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Abstract. Pair programming is regarded as one of the practices that
can make testing more rigorous, thorough and effective. Therefore, we
examined pair programming vs. solo programming with respect to both,
thoroughness and fault detection effectiveness of test suites. Branch cov-
erage and mutation score indicator were used as measures of how thor-
oughly tests exercise programs, and how effective they are, respectively.
It turned out that the pair programming practice did not significantly
affect branch coverage (U = 471.5, non-significant, r = −.03), and muta-
tion score indicator (U = 422.0, non-significant, r = −.12). These results
are consistent with the results of selective analysis in which projects with
a limited number of assertions are excluded. Analysis of covariance was
performed to get a more sensitive measure of our experiment effect as
well as to reduce pre-existing differences among subjects. The obtained
results do not support anecdotal opinion regarding the positive impact
of pair programming on thoroughness or fault detection effectiveness of
unit tests. The validity of the results must be considered within the con-
text of the limitations of the study e.g. it is possible that the benefits of
pair programming will appear in longer, more complex projects.
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1 Introduction

Pair programming (PP) [1] has recently gained a lot of attention e.g. as one
of the flag-ship practices of eXtreme Programming (XP) methodology [2]. PP
is a software development practice in which two distinct roles are identified,
i.e. the role of a driver and a navigator. They contribute to the synergy of
the individuals in a pair working together at one computer and collaborating
on the same development tasks (e.g. design, test, code). The driver types at
the keyboard and focuses on the details of the production code or tests. The
navigator observes the work of the driver, reviews the code, proposes test cases,
considers the strategic implications [3,4] and looks for tactical and strategic
defects or alternatives [5]. In the case of solo programming, both activities are
performed by a single programmer. Convincing all programmers and managers
to accept a pair programming work culture may be a tough task. Managers
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sometimes feel as if they just got two people to do the same task, and waste
valuable “resources”. Better code or tests quality might be a good counter-
argument in such situations.

Test-driven development (TDD) [6], also known as test-first programming [2],
is another key and the well known software development practice of XP, supposed
to be used with PP. TDD constitutes a practice, which is based on specifying
a piece of functionality as a test (usually a low-level unit test), then writing
production code, and implementing the functionality, so that the test passes,
and finally refactoring, and iterating the process. The tests are run frequently,
while writing production code and drive the development process, hence the
name. Kobayashi et al. [7] suggested that PP, TDD and refactoring (which is
the inherent part of the TDD development cycle) had a very good synergy.
Therefore, it seems reasonable to evaluate PP practice in the context of TDD.

PP is supposed to be a software development practice that can influence unit
testing to make it more rigorous, thorough, and effective. The question is whether
the impact of PP is significant or not. Therefore, the research objective is to
evaluate the impact of PP practice on unit tests by means of an experiment. The
definition, design, and operation of the experiment are described in Section 4.

2 Measures of Unit Tests

Programmers who write unit tests should have a set of guidelines indicating
whether their software has been thoroughly and effectively tested. Accordingly,
in this section we discuss measures that can serve as such guidelines.

2.1 Code Coverage

Measuring code coverage is one guideline which can be applied, since code cov-
erage tools measure how thoroughly tests exercise programs [8]. However, it
remains a controversial issue as to whether code coverage is a good indicator
for fault detection capability of test cases [9]. Marick [8] points out that code
coverage may be misused, but code coverage tools are still helpful – especially if
they are used to enhance thought, and not to replace it.

Kaner [9] presents more than a hundred coverage measures. The crucial ques-
tion concerns the proper choice of a code coverage measure to be used. Useful
insights into this question are given by Cornett [11]. Statement coverage, also
known as line coverage, reports whether each executable statement is encoun-
tered. The main disadvantage of statement coverage is that it is insensitive to
some control structures. To avoid this problem, branch coverage, also known
as decision coverage, has been devised. Branch coverage is a measure based on
whether decision points, such as if and while statements, evaluate both true
and false during test execution, thus exercising both execution paths. Branch
coverage includes statement coverage since exercising every branch must lead
to exercising every statement. However, a shortcoming of the branch coverage
measure is that it ignores branches within boolean expressions which occur due
to short-circuit operators (e.g. || and && operators in Java). The second argu-
ment of these operators is only executed or evaluated if the first argument does



not suffice to determine the value of the expression. Thus, branch coverage mea-
sure could consider control structures completely exercised even without calls to
all methods. Unfortunately, the most powerful measures such as Modified Con-
dition/Decision Coverage, required for aviation software, or Condition/Decision
Coverage are not available for Java software. Therefore, branch coverage measure
was used in our analysis, as the best of the available code coverage measures.

Branch coverage is offered by several tools e.g. Clover, JCoverage, and Cober-
tura. It appeared that the branch coverage results obtained by JCoverage and
Cobertura were in line with the results obtained by Clover, and therefore only
Clover results were included in further analysis.

2.2 Mutation Score

A way to measure the effectiveness of test suites is a fault-based technique, called
mutation testing, originally proposed by DeMillo et al. [12] and Hamlet [13].
Mutation analysis is a way to measure the quality of the test cases, so the actual
testing of the software is a side effect [14]. The effectiveness of test suites for
fault localization is estimated on seeded faults. The faults are introduced into
the program by creating a collection of faulty versions, called mutants. These
mutants are created from the original program by applying mutation operators
which describe syntactic changes to the programming language. The tests are
used to execute these mutants with the goal of causing each mutant to produce
incorrect output.

Mutation score (or mutation adequacy), defined as a ratio of the number
of killed mutants to the total number of non-equivalent mutants, is a kind of
quantitative measurement of the tests quality [15]. The total number of non-
equivalent mutants results from a difference between total number of mutants
and the number of equivalent mutants. Equivalent mutants always produce the
same output as the original program, so they cannot be killed. Unfortunately,
determining which mutant programs are equivalent to the original program is
a very tedious and error-prone activity, so even ignoring equivalent mutants is
sometimes suggested [14]. Ignoring equivalent mutants means that we are ready
to accept the lower bound on mutation score (named mutation score indicator).
Accepting it results in the cost-effective application of a mutation analysis and
still provides meaningful information about the fault detection effectiveness of
test suites.

Empirical studies have supported the effectiveness of mutation testing. Walsh
[16] found empirically that mutation testing is more powerful than statement and
branch coverage. Frankl et al. [17] and Offutt et al. [18] found that mutation
testing was more effective at finding faults than data-flow. Moreover, Fowler [19]
found mutation the testing tool support useful in practice.

Although mutation testing is powerful, it is not meant as a replacement for
code coverage, but only as a complementary approach useful in finding code
that is executed by running tests, but not actually tested. Moreover, it is time-
consuming, and impractical to use without a reliable, fast and automated tool
that generates mutants, runs the mutants against a suite of tests, and reports
the mutation score of the test suite. Unfortunately, to date, proposed muta-
tion tools for Java have several limitations that prevent practitioners from using



them. Jester [20] was probably the first and most widely known tool dedicated to
Java language. However, Jester is too slow to be used in large software projects.
It modifies the source code of the software components and may break the code
making operation risky. Offutt [21] even stated that Jester turned out to be ”a
jest” of mutation, rather than a mutation testing tool. MuJava [22] is the most
interesting tool that offers a large set of mutation operators dedicated to the
Java language. Unfortunately, MuJava has some limitations that may prevent
practitioners from using this tool in everyday development. For example, it does
not work with the JUnit, the most widely used unit testing framework. However,
it is worth mentioning that the recently released MuClipse plugin [23] seems to
be an interesting and promising solution to overcome this limitation. Unfortu-
nately, MuClipse exhibits some limitations concerning automation of mutants
generation. For example, it is not possible to adjust test classes naming conven-
tion of MuClipse to the naming convention used by the system under test, and
to easily select whole project to test. Also there are limitations with the testing
process (e.g. it is not possible to select more than one class simultaneously, it is
necessary to select additional tests for each class explicitly). As a result, muta-
tion testing by means of MuClipse is far from being easy to run in a production
environment. Moreover, lack of integration with a build tool (Ant or Maven) is
still an issue. Chevalley and Thévenod-Fosse [24] proposed another mutation tool
that unfortunately does not support the execution of mutants and is not freely
available for download. Therefore, a new mutation tool, called Judy, has been
developed, using an aspect-oriented approach to speed up mutation testing [25].
Judy has a build-in support of JUnit and Ant.

The mutations set consists of 16 mutations: ABS (Absolute value inser-
tion), AOR(Arithmetic operator replacement), LCR (Logical connector replace-
ment), ROR (Relational operator replacement), UOI (Unary operator insertion),
UOD(Unary operator deletion), SOR (Shift operator replacement), LOR (Logi-
cal operator replacement), COR (Conditional operator replacement), ASR (As-
signment operator replacement), EOA (Reference and content assignment re-
placement), EOC (Reference and content comparison replacement), EAM (Ac-
cessor method change), EMM (Modifier method change), JTD (this keyword
deletion), JTI (this keyword insertion). The first five operators (ABS, AOR,
LCR, ROR, UOI) were taken from the research of Offutt et al.’s research [26]
to identify a set of sufficient mutation operators. The idea of sufficient mutation
operators is to minimize the number of mutation operators, whilst getting as
much testing strength as possible. Ammann and Offut [27] have recently pre-
sented these five mutation operators along with UOD, SOR, LOR, COR, ASR
as program-level mutation operators dedicated to Java language. Ma et al. [28]
found that EOA and EOC mutation operators can model object-oriented (OO)
faults that are difficult to detect and therefore, can be considered to be good mu-
tation operators for OO programs. Finally, EAM, EMM, JTD and JTI mutation
operators were added, as there was still no determined set of selective mutation
operators for class mutation operators. Thus, there is no reason to exclude these
operators [28].

Branch coverage and mutation score indicator were used as measures to de-
termine thoroughness and fault detection effectiveness of test suites.



3 Related Work

Researchers and practitioners have reported numerous, sometimes anecdotal,
and favourable studies of PP. Beck and Andres wrote that a pair is even more
than twice as effective as the same two people programming solo [2]. How-
ever, empirical studies concerning the effort overhead and speedup ratio of the
PP practice are inconclusive [29,3,30,31,32,33,5]. According to the empirical re-
sults, the effort overhead is probably somewhere between 7%(13% excluding
rework) [33] and 84% (obtained in a large one day experiment in 29 interna-
tional consultancy companies) [5]. Speed-up ratio associated with PP is between
8% [5] and almost 47% [33]. Results obtained by other researchers [29,3,30,31,32]
are somewhere between the above extremes.

Another important question concerning PP practice is whether it improves
the quality of software products. Müller showed that in an academic setting a
pair of developers did not produce more reliable code than a single developer
whose code was reviewed [34,35]. Reliability was defined as the number of passed
tests divided by the total number of tests. Madeyski conducted a large experi-
ment with 188 students and concluded that there was no difference in the number
of acceptance tests passed when PP was used instead of solo programming [36].
Moreover, package level design quality indicators (Martin’s metrics [37]) were
not significantly affected by using the PP practice [38]. Hulkko and Abrahams-
son imply that PP may not necessarily provide as extensive quality benefits as
suggested in the literature, and on the other hand, does not result in consistently
superior productivity when compared to solo programming [32]. Arisholm et al.
come to the conclusion that PP in general does not increase the proportion of
correct solutions, as there was only a 7% increase in the proportion of correct
solutions of the pairs compared with the individuals [5].

PP may have a positive impact on unit tests, e.g. code coverage as suggested
by Langr [39], because of a synergy of the individuals in a pair working together
on the same unit tests. However, to the author’s knowledge, there is no empirical
evidence concerning the impact of PP on the thoroughness and fault detection
effectiveness of unit tests, with exception of the results of the experiment pre-
sented in Section 4. Therefore, the aim of this paper is to fill this gap.

4 Experiment Description

The definition, design, as well as operation of the experiment is described in this
section. The following definition determines the foundation for the experiment
[40]:
Object of study. The objects of study are software development products (de-
veloped code).
Purpose. The purpose is to evaluate the impact of pair programming practice
on unit tests.
Quality focus. The quality focus is the thoroughness and fault detection ef-
fectiveness of unit test suites, measured by branch coverage and mutation score
indicator, respectively.
Perspective. The perspective is from the researcher’s point of view.



Context. The experiment is run with the help of MSc students as subjects
involved in the development of a finance accounting system in Java.

4.1 Context Selection

The context of the experiment (described in Table 1) was the Programming in
Java course, and hence the experiment was run off-line (not industrial software
development) [40]. Java was the programming language and Eclipse was the In-
tegrated Development Environment (IDE). All the subjects had prior experience
in C and C++ programming (using OO approach) as a minimum. The course
consisted of seven lectures and fifteen laboratory sessions (90 minutes each), and
introduced Java programming language, using PP and TDD. The subjects’ prac-
tical skills in programming in Java using PP and TDD were developed through
training and evaluated during the first seven laboratory sessions (10.5 hours).
The experiment took place during the last eight laboratory sessions (12 hours).
The problem, i.e. the development of the finance accounting system, was as close
to a real one, as it is possible in an academic environment. The system the stu-
dents developed was aimed to support a small internet provider company in
collecting data about clients and requested services, as well as the monitoring
of accounts, and the history of all financial requests. The subjects participating
in the study were mainly second and third-year (and few fourth and fifth-year)
computer science MSc students. The MSc programme of Wroclaw University of
Technology (WUT) is a 5-year programme after high school.

Table 1. The context of the experiment

Mean programming experience of subjects [years] 3.79
Duration of training tasks (7 sessions) [hours] 10.50
Duration of the experiment task (8 sessions) [hours] 12
Number of user stories used to describe requirements 27
Mean number of acceptance tests passed 13.13
Mean number of non-commented lines of code 895.98
Mean number of unit tests 20.37
Mean number of executed asserts 42.19

The study constituted part of an empirical research with the aim of obtaining
empirical evidence on the impact of PP and TDD on different aspects of software
products and processes [36,38,41,42,43,44].

4.2 Variables Selection

The independent variable is the software development method – solo (SP) or
pair programming (PP) – used by the experiment groups. The dependent vari-
ables are mean values of branch coverage (denoted as BC) and mutation score
indicator (denoted as MSI), described in Section 2.



4.3 Hypotheses Formulation

The crucial aspect of the experiment is to find out and formally state what is
intended and to evaluate it. The following null hypotheses are to be tested:

– H0 BC, SP/PP — There is no difference in the mean value of branch coverage
(BC) between the solo programmers and pairs (SP and PP).

– H0 MSI, SP/PP — There is no difference in the mean value of mutation score
indicator (MSI) between the solo programmers and pairs (SP and PP).

4.4 Selection of Subjects

The choice of the subjects is based on convenience. They are students taking
the Programming in Java course. Prior to the experiment, the students filled in
a pre-test questionnaire. The aim of the questionnaire was to get the picture of
the students’ background. It turned out that the mean value of programming
experience in calendar years was 3.7 for solos and 3.9 for pairs. The ability to
generalize from this context is further elaborated, when discussing threats to the
experiment.

4.5 Design of the Experiment

The design is one factor (the software development method), with the two treat-
ments (SP and PP). The assignment to PP teams took into account the subjects’
preferences (i.e. they were allowed to suggest partners), as it seemed to be more
natural and close to real world practice. Thus this is a quasi-experiment [45]. All
of the analysed teams were supposed to follow the rules of TDD practice. In the
case of two of the solo projects, pre-test questionnaires were not filled in. In the
case of one solo project, tests were not written and submitted properly. These
projects were not included in the analysis. The resulting design was unbalanced,
with 28 solo programmers and 35 pairs. Analysis of these 63 projects is con-
ducted in Section 5, whilst further analysis of selected projects is performed in
Sections 6.1 and 6.2.

4.6 Instrumentation and Measurement

The instruments [40] and materials for the experiment were prepared in ad-
vance, and consisted of requirements artifacts (user stories), pre-test and post-
test questionnaires, Eclipse project framework, a detailed description of software
development approaches (S and P), subjects’ duties, instructions how to use the
experiment infrastructure (e.g. CVS version control system) etc. BC and MSI
were collected by means of Clover [46] and Judy [25] tools, respectively.

4.7 Validity Evaluation

When conducting the experiment, there is always a set of threats to the validity
of the results. To enable an analysis of the validity of the current study, the
possible threats are discussed, based on Wohlin et al. [40].



Threats to the statistical conclusion validity are concerned with the issues
that affect the ability to draw the correct conclusion about relations between the
treatment and the outcome of the experiment, e.g. choice of statistical tests, tools
and samples sizes, and the care taken in the implementation and measurement of
the experiment [40]. Threats to the statistical conclusion validity are considered
to be under control. Robust statistical techniques, tools (e.g. SPSS) and large
sample sizes to increase statistical power are used. Non-parametric tests are used
which do not require a certain underlying distribution of the data. Treatment
implementation is considered reliable. However, the risk in the treatment im-
plementation is that the experiment was spread across laboratory sessions. To
minimize the risk, access to the Concurrent Versions System (CVS) repository
was restricted to specific laboratory sessions (access hours and IP addresses).
The validity of the experiment is highly dependent on the reliability of the mea-
sures which can be divided into two classes: objective measures, and subjective
measures [40]. Measures used in the study were selected to be objective rather
than subjective e.g. do not involve human judgement [40].

The internal validity of the experiment concerns the question of whether the
effect is caused by independent variables, or by other factors. Concerning the
internal validity, the risk of compensatory rivalry, or demoralization of subjects
receiving less desirable treatments must be considered. The group using the
classical method (i.e. SP) may do their very best to show that the old method is
competitive. On the other hand, subjects receiving less desirable treatments may
perform not as well as they generally do. However, the subjects were informed
that the goal of the experiment was to measure different development methods,
not the subjects’ skills. A possible diffusion or imitation of treatments was under
control of the assistant lecturers. The threat of selection was also under control,
as the experiment was a mandatory part of the course. It was also checked that
mean programming experience (in calendar years) was similar in each group (S
and P). Moreover, according to questionnaires, mean programming experience
of the subjects who took part in the experiment, and three solo subjects who
were excluded from the analysis, were almost the same.

Construct validity concerns the ability to generalize from the experiment
result to the concept behind the experiment. Some threats relate to the design
of the experiment, and others to social factors [40]. Threats to the construct
validity are considered not very harmful. The mono-operation bias is a threat,
as the experiment was conducted on a single software development project. Using
a single type of measure is a mono-method bias threat. To reduce mono-method
threats, the post-test questionnaire was added, to enable qualitative validation
of the results. There seems to be no apparent contradiction between qualitative
and quantitative results. For example, it turned out that, in the case of solo
programmers, 8 subjects (28.6%) strongly disagreed, while 4 subjects (14.3%)
disagreed with the statement “I am more sure of software developed by means
of pair programming approach than solo programming”. On the other hand
11 subjects (39.3%) agreed, while 5 subjects (17.9%) strongly agreed with the
statement. In the case of programmers working in pairs, 1 subject (1.4%) strongly
disagreed, while 9 subjects (12.9%) disagreed with the statement. Furthermore,
36 subjects (51.4%) agreed, while 24 subjects (34.3%) strongly agreed with the
statement. Interaction of different treatments is limited due to the fact that the



subjects were involved in one study only. Other threats to construct validity
are social threats (e.g. hypothesis guessing and experimenter expectancies). As
neither the subjects nor the experimenters have any interest in favour of one
technique or another, we do not expect it to be a large threat.

As with most empirical studies in software engineering, an important threat is
the process conformance represented by the level of conformance of the subjects
to the prescribed techniques. Process conformance is a threat to statistical con-
clusion validity, through the variance in the way the processes are actually carried
out, and also to construct validity, through possible discrepancies between the
processes as prescribed, and the processes as carried out [48]. The process confor-
mance threat was handled to some extent by attempting to avoid deviations, with
help from assistant lecturers. They controlled how development methods were
carried out and induced subjects to follow the prescribed techniques. Moreover,
the subjects were informed of the importance of following proper development
methods. However, we can not exclude deviations from the prescribed techniques
so the issue of process conformance may not be neglected. The ratio of lines of
test code to lines of production code is rather low (16998:39538). Therefore, in
more selective analysis in Section 6.1, we decided to remove projects with seri-
ously limited number of JUnit assertions executed by unit test suites so as to
sample from the population of projects that might follow TDD guidelines more
strictly.

Threats to external validity are the conditions that limit our ability to gener-
alize the results of our experiment to industrial practice. The largest threat stems
from the fact that the subjects were students, who had short-time experience
in PP. However, Kitchenham et al. [49] states that students are the next gen-
eration of software professionals and thus, are relatively close to the population
of interest. Some indications on the similarities between student subjects and
professionals are also given by Höst et al. [50]. Moreover, Tichy provides several
arguments why students are acceptable as subjects [51]. The threats to external
validity were reduced by making the experimental environment as realistic as
possible (e.g. requirements specification came from an external client).

4.8 Experiment Operation

The experiment was run at WUT and consisted of a preparation phase and an
execution phase. The preparation phase of the experiment embraced lectures
and training exercises, given directly before the experiment in order to improve
skills and to give practice in the areas of PP, TDD, and unit testing using JUnit.
Lectures and exercises were given by the author, as well as by assistant lecturers.
The goal of this preparation phase was to train student subjects sufficiently well
to perform the tasks required of them. They must not be overwhelmed by the
complexity of, or unfamiliarity with, the tasks [51]. Therefore, it took seven
laboratory sessions (over 10 hours) to achieve the goal. Then, the subjects were
given an introductory presentation of a finance accounting system and were asked
to implement it during eight laboratory sessions of the execution phase. Both, the
preparation phase and the execution phase, were conducted in classroom settings
under continuous supervision of assistant lecturers. The subjects were divided
into S and P groups. Up-to-date development environment composed of Java



Development Kit, Eclipse IDE, JUnit testing framework and CVS repository
were used in the experiment. Additionally, the subjects filled in pre-test and
post-test questionnaires, to evaluate their experience and opinions, as well as to
enable qualitative validation of the results. The subjects were not aware of the
actual hypotheses stated. The data were collected automatically by tools such
as Clover and Judy (the tool developed at WUT).

5 Analysis of the Experiment

The experiment data are analysed with descriptive analysis and statistical tests.
The preliminary analysis of all 63 projects is conducted in this section, whilst
further, more selective analysis is conducted in Section 6.1, and analysis of con-
founding variables is performed in Section 6.2.

5.1 Descriptive Statistics

Descriptive statistics of gathered measures are summarized in Table 2. Columns
”Mean”, ”Std.Deviation”, ”Std.Error”, ”Max”, ”Median” and ”Min” state the
mean value, standard deviation, standard error, maximum, median and mini-
mum for each measure and development method, respectively.

Table 2. Descriptive statistics for branch coverage (BC) and mutation score
indicator (MSI)

Measure Development Mean Std.Deviation Std.Error Max Median Min
Method (M) (SD) (SE) (Mdn)

Branch Coverage SP .38 .22 .042 .90 .39 .00
(BC) PP .39 .21 .036 .83 .32 .09

Mutation Score SP .27 .14 .027 .50 .29 .00
Indicator (MSI) PP .24 .14 .023 .56 .24 .00

The first impression is that developers working in pairs (denoted as P), and
developers working solo (S) performed similarly. The accuracy of the mean as
a model of the data can be assessed by the standard deviation which, unfortu-
nately, is rather large (compared to the mean). The standard deviation, as well
as boxplots in Figures 1 and 2 tell us more about the shape of the distribution
of the results.

Summarizing descriptive statistics in correct APA (American Psychological
Association) format [52], we can conclude that branch coverage for pairs (M =
.39, SD = .21) and solo programmers (M = .38, SD = .22) are similar. Mutation
score indicator for pairs (M = .27, SD = .14) and solo programmers (M = .24,
SD = .14) are similar as well.

To answer the question whether the impact of PP on mutation score indicator
and branch coverage is significant, or not, statistical tests must be performed.
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5.2 Hypotheses Testing

We start with exploratory analysis on the collected data to check whether they
follow the assumptions of the parametric tests. That is, observations should be
independent. The dependent variable should be measured on at least an interval
scale. The variances in each experimental condition should be fairly similar, and
data should come from a normally distributed population.

The first assumption, namely that observations should be independent, and
the second assumption, that the collected data must be measured at an interval
or ratio level are met.

The third assumption (homogeneity of variance) means that the variances
should be the same throughout the data (i.e. between groups). Levene’s tests,
used to check this assumption, are non-significant (because significances p are
greater than .05), indicating that the variances in the different experimental
groups are roughly equal (i.e. not significantly different).

The fourth assumption of parametric tests is that our data have come from a
population that has normal distribution. Objective tests of the distribution are
Kolmogorov-Smirnov and Shapiro-Wilk tests. For the mutation score indicator
data the distribution for pairs, as well as solos appears to be normal (p > .05).
For the branch coverage data the distribution for solos is normal, whereas that
for pairs seems to be non-normal (p < .05) according to the Shapiro-Wilk test.
This finding suggests we should use a non-parametric test. Therefore, the hy-
potheses from Section 4.3 are evaluated by means of the Mann-Whitney one way
analysis of variance by ranks. The Mann-Whitney non-parametric tests are used
for testing differences between the two experimental groups (S and P), when
different subjects are used in each group.

Table 3 shows test statistics and significances. An effect size (r = Z√
N

where
Z is the z-score in Table 3, and N is the size of the study i.e. 63) is an objective
and standardized measure of the magnitude of observed effect. The effect size is
extremely small for branch coverage (r = −.03) and a bit higher, but still small,
for mutation score indicator (r = −.12). So, we could report that branch coverage
was not significantly affected by pair programming approach (the Mann-Whitney



Table 3. Mann-Whitney test statistics (grouping variable: Development
Method)

Branch Coverage Mutation Score
(BC) Indicator (MSI)

Mann-Whitney U 471.500 422.000
Wilcoxon W 877.500 1052.000
Z -.256 -.941
Exact Sig. (2-tailed) .802 .351

test statistics: U = 471.5, non-significant, r = −.03). Moreover, mutation score
indicator was not significantly affected by the pair programming approach (the
Mann-Whitney test statistics: U = 422.0, non-significant, r = −.12), either.

6 Discussion of the Results and Further Analysis

Why did PP not result in a significant increase of testing thoroughness or fault
detection effectiveness, measured by branch coverage and mutation score indi-
cator, respectively? A plausible explanation is that when a software project is
not big enough, and the requirements are decomposed into small features (user
stories), the impact of PP practice on branch coverage and mutation score indi-
cator may be insignificant, because development skill may, to a certain extent,
compensate for the lack of a second pair of eyes. Furthermore, when the scope of
the project is limited, the impact of PP practice on branch coverage and muta-
tion score indicator may be insignificant, because of the limited number of tests.
Therefore, in further analysis in Section 6.1 we decided to remove projects with
limited number of assertions executed by unit tests suites.

An alternative explanation is that development method may not be the best,
or the only one explanatory variable. Therefore, we decided to conduct analysis
of covariance (ANCOVA) in Section 6.2 to reduce pre-existing differences among
subjects that already have influence over our dependent variables, as well as to
get a more sensitive measure of our experiment effect.

6.1 Selective Analysis

In the further, more selective analysis we decided to remove projects with a se-
riously limited number of JUnit assertions executed by unit tests suites as we
intended to sample from the population of projects that might take advantage of
unit tests more seriously. The threshold of 30 assertions executed by unit tests
suites was determined as a compromise between number of testing resources
required to take advantage of unit testing and number of projects needed to
conduct inferential statistics. As a result, further analysis was run with sub-
jects involved in the 36 projects conducted, using TDD approach, by 17 solo
programmers (denoted as S) and 19 pairs (denoted as P).

Descriptive Statistics. Descriptive statistics of gathered measures are sum-
marized in Table 4, whilst the shape of the distribution of the results is shown
by boxplots in Figures 3 and 4.



Table 4. Descriptive statistics for branch coverage (BC) and mutation score
indicator (MSI) of selected 36 projects

Measure Development Mean Std.Deviation Std.Error Max Median Min
Method (M) (SD) (SE) (Mdn)

Branch Coverage SP .47 .17 .040 .90 .46 .14
(BC) PP .47 .20 .047 .83 .40 .19

Mutation Score SP .34 .11 .026 .50 .37 .10
Indicator (MSI) PP .30 .14 .031 .56 .29 .09
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Fig. 3. Branch coverage boxplots of 36
selected projects
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Fig. 4. Mutation score indicator box-
plots of 36 selected projects

The decision to remove projects with a limited number of testing resources
resulted in higher values of BC, as well as for MSI means, medians, and mini-
mums. Summarizing descriptive statistics in APA format, we can conclude that
BC for pairs (M = .47, SD = .20) and solo programmers (M = .47, SD = .17)
are similar. MSI for pairs (M = .30, SD = .14) and solo programmers (M = .34,
SD = .11) differ slightly. To answer the question whether the impact of PP on
mutation score indicator and branch coverage is significant or not, statistical
tests must be performed.

Hypotheses Testing. Levene’s tests of homogeneity of variances are non-
significant indicating that the variances in the different experimental groups
are not significantly different. Kolmogorov-Smirnov and Shapiro-Wilk tests of
normality are non-significant (p > .05) indicating that the data are normally
distributed, therefore, we decided to use parametric statistics. We may use the
independent t-test in situations in which there are only two levels of the inde-
pendent variable (i.e. two experimental groups), and different participants will
be used in each group. Table 5 shows the output from an independent t-test.

The exact two-tailed significance values of t are greater than .05, so we would
have to conclude that there was no significant difference between the means of
our two groups. To discover the effect size we can use the equation r =

√
t2

t2+df .
We know the value of t (t-test statistic) and df (degrees of freedom calculated
by adding the two groups sizes and then subtracting the number of groups). The
effect size is extremely small for branch coverage (r = .01) and a bit higher,



Table 5. Independent samples t-Tests

t-test for Equality of Means
t df Sig.(2-tailed) Mean Diff. Std.Error Diff.

Branch Coverage (BC) .077 34 .939 .005 .063
Mutation Score Ind. (MSI) .842 34 .406 .035 .041

but still small, for mutation score indicator (r = .14). The difference in BC
and MSI between solo programmers and pairs was not significant in the case of
branch coverage (t(34) = .077, p > .05, r = .01), or in mutation score indicator
(t(34) = .842, p > .05, r = .14). Thus, the results of the selective analysis
conducted in this section are in line with the results of the preliminary analysis
performed in Section 5.

6.2 Analysis of Covariance

Up to now the only explanatory variable we have used is the one that denotes
group membership (i.e. development method SP or PP). However, in many sit-
uations, such a group-membership variable accounts for a relatively small pro-
portion of the total variance in the dependent variables. In fact, in this section
we will discover that this is the case indeed. This should not be surprising as
pre-existing differences among subjects are at least as important a predictor of
their scores on the dependent variables as any treatment variable [53]. There-
fore, we apply analysis of covariance (ANCOVA) and make use of information
concerning the individual differences among the subjects that were present at
the beginning of the study.

Moreover, the ability of ANCOVA to compensate to some extent for pre-
existing differences among groups justifies the fact that ANCOVA is also recom-
mended as a means of addressing the threats to the internal validity that arise
in studies with selection differences between groups [47].

Tables 6 and 7 show the ANCOVA tables for BC and MSI when covariates
are not included. According to the significance values (p > .05), there are no dif-
ferences in BC, or MSI between the two groups, i.e. solos and pairs. Therefore,
PP practice seems to have no significant effect on BC and MSI. It is obviously
in line with the results obtained in Section 5 and 6.1.

What is interesting in ANCOVA results (see Tables 6 and 7) is that develop-
ment method variable accounts for a very small proportion of the total variance
in the dependent variables (BC and MSI). In branch coverage results (see Ta-
ble 6) the total amount of variation to be explained (SST ) was 1.193, of which
the experimental manipulation (development method) accounted for .000 units
(SSM ), whilst 1.193 were unexplained (SSR). In mutation score indicator results
(see Table 7) the total amount of variation to be explained (SST ) was .535, of
which the experimental manipulation (development method) accounted for .011
units (SSM ), whilst .524 were unexplained (SSR).

One of the findings is that in future experiments we should take into ac-
count other variables (covariates), that are not part of the main experimental
manipulation but have an influence on the dependent variable. In fact, it can be



Table 6. Test of between-subjects effects without covariates (BC)

Source Type III Sum df Mean F Sig- Partial Eta
of Squares Square nificance Squared

Corrected Model .0001 1 .000 .006 .939 .000
Intercept 7.947 1 7.947 226.531 .000 .869
Development Method .000 1 .000 .006 .939 .000
Error 1.193 34 .035
Total 9.160 36
Corrected Total 1.193 35

1 R Squared = .000

Table 7. Test of between-subjects effects without covariates (MSI)

Source Type III Sum df Mean F Sig- Partial Eta
of Squares Square nificance Squared

Corrected Model .0111 1 .011 .709 .406 .020
Intercept 3.653 1 3.653 236.986 .000 .875
Development Method .011 1 .011 .709 .406 .020
Error 0.524 34 .015
Total 4.177 36
Corrected Total .535 35

1 R Squared = .020

seen as a convenient way to deal with context variables e.g. education, experi-
ence, personality, communication skills etc. To make the move in this direction
and present the useful statistical framework right now, we decided to take into
account additional information about subjects i.e. grades obtained by subjects
after the preparation phase of the experiment (see Section 4.8). A traditional
four-point system was used; the grades are: 2.0 (fail), 3.0 (pass), 3.5, 4.0, 4.5, 5.0
(very good) along with additional, non-standard 5.5 (the highest grade accepted
at WUT). Categorical covariates can only be used in ANCOVA analysis if you
dummy code them into binary variables. However, all the subjects got grades
within the range 4.0 and 5.5. Therefore, only three dummy variables (Grade4.5,
Grade5.0 and Grade5.5) for the sake of covariance analysis were created. In AN-
COVA one less dummy variable is always needed than the number of groups
(e.g. subjects that got grade 4.0 have a code of 0 for all three dummy variables).
The so called pretest is often used as a covariate, because how the subjects score
before treatments generally correlates with how they score after treatments [54].

Table 8 shows the results of Levene’s test of equality of error variances. We
test the null hypotheses that the error variances of the dependent variables (BC
and MSI) are equal across groups. Fortunately, Levene’s tests are non-significant
(p > .05) and this assumption of ANCOVA has not been violated.

Tables 9 and 10 are the ANCOVA tables where covariates are included in
the model. Looking at the significance values in Table 9 and 10, neither de-
velopment method nor covariates significantly predicts the dependent variables



Table 8. Levene’s test of equality of error variances (design: Inter-
cept+Grade4.5+Grade5.0+Grade5.5+Development Method)

Dependent Variable Levene Statistic Significance

Branch Coverage (BC) 1.183 .284
Mutation Score Indicator (MSI) .144 .707

(BC and MSI). However, in both cases development method accounts for a
very small portion of variance accounted for by the models. The amount of vari-
ation accounted for by the branch coverage model has increased from .000 to
.115 units (corrected model) of which the development method accounts for .001
units only, while the covariates Grade4.5, Grade5.0 and Grade5.5 account for
.001, .030 and .024 units, respectively. The amount of variation accounted for by
the mutation score indicator model has increased from .011 to .063 units (cor-
rected model) of which the development method accounts for .012 units, while
the covariates Grade4.5, Grade5.0 and Grade5.5 account for .005, .023 and .023
units, respectively.

Table 9. Test of between-subjects effects with covariates (BC)

Source Type III Sum df Mean F Sig- Partial Eta
of Squares Square nificance Squared

Corrected Model .1151 4 .029 .827 .518 .096
Intercept .101 1 .101 2.893 .099 .085
Grade4.5 .001 1 .001 .040 .843 .001
Grade5.0 .030 1 .030 .874 .357 .027
Grade5.5 .024 1 .024 .687 .414 .022
Development Method .001 1 .001 .036 .852 .001
Error 1.078 31 .035
Total 9.160 36
Corrected Total 1.193 35

1 R Squared = .096

This example illustrates how ANCOVA can help us to exert stricter experi-
mental control by taking confounding variables into account to give us a purer
measure of the effect of the experimental manipulation. Without taking con-
founding variables into account we would not have taken account of the context
of the experiment e.g. pre-existing differences among subjects.

ANCOVA has the same basic assumptions as all of the parametric tests,
but it has an additional one as well: that is, the assumption of homogeneity
of regression slopes. For example, if the relationship between the dependent
variable and covariate differs across the groups then this additional assumption
of ANCOVA is violated and the overall model is inaccurate. This assumption of
ANCOVA has not been violated in this case.

Analysis of covariance presents a more sensitive measure of our experiment
effect and reveals the fact that the development method (SP or PP) accounts



Table 10. Test of between-subjects effects with covariates (MSI)

Source Type III Sum df Mean F Sig- Partial Eta
of Squares Square nificance Squared

Corrected Model .0631 4 .016 1.032 .406 .118
Intercept .031 1 .031 2.036 .164 .062
Grade4.5 .005 1 .005 .332 .569 .011
Grade5.0 .023 1 .023 1.497 .230 .046
Grade5.5 .023 1 .023 1.514 .228 .047
Development Method .012 1 .012 .772 .386 .024
Error .472 31 .015
Total 4.177 36
Corrected Total .535 35

1 R Squared = .118

for an extremely small proportion of the total variance in the branch coverage
and mutation score indicator. As a result, we may conclude that after adjust-
ing for pre-intervention grades, branch coverage, and mutation score indicator
were not significantly affected by PP approach (F (1, 31) = .04, p > .05, partial
eta squared < .01 and F (1, 31) = .77, p > .05, partial eta squared = .02, re-
spectively). Effect sizes, as indicated by the corresponding partial eta squared
values, are small and indicate how much of the variance in the dependent vari-
ables is explained by the independent variable (i.e. the development method).
The covariates were not significantly related to the dependent variables, either.

7 Summary and Conclusions

The unique aspect of the experiment conducted at WUT was that it included
the first ever assessment of the impact of pair programming on thoroughness and
fault detection effectiveness of unit tests. Branch coverage and mutation score
indicator were examined to find how thoroughly tests exercise programs, and
how effective they are, respectively. The main result of this study is that the
pair programming practice used by the subjects, instead of solo programming,
did not significantly affect branch coverage or mutation score indicator. It means
that the impact of pair programming on thoroughness and the fault detection
effectiveness of unit test suites was not confirmed.

In further, more selective analysis we removed projects with a limited num-
ber of testing resources as we intended to sample from the population of projects
that might take advantage of unit tests. The results of the selective analysis were
in line with our previous findings that pair programming did not significantly
affect aforementioned unit tests qualities. Moreover, carrying out the analysis of
covariance in Section 6.2 we have attempted to reduce pre-existing differences
among subjects that already have influence over our dependent variables, and
got a more sensitive measure of our experiment effect. It turned out that devel-
opment method (SP or PP) as an explanatory variable accounts for an extremely
small proportion of the total variance in the dependent variables (i.e. BC and
MSI). Therefore, in future experiments we should take account of other context



variables (e.g. experience, communication skills), that are not part of the main
experimental manipulation but have an influence on the dependent variable. The
presented analysis of covariance can be seen as a convenient way to deal with
context variables.

The validity of the results must be considered within the context of the
limitations discussed in the validity evaluation section. The study can benefit
from several improvements before replication is attempted. The most significant
one is conducting larger projects, while securing a sample of large enough size
to guarantee a high-power design. Further experimentation in different contexts
(e.g. within industry) is needed to establish evidence-based recommendations for
the impact of pair programming practice on thoroughness and fault detection
effectiveness of unit test suites.
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50. Höst M, Regnell B, Wohlin C. Using Students as Subjects — A Comparative
Study of Students and Professionals in Lead-Time Impact Assessment. Empirical
Software Engineering 2000; 5(3): 201–214.

51. Tichy WF. Hints for Reviewing Empirical Work in Software Engineering. Empirical
Software Engineering 2000; 5(4): 309–312.

52. Publication manual of the American Psychological Association. 5th edn., American
Psychological Association: Washington, 2001.

53. Maxwell SE, Delaney HD. Designing Experiments and Analyzing Data: A Model
Comparison Perspective. 2nd edn. Lawrence Erlbaum: Mahwah, 2004.

54. Stevens JP. Applied Multivariate Statistics for the Social Sciences. Lawrence
Erlbaum: Mahwah, 2002.


	Impact of Pair Programming on Thoroughness and Fault Detection Effectiveness of Unit Test Suites
	Lech Madeyski (Wroclaw University of Technology)

