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Abstract

This paper presents productivity and quality effects of test-first
programming technique in a tabular form and, as a result, provides
a summary of many empirical studies conducted so far. The table
has been moved here from one of my research papers according to the
anonymous reviewer’s suggestion.

1 Empirical studies on the impact of test-first

(TF) programming

Both productivity and quality effects of TF technique are presented in Table 1
which provides a summary of many empirical studies conducted so far.

The table reports, from left to right, the references for each study, the
environment (e.g. academic or industrial) in which an empirical study was
conducted, the number of subjects involved in each empirical study, and
statistical significance of the effects of TF practice (if available) along with
textual descriptions of the findings.
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Table 1: Empirical studies on the impact of test-first (TF) programming0

Studies Environment, Details of TF effects
Subjects

Ynchausti [26] Industrial, 5 • 38-267% increase in the quality test pass rate percentage

Müller&Hagner [20] Academic, 19 • does not accelerate the implementation
X (p = .03) lower reliability in acceptance testing

(reliability= passed assertions
all assertions

)
• slightly lower code coverage
• does not aid the developer in a proper usage of existing
code
• seems to support better program understanding

Pancur [22] Academic, 38 • small difference in external quality (external tests passed)
• slightly lower code coverage

Abrahamsson et al. Academic/ • little or no added value to a team perceived by developers
[1] Industrial, 41 • team used 0%(iteration 5)–30%(iteration 1) of effort for TF

Williams et al. [25] Industrial, 9 • reduced defect rate by 40%[25]–50%[19]

Maximilien& • minimal [19] or no difference [25] in LOC
person−month

Williams [19]

George&Williams Industrial, 24 • 16% longer development2

[8, 9] • 18% more functional tests passed2

Geras et al. [10] Academic, 14 • little or no difference in developer productivity

Erdogmus et al. [6] Academic, 24 X (p = .09) on average 52% more tests
• on average 28% more delivered user stories (USs)3

• on average 2% less assertions passed from the acceptance
tests3

Melnik&Maurer [11] Academic, 240 • 73% of students perceived TF improves quality

Madeyski[16, 17] Academic, 188 X (p = .028) significantly less acceptance tests passed
X (p = .013) significantly less acceptance tests passed2

• package dependencies were not significantly affected

Flohr&Schneider [7] Academic, 18 • 21% decrease in development time2

• small difference in code coverage2

• no difference in number of assertions written2

Canfora et al. [3] Industrial, 28 X (p < .05) more time per assertion/overall time/time
in average
• no evidence of more assertions or more assertions per
method

Bhat&Nagappan [2] Industrial, 6(A) • 15%(project B)–35%(project A) longer development time
5–8(B) • decreased defects/KLOC by 62%(project A)–76%

(project B)

Damm&Lundberg Industrial, 100 • 5–30% decrease in fault-slip-through rate4

[4, 5] • 60% decrease in avoidable fault costs4

• total project cost became 5-6% less4

• ratio of faults decreased from 60–70% to 0–20%4

• cost savings in maintenance (up to 25% of the development
cost)

Sanchez et al. [23] Industrial, • it took on average 15% or more5 of overall time to write
9–17 • unit tests reduced internal defect rate

Siniaalto& Academic/ • slightly less coupled code (CBO metric) but results are
Abrahamsson [24] Industrial6, dispersed

4,5,4 • high lack of cohesion (LCOM metric)
• WMC, DIT, NOC and RFC did not reveal significant
differences
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Studies Environment, Details of TF effects
Subjects

• higher method, statement and branch coverage levels

Madeyski [18] Academic • higher ratio of active to passive development time8

Industrial7, 1 • increased LOC/h9

• increased number of user stories/h9

• increased number of acceptance tests/h9

Gupta&Jalote [12] Academic, 22 X (p = .001) improves external code quality10

(affected by the actual testing efforts)
X (p = .02) reduces overall development efforts10

• improves developers productivity

Nagappan et al. [21]11 Industrial, • decreased defects rate by 40%–90%
9,6,5–8,7 • 15%-35% longer development time

Janzen&Saiedian [15] Industrial, • possible tendency to write smaller, simpler classes&
1,2,2,5/ methods12

Academic, • tendency to write simpler classes&sometimes simpler
3,7 methods12

• coupling analysis does not reveal clear answers
• does not improve cohesion

Huang&Holcombe [14] Academic,39 • does not influence external clients’ assessment of quality
• more effort on testing (p < .1)
◦ 70% higher productivity but the improvement
is not statistically significant

0 Abbreviations: A-Academic, I-Industrial, XXX-number of subjects, (e.g. “Academic,12” means
empirical study in academic environment with 12 subjects), X means statistically significant result (e.g.
Xp < .05)

1 Three students with industrial experience and one industrial developer
2 TF pairs vs. TL pairs
3 only USs that passed at least 50% of the assert statements from the acceptance test suite were

considered
4 combined effect of introducing component-level test automation, as well as TF
5 calculated based on questionnaires
6 undergraduates but real projects
7 an experienced programmer, with recent industrial experience, classified as E4 according to Höst et

al. [13], developed a web-based system for academic institution
8 the active time may be described as typing and producing code, while the passive time is spent on

reading the source code, looking for a bug etc.
9 not only TF, but also experience and knowledge of the application domain gained during the course

of the project seem to drive productivity
10 in one of the two programs
11 builds up on the prior empirical work [2, 25, 19]
12 in the case of some studies differences were statistically significant
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