpose of
evaluation of the TDD approach impact, with respect to software develop-
ment productivity and activity, from the point of view of the researchers,
in the context of a web based, aspect-oriented system development.

Questions:

– Question 1: How does TDD affect the programmer’s productivity in
terms of the source code lines written per unit of effort?

Metrics: NCLOC (Non Comment Lines Of Code) per unit of ef-
fort (programming time) is one of productivity measures. However,
NCLOC per unit of effort tend to emphasize longer rather than effi-
cient, or high-quality programs. Refactoring effort may even results
in negative productivity measured by NCLOC. Therefore, better
metrics of a programmer’s productivity will be used.

– Question 2: How does TDD affect a programmer’s productivity in
terms of user stories provided per unit of effort?

Metrics: Because in XP methodology the user requirements are in-
troduced as user stories, the implementation time of a single user
story may be considered as a productivity indicator. Therefore, the
number of user stories developed by a programmer per hour is mea-
sured.

– Question 3: How does TDD affect a programmer’s productivity in
terms of Number of Acceptance Tests Passed per unit of effort?

Metrics: Because user stories have diverse sizes, we decided to mea-
sure the programmer’s productivity using acceptance tests, as NATP
(Number of Acceptance Tests Passed) per hour better reflects the
project’s progress and programmer’s productivity. There were 87 ac-
ceptance tests specified for the system.

– Question 4: How does TDD affect a programmer’s activity in terms
of passive time, compared with the total development time?

Metrics: The programmer’s productivity may be expressed as a re-
lation of active time TA to the total time (sum of active and passive

times TA +TP) spent on a single user story implementation. The ac-
tive time may be described as typing and producing code, whilst the
passive time is spent on reading the source code, looking for a bug
etc. The ActivitySensor plugin [22] integrated with Eclipse IDE al-
lows to automatically collect development time, as well as to divide
total development time into active and passive times. A switch from
active to passive time happens after 15 seconds of a programmer’s
inactivity (the threshold was proposed by the activity sensor au-
thors). To separate passive time from breaks in programming the
passive time counter is stopped (after 15 minutes of inactivity) until
a programmer hits a key.

5 Results

The whole development process took 112 hours. The finished system
was comprised of almost 4000 lines of source code (without comments,
imports etc.). The system had 89 interfaces, classes, and aspects. There
were 156 unit tests written to cover the functionality. Branch coverage
was over 90%.

5.1 Productivity metrics analysis

Although the XP methodology puts pressure on source code quality (pro-
gramming is not just typing!), the differences in software development
productivity are essential. Table 1 contains a comparison of productiv-
ity metrics in TLD1, TDD and TLD2 phases. TLD1 and TLD2 phases
shown in Figure 1 are treated jointly in the last column named TLD.

TLD1 TDD TLD2 TLD (TLD1 and
TLD2 combined)

Implementation time/US [h] 6.42 2.32 2.50 4.97

Lines of code/US 159.70 107.21 133.17 149.75

Lines of code/h 24.76 46.18 53.27 30.14

Table 1. Productivity comparison in all development phases

It appeared that the implementation time of a single user story during
the TLD phase took, on average, almost 5 hours, while during the TDD
phase only 2.32 hours, see Table 1. User stories are common units of
requirements, but their size and complexity level are not equal. The
average size (expressed in lines of code) of a user story, developed with
TLD approach, was almost 1.5 times bigger than a user story developed
during the TDD phase, see Table 1. It may mean that the code written
in TDD phase is more concise than its TLD equivalent.

The next comparison concerns the number of lines of code written per
one hour. The results favour the TDD approach with average 46.18 lines
above the TLD with 30.14 lines per hour, see Table 1 and Figure 4.

Fig. 4. Boxplot of average number
of lines of code per hour in TLD,
and TDD phases

Fig. 5. Boxplot of average number
of lines of code per hour in TLD1,
TDD, and TLD2 phases

More deatailed observation of boxplots, in Figures 4 and 5, allows to re-
veal an interesting regularity. Although the TDD phase is characterised
by higher productivity in juxtaposition with TLD phase (TLD1 and
TLD2 treated jointly), when comparing all three phases, the productiv-
ity increases with the system’s evolution. It may be explained by gaining
skills and experience by the programmer, as well as making the program-
mer more familiar with the requirements, with each completed user story.

The productivity may be measured as a number of passed acceptance
tests that cover added functionality, divided by number of hours spent
on implementation. When looking at the development cycle divided into
two phases (TDD vs. TLD), we measured the following values of passed
acceptance tests per hour: 1.44 for TDD and 0.99 for TLD (TDD ap-
proach is characterised by a faster functionality delivery, see Figure 6).
But when analysing the development cycle as 3 phases (TLD1, TDD
and TLD2, see Figure 7), we found that the last two phases were similar
while TLD1 phase was considerably worse.

5.2 Analysis of programming activities

Figure 8 presents a proportion of passive time to total development time.
We can observe that in first (TLD1) phase the passive time took the

Fig. 6. Boxplot of the number of ac-
ceptance tests passed per hour in
TLD, and TDD phases

Fig. 7. Boxplot of the number of ac-
ceptance tests passed per hour in
TLD1, TDD, and TLD2 phases

0%

10%

20%

30%

40%

50%

60%

70%

80%

2 1 3 10 4 6 12 20 11 7 27 22 18 9 8 5 13 14 15 16 17 19 21 25 28 29 26 24 23 30

User story number

P
as

si
ve

 t
im

e
to

 t
o

ta
l d

ev
el

o
p

m
en

t
ti

m
e

ra
ti

o `
TLD1 TDD TLD2

Fig. 8. The passive time to total development time proportion during the project

majority of total time (over 50%). This rule changed when the testing
metohod was switched (the passive time only once exceeded 50% level).

Fig. 9. Boxplot of the proportion of
passive to overall development time
in TLD, and TDD phases

Fig. 10. Boxplot of the proportion
of passive to overall development
time in TLD1, TDD, and TLD2
phases

The boxplots of active and passive times are presented in Figures 9
and 10. We can observe that the passive time is higher in TLD phase.
However, the difference is not so obvious when we analyse each phase
separately, as results of TDD and TLD2 phases are similar.

6 Conclusions

If we analyse the development process divided into two phases (TLD and
TDD), the programmer’s productivity in TDD phase is definitely higher.
A possible explanation is that TDD approach limits the feedback cycle
length to minutes. Thus, the extent of potential bug is usually limited
(a programmer knows exactly where should look for an improper sys-
tem behaviour). Another plausible explanation, why TDD may increase
software development productivity, is that improving quality by fixing
defects at the earliest possible time (by means of continuous and rigorous
testing and refactoring) costs up front but it pays off in the long run.
However, when the process is divided into three phases (TLD1, TDD,
TLD2) a different pattern appears. In the case of source code lines writ-
ten per unit of effort (Question 1) the productivity increases with the
project development progress. The proportion of passive to overall devel-
opment time (Question 4) falls in TDD phase, but in the last two phases
(TDD and TLD2) is similar. In the case of user stories per unit of effort
(Question 2), as well as acceptance tests per unit of effort (Question 3)

the programmer’s productivity increases in TDD phase, whilst in the last
two phases (TDD and TLD2) is similar as well. A plausible explanation,
why productivity in TLD2 phase does not fall, may be that the program-
mer gains experience, as well as knowledge of the application domain,
during the course of the project. Thus not only TDD, but also experience
and knowledge of the application domain would drive productivity.

The study can benefit from several improvements before replication is
attempted. The most significant one is to replicate the study finishing
with TDD in the fourth phase. In order to conclude that TDD has in
fact positive impact on productivity, it might be advisable to conduct
an experiment securing a sample of large enough size to guarantee a
high-power design.

Acknowledgements

The authors thank Adam Piechowiak for ActivitySensor Eclipse plugin
development.

This work has been financially supported by the Ministry of Education
and Science as a research grant 3 T11C 061 30 (years 2006-2007).

References

1. Beck, K., Andres, C.: Extreme Programming Explained: Embrace
Change. 2nd edn. Addison-Wesley (2004)

2. Maxwell, K., Forselius, P.: Benchmarking Software-Development
Productivity - Applied Research Results. IEEE Software 17(1)
(2000) 80–88

3. Fowler, M.: Cannot Measure Productivity (accessed March 2007)
http://www.martinfowler.com/bliki/CannotMeasureProductivity.html

4. Beck, K.: Test Driven Development: By Example. Addison-Wesley
(2002)

5. Müller, M.M., Hagner, O.: Experiment about test-first program-
ming. IEE Proceedings - Software 149(5) (2002) 131–136

6. George, B., Williams, L.A.: An Initial Investigation of Test Driven
Development in Industry. In: Proceedings of the 2003 ACM Sympo-
sium on Applied Computing (SAC ’03), ACM (2003) 1135–1139

7. George, B., Williams, L.A.: A structured experiment of test-driven
development. Information and Software Technology 46(5) (2004)
337–342

8. Williams, L., Maximilien, E.M., Vouk, M.: Test-Driven Development
as a Defect-Reduction Practice. In: Proceedings of the 14th Interna-
tional Symposium on Software Reliability Engineering (ISSRE ’03),
Washington, DC, USA, IEEE Computer Society (2003) 34–48

9. Maximilien, E.M., Williams, L.A.: Assessing Test-Driven Develop-
ment at IBM. In: Proceedings of the 25th International Conference
on Software Engineering (ICSE ’03), IEEE Computer Society (2003)
564–569

10. Geras, A., Smith, M.R., Miller, J.: A prototype empirical evaluation
of test driven development. In: Proceedings of the 10th International
Symposium on Software Metrics (METRICS ’04), IEEE Computer
Society (2004) 405–416

11. Madeyski, L.: Preliminary Analysis of the Effects of Pair Program-
ming and Test-Driven Development on the External Code Qual-
ity. In Zieliński, K., Szmuc, T., eds.: Software Engineering: Evo-
lution and Emerging Technologies. Volume 130 of Frontiers in Ar-
tificial Intelligence and Applications. IOS Press (2005) 113–123
http://madeyski.e-informatyka.pl/download/Madeyski05b.pdf

12. Bhat, T., Nagappan, N.: Evaluating the efficacy of test-driven de-
velopment: industrial case studies. In: Proceedings of the 2006
ACM/IEEE International Symposium on Empirical Software Engi-
neering (ISESE ’06), New York, NY, USA, ACM Press (2006) 356–
363

13. Canfora, G., Cimitile, A., Garcia, F., Piattini, M., Visaggio, C.A.:
Evaluating advantages of test driven development: a controlled ex-
periment with professionals. In: Proceedings of the 2006 ACM/IEEE
International Symposium on Empirical Software Engineering (ISESE
’06), New York, NY, USA, ACM Press (2006) 364–371

14. Müller, M.M.: The Effect of Test-Driven Development on Program
Code. In Abrahamsson, P., Marchesi, M., Succi, G., eds.: XP. Volume
4044 of Lecture Notes in Computer Science., Springer (2006) 94–103

15. Basili, V.R., Caldiera, G., Rombach, H.D.: The Goal Question Met-
ric Approach. In: Encyclopedia of Software Engineering. (1994) 528–
532

16. Erdogmus, H., Morisio, M., Torchiano, M.: On the Effectiveness of
the Test-First Approach to Programming. IEEE Transactions on
Software Engineering 31(3) (2005) 226–237

17. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V.,
Loingtier, J.M., Irwin, J.: Aspect-Oriented Programming. In Aksit,
M., Matsuoka, S., eds.: Proceedings of the European Conference on
Object-Oriented Programming (ECOOP’97). Volume 1241 of Lec-
ture Notes in Computer Science., Springer (1997) 220–242

18. Höst, M., , Wohlin, C., Thelin, T.: Experimental Context Classifica-
tion: Incentives and Experience of Subjects. In: Proceedings of the
27th International Conference on Software Engineering (ICSE ’05),
New York, NY, USA, ACM Press (2005) 470–478

19. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design :
The Theme Approach. Addison-Wesley (2005)

20. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B.,
Wesslén, A.: Experimentation in Software Engineering: An Intro-
duction. Kluwer Academic Publishers, Norwell, MA, USA (2000)

21. Sørumg̊ard, L.S.: Verification of Process Conformance in Empiri-
cal Studies of Software Development. PhD thesis, The Norwegian
University of Science and Technology (1997)

22. ActivitySensor project (accessed March 2007) http://www.e-
informatyka.pl/sens/Wiki.jsp?page=Projects.ActivitySensor

	The Impact of Test-Driven Development on Software Development Productivity --- An Empirical Study
	Lech Madeyski, Łukasz Szała

