
The impact of test-first programming on branch

coverage and mutation score indicator of unit tests: An

experiment

Lech Madeyski∗,a

aWroclaw University of Technology, Wyb.Wyspianskiego 27, 50370 Wroclaw, POLAND

Abstract

Background : Test-First programming is regarded as one of the software de-
velopment practices that can make unit tests to be more rigorous, thorough
and effective in fault detection. Code coverage measures can be useful as in-
dicators of the thoroughness of unit test suites, while mutation testing turned
out to be effective at finding faults.
Objective: This paper presents an experiment in which Test-First vs Test-
Last programming practices are examined with regard to branch coverage
and mutation score indicator of unit tests.
Method : Student subjects were randomly assigned to Test-First and Test-
Last groups. In order to further reduce pre-existing differences among sub-
jects, and to get a more sensitive measure of our experimental effect, multi-
variate analysis of covariance was performed.
Results : Multivariate tests results indicate that there is no statistically sig-
nificant difference between Test-First and Test-Last practices on the com-
bined dependent variables, i.e. branch coverage and mutation score indica-
tor, (F (2, 9) = .52, p > .05), even if we control for the pre-test results, the
subjects’ experience, and when the subjects who showed deviations from the
assigned programming technique are excluded from the analysis.
Conclusion: According to the preliminary results presented in this paper, the
benefits of the Test-First practice in this specific context can be considered
minor.

∗Corresponding author
Email address: lech.madeyski@pwr.wroc.pl (Lech Madeyski)
URL: http://madeyski.e-informatyka.pl/ (Lech Madeyski)

Preprint submitted to Information and Software Technology August 26, 2009

Limitation: It is probably the first-ever experimental evaluation of the im-
pact of Test-First programming on mutation score indicator of unit tests and
further experimentation is needed to establish evidence.

Key words:
empirical study, test-first programming, test-driven development, unit tests;

1. Introduction

Test-First (TF) Programming [1], also known as Test-Driven Develop-
ment (TDD) [2]1, is a novel software development practice that has gained
recent attention in professional settings [1, 3–11] and has made initial inroads
into software engineering education [12–22]. However, bringing all members
of development teams to accept a test-first work culture may be a tough
task. Managers sometimes feel as if they just waste valuable “resources”,
as continuous testing and refactoring does not extend functionality. Also,
developers sometimes find it difficult to change their habit and to follow
strict rules of TF instead of Test-Last (TL) or even “code and fix” chaotic
programming. Better production code or better test quality, which in turn
influences the quality of the related pieces of production code, might be good
arguments in such situations. While most of empirical research concerning
the TF practice focuses on direct measurement of production code the aim
of the paper is to shed light on the effects of the TF practice from a differ-
ent, test code, perspective. Hopefully, it can help embrace wider perspective
of the possible effects of the TF practice. Moreover, some researchers argue
that the quality of tests influences greatly the quality of the production code,
because tests are so important and tightly interwoven into both the TL and
the TF development practices [16]. The difference between the TF and the
TL development practices is, to a large extent, related to when and how often
developers perform unit testing. Therefore, the most immediate effect of the
TF vs the TL approach is expected in the metrics related to unit tests. The
TF practice may have a positive impact on unit tests (e.g., their fault detec-
tion effectiveness or thoroughness), as tests should be written for any piece
of production code that could possibly break [23, ch. 34]. However, to the
author’s knowledge, there is no empirical evidence concerning the impact of

1According to Koskela [3] TDD and TF are just different names for the same thing.

2

the TF practice on the fault detection effectiveness of unit tests. Therefore,
the aim of this paper is to fill this gap.

The TF practice is assumed to be a software development technique that
can enforce more rigorous, thorough, and effective unit testing. According to
Astels [4], TDD leads to improved code coverage. Ambler argues that the TF
practice “does not replace traditional testing, instead it defines a proven way
to ensure effective unit testing” [24]. Mattu and Shankar also conclude that
“TDD defines a proven way to ensure effective unit testing” [25]. As shown in
Sections 3.2 and 3.3, code coverage measures can be useful as indicators of the
thoroughness of unit test suites [26], while mutation score is a more powerful
and more effective measure of the fault finding effectiveness of a test suite
than statement and branch coverage [27], as well as data-flow coverage [28,
29]. Therefore, the research question is whether the effect of the TF (vs TL)
technique on branch coverage and mutation score indicator is significant or
not.

Experiments are a systematic, disciplined, quantifiable and controlled
way of evaluation [30]. They are viewed by many as the “gold standard”
for research [31] and are particularly useful for determining cause-and-effect
relationships. Furthermore, experiments, usually done in a laboratory envi-
ronment, provide a high level of control [30]. Hence, the research question
was tested by means of an experiment. It is noteworthy that both code cov-
erage and mutation score indicator investigated in this paper are related to
white-box unit level testing (not functional testing). However, according to
Boehm [32], as well as IEEE Standard 1008-1987 [33], as much as possible
should be tested at the unit level, since there are significant economic benefits
in the early detection of faults.

This paper is organized as follows. Related empirical studies concerning
the TF practice are presented in Section 2. Section 3 presents the conceptual
model used to guide the research along with the TF and the TL development
methods, fault detection effectiveness and thoroughness of unit tests. The
definition, design, and operation of the experiment are described in Section 4;
the analysis of the experiment is conducted in Section 5. Threats to valid-
ity are discussed in Section 6. Section 7 explains the results, discusses the
conclusions and future work.

3

2. Related work

A separate report by Madeyski, available online [34], presents a detailed
summary of many empirical studies conducted so far, including the refer-
ences for each study, the environment (e.g. academic or industrial) in which
an empirical study was conducted, the number of subjects involved in each
empirical study, and statistical significance of the effects of the TF practice
(if available), along with textual descriptions of the findings. A short sum-
mary including productivity and quality effects of the TF technique is shown
in this section.

Does the TF practice speed up the development in comparison
with the TL technique?

Some empirical findings [17, 18, 21, 22, 35] show that the answer to that
question might be positive. The others [7–10, 19, 36–38] lead to the opposite
conclusion. A neutral answer is given as well [5, 6, 15, 39]. Interestingly,
the TF practice is characterized by the higher ratio of active development
time (described as typing and producing a code) to passive development time
(spent on reading the source code, looking for a bug etc.) [35].

Does the TF practice drive the development to a better code
quality?

Several industrial case studies (e.g. in Microsoft, IBM, Ericsson AB)
concluded that the TF approach reduces defect rates [5, 6, 8–10], fault-slip-
through rates, fault cost and total project cost [40], or maintenance cost [41].
Also, TF developers produce higher quality code, which passes more func-
tional black box test cases [37, 38]. Furthermore, a large portion of students
strongly agree (29%) or somewhat agree (44%) with the opinion that the TF
development improves quality [14].

On the other hand, some of the empirical studies lead to the conclusion
that TF has no significant impact on external quality (number of external
tests passed) [16] and that external quality is significantly lower if the TF
technique is used instead of TL in case of solo programmers (p = .028) and
pairs (p = .013) [19], assuming the same development time. It was also
reported that the TF practice does not influence external clients’ assessment
of quality [22], in spite of more effort spent on testing (p < .1). A controlled
experiment with professionals provided empirical evidence (p < .05) that the
TF practice requires more development time, while there is no statistical
evidence that the TF practice brings about more accurate and precise unit
tests [7]. Moreover, programs developed according to the TF rules are not

4

more reliable [15] and the TF approach provides little or no added value to a
team [42]. Researchers reported higher [43], similar [18] or slightly lower [15,
16] code coverage as a result of the TF practice. Package level design quality
indicators (package dependencies) are not significantly affected by the TF
technique [20]. However, the TF practice seems to have an effect on some
class level quality metrics, i.e. high LCOM (lack of cohesion) metric (while
WMC, DIT, NOC and RFC did not reveal significant differences) [43] and
the tendency to write simpler classes and sometimes simpler methods [11].

Furthermore, Müller [44] studied “the concept of the controllability of as-
signments” to measure testability of programs and concludes that the number
of methods where all assignments are completely controllable is higher for
TF projects than for conventional projects.

The previous discussion summarizes the productivity and quality effects
of the TF practice in different environments. Part of the studies included in
this review was performed in an academic setting and therefore their external
validity could be limited. On the other hand, several arguments are given in
Section 6 to explain why it is acceptable to use students as subjects [45–48].

It is worth mentioning that those empirical findings are often inconclu-
sive. The contradictory results may be explained by the differences in the
context in which the studies were conducted, the difficulty in isolating the
TF effects from the other variables (e.g. programmers expertise), incompa-
rable measurements etc. Furthermore, many studies do not apply statistical
analysis, do not report effect sizes, and do not discuss threats to the valid-
ity of each study to allow generalizations. So, readers should consider the
empirical findings within the specific context of each study [49].

According to reviewing guidelines by Tichy [47], any empirical study, and
especially a novel one, has flaws. Hence, we should not expect perfection
or decisive answers, neither should we reject negative results [47]. In fact,
the empirical studies on the impact of the TF practice on code coverage
are inconclusive [15, 16, 18, 43]. However, it is noteworthy that none of
the empirical studies discussed in Section 2 and presented in [34] tackled
the research question concerning the impact of the TF technique on muta-
tion score indicator of unit tests. Empirical evidence on the impact of the
TF technique on unit test suites characteristics is limited to code coverage.
Empirical study presented in this paper builds on previous studies but, at
the same time, it extends the empirical body of evidence by analysing new,
important characteristic of developed unit test suites (i.e. mutation score
indicator with the help of the mutation testing technique), along with code

5

coverage.

3. Conceptual model

This section discusses variables in the conceptual model: the main ex-
perimental manipulation (TF vs TL), dependent variables (branch coverage
and mutation score indicator of unit tests), and variables that can influence
the outcome but are not part of the main experimental manipulation.

In fact, the conceptual model tested in this study can be seen as a part of a
larger model, as unit tests (as well as their thoroughness and fault detection
effectiveness) and TF programming constitute only an element of a larger
puzzle. According to Maxwell and Delaney, pre-existing differences among
subjects are at least as important a predictor of their scores on the depen-
dent variables as any independent variable [50]. Also, the existing research
concerning the impact of pair programming (another software development
practice of eXtreme Programming methodology) on the thoroughness and
the fault detection effectiveness of unit tests shows that the development
method accounts for a relatively small proportion of the total variance in
the dependent variables [51, 52]. Therefore, it seems justified to take into
account also the other variables (shown in Section 4.2) that are not part
of the main experimental manipulation (described in Section 3.1) but have
an influence on the dependent variables (presented in Sections 3.2 and 3.3).
As a result, we apply the multivariate analysis of covariance (MANCOVA)
as an experimental design method and take advantage of information con-
cerning the individual differences between the subjects that were present at
the start of the experiment task. Since the analysis of covariance is able
to compensate, to some extent, for pre-existing differences between groups,
it is justified to suggest this type of analysis as a means of addressing the
internal validity threats that arise in studies with selection differences be-
tween groups [53]. MANCOVA is an extension of the analysis of covariance
(ANCOVA) when there are two or more dependent variables. MANCOVA
has been used to protect, more conservatively than a series of ANCOVAs
performed separately for each dependent variable, against the inflation in
the family-wise error rate. MANCOVA also protects against the chance that
covariates were influencing the outcome (dependent variables) and, according
to Field [79], MANCOVA is preferable to conducting several ANCOVAs. As
a result, this study evaluates the impact of the TF practice on mutation score

6

indicator and branch coverage of unit tests, while adjusting for the effect of
selected variables (covariates) that can influence the dependent variables.

3.1. Test-first versus test-last programming

TF constitutes an incremental development practice which is based on
selecting and understanding a requirement, specifying a piece of functionality
as a test, making sure that the test can potentially fail, then writing the
production code that will satisfy the test condition (i.e. following one of
the green bar patterns), refactoring (if necessary) to improve the internal
structure of the code, and ensuring that tests pass, as shown in Figure 1.
Green bar patterns are strategies used in the TF technique for writing the
production code and getting to a green bar. A detailed description of these
strategies (i.e. Obvious Implementation, Fake It, and Triangulation) is given
by Beck [2], along with code snippets. Refactoring is a disciplined technique
for reorganising the existing body of a code in such a way that it improves its
internal structure yet does not alter the external behaviour [54]. TF provides
feedback through tests, and simplicity of the internal structure of the code
through rigorous refactoring. The tests are run frequently, in the course
of writing the production code, thus driving the development process. The
technique is usually supported by frameworks to write and run automated
tests (e.g. JUnit [55, 56], CppUnit, NUnit, PyUnit and XMLUnit [57]).

Writing tests before the production code is most central to the TF prac-
tice and the most obvious difference between the TF and the TL practices.
The reference TL technique, that represents a classic approach for the pur-
pose of investigation, also involves common characteristics, i.e. incremental
development, writing tests by the programmer, and regression testing, but
the programmer writes all the tests for a new system feature after the corre-
sponding piece of the production code for that feature, as shown in Figure 2.

It is also worth mentioning that refactorings are suggested in both, the
TF and the TL, techniques. Refactorings are assisted by tests (which are
required in both treatments) to increase confidence in the correctness of the
refactoring rules application, as all those tests still have to pass after the
refactorings.

3.2. Thoroughness of unit tests

Programmers who follow the TF or the TL programming technique, and
thus write unit tests, would benefit from measures indicating whether their

7

C h o o s e a u s e r s t o r y

 U n d e r s t a n d t h e s t o r y

 A d d a s i n g l e t e s t

 R u n t e s t s

C o r r e c t

W r i t e p r o d u c t i o n c o d e t o g e t t o g r e e n
b a r u s i n g O b v i o u s I m p l e m e n t a t i o n
F a k e I t , T r i a n g u l a t i o n

Fa i l

S t o r y
c o m p l e t e ?

N o

Y e s

P a s s
 R u n t e s t (s)

R e s u l t ?

C o r r e c t t h e a d d e d
tes t t ha t shou ld fa i l

P a s s

T h e a d d e d
tes t f a i l ed

R e s u l t ?

R e f a c t o r

I s r e fac to r i ng
n e e d e d ? Y e s

N o

Figure 1: Test-First programming activities

software has been thoroughly and effectively tested. Accordingly, the thor-
oughness of unit tests is discussed in this section, while the fault detecton
effectiveness of unit tests is considered in Section 3.3.

An important issue is the proper choice of a code coverage measure avail-
able from the array of code coverage tools, which measure how thoroughly
tests exercise programs [26]. Cornett [58] presents a number of useful insights
into this issue and shows that branch coverage includes statement coverage,
because exercising every branch leads to exercising every statement. More
powerful measures such as Modified Condition/Decision Coverage (used in
aviation software) or Condition/Decision Coverage are not offered by avail-
able code coverage tools in Java. Therefore, branch coverage as the best of
the available code coverage measures, was measured by means of Clover code
coverage measurement tool [59] and used in the analysis of the thoroughness

8

C h o o s e a u s e r s t o r y

 U n d e r s t a n d t h e s t o r y

 I m p l e m e n t t h e s t o r y

 Run a l l t es t s

C o r r e c t
p r o d u c t i o n
c o d e

Fa i l

P a s s

 Run a l l t es t s

R e s u l t ?

C o r r e c t

Fa i l
P a s s

R e s u l t ?

 Run a l l t es t s

R e s u l t ?

C o r r e c t

P a s s

Fa i l

 Wr i t e t es t s t o t he s to r y
R e f a c t o r

Y e s
I s r e fac to r i ng

n e e d e d ?

N o

Figure 2: Test-Last programming activities

of unit tests.

3.3. Fault detection effectiveness of unit tests

Mutation testing, proposed by DeMillo et al. [60] and Hamlet [61], ap-
peared to be more powerful and more effective at finding faults than state-
ment and branch coverage [27], as well as data-flow coverage [28, 29]. The
effectiveness of test suites for fault localization is estimated on seeded faults
inserted into a program by creating a collection of mutants (i.e. faulty ver-
sions of the original program). Mutants are produced on the basis of the orig-
inal program by using mutation operators which describe syntactic changes
to the programming language. Then the tests are used to execute these mu-
tants, while the goal is to measure how well a test suite is able to find faults.
Mutation testing is not meant as a replacement for code coverage, but as a

9

complementary approach useful in finding a code that is covered by tests but
not effectively tested.

Mutation score (also called mutation adequacy) is a kind of quantitative
test quality measurement that examines a test set’s effectiveness or ability
to detect faults [62]. It is defined as a ratio of the number of killed mutants
to the total number of non-equivalent mutants. The total number of non-
equivalent mutants results from the difference between the total number of
mutants and the number of equivalent mutants. The latter always produce
the same output as the original program, so they cannot be killed. Determin-
ing which mutants are equivalent to the original program is such a tedious
and error-prone activity, that even ignoring equivalent mutants is sometimes
considered [63]. That means that we are ready to accept the lower bound
on mutation score, called the mutation score indicator [51, 52]. Accepting it
results in the cost-effective application of a mutation analysis, while it still
provides meaningful information about the fault detection effectiveness of
test suites.

Mutation testing of real-world software would be difficult without a re-
liable, fast and automated tool that generates mutants, runs them against
a test suite, and reports results. Therefore, a new helpful instrument [51,
52, 64] (i.e. Judy mutation testing tool) was used, which supports genera-
tion, compilation and execution (i.e. testing) of mutants, implements both
traditional and object-oriented mutant operators, and supports JUnit [55]
(de facto standard among unit testing frameworks), as well as Ant [65] (Java
build tool).

Due to the high execution costs of mutation testing, Offutt et al. [66] have
proposed a selective mutation technique which uses a subset of the mutation
operators, i.e. ABS (absolute value insertion), AOR / ROR (arithmetic /
relational operator replacement), LCR (logical connector replacement), and
UOI (unary operator insertion). Other mutation operators such as UOD
(unary operator deletion), SOR / LOR (shift / logical operator replacement),
and COR / ASR (conditional / assignment operator replacement), dedicated
to Java language, have been recently presented by Ammann and Offutt [67]
along with the aforementioned selective operators. EOA (reference assign-
ment and content assignment replacement) and EOC (reference comparison
and content comparison replacement) mutation operators proposed by Ma
et al. [68] are able to model object-oriented (OO) faults, which are difficult
to detect and therefore, can be considered to be good mutation operators
for OO programs [69]. EAM / EMM (accessor / modifier method change),

10

and JTD / JTI mutation operators (this keyword deletion / insertion) [68]
were added, because there was no reason to exclude these operators, as there
was still no determined set of selective mutation operators for class muta-
tion operators [69]. As a result, the mutation operators set, used in our
analysis, consists of the 16 aforementioned mutation operators supported by
Judy [52, 64]. Judy makes use of an aspect-oriented approach to speed up
mutation testing.

In conclusion, branch coverage and mutation score indicator are used as
complementary measures to grasp better the essence of unit tests character-
istics, such as the thoroughness and the fault detection effectiveness of unit
test suites.

4. Experiment description

This section describes the definition, design, as well as the operation of
the experiment. The following definition determines the foundation for the
experiment [30]:
Object of study. The objects of study are unit tests.
Purpose. The purpose is to evaluate the impact of the TF technique on
unit tests.
Quality focus. The quality focus investigated in this paper is the thorough-
ness and the fault detection effectiveness of unit tests, measured by branch
coverage and mutation score indicator, respectively.
Perspective. The perspective is from the researcher’s point of view.
Context. The experiment is run with the help of MSc students as subjects
involved in the development of a web-based paper submission and review
system in Java.

4.1. Context selection

The context of the experiment (described in Table 1) was the E-Business
Technologies (EBT) course, and hence the experiment was run off-line in a
laboratory setting [30]. Java was the programming language. Eclipse was the
Integrated Development Environment (IDE). Java Enterprise Edition (Java
EE) was the software platform.

The subjects participating in the experiment were third and fourth-year
graduate MSc software engineering students. The MSc program of Wro-
claw University of Technology (WUT) is a 5-year program after high school.
Eighteen subjects can be classified as E2 (i.e. with less than 3 months recent

11

Table 1: The context of the experiment
Background before the experiment task:
Mean programming experience [years] 5.32
Mean JUnit experience [months] 6.27
Mean size (in non-commented lines of code) of the largest
software component written solo in Java by subjects 8886
The experiment task:
Number of user stories used to introduce requirements 23
Duration of the experiment task [weeks] 9
Mean value of overall programming time in Eclipse [hours] 77
Mean number of non-commented lines of production code 2698
(ProductionLOC)
Mean number of non-commented lines of test code (TestLOC) 2278
Mean number of non-commented lines of code 4976
(TotalLOC = ProductionLOC + TestLOC)

industrial experience), while four subjects can be classified as E4 (i.e. recent
industrial experience, between 3 months and 2 years) according to Höst et
al. classification scheme [70]. Four E4 subjects and four E2 subjects had
not only academic but also real world professional software development ex-
perience. They were evenly divided into the TF and the TL projects as a
result of random assignment. It is also worth mentioning that all subjects
had prior experience in programming in C, C++ (using object-oriented ap-
proach), .NET and Java programming and had completed various software
engineering and programming courses (including algorithms and data struc-
tures, C language, concurrent programming, object-oriented programming in
C++, C#, .NET, Java and web-applications development) totalling over 450
hours.

Software development environment was close to the one used in industry
(Java 5 programming language, Eclipse Integrated Development Environ-
ment, Eclipse Web Tools Platform, JUnit testing framework for unit tests,
Cactus testing framework for in-container testing, Java servlets, Java Server
Pages and JSTL available on Jetty web container, SVN code repository etc.).

The course recalled or introduced important topics of Java EE web de-
velopment related to web application architectures, technologies, the TF and
the TL development, refactoring etc. The course was taught by the author of
the paper. Furthermore, three 2-hour trainings in the TF & TL development,
refactoring and aspect-oriented programming were given by developers with
recent industrial experience.

12

4.2. Variables selection

The independent variable (IV) is the software development technique –
TF or TL – used by the experimental groups. Both techniques are presented
in Section 3.1.

The dependent variables (DVs) are branch coverage (denoted as BC)
and mutation score indicator (denoted as MSI), described in Sections 3.2
and 3.3, respectively.

Additionally, covariates (CVs), which can be viewed as measures of pro-
grammer expertise, are taken into account. Two kinds of indicators of pro-
grammer expertise are used. One is based on the pre-test questionnaire
answers concerning diverse dimensions of programming experience:

• ProgExp captures experience in an academic and school setting. Pos-
sible values were between 1 and 17 years.

• JSPExp captures experience (academic or not) in Java Server Pages
web applications development. Possible values were between 0 and 36
months.

• NonAcademicExp captures a professional, real world software devel-
opment experience. It was a binary variable.

Another indicator (PreTestGrade) attempted to measure programming skill
more directly on the basis of the results of the pre-test programming tasks
described in Section 4.7. A traditional 2 to 5 grade system was used: 2.0
(fail), 3.0 (pass), 3.5 (between pass and good), 4.0 (good), 4.5 (between good
and very good), 5.0 (very good). This categorical covariate, dummy coded
into binary variables, was used in the analysis of covariance. Only four
dummy variables (PreTestGrade3.5, PreTestGrade4.0, PreTestGrade4.5
and PreTestGrade5.0) were created for the sake of covariance analysis, as
there were only five groups of subjects with assigned grades 2, 3.5, 4.0, 4.5,
or 5.0 (i.e. the grade 3.0 was not given to any subject) and, as mentioned in
literature [71], one fewer dummy variable is always needed than the number
of groups.

Experience and the so called pre-test results are often used as covariates,
because experience and how the subjects score before treatments generally
correlate with how they score after treatments [72]. By adjusting for the
effects due to the aforementioned covariates, the error variance (i.e. the vari-
ance brought by other “nuisance variables”, such as individual differences)
can be reduced.

13

4.3. Hypotheses formulation

The following null hypotheses are to be tested:

• H0 BC, TF/TL — there is no difference in branch coverage (BC) between
the TF and the TL projects.

• H0 MSI, TF/TL — there is no difference in mutation score indicator
(MSI) between the TF and the TL projects.

4.4. Selection of subjects

The choice of the subjects was based on convenience. They were students
taking the EBT course. Prior to the experiment, the students filled in a
pre-test questionnaire. The aim of the questionnaire was to get a picture of
the subjects’ background. It turned out that the mean value of programming
experience in calendar years was over 5 (see Table 1). The ability to generalize
from this context is further elaborated, when discussing threats to the validity
of the experiment in Section 6.

4.5. Design of the experiment

The design is one factor (i.e. the software development method), with
the two treatments (TL and TF). All of the subjects were supposed to follow
the rules of the assigned development technique (TL or TF), as well as the
general rules of the project (e.g., coding standard by Sun Microsystems, Inc.,
test naming convention, commit rules). The assignment of treatments was
randomized. Randomization on the allocation of subjects to the TF and the
TL groups was used to average out the effect of a factor that may otherwise
be present [30]. Moreover, some differences between subjects were taken into
account by means of analysis of covariance.

Analysis of covariance design versus Treatments × Blocks design is dis-
cussed by several researchers. The greater sensitivity of analysis of covari-
ance over blocked analyses for the same data is, according to Maxwell and
Delaney, a very general result [50]. Although randomized block analyses
address similar questions to ANCOVA, they generally should be avoided in
favour of ANCOVA for several reasons [50]. The direct effect of the concomi-
tant variable will have 1 degree of freedom associated with it in ANCOVA,
while b − 1 degrees of freedom in randomized blocks (b equals the number
of blocks). That proves to be a disadvantage for the randomized block anal-
ysis because the linear trend accounts for the main part of the explainable

14

variance in most applications in the behavioural sciences [50]. ANCOVA in-
teraction tests consume fewer degrees of freedom than a blocking analysis.
The loss of degrees of freedom in blocking analyses can become critical in
designs using relatively few subjects [50], such as this one. Furthermore, the
greater sensitivity of ANCOVA comes from the fact that ANCOVA makes
use of all the quantitative information in the covariate, whereas the random-
ized block analysis typically ignores information due to some heterogeneity
of data within blocks [50].

In the case of one of the TL projects, as well as one of the TF projects,
tests were written in such a way that metrics calculation was not possible.
Furthermore, with the help of an ActvitySensor Eclipse plugin [35] it was
possible to exclude from analysis (presented in Section 5) three TF projects
that were not, in fact, conducted in a test-first manner. As a result, the
design was unbalanced, with 9 TF and 10 TL projects.

4.6. Instrumentation and measurement

The instruments and materials for the experiment were prepared in ad-
vance, and consisted of pre-test and post-test questionnaires, requirement
artefacts (user stories), a detailed description of software development tech-
niques (TF and TL), subjects’ duties, instructions how to use the experiment
infrastructure (e.g. SVN version control system) etc. They were available
to the subjects via a dedicated web site and assigned SVN accounts. BC
and MSI were collected by means of Clover [59] and Judy [51, 52, 64] tools,
respectively. In order to enable better measurement of the development pro-
cess, especially how development techniques were carried out (e.g. whether
tests were written before related pieces of a production code), the Activity-
Sensor plugin [35], integrated with the Eclipse IDE, has been developed at
WUT before the experiment, tested in practice [35] and used by the subjects.

4.7. Experiment operation

The experiment was run in 2006 and consisted of: pre-study, preparation
and execution (i.e. the main experimental task) phases. The pre-study was
run before the main part of the experiment (i.e. before the preparation, as
well as the execution phase) with three fifth-year graduate MSc software engi-
neering students in order to check the experiment procedures, infrastructure
and instruments (see Section 4.6).

15

The preparation phase consisted of exercises prepared to enhance devel-
opment expertise of the subjects in the areas related to the main exper-
iment task (e.g. web applications development, the TL and TF develop-
ment techniques, refactoring). The subjects were given pre-test program-
ming assignments concerning the development of three versions of the voter
web application developed using Java EE technologies (servlets, Java Server
Pages, JavaBeans) and different web architectures (e.g. Model 1 and Model
2 [73]). In this way, the subjects had the opportunity to check the advantages
and disadvantages of different architectural patterns. Web application based
on model 2 architecture, which in turn is based on Model-View-Controller
(MVC) architectural pattern, was covered by unit tests (using JUnit test-
ing framework) and in-container tests (using Cactus testing framework [74])
using the TL technique. Additional functionalities (e.g. questionnaires web
management capabilities of defining, removing and serving different question-
naires, support for different roles and access rights) were developed according
to the TF technique. Requested method coverage for JavaBeans and servlets
was about 90-100% level (e.g. with exception of getters and setters automati-
cally generated in Eclipse). More advanced architectural frameworks such as
Presentation-Control-Mediator-Entity-Foundation (PCMEF) and eXtensible
Web Architecture (XWA) [75], combining strengths of the MVC and PCMEF
frameworks, were also introduced as convenient ways to deal with application
complexity. Refactoring exercises consisted of six practice-oriented refactor-
ing tasks. The subjects had to refactor different samples of the existing
code. One of the refactoring tasks was to refactor the code of the voter ap-
plication developed earlier. The latest (optional) set of exercises concerned
aspect-oriented development. Lectures and exercises were given by the au-
thor, as well as by developers with recent industrial experience. The goal
of the preparation phase was to prepare subjects sufficiently well to perform
the tasks required of them during the main experimental phase, as well as
to get the pre-test results. The subjects obtained theoretical and practical
training in order to avoid the situation that they would be overwhelmed by
the complexity of, or unfamiliarity with, the main experimental task [47].
Therefore, the preparation phase took six weeks.

In the execution phase, the subjects were given an introductory presenta-
tion of a web-based paper submission and review system’s requirements, and
were asked to implement it during nine weeks assigned to that phase. The
subjects were randomly divided into the TL and the TF groups. In addition,
they filled in pre-test and post-test questionnaires that made it possible to

16

know their experience, opinions, and to enable qualitative validation of the
quantitative results. The subjects were not aware of the actually formulated
hypotheses. The measurement data were collected automatically by tools
described in Section 4.6. The industry standard for code coverage is in the
range 80-90% [5, 58, 76] and the same method coverage level for Java Beans
and servlets was suggested, but not required, during the experiment. It was
also emphasized that the TF method is not a testing or quality practice per
se, as it may appear. It is primarily a development, design and coding prac-
tice (guided by tests), with possible side effects. The experimental task was
not trivial. User stories were created on the basis of requirements gathered
at WUT on the basis of recent experience with several paper submission and
review systems (e.g. OpenConf by Zakon Group LLC). The project can be
classified as an artificial (I2) project according to the Höst et al. classification
scheme [70].

4.8. Power estimation

There are two primary kinds of power estimation, a priori and post hoc.
The first one alerts the researcher as to how many subjects per group will
be needed for adequate power. The latter may help to interpret the results
of completed studies (e.g. researchers insensitive to the power problem may
interpret non-significant results as demonstrating that treatments made no
difference [72]).

Typically, we use an α-level of .05, and additionally in this study we as-
sume two dependent variables. The power of a test is the probability that
a given test will find an effect, assuming that one exists. In the two-group
case, F values will be identical in all multivariate test statistics [77]. Power
estimations are calculated on the basis of the guidelines by Stevens [72].
Given power .66(.44) (i.e. 66 or 44 percent chance of finding a difference
if one exists), an α-level of .05, and medium effect size (D2 = .64), 25(15)
subject group sizes are needed [72]. The obtained power estimations suggest
careful interpretation of possible non-significant results [72]. Fortunately,
meta-analysis makes it possible to combine results from a series of studies,
each of which had insufficient statistical power to reliably accept or reject
the null hypothesis. Presented results contain effect size calculations and
are detailed enough to be included in meta-analysis, where results from in-
dependent studies can be combined and summarized in a quantitative way.
Furthermore, calculated effect sizes provide a measure of the importance of

17

the experimental effect which is much less affected by sample size than statis-
tical significance and, therefore, is a better indicator of practical significance.

5. Analysis of the experiment

The experiment data are analysed with descriptive analysis and statistical
tests.

5.1. Descriptive statistics

The descriptive statistics of gathered measures are summarized in Table
2. Columns “Mean”, “Std.Dev.”, “Std.Error”, “Max”, “Median” and “Min”
stand for the mean (M), standard deviation (SD), standard error (SE),
maximum, median (Mdn) and minimum values for each measure (BC and
MSI) and development method (“Dev.Meth.”). The first impression is that
the differences between the TL and the TF groups are not large. The ac-
curacy of the mean as a model of the data can be assessed by the standard
deviation which is rather large (compared to the mean) in the case of MSI.
The standard deviation and box plots in Figure 3 tell us more about the
shape of the distribution of the results. Summarizing descriptive statistics
in APA (American Psychological Association) format [78], we can conclude
that branch coverage in the TL (M = .56, SD = .14) and the TF projects
(M = .64, SD = .17) differ, as higher levels of branch coverage are reached in
the case of the TF projects. Mutation score indicators in the TL (M = .17,
SD = .10) and the TF projects (M = .17, SD = .12) are almost identical.
The whiskers coming out of the top of the boxes located in Figure 3 show
that the distribution is skewed in the case of the TL group of the BC box
plot. Furthermore, there is one extreme point (that extends for more than 3
box-lengths from the edge of the box) on the MSI box plot and one possible
outlier (that extends for more than 1.5 box-lengths) on the BC box plot, as
shown in Figure 3. The outliers’ scores are genuine, not just errors. Fortu-
nately, square root transformation reduces the impact of these outliers, as
there are no outliers in MSIT (i.e. MSI after square root transformation).
Transformations are suggested by Tabachnick and Fidell [77] to improve the
analysis and to reduce the impact of outliers but transformed variables are
sometimes more difficult to interpret.

To answer the question whether the impact of the TF technique on BC
or MSI is significant, or not, statistical tests must be performed, preceded
by the testing of underlying assumptions.

18

Figure 3: BC and MSI box plots

5.2. Assumption testing

We start with an exploratory analysis of the collected data to check
whether they follow the assumptions of MANCOVA. By doing this we ad-
dress practical limitations of the technique.

In designing the study it was ensured that covariates were measured prior
to the treatment or experimental manipulation (IV) to avoid scores on co-
variates also being influenced by the treatment. Otherwise, when MAN-
COVA controls for covariates, it will also remove some of the treatment
effect, thereby reducing the likelihood of obtaining a significant result. An
additional assumption concerning the reliability of covariates involves choos-
ing the most reliable measuring tools available. Owing to the nature of data
collection procedures, there is no reason to expect unreliability of a magni-
tude harmful to covariance analysis.

The assumptions that observations should be independent, and that the
collected data must be measured on an interval or ratio scale are met. The

Table 2: Descriptive statistics for branch coverage (BC) and mutation score indicator
(MSI)

Measure Dev. Mean Std.Dev. Std.Error Max Median Min
Meth. (M) (SD) (SE) (Mdn)

BC TL .56 .14 .04 .72 .57 .29
TF .64 .17 .06 .86 .68 .30

MSI TL .17 .10 .03 .33 .16 .03
TF .17 .12 .04 .47 .15 .06

19

sample size assumption — that the minimum required number of cases in
each cell of MANOVA is equal to the number of dependent variables — is
met as well (there are two levels of the independent variable, and the two
dependent variables). Moreover, SPSS (ver.14, SPSS Inc., USA) adjusts
automatically for unequal group sizes. The assumption of normality and
multivariate normality is that our data have come from a population that
has normal distribution, i.e. each dependent variable is normally distributed
within each group and the dependent variables (collectively) have multivari-
ate normality with the groups. Objective tests of the distribution are the
Kolmogorov-Smirnov and the Shapiro-Wilk tests. For the BC data the distri-
bution for the TL, as well as the TF projects appears to be normal (p > .05).
For the MSI data the distribution for TL is normal, whereas that for TF
seems to be non-normal (p < .05), according to the Kolmogorov-Smirnov and
the Shapiro-Wilk tests. Fortunately, the distribution becomes normal after
square root transformation of the MSI data, since the Kolmogorov–Smirnov
and the Shapiro–Wilk test statistics return significance values greater than
.05, see Table 3.

To check for outliers, z-scores were inspected. Fortunately, non of the
z-scores is greater than 2.58, and only one is greater than 1.96. To test for
multivariate normality, the Mahalanobis distances were determined, as shown
in Table 4. It appeared that the maximum Mahalanobis distance (6.78) is
less than the critical value (13.82), so, fortunately, there are no substantial
multivariate outliers. The aforementioned critical value is determined by us-
ing critical values of chi-square table at α = .001, with degrees of freedom
(df) equal the number of dependent variables [77]. The assumption of ho-
mogeneity of variance-covariance matrices means that the variances in each

Table 3: Tests of normality

DV DevMeth Kolmogorov–Smirnov1 Shapiro–Wilk
Statistic df2 Sig. Statistic df2 Sig.

BC TL .166 10 .2003 .926 10 .412
TF .259 9 .083 .918 9 .374

MSIT TL .131 10 .2003 .971 10 .903
TF .248 9 .118 .875 9 .138

1Lilliefors Significance Correction
2Degrees of freedom
3This is a lower bound of the true significance.

20

Table 4: Mahalanobis distance — residual statistics
Min Max Mean (M) Std.Dev.(SD) N

Mahalanobis Distance .036 6.778 1.895 1.844 19

group are roughly equal (homogeneity of variance) for each dependent vari-
able, and the correlation between any two dependent variables is the same in
all groups. This assumption is examined by testing whether the population
variance-covariance matrices of the different groups in the analysis are equal.
If this assumption is true, Levene’s test, as a preliminary check, should not
be significant for any of the dependent variables. Levene’s tests, as shown
in Table 5, are non-significant (significances p > .05) for any of the depen-
dent variables, indicating that the variances in the different experimental
groups are roughly equal (i.e. not significantly different). However, Levene’s
test does not take account of the covariances and so the variance-covariance
matrices should be compared between groups using Box’s test [79]. That
statistic tests the null hypothesis that the variance-covariance matrices are
the same in all groups. For our data the value of Box’s test is non-significant
(p = .848), as shown in Table 6; hence, the covariance matrices are roughly
equal and the assumption is tenable.

The assumption of linearity refers to the presence of a straight-line re-
lationship between the dependent variables. It is done separately for the
TL and the TF projects. Scatter plots between the dependent variables do
not show evidence of non-linearity; thus the assumption is satisfied. Multi-
collinearity and singularity assumption refers to the problems with a corre-
lation matrix that occur when variables are highly correlated (.9 and above),
and the variables are redundant (one of the variables is a combination of
the other variables), respectively [77]. However, multicollinearity is not an
issue, as the dependent variables are not highly correlated (Pearson corre-
lation r = .24). Singularity is avoided due to the knowledge of what the

Table 5: Levene’s test of homogeneity1

DV Levene Statistic df1 df2 Sig.
BC .315 1 17 .582
MSIT .082 1 17 .779

1Design: Intercept+DevMeth

21

Table 6: Box’s Test of Equality of Covariance Matrices1

Box’s M .927
F .269
df1 3
df2 92265.543
Sig. .848

1Design: Intercept+DevMeth

variables are, and how the scores are obtained. The assumption of homo-
geneity of regression slopes refers to the requirement that the relationship
between the outcome and covariates be the same for both groups. In MAN-
COVA heterogeneity of regression implies that there is interaction between
the independent variable and the covariates [77]. For MANCOVA, an overall
test of homogeneity of regression is required, in addition to stepdown tests, as
described by Tabachnick and Fidell [77]. The overall test of homogeneity of
regression with two DVs (F = 1.38, p = .28), as well as step down tests with
one DV each, i.e. MSIT (F = .42, p = .79) and BC (F = 2.99, p = .09),
turned out to be non-significant. Hence, the assumption of homogeneity of
regression has not been violated.

After checking the assumptions, we may proceed to the interpretation of
the effect of development method (DevMeth) on BC and MSIT MANOVA
results (when covariates are not included), and then MANCOVA results
(when covariates are included, i.e. if each participant had the same scores
on the covariates), are presented in Section 5.3.

5.3. Multivariate analysis

Table 7 shows the main table of results when covariates are not included.
Multivariate test statistics Pillai’s trace, Wilk’s lambda, Hotelling’s trace,
and Roy’s largest root are all identical when there are only two levels of a
between-subjects independent variable [77] and, as shown in Table 7, non-
significant (p = .58). Consequently, we may conclude that the employed
development method had non-significant effect on the outcome (F (2, 16) =
.56, p > .05; Wilks’ Lambda = .94; partial eta squared = .07).

Investigating further, it seems reasonable to take into account the other
variables (covariates), which are not part of the main experimental manip-
ulation but have an influence on the dependent variables [79]. Therefore,
experience based covariates (ProgExp, NonAcademicExp, JSPExp) and

22

Table 7: Multivariate tests (MANOVA)1

Effect Value F Hypo- Error Sig. Partial
thesis df Eta

df Sq.
Intercept
Wilks’ Lambda2 .044 1743 2 16 .000 .956
DevMeth
Wilks’ Lambda2 .935 .5603 2 16 .582 .065

1Design: Intercept+DevMeth
2In the two-group case, F values will be identical in all multivariate test statistics Pillai’s trace,

Wilk’s lambda, Hotelling’s trace, and Roy’s largest root [77]
3Exact statistic

pre-test results are included in the model. Again, the multivariate tests are
not significant in the case of DevMeth (see Table 8), which leads to the con-
clusion that the effects of development method on dependent variables are
still non-significant, even after adjusting for the effects of experience-based
covariates, and pre-test results (F (2, 9) = .52, p > .05; Wilks’ Lambda = .90;
partial eta squared = .10). The multivariate tests are significant in the case
of JSPExp, ProgExp, as well as the PreTestGrade3.5 dummy variable.

Between-subjects effects are presented in Table 9. The significance values
in Table 9 imply that neither DevMeth nor covariates significantly predict
the dependent variables after the Bonferroni adjustment, which involves di-
viding the original alpha level of .05 by the number of analyses (in this case
we have two dependent variables to investigate). Effect size, indicated by
the corresponding partial eta squared value, is very small for BC and some-
what larger for MSIT . As a result, the development method DevMeth
accounts for an extremely small proportion of the total variance in BC
(only 0.3 percent), while 7.3 percent of the variance in MSIT can be ex-
plained by DevMeth. After including the covariates (ProgExp, JSPExp,
NonAcademicExp, PreTestGrade) into analysis, one may conclude that the
statistically significant difference between the TL and the TF groups would
unlikely be observed in practice in BC because of small effect size, while
more likely to be observed in MSIT due to medium effect size, justifying
further investigation. What is even more interesting is that the MANCOVA
model is able to explain quite a large portion of the total variance in the de-
pendent variables — 64 percent of the total variance in BC and 66 percent
of the total variance in MSIT — mainly on the basis of the previous sub-

23

Table 8: Multivariate tests (MANCOVA) – analysis of selected projects with pre-test and
experience-based covariates1

Effect Value F Hypo- Error Sig. Partial
thesis df Eta

df Sq.
Intercept
Wilks’ Lambda2 .264 12.5133 2.000 9.000 .003 .736
PreTestGrade3.5
Wilks’ Lambda2 .410 6.4703 2.000 9.000 .018 .590
PreTestGrade4.0
Wilks’ Lambda2 .785 1.2303 2.000 9.000 .337 .215
PreTestGrade4.5
Wilks’ Lambda2 .848 .8063 2.000 9.000 .476 .152
PreTestGrade5.0
Wilks’ Lambda2 .925 .3643 2.000 9.000 .705 .075
NonAcademicExp
Wilks’ Lambda2 .860 .7303 2.000 9.000 .509 .140
ProgExp
Wilks’ Lambda2 .506 4.3973 2.000 9.000 .047 .494
JSPExp
Wilks’ Lambda2 .413 6.3903 2.000 9.000 .019 .587
DevMeth
Wilks’ Lambda2 .896 .5223 2.000 9.000 .610 .104

1Design: Intercept+PreTestGrade3.5+PreTestGrade4.0+PreTestGrade4.5+PreTestGrade5.0+
NonAcademicExp+ProgExp+JSPExp+DevMeth

2Pillai’s trace, Wilk’s lambda, Hotelling’s trace, and Roy’s largest root are identical [77]
3Exact statistic

jects’ experience and the pre-test results. The most effective are JSPExp
covariate (able to explain 23% of the variance in BC, and 35% of the vari-
ance in MSIT , according to the corresponding partial eta squared values)
and PreTestGrade3.5 (able to explain 32% of the variance in BC, and 27%
of the variance in MSIT). However, it is worth mentioning that partial eta
squared is an overestimate, though a consistent measure of the actual effect
size [72].

6. Validity evaluation

When conducting an experiment, there is always a set of threats to the
validity of the results. They are discussed on the basis of the list of threats
by Cook and Campbell [53] and Wohlin et al. [30].

24

Table 9: Test of between-subjects effects with pre-test and experience-based covariates
Source DV Type III df Mean F Sig. Partial

Sum of Sq. Eta
Squares Sq.

Corrected BC .2891 8 .036 2.264 .113 .644
Model MSIT .1892 8 .024 2.395 .098 .657

Intercept BC .250 1 .250 15.652 .003 .610
MSIT .022 1 .022 2.192 .170 .180

PreTest BC .074 1 .074 4.622 .057 .316
Grade3.5 MSIT .036 1 .036 3.677 .084 .269

PreTest BC .032 1 .032 1.985 .189 .166
Grade4.0 MSIT .000 1 .000 .035 .856 .003

PreTest BC .025 1 .025 1.541 .243 .134
Grade4.5 MSIT 5,35E-5 1 5,35E-005 .005 .943 .001

PreTest BC .006 1 .006 .369 .557 .036
Grade5.0 MSIT .001 1 .001 .117 .739 .012

NonAca- BC .026 1 .026 1.620 .232 .139
demicExp MSIT .002 1 .002 .250 .628 .024

ProgExp BC .040 1 .040 2.529 .143 .202
MSIT .031 1 .031 3.108 .108 .237

JSPExp BC .047 1 .047 2.975 .115 .229
MSIT .052 1 .052 5.305 .044 .347

DevMeth BC .000 1 .000 .030 .865 .003
MSIT .008 1 .008 .790 .395 .073

Error BC .159 10 .016
MSIT .099 10 .010

Total BC 7.310 19
MSIT 3.180 19

Corrected BC .448 18
Total MSIT .288 18

1R Squared = .644
2R Squared = .657

25

Threats to the statistical conclusion validity are concerned with issues
that can lead to incorrect conclusions about the relations between the treat-
ment and the outcome of the experiment (e.g. choice of statistical tests,
tools and samples sizes [30]). Robust statistical techniques and tools (e.g.
SPSS) were used but limited statistical power is a threat, as shown in Sec-
tion 4.8. In particular, it is possible that the “non-significant” results are
due to lack of power. Fortunately, effect size estimations provide a valuable
(and much less affected by sample size than statistical significance) measure
of the magnitude of a treatment effect. The assumptions of the multivariate
analysis have been thoroughly checked (see Section 5.2). However, the selec-
tion of covariates to include in the analysis is not specified on the basis of
the data from previous similar experiments, since there were no such exper-
iments whatsoever. MANCOVA was used, instead of multiple ANCOVAs,
to protect against the inflation in the family-wise error rate. A risk that the
variation due to random heterogeneity of subjects is larger than that due to
the treatment, was minimized with the help of covariates. Moreover, the het-
erogeneity was reduced because all the subjects were graduate MSc students.
Treatment implementation is considered reliable, since it was as standard as
possible over different subjects. Random irrelevancies in the experimental
setting were controlled via regular meetings and investigated by post-test
questionnaires.

The internal validity of the experiment concerns the true causes of the
outcomes observed in the study (i.e. whether the effect is caused by the in-
dependent variables or by other factors). Random assignment rules out most
threats to internal validity, but not all [53]. The selection-history interaction
is not threatening, as only one treatment was applied to each object during
the experimental task. Also, there is no reason to expect strong selection-
maturation interaction (i.e. very different rates of “maturation” or change).
However, it is possible that the considered groups matured a bit differently.
For example, the TF technique was considered more difficult and the sub-
jects might have been more tired. In the pre-test questionnaire, 8 subjects
(42.1%) strongly agreed, 7 subjects (36.8%) agreed, 1 subject (5.3%) dis-
agreed, and 1 subject (5.3%) strongly disagreed with the statement that
“the TF development method is more difficult than TL”, while 2 subjects
(10.5%) sat on the fence. Also, in the post-test questionnaire, 9 subjects
(47.4%) strongly agreed, 2 subjects (10.5%) agreed, 4 subjects (21.1%) dis-
agreed, and 1 subject (5.3%) strongly disagreed with the statement “the TF
development method is difficult”, while 3 subjects (15.8%) were neutral. In-

26

ternal validity threat can be due to the fatigue effect. Software engineering
students are accustomed and prepared to work on 15-weeks’ (or sometimes
even longer) projects. However, there is a need for a trade-off between the
aforementioned fatigue effect and the threat coming from the fact that the
training and experimental task periods would be too short. A shorter train-
ing period would result in a situation in which subjects might be overbur-
dened by the level of difficulty and the unfamiliar character of the task [47].
A shorter experimental task period would reduce external validity. Longer
training and experimental tasks would cause a fatigue effect. Concerning
the internal validity, the risk of compensatory rivalry (also called the John
Henry effect) or resentful demoralization of subjects receiving less desirable
treatment must be considered. The group using TL may do their best to
show that the classical method is competitive. On the other hand, subjects
receiving less desirable treatment may not perform as well as they generally
do. In order to reduce the aforementioned risk, both treatments required
testing, refactoring etc. as described in Section 3.1. Informal interviews with
the subjects conducted in the course of the experiment indicate that this risk
is small. Preventing possible diffusion or imitation of treatments is not an
easy task. Shadish et al. [80] suggest separating the two treatment conditions
as much as possible, either geographically or by using different practitioners
in each. The latter was the case applied during this experiment. Another
possibility is to provide ongoing reminders to subjects about the need not
to imitate other treatments [81]. Such reminders were given in a regular
manner in the course of the experiment. To monitor the extent to which
the imitation of treatment occurred, the ActivitySensor plugin reports were
used. Moreover, conversational interviews with the subjects were conducted
to prevent the threat from reaching a level that would seriously undermine
the validity of the experiment. To check whether subjects produced their
code independently, JPlag (a plagiarism detection tool) [82] was employed
during the project but plagiarism was not detected. Compensatory equal-
ization of treatments was not given and thus has not affected the outcome.
It is interesting that some of these threats (e.g. compensatory rivalry, re-
sentful demoralization, diffusion of treatments, compensatory equalization)
were classified as threats to internal validity by Cook and Campbell [53], and
Wohlin et al. [30], while by Shadish et al. [80] — as the threats to construct
validity.

Threats to construct validity concern the extent to which measures ac-
curately reflect the theoretical concepts they are intended to measure. The

27

mono-operation bias is a threat, as the experiment was conducted on a single
software development project. To reduce mono-operation bias, two outcome
measures of treatment were examined [80]. Furthermore, it turned out that
the numbers of unit tests written in the TL projects (M = 134, SD = 95)
and the TF projects (M = 136, SD = 72) were similar, however, the stan-
dard deviation in the TL projects was higher than in the TF projects. Hence,
there was greater uncertainty in the TL projects. Using a single type of ob-
servation is a mono-method bias threat. To reduce mono-method threats,
the post-test questionnaire was added, to enable qualitative validation of
the results. For example, in the post-test questionnaire 8 subjects (42.1%)
strongly agreed, while 9 subjects (47.4%) agreed with the statement that
“TF leads to better code coverage”. On the other hand, only 1 subject
(5.3%) strongly disagreed with the statement, and 1 subject (5.3%) sat on
the fence. Also, in the post-test questionnaire 3 subjects (15.8%) strongly
agreed, while 4 subjects (21.1%) agreed with the statement “TF leads to bet-
ter quality of tests”. On the other hand, 4 subjects (21.1%) disagreed, and
2 subjects (10.5%) strongly disagreed with the statement, while 6 subjects
(31.6%) were neutral. There seems to be no apparent contradiction between
qualitative and quantitative results. However, qualitative results suggested
more obvious difference in code coverage levels between the TF and the TL
techniques. Furthermore, the validity of the subjects’ opinions concerning
the differences between TF and TL must be considered within the context
of the limitations of the study (e.g., limited training time). Justifications, as
well as limitations of BC and MSI, were given when discussing dependent
variables in Sections 3.2 and 3.3, respectively. In this experiment, the concept
of programmer expertise was operationally defined by covariates presented in
Section 4.2. The pre-test measure reflects programmer expertise but clearly
does not cover all the aspects of expertise that can influence the outcome
of the subjects. Therefore, experience-based measures were also taken into
account. Interaction of different treatments is limited due to the fact that the
subjects were involved in one study only. Other threats to construct validity
are social threats (e.g. hypothesis guessing and experimenter expectancies).
As neither the subjects nor the experimenters have any interest in favour of
one technique or another, we do not expect it to be a large threat. As with
most empirical studies in software engineering, an important threat is the
process conformance represented by the level of conformance of the subjects
to the prescribed techniques.

Process conformance is a threat to statistical conclusion validity, through

28

the variance in the way the processes are actually carried out, and also to
construct validity, through possible discrepancies between the processes as
prescribed and the processes as carried out [83].

Unfortunately, this threat is often neglected in experimentation in soft-
ware engineering, even though this is a serious threat, especially in the case
of the TF programming practice, which can be difficult to follow. Wang and
Erdogmus [84], Madeyski and Sza la [35], as well and Müller and Höfer [85]
raised the issue of process conformance in the context of the TF experimen-
tation recently. Process conformance threat was addressed by taking several
precautions. The subjects were informed of the importance of following the
assigned procedures. Regular meetings and discussions about various de-
tails or problems related to the assigned development techniques were held
to avoid possible deviations. In the post-test questionnaire, the subjects
were asked how strongly they agree with process conformance with intention
to exclude those who disagreed. Also, a formal criterion to gauge confor-
mance in the experiment group was applied: the TF subjects who did not
write enough tests to achieve at least 1 : 2 ratio of non-commented lines of
the test code (TestLOC) to non-commented lines of the production code
(ProductionLOC) were deemed not consistent with an expert application of
TF. Some practitioners suggest that the test code should be written in about
the same amount as the production code to be consistent with an expert ap-
plication of the TF technique. This rule, cited as an anecdotal opinion by
Williams et al. [5], was followed during the course of the experiment (see Ta-
ble 1). The ratio TestLOC : ProductionLOC = 50123 : 59359, obtained in
the experiment, is even higher than reported by some TF studies performed
in industry. For example, 34KLOC : 64.6KLOC was achieved in the TF
study at IBM reported by Williams et al. [5], while the average ratio across
all ten releases was .61 as reported by Sanchez et al. [9].

Moreover, the ActivitySensor plugin, integrated with Eclipse IDE, col-
lected programmers’ activities and enabled further analysis how development
techniques were carried out (e.g. whether tests were written before or after
related pieces of a production code). The primary objective of the plugin is
to monitor developer’s activities related to writing production code and tests,
performed refactorings and unit test executions. Each developer’s activity is
characterized by many parameters: start and end time of the activity, type
of the activity (typing, refactoring, test execution), related artefact, that is
its name, type (e.g. class, interface, method), file path etc. Refactoring type
and test execution result are collected as well. After a detailed analysis of

29

the subjects’ activities gathered by the ActivitySensor plugin, with the help
of a developer with recent industrial and TF experience, it was possible to
exclude from analysis three subjects who showed serious deviations from the
prescribed TF technique. The subjects were excluded because they wrote
tests after rather than before related pieces of a production code, while the
objective was to compare the TL technique with TF (not a mix of both
techniques). As a result, the presented analysis was run with the subjects
involved in the 19 projects conducted by 10 TL programmers and 9 TF
programmers. An example of a symptom that the subject violated the TF
process is presented in Table 10. According to Wang and Erdogmus [84],
who formally defined programming cycles, a single programming cycle in-
volves writing unit tests, production code, and ends with execution of tests.
Precedence metric (PM) is the number of programming cycles in which the
latest modified resource, before execution of tests, was production code mi-
nus the number of programming cycles in which the latest modified resource
(before execution of tests) was test. Precedence metric changes were calcu-
lated automatically on the basis of the ActivitySensor logs to draw the TF
expert’s attention to the specific activities and subjects, supporting analysis.

The variance in the way the processes are actually carried out may also
come from the possibility that “poor” students did not apply as many refac-
torings as “bright” students, or that all the students did not apply the same
number or the same set of refactorings, simply because of time pressure.
However, the difference in the number of performed refactorings supported
by Eclipse (and gathered by means of the ActivitySensor plugin) between the
TF and the TL groups is not statistically significant (t(17) = 1.04, p = .31,
r = .24). Furthermore, the difference in the number of varying types of per-

Table 10: Development process analysis - an example
Activity Precedence Comments

no. description Metric (PM)
1 Modified tests 0
2 Modified production code 0
3 Tests execution 1
4 Modified production code 1
5 Tests execution 2
6 Modified production code 2
7 Modified tests 2 Symptom of TF

process violation8 Tests execution 1

30

formed refactorings between the TF and the TL groups is not statistically
significant either (t(17) = −.07, p = .95, r = .02). Also, user stories are of
varying complexities and could have been handled by subjects in different
orders. However, people-oriented processes, and the eXtreme Programming
methodology in particular, assume that developers must be able to make all
the technical decisions [86] (e.g., concerning the order in which functionali-
ties, accepted for the current iteration, should be implemented).

External validity refers to the generalization of research findings, either
from a sample to a larger population or to settings and populations other
than those studied. The largest threat stems from the fact that the sub-
jects were students who had little experience in the assigned development
techniques. Their experience in JUnit testing framework was over 6 months
on average. Consequently, the results of this study might be a conservative
measure of the effects of TF, since the subjects had probably not reached
their maximum level of efficiency. To minimize this threat, the 6-week prepa-
ration phase of the experiment preceded the main experimental task (see
Section 4.7). The differences between novice developers and the most skilled
developers are reported by Arisholm and Sjøberg [87]. On the other hand,
similar improvement trends were identified among freshmen students, grad-
uate students and professionals [45]. The dispersion was larger in the fresh-
men group, and graduate students did the tasks in a significantly shorter
time than freshmen students. Host et al. [46] also found that students may
be relevant as subjects in empirical software engineering research [46]. Fur-
ther arguments why it is acceptable to use students as subjects are given
by Tichy [47] and Kitchenham et al. [48]. Tichy argues that students are
acceptable when used to establish a trend. An important argument given by
Tichy is that when an empirical study compares two methods to see which is
better, then if one method has a clear relative advantage over the other with
students as subjects, it may be argued that there will be a difference in the
same direction (although perhaps of a different magnitude) for professionals.
Furthermore, student subjects are useful to eliminate alternative hypotheses,
as it is almost impossible to find professional subjects if there is no evidence
of difference between the compared methods. Tichy maintains that it is un-
likely that a large effect will surprisingly appear in a professional setting if
it is absent in an academic environment. Hence, results with students help
the community to get better understanding of the compared methods and
to focus on the most promising approaches. In fact, the empirical studies
with students are a prerequisite for getting professionals to participate. Fur-

31

thermore, software engineering students are technically up to date and much
closer to the world of software professionals than, for example, psychology
students are to the general population [47]. Kitchenham et al. [48] also state
that students are the next generation of software professionals and thus, are
relatively close to the population of interest. Moreover, TF is a rather new
development practice and long-term experience in TF is rare, even in indus-
try. The experimental systems in this experiment were rather small, 5KLOC
on average, as shown in Table 1, compared with industrial object-oriented
software systems, but probably much larger than usually developed as a re-
sult of experiments in software engineering. Moreover, programming time
measured in Eclipse development environment by means of the ActivitySen-
sor plugin was 77 hours on average. Nevertheless, it is possible that the
effects of TF programming would have been different in more complex and
longer projects. The interaction of setting and treatment was reduced by
making the experimental setting and material as realistic and close to the in-
dustrial one as possible. Furthermore, interaction of selection and treatment
is limited, because all of the subjects were software engineering graduate
students.

7. Discussion, conclusions and future work

To the author’s knowledge, the conducted experiment includes the first-
ever evaluation of the impact of TF programming on mutation score indicator
of unit tests. The goal was to shed new light on the effects of TF from a
different, test code perspective. Additionally, code coverage was measured
to get a more complete picture of the experimental manipulation. Branch
coverage and mutation score indicator were examined to get some insights
how thoroughly unit tests exercise programs, and how effective they are,
respectively.

MANCOVA helped to exert stricter experimental control by taking con-
founding variables into account and reducing pre-existing differences among
the subjects to give a purer measure of the effect of the experimental manip-
ulation. The main result of this study is that the TF programming practice,
used instead of the classic TL technique, does not significantly affect branch
coverage and mutation score indicator, even if we control for the pre-test
results, the subjects experience, and when the subjects who showed serious
deviations from the prescribed programming techniques are excluded from
the analysis. However, the validity of the results must be considered within

32

the context of the limitations discussed in the validity evaluation section (e.g.
limited power). An interesting finding is that the development method (TL
or TF) as an explanatory variable accounts for a rather small proportion of
the total variance in the dependent variables. Therefore, in future experi-
ments it might be reasonable to take account of variables that are not part
of the main experimental manipulation but have an influence on dependent
variables (e.g. characteristics of subjects) with the help of the analysis of
covariance, or to reduce the variation in scores due to random differences
between subjects by means of the repeated-measures experimental design.

For the impact of TF on branch coverage, effect sizes can be compared
across previously conducted experiments [15, 18] mentioned in Section 2, in-
cluding the experiment presented in this paper. Unfortunately, not all of the
studies presented in Section 2 and summarized in [34] provide enough details
to calculate effect size [16]. Effect size determination program by Wilson
(the co-author of [88]) has been used. The program calculated an effect size
measure r (based on provided p-values and degrees of freedom df) that can
be interpreted consistently for all studies. The effect sizes calculated for the
aforementioned studies [15, 18] are r = −.17 and r = −.04, respectively.
Both effect sizes are considered small, according to guidelines for empirical
studies in software engineering given by Kempenes et al. [89]. The effect
size estimate, reported in this paper in Section 5.3, is small as well (only 0.3
percent of the variance in BC can be explained by DevMeth). Therefore,
we may conclude that the effect sizes are consistent and small across the
empirical studies. It means that the difference in branch coverage created by
the TF development method was a small, and therefore unsubstantial, effect.

For the impact of TF on mutation score indicator, effect sizes can not
be compared across studies, because it is the first experimental evaluation
of the impact of TF on mutation score indicator of unit tests. However,
preliminary empirical evidence on the impact of TF on mutation score in-
dicator, presented in this paper, suggests that the effect size can be higher,
because 7.3 percent of the variance in MSIT can be explained by DevMeth,
as reported in Section 5.3. Therefore, the difference in mutation score in-
dicator, rather than branch coverage, between the TL and the TF groups
is more likely to be observed in practice and, therefore, it is worth further
investigation.

We are far from being able to explain why we do not observe the pos-
itive effects of TF (e.g. significantly higher mutation score indicator), as
the presented experimental evaluation is, to the author’s knowledge, among

33

the earliest in the field. A considerable effort has been made to exclude
deviations from the prescribed techniques as a possible explanation of the
obtained results. However, the above attempt to explain the results could be
considered superficial and there is a need for a more precise definition and
description of the TF and the TL techniques, and, consequently, automatic
detection of possible discrepancies from the aforementioned techniques.

The first explanation of the obtained results is that pre-existing differ-
ences between subjects are more important predictors of the outcome than
the development technique. This explanation is supported by the obtained
results (e.g. partial eta squared values of covariates were much higher than
those of development method). In fact, covariates explained a large part of
the variance in the dependent variables. The pre-existing differences the-
ory is also consistent with the claim, cited by Maxwell and Delaney [50],
that most researchers in the behavioural sciences today expect that individ-
ual differences between subjects are at least as important a predictor of the
outcome as any treatment variable.

However, an alternative explanation is also possible. It turned out that
the TF group had increased the maximum value and, consequently, the vari-
ation of the dependent variables. That may be explained by the relative
difficulty of the TF technique that can be overcome only by few (perhaps
more skilful) subjects and only these subjects would benefit from TF. There-
fore, more experienced and skilful students or professionals could potentially
achieve more substantial improvements. It is consistent with the conclusions
by Erdogmus et al. [17]. Consequently, the positive effects of TF can be
masked, to some extent, by the relative difficulty of the technique. This ex-
planation is supported by the subjects’ responses concerning the difficulty
of the TF technique (responses were collected by means of the pre-test and
post-test questionnaires and presented in Section 6). The mechanism of rela-
tive difficulty can explain not only the increase in the variation and maximum
value of the dependent variables, but also why the development method (as
an explanatory variable) accounts for so small a proportion of the total vari-
ance in the dependent variables. The relative difficulty theory is preliminary
and superficial at best. Therefore, it has to be empirically tested in future
experiments (e.g. with the help of repeated-measures experimental design
that reduces the unsystematic variability and so provides greater power to
detect effects). By doing this, it is possible to reduce the variation in scores
between conditions, which is due to random differences between subjects in
both groups.

34

In reflecting upon the impact of covariates on the dependent variables, it
would be difficult to overemphasize the importance of experience. Experience
in JSP web applications technology (JSPExp) can explain a large portion of
total variance in dependent variables. It may be a valuable finding that may
be used in practice (e.g. while hiring new developers), as pre-test results are
not always available. A plausible explanation of the importance of JSPExp
is that this covariate is the most closely related to the technology domain.
It is in line with common sense that developers who have longer experience
in the technology used in the course of the project tend to write unit tests
which are more effective in finding faults and cover the production code more
thoroughly. The pre-test result is another influential covariate typically used
in the analysis of covariance because it generally correlates with the score
after treatment [72]. By adjusting for the effects due to the covariates, the
error variance was reduced.

With respect to experimental methodology, it has been found very use-
ful to start with the pre-study to check the infrastructure and the instru-
mentation of the experiment. However, the study can benefit from several
improvements before replication is attempted. The most significant one is
securing a sample of large enough size to guarantee a high-power design.
Additional improvements stem from the fact that even more sophisticated
tools and measures could be used if limitations of the existing measurement
tools, presented in Sections 3.2 and 3.3, were addressed. Moreover, further
experimentation in different contexts (e.g. in industry) is needed to establish
evidence-based recommendations for the impact of test-first programming
practice on code coverage and mutation score indicator of unit tests. The
raw data for all the tests presented in the paper are available from the au-
thor [90].

Acknowledgements

The author expresses his gratitude to the students participating in the ex-
periment, as well as his MSc students Adam Piechowiak (the lead developer
of the ActivitySensor plugin), Lukasz Sza la, Micha l G lowacki, Piotr Papa la,
and especially Norbert Radyk (the lead developer of the Judy mutation test-
ing tool) for their help in preparing the measurement instruments, collecting
data and support. The author also would like to thank Ma lgorzata Bogdan
and Andy Field for helpful suggestions concerning statistical analysis.

35

References

[1] K. Beck, C. Andres, Extreme Programming Explained: Embrace
Change, 2nd Edition, Addison-Wesley, 2004.

[2] K. Beck, Test Driven Development: By Example, Addison-Wesley, 2002.

[3] L. Koskela, Test Driven: Practical TDD and Acceptance TDD for Java
Developers, Manning Publications, 2007.

[4] D. Astels, Test Driven development: A Practical Guide, Prentice Hall
Professional Technical Reference, 2003.

[5] L. Williams, E. M. Maximilien, M. Vouk, Test-Driven Development as a
Defect-Reduction Practice, in: ISSRE ’03: Proceedings of the 14th In-
ternational Symposium on Software Reliability Engineering, IEEE Com-
puter Society, Washington, DC, USA, 2003, pp. 34–48.

[6] E. M. Maximilien, L. A. Williams, Assessing Test-Driven Development
at IBM, in: ICSE ’03: Proceedings of the 25th International Conference
on Software Engineering, IEEE Computer Society, 2003, pp. 564–569.

[7] G. Canfora, A. Cimitile, F. Garcia, M. Piattini, C. A. Visaggio, Evaluat-
ing advantages of test driven development: a controlled experiment with
professionals, in: ISESE ’06: Proceedings of the 2006 ACM/IEEE In-
ternational Symposium on Empirical Software Engineering, ACM Press,
New York, NY, USA, 2006, pp. 364–371.

[8] T. Bhat, N. Nagappan, Evaluating the efficacy of test-driven develop-
ment: industrial case studies, in: ISESE ’06: Proceedings of the 2006
ACM/IEEE International Symposium on Empirical Software Engineer-
ing, ACM Press, New York, NY, USA, 2006, pp. 356–363.

[9] J. C. Sanchez, L. Williams, E. M. Maximilien, On the sustained use of a
test-driven development practice at ibm, in: AGILE ’07: Proceedings of
the 2007 Conference on Agile Software Development, IEEE Computer
Society, Washington, DC, USA, 2007, pp. 5–14.

[10] N. Nagappan, E. M. Maximilien, T. Bhat, L. Williams, Realizing quality
improvement through test driven development: results and experiences
of four industrial teams, Empirical Software Engineering 13 (3).

36

[11] D. Janzen, H. Saiedian, Does Test-Driven Development Really Improve
Software Design Quality?, IEEE Software 25 (2) (March–April 2008)
77–84.

[12] S. H. Edwards, Rethinking computer science education from a test-first
perspective, in: OOPSLA ’03: Companion of the 18th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, ACM, New York, NY, USA, 2003, pp. 148–
155.

[13] S. H. Edwards, Teaching software testing: automatic grading meets test-
first coding, in: OOPSLA ’03: Companion of the 18th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, ACM, New York, NY, USA, 2003, pp. 318–
319.

[14] Grigori Melnik and Frank Maurer, A cross-program investigation of stu-
dents’ perceptions of agile methods, in: ICSE ’05: Proceedings of the
27th International Conference on Software Engineering, 2005, pp. 481–
488.

[15] M. M. Müller, O. Hagner, Experiment about test-first programming,
IEE Procedings-Software 149 (5) (2002) 131–136.

[16] M. Pančur, M. Ciglarič, M. Trampuš, T. Vidmar, Towards empirical
evaluation of test-driven development in a university environment, in:
EUROCON ’03: Proceedings of the International Conference on Com-
puter as a Tool, 2003, pp. 83–86.

[17] H. Erdogmus, M. Morisio, M. Torchiano, On the Effectiveness of the
Test-First Approach to Programming, IEEE Transactions on Software
Engineering 31 (3) (2005) 226–237.

[18] T. Flohr, T. Schneider, Lessons Learned from an XP Experiment with
Students: Test-First Need More Teachings, in: J. Münch, M. Vierimaa
(Eds.), Product Focused Software Process Improvement, Vol. 4034 of
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2006,
pp. 305–318.

[19] L. Madeyski, Preliminary Analysis of the Effects of Pair Program-
ming and Test-Driven Development on the External Code Quality, in:

37

K. Zieliński, T. Szmuc (Eds.), Software Engineering: Evolution and
Emerging Technologies, Vol. 130 of Frontiers in Artificial Intelligence
and Applications, IOS Press, 2005, pp. 113–123.
URL http://madeyski.e-informatyka.pl/download/Madeyski05b.

pdf

[20] L. Madeyski, The Impact of Pair Programming and Test-Driven Devel-
opment on Package Dependencies in Object-Oriented Design – An Ex-
periment, in: J. Münch, M. Vierimaa (Eds.), Product Focused Software
Process Improvement, Vol. 4034 of Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, 2006, pp. 278–289, http://madeyski.e-
informatyka.pl/download/Madeyski06.pdf.

[21] A. Gupta, P. Jalote, An experimental evaluation of the effectiveness and
efficiency of the test driven development, in: ESEM ’07: Proceedings
of the First International Symposium on Empirical Software Engineer-
ing and Measurement, IEEE Computer Society, Washington, DC, USA,
2007, pp. 285–294.

[22] L. Huang, M. Holcombe, Empirical investigation towards the effective-
ness of Test First programming, Information and Software Technology
51 (1) (2009) 182–194.

[23] R. E. Jeffries, A. Anderson, C. Hendrickson, Extreme Programming
Installed, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2000.

[24] S. Ambler, Introduction to Test Driven Design (TDD) (Accessed 2008).
URL http://www.agiledata.org/essays/tdd.html

[25] B. Mattu, R. Shankar, Test driven design methodology for component-
based system, in: 1st Annual IEEE Systems Conference, 2007, pp. 1–7.

[26] B. Marick, How to Misuse Code Coverage, in: Proceedings of the 16th
International Conference on Testing Computer Software, Washington,
USA, 1999.
URL http://www.exampler.com/testing-com/writings/coverage.

pdf

[27] P. J. Walsh, A Measure of Test Case Completeness, Ph.D. thesis, Univ.
New York (1985).

38

[28] P. G. Frankl, S. N. Weiss, C. Hu, All-Uses vs Mutation Testing: An
Experimental Comparison of Effectiveness, Journal of Systems and Soft-
ware 38 (3) (1997) 235–253.

[29] A. J. Offutt, J. Pan, K. Tewary, T. Zhang, An Experimental Evaluation
of Data Flow and Mutation Testing, Software Practice and Experience
26 (2) (1996) 165–176.

[30] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering: An Introduction, Kluwer
Academic Publishers, Norwell, MA, USA, 2000.

[31] C. Robson, Real World Research: A Resource for Social Scientists and
Practitioner-Researchers, Blackwell Publishing Limited, 2002.

[32] B. W. Boehm, A Spiral Model of Software Development and Enhance-
ment, IEEE Computer 21 (5) (1988) 61–72.

[33] IEEE standard for software unit testing, ANSI/IEEE Std 1008-1987.

[34] L. Madeyski, Empirical studies on the impact of test-first programming,
Technical Report I32/09/, Wroclaw University of Technology, Institute
of Informatics (2009).
URL http://madeyski.e-informatyka.pl/download/

Madeyski09TFStudies.pdf

[35] L. Madeyski, L. Sza la, The Impact of Test-Driven Development
on Software Development Productivity – An Empirical Study, in:
P. Abrahamsson, N. Baddoo, T. Margaria, R. Messnarz (Eds.),
Software Process Improvement, Vol. 4764 of Lecture Notes in
Computer Science, Springer, 2007, pp. 200–211, http://madeyski.e-
informatyka.pl/download/Madeyski07d.pdf.

[36] R. A. Ynchausti, Integrating Unit Testing Into A Software Development
Team’s Process, in: M. Marchesi, G. Succi (Eds.), XP 2001: Proceed-
ings of the 2nd International Conference on Extreme Programming and
Flexible Processes in Software Engineering, Sardinia, Italy, 2001, pp.
84–87.

39

[37] B. George, L. Williams, An initial investigation of test driven devel-
opment in industry, in: SAC ’03: Proceedings of the 2003 ACM sym-
posium on Applied computing, ACM, New York, NY, USA, 2003, pp.
1135–1139.

[38] B. George, L. A. Williams, A structured experiment of test-driven de-
velopment, Information and Software Technology 46 (5) (2004) 337–342.

[39] A. Geras, M. R. Smith, J. Miller, A Prototype Empirical Evaluation of
Test Driven Development, in: IEEE METRICS’2004: Proceedings of the
10th IEEE International Software Metrics Symposium, IEEE Computer
Society, 2004, pp. 405–416.

[40] L.-O. Damm, L. Lundberg, Results from introducing component-level
test automation and Test-Driven Development, Journal of Systems and
Software 79 (7) (2006) 1001–1014.

[41] L.-O. Damm, L. Lundberg, Quality impact of introducing component-
level test automation and test-driven development, in: P. Abrahamsson,
N. Baddoo, T. Margaria, R. Messnarz (Eds.), Software Process Improve-
ment, Vol. 4764 of Lecture Notes in Computer Science, Springer, 2007,
pp. 187–199.

[42] P. Abrahamsson, A. Hanhineva, J. Jäälinoja, Improving business agility
through technical solutions: A case study on test-driven development in
mobile software development, in: R. Baskerville, L. Mathiassen, J. Pries-
Heje, J. I. DeGross (Eds.), Proceedings of the IFIP TC8 WG 8.6 In-
ternational Working Conference on Business Agility and Information
Technology Diffusion, Vol. 180 of IFIP International Federation for In-
formation Processing, Springer, 2005, pp. 1–17.

[43] M. Siniaalto, P. Abrahamsson, A Comparative Case Study on the Im-
pact of Test-Driven Development on Program Design and Test Cover-
age, in: ESEM ’07: Proceedings of the First International Symposium
on Empirical Software Engineering and Measurement, IEEE Computer
Society, 2007, pp. 275–284.

[44] M. M. Müller, The Effect of Test-Driven Development on Program Code,
in: XP ’06: Extreme Programming and Agile Processes in Software En-
gineering, 7th International Conference, XP 2006, Oulu, Finland, June
17-22, 2006, Springer, 2006, pp. 94–103.

40

[45] P. Runeson, Using students as Experiment Subjects - An Analysis of
Graduate and Freshmen Student Data, in: EASE ’03: Proceedings of
7th International Conference on Empirical Assessment and Evaluation
in Software Engineering, British Computer Society, 2003, pp. 95–102.

[46] M. Höst, B. Regnell, C. Wohlin, Using Students as Subjects — A Com-
parative Study of Students and Professionals in Lead-Time Impact As-
sessment, Empirical Software Engineering 5 (3) (2000) 201–214.

[47] W. F. Tichy, Hints for Reviewing Empirical Work in Software Engineer-
ing, Empirical Software Engineering 5 (4) (2000) 309–312.

[48] B. Kitchenham, S. L. Pfleeger, L. Pickard, P. Jones, D. C. Hoaglin, K. E.
Emam, J. Rosenberg, Preliminary Guidelines for Empirical Research
in Software Engineering, IEEE Transactions on Software Engineering
28 (8) (2002) 721–734.

[49] R. Jeffries, G. Melnik, Guest Editors’ Introduction: TDD–The Art of
Fearless Programming, IEEE Software 24 (3) (2007) 24–30.

[50] S. E. Maxwell, H. D. Delaney, Designing Experiments and Analyzing
Data: A Model Comparison Perspective, 2nd Edition, Lawrence Erl-
baum, Mahwah, 2004.

[51] L. Madeyski, On the Effects of Pair Programming on Thoroughness and
Fault-Finding Effectiveness of Unit Tests, in: J. Münch, P. Abrahams-
son (Eds.), Product Focused Software Process Improvement, Vol. 4589
of Lecture Notes in Computer Science, Springer, 2007, pp. 207–221,
http://madeyski.e-informatyka.pl/download/Madeyski07.pdf.

[52] L. Madeyski, The Impact of Pair Programming on Thoroughness
and Fault Detection Effectiveness of Unit Tests Suites, Wiley, Soft-
ware Process: Improvement and Practice 13 (3) (2008) 281–295,
http://madeyski.e-informatyka.pl/download/Madeyski08.pdf.

[53] T. D. Cook, D. T. Campbell, Quasi-Experimentation: Design and Anal-
ysis Issues, Houghton Mifflin Company, 1979.

[54] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring:
Improving the Design of Existing Code, Addison-Wesley, 1999.

41

[55] E. Gamma, K. Beck, JUnit (Accessed 2006).
URL http://www.junit.org/

[56] V. Massol and T. Husted, JUnit in Action, 1st Edition, Manning Pub-
lications, 2003.

[57] P. Hamill, Unit test frameworks, O’Reilly, 2004.

[58] S. Cornett, Code Coverage Analysis (Accessed 2007).
URL http://www.bullseye.com/coverage.html

[59] Atlassian Pty Ltd, Clover project (Accessed 2008).
URL http://www.atlassian.com/software/clover/

[60] R. A. DeMillo, R. J. Lipton, F. G. Sayward, Hints on Test Data Se-
lection: Help for the Practicing Programmer, IEEE Computer 11 (4)
(1978) 34–41.

[61] R. G. Hamlet, Testing Programs with the Aid of a Compiler, IEEE
Transactions on Software Engineering 3 (4) (1977) 279–290.

[62] H. Zhu, P. A. V. Hall, J. H. R. May, Software Unit Test Coverage and
Adequacy, ACM Computing Surveys 29 (4) (1997) 366–427.

[63] A. J. Offutt, R. H. Untch, Mutation testing for the new century, Kluwer
Academic Publishers, Norwell, MA, USA, 2001, Ch. Mutation 2000:
Uniting the Orthogonal, pp. 34–44.

[64] N. Radyk, L. Madeyski, Judy – Mutation Test-
ing Tool for Java (Accessed 2009), http://www.e-
informatyka.pl/sens/Wiki.jsp?page=Projects.Judy.
URL http://madeyski.e-informatyka.pl/download/tools/judy/

judy-0.1.zip

[65] Ant project (Accessed 2006).
URL http://ant.apache.org/

[66] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, C. Zapf, An Experimen-
tal Determination of Sufficient Mutant Operators, ACM Transactions on
Software Engineering and Methodology 5 (2) (1996) 99–118.

42

[67] P. Ammann, J. Offutt, Introduction to Software Testing, Cambridge
University Press, Cambridge, UK, 2008.

[68] Y.-S. Ma, Y.-R. Kwon, J. Offutt, Inter-Class Mutation Operators for
Java, in: ISSRE ’02: Proceedings of the 13th International Symposium
on Software Reliability Engineering (ISSRE’02), IEEE Computer Soci-
ety, Washington, DC, USA, 2002, pp. 352–363.

[69] Y.-S. Ma, M. J. Harrold, Y.-R. Kwon, Evaluation of Mutation Testing
for Object-Oriented Programs, in: ICSE ’06: Proceeding of the 28th
International Conference on Software Engineering, ACM Press, New
York, NY, USA, 2006, pp. 869–872.

[70] M. Höst, , C. Wohlin, T. Thelin, Experimental Context Classification:
Incentives and Experience of Subjects, in: ICSE ’05: Proceedings of the
27th International Conference on Software Engineering, ACM Press,
New York, NY, USA, 2005, pp. 470–478.

[71] D. Howitt, D. Cramer, Introduction to SPSS in Psychology, 4th Edition,
Pearson Education Limited, 2008.

[72] J. P. Stevens, Applied Multivariate Statistics for the Social Sciences, 4th
Edition, Lawrence Erlbaum, Mahwah, 2002.

[73] G. Seshadri, Understanding JavaServer Pages Model 2 architecture –
Exploring the MVC design pattern (1999).
URL http://www.javaworld.com/javaworld/jw-12-1999/

jw-12-ssj-jspmvc.html

[74] Cactus project (Accessed 2006).
URL http://jakarta.apache.org/cactus/

[75] L. Madeyski, M. Stochmia lek, Architectural Design of Modern Web Ap-
plications, Foundations of Computing and Decision Sciences Journal
30 (1) (2005) 49–60.
URL http://madeyski.e-informatyka.pl/download/23.pdf

[76] L. Williams, A. Shukla, A. I. Antón, An Initial Exploration of the
Relationship Between Pair Programming and Brooks’ Law, in: ADC
’04: Proceedings of the Agile Development Conference (ADC’04), IEEE
Computer Society, Washington, DC, USA, 2004, pp. 11–20.

43

[77] B. G. Tabachnick, L. S. Fidell, Using Multivariate Statistics, 5th Edi-
tion, Allyn & Bacon, Inc., Needham Heights, MA, USA, 2006.

[78] American Psychological Association, Publication manual of the Ameri-
can Psychological Association, 5th Edition, American Psychological As-
sociation, Washington, DC, USA, 2001.

[79] A. Field, Discovering Statistics Using SPSS, SAGE Publications, 2005.

[80] W. R. Shadish, T. D. Cook, D. T. Campbell, Experimental and Quasi-
Experimental Designs for Generalized Causal Inference, Houghton Mif-
flin, 2002.

[81] A. Rubin, E. R. Babbie, Research Methods for Social Work, 5th Edition,
Wadsworth Publishing, 2004.

[82] L. Prechelt, G. Malpohl, M. Phlippsen, Finding Plagiarisms among a
Set of Programs with JPlag, Journal of Universal Computer Science
8 (11) (2002) 1016–1038.
URL http://www2.informatik.uni-erlangen.de/Forschung/

Publikationen/download/jplag.pdf

[83] L. S. Sørumg̊ard, Verification of Process Conformance in Empirical
Studies of Software Development, Ph.D. thesis, The Norwegian Univer-
sity of Science and Technology (February 1997).
URL http://www.idi.ntnu.no/grupper/su/publ/phd/sorumgard_

thesis.pdf

[84] Y. Wang, H. Erdogmus, The Role of Process Measurement in Test-
Driven Development, in: C. Zannier, H. Erdogmus, L. Lindstrom (Eds.),
XP/Agile Universe, Vol. 3134 of Lecture Notes in Computer Science,
Springer, 2004, pp. 32–42.

[85] M. M. Müller, A. Höfer, The effect of experience on the test-driven
development process, Empirical Software Engineering 12 (6) (2007) 593–
615.

[86] M. Fowler, The New Methodology (Accessed 2007).
URL http://www.martinfowler.com/articles/newMethodology.

html

44

[87] E. Arisholm, D. I. K. Sjøberg, Evaluating the effect of a delegated versus
centralized control style on the maintainability of object-oriented soft-
ware, IEEE Transactions on Software Engineering 30 (8) (2004) 521–534.

[88] M. W. Lipsey, D. B. Wilson, Practical Meta-Analysis, Sage Publications,
California, USA, 2001.

[89] V. B. Kampenes, T. Dyb̊a, J. E. Hannay, D. I. K. Sjøberg, System-
atic review: A systematic review of effect size in software engineering
experiments, Information and Software Technology 49 (11-12) (2007)
1073–1086.

[90] L. Madeyski, The impact of test-first programming on branch
coverage and mutation score indicator of unit tests: A raw data
from an experiment, (Raw data from SPSS), Wroclaw Univer-
sity of Technology, Institute of Informatics, http://madeyski.e-
informatyka.pl/download/Madeyski09bExp2RawData.pdf (2009).
URL http://madeyski.e-informatyka.pl/download/

Madeyski09bExp2RawData.sav

45

