
Empirical studies on the impact of test-first
programming

Lech Madeyski
Wroclaw University of Technology

Wyb.Wyspianskiego 27, 50370 Wroclaw, POLAND
WWW: http://madeyski.e-informatyka.pl

E-mail: Lech.Madeyski@pwr.wroc.pl

February 21, 2009

Abstract

This paper presents productivity and quality effects of test-first
programming technique in a tabular form and, as a result, provides
a summary of many empirical studies conducted so far. The table
has been moved here from one of my research papers according to the
anonymous reviewer’s suggestion.

1 Empirical studies on the impact of test-first

(TF) programming

Both productivity and quality effects of TF technique are presented in Table 1
which provides a summary of many empirical studies conducted so far.

The table reports, from left to right, the references for each study, the
environment (e.g. academic or industrial) in which an empirical study was
conducted, the number of subjects involved in each empirical study, and
statistical significance of the effects of TF practice (if available) along with
textual descriptions of the findings.

1

Table 1: Empirical studies on the impact of test-first (TF) programming0

Studies Environment, Details of TF effects
Subjects

Ynchausti [26] Industrial, 5 • 38-267% increase in the quality test pass rate percentage

Müller&Hagner [20] Academic, 19 • does not accelerate the implementation
X (p = .03) lower reliability in acceptance testing

(reliability= passed assertions
all assertions

)
• slightly lower code coverage
• does not aid the developer in a proper usage of existing
code
• seems to support better program understanding

Pancur [22] Academic, 38 • small difference in external quality (external tests passed)
• slightly lower code coverage

Abrahamsson et al. Academic/ • little or no added value to a team perceived by developers
[1] Industrial, 41 • team used 0%(iteration 5)–30%(iteration 1) of effort for TF

Williams et al. [25] Industrial, 9 • reduced defect rate by 40%[25]–50%[19]

Maximilien& • minimal [19] or no difference [25] in LOC
person−month

Williams [19]

George&Williams Industrial, 24 • 16% longer development2

[8, 9] • 18% more functional tests passed2

Geras et al. [10] Academic, 14 • little or no difference in developer productivity

Erdogmus et al. [6] Academic, 24 X (p = .09) on average 52% more tests
• on average 28% more delivered user stories (USs)3

• on average 2% less assertions passed from the acceptance
tests3

Melnik&Maurer [11] Academic, 240 • 73% of students perceived TF improves quality

Madeyski[16, 17] Academic, 188 X (p = .028) significantly less acceptance tests passed
X (p = .013) significantly less acceptance tests passed2

• package dependencies were not significantly affected

Flohr&Schneider [7] Academic, 18 • 21% decrease in development time2

• small difference in code coverage2

• no difference in number of assertions written2

Canfora et al. [3] Industrial, 28 X (p < .05) more time per assertion/overall time/time
in average
• no evidence of more assertions or more assertions per
method

Bhat&Nagappan [2] Industrial, 6(A) • 15%(project B)–35%(project A) longer development time
5–8(B) • decreased defects/KLOC by 62%(project A)–76%

(project B)

Damm&Lundberg Industrial, 100 • 5–30% decrease in fault-slip-through rate4

[4, 5] • 60% decrease in avoidable fault costs4

• total project cost became 5-6% less4

• ratio of faults decreased from 60–70% to 0–20%4

• cost savings in maintenance (up to 25% of the development
cost)

Sanchez et al. [23] Industrial, • it took on average 15% or more5 of overall time to write
9–17 • unit tests reduced internal defect rate

Siniaalto& Academic/ • slightly less coupled code (CBO metric) but results are
Abrahamsson [24] Industrial6, dispersed

4,5,4 • high lack of cohesion (LCOM metric)
• WMC, DIT, NOC and RFC did not reveal significant
differences

2

Studies Environment, Details of TF effects
Subjects

• higher method, statement and branch coverage levels

Madeyski [18] Academic • higher ratio of active to passive development time8

Industrial7, 1 • increased LOC/h9

• increased number of user stories/h9

• increased number of acceptance tests/h9

Gupta&Jalote [12] Academic, 22 X (p = .001) improves external code quality10

(affected by the actual testing efforts)
X (p = .02) reduces overall development efforts10

• improves developers productivity

Nagappan et al. [21]11 Industrial, • decreased defects rate by 40%–90%
9,6,5–8,7 • 15%-35% longer development time

Janzen&Saiedian [15] Industrial, • possible tendency to write smaller, simpler classes&
1,2,2,5/ methods12

Academic, • tendency to write simpler classes&sometimes simpler
3,7 methods12

• coupling analysis does not reveal clear answers
• does not improve cohesion

Huang&Holcombe [14] Academic,39 • does not influence external clients’ assessment of quality
• more effort on testing (p < .1)
◦ 70% higher productivity but the improvement
is not statistically significant

0 Abbreviations: A-Academic, I-Industrial, XXX-number of subjects, (e.g. “Academic,12” means
empirical study in academic environment with 12 subjects), X means statistically significant result (e.g.
Xp < .05)

1 Three students with industrial experience and one industrial developer
2 TF pairs vs. TL pairs
3 only USs that passed at least 50% of the assert statements from the acceptance test suite were

considered
4 combined effect of introducing component-level test automation, as well as TF
5 calculated based on questionnaires
6 undergraduates but real projects
7 an experienced programmer, with recent industrial experience, classified as E4 according to Höst et

al. [13], developed a web-based system for academic institution
8 the active time may be described as typing and producing code, while the passive time is spent on

reading the source code, looking for a bug etc.
9 not only TF, but also experience and knowledge of the application domain gained during the course

of the project seem to drive productivity
10 in one of the two programs
11 builds up on the prior empirical work [2, 25, 19]
12 in the case of some studies differences were statistically significant

3

References

[1] P. Abrahamsson, A. Hanhineva, and J. Jäälinoja. Improving business
agility through technical solutions: A case study on test-driven develop-
ment in mobile software development. In R. Baskerville, L. Mathiassen,
J. Pries-Heje, and J. I. DeGross, editors, Proceedings of the IFIP TC8
WG 8.6 International Working Conference on Business Agility and In-
formation Technology Diffusion, volume 180 of IFIP International Fed-
eration for Information Processing, pages 1–17. Springer, 2005.

[2] T. Bhat and N. Nagappan. Evaluating the efficacy of test-driven devel-
opment: industrial case studies. In ISESE ’06: Proceedings of the 2006
ACM/IEEE International Symposium on Empirical Software Engineer-
ing, pages 356–363, New York, NY, USA, 2006. ACM Press.

[3] G. Canfora, A. Cimitile, F. Garcia, M. Piattini, and C. A. Visaggio.
Evaluating advantages of test driven development: a controlled ex-
periment with professionals. In ISESE ’06: Proceedings of the 2006
ACM/IEEE International Symposium on Empirical Software Engineer-
ing, pages 364–371, New York, NY, USA, 2006. ACM Press.

[4] L.-O. Damm and L. Lundberg. Results from introducing component-
level test automation and Test-Driven Development. Journal of Systems
and Software, 79(7):1001–1014, 2006.

[5] L.-O. Damm and L. Lundberg. Quality impact of introducing
component-level test automation and test-driven development. In
P. Abrahamsson, N. Baddoo, T. Margaria, and R. Messnarz, editors,
Software Process Improvement, volume 4764 of Lecture Notes in Com-
puter Science, pages 187–199. Springer, 2007.

[6] H. Erdogmus, M. Morisio, and M. Torchiano. On the Effectiveness of the
Test-First Approach to Programming. IEEE Transactions on Software
Engineering, 31(3):226–237, 2005.

[7] T. Flohr and T. Schneider. Lessons Learned from an XP Experiment
with Students: Test-First Need More Teachings. In J. Münch and
M. Vierimaa, editors, Product Focused Software Process Improvement,
volume 4034 of Lecture Notes in Computer Science, pages 305–318,
Berlin, Heidelberg, 2006. Springer.

4

[8] B. George and L. Williams. An initial investigation of test driven de-
velopment in industry. In SAC ’03: Proceedings of the 2003 ACM sym-
posium on Applied computing, pages 1135–1139, New York, NY, USA,
2003. ACM.

[9] B. George and L. A. Williams. A structured experiment of test-driven
development. Information and Software Technology, 46(5):337–342,
2004.

[10] A. Geras, M. R. Smith, and J. Miller. A Prototype Empirical Evaluation
of Test Driven Development. In IEEE METRICS’2004: Proceedings of
the 10th IEEE International Software Metrics Symposium, pages 405–
416. IEEE Computer Society, 2004.

[11] Grigori Melnik and Frank Maurer. A cross-program investigation of
students’ perceptions of agile methods. In ICSE ’05: Proceedings of the
27th International Conference on Software Engineering, pages 481–488,
2005.

[12] A. Gupta and P. Jalote. An experimental evaluation of the effectiveness
and efficiency of the test driven development. In ESEM ’07: Proceedings
of the First International Symposium on Empirical Software Engineering
and Measurement, pages 285–294, Washington, DC, USA, 2007. IEEE
Computer Society.

[13] M. Höst, , C. Wohlin, and T. Thelin. Experimental Context Classifica-
tion: Incentives and Experience of Subjects. In ICSE ’05: Proceedings
of the 27th International Conference on Software Engineering, pages
470–478, New York, NY, USA, 2005. ACM Press.

[14] L. Huang and M. Holcombe. Empirical investigation towards the effec-
tiveness of Test First programming. Information and Software Technol-
ogy, 51(1):182–194, 2009.

[15] D. Janzen and H. Saiedian. Does Test-Driven Development Really Im-
prove Software Design Quality? IEEE Software, 25(2):77–84, March–
April 2008.

[16] L. Madeyski. Preliminary Analysis of the Effects of Pair Program-
ming and Test-Driven Development on the External Code Quality. In

5

K. Zieliński and T. Szmuc, editors, Software Engineering: Evolution and
Emerging Technologies, volume 130 of Frontiers in Artificial Intelligence
and Applications, pages 113–123. IOS Press, 2005.

[17] L. Madeyski. The Impact of Pair Programming and Test-Driven De-
velopment on Package Dependencies in Object-Oriented Design – An
Experiment. In J. Münch and M. Vierimaa, editors, Product Fo-
cused Software Process Improvement, volume 4034 of Lecture Notes in
Computer Science, pages 278–289, Berlin, Heidelberg, 2006. Springer.
http://madeyski.e-informatyka.pl/download/Madeyski06.pdf.

[18] L. Madeyski and L. Sza la. The Impact of Test-Driven Development
on Software Development Productivity – An Empirical Study. In
P. Abrahamsson, N. Baddoo, T. Margaria, and R. Messnarz, edi-
tors, Software Process Improvement, volume 4764 of Lecture Notes in
Computer Science, pages 200–211. Springer, 2007. http://madeyski.e-
informatyka.pl/download/Madeyski07d.pdf.

[19] E. M. Maximilien and L. A. Williams. Assessing Test-Driven Devel-
opment at IBM. In ICSE ’03: Proceedings of the 25th International
Conference on Software Engineering, pages 564–569. IEEE Computer
Society, 2003.

[20] M. M. Müller and O. Hagner. Experiment about test-first programming.
IEE Procedings-Software, 149(5):131–136, 2002.

[21] N. Nagappan, E. M. Maximilien, T. Bhat, and L. Williams. Realiz-
ing quality improvement through test driven development: results and
experiences of four industrial teams. Empirical Software Engineering,
13(3), 2008.

[22] M. Pančur, M. Ciglarič, M. Trampuš, and T. Vidmar. Towards empirical
evaluation of test-driven development in a university environment. In
EUROCON ’03: Proceedings of the International Conference on Com-
puter as a Tool, pages 83–86, 2003.

[23] J. C. Sanchez, L. Williams, and E. M. Maximilien. On the sustained
use of a test-driven development practice at ibm. In AGILE ’07: Pro-
ceedings of the 2007 Conference on Agile Software Development, pages
5–14, Washington, DC, USA, 2007. IEEE Computer Society.

6

[24] M. Siniaalto and P. Abrahamsson. A Comparative Case Study on the
Impact of Test-Driven Development on Program Design and Test Cov-
erage. In ESEM ’07: Proceedings of the First International Symposium
on Empirical Software Engineering and Measurement, pages 275–284.
IEEE Computer Society, 2007.

[25] L. Williams, E. M. Maximilien, and M. Vouk. Test-Driven Development
as a Defect-Reduction Practice. In ISSRE ’03: Proceedings of the 14th
International Symposium on Software Reliability Engineering, pages 34–
48, Washington, DC, USA, 2003. IEEE Computer Society.

[26] R. A. Ynchausti. Integrating Unit Testing Into A Software Development
Team’s Process. In M. Marchesi and G. Succi, editors, XP 2001: Pro-
ceedings of the 2nd International Conference on Extreme Programming
and Flexible Processes in Software Engineering, pages 84–87, Sardinia,
Italy, 2001.

7

