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Abstract:

Process metrics appear to be an effective addition to software defect prediction models usually
built upon product metrics. We present a review of research studies that investigate process
metrics in defect prediction. The following process metrics are discussed: Number of Re-
visions, Number of Distinct Committers, Number of Modified Lines, Is New and Number of
Defects in Previous Revision. We not only introduce the definitions of the aforementioned
process metrics but also present the most important results, recent advances and the summary
regarding the use of these metrics in software defect prediction models, as well as the taxonomy
of the analysed process metrics.
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1. Introduction

Process metrics, although sometimes not easy to collect, are becoming the crucial ingre-
dients of novel, more accurate defect prediction models and systems. This paper reviews
research activities regarding the use of process metrics in modern software defect prediction
models. We follow the definitions of process metrics that was given by Henderson-Sellers’ [1],
who distinguished between product and process metrics. According to Henderson-Sellers
product metric refers to software ”snapshot” at a particular point of time, while process metric
reflects the changes over time, e.g. the number of code changes. Recently the term historical
metrics is sometimes used instead of process metrics, e.g. [2]. Nevertheless, we decided to
use the traditional nomenclature which draws on Henderson-Sellers’ [1], as well as Kan’s
nomenclature [3] and is consistent with one we assumed before [4]. We provide both, the
definitions of the process metrics (Section 2), as well as presentation and discussion (in sub-
sequent sections) of the most important results obtained in a wide range of empirical research
studies regarding defect prediction models and process metrics. The studies are summarized
in Section 8 and the conclusions are discussed in Section 9.

2. Metrics definitions

Number of Revisions (NR). The NR metric represents the number of revisions of a given
Java class during development of the investigated release of a software system.

Number of Distinct Commiters (NDC). The NDC metric counts the number of distinct
authors, usually developers, who committed their changes in a given Java class during the
development of the investigated release of a software system.
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Number of Modified Lines (NML). The value of the NML metric is equal to the sum of all
lines of source code which were added or removed in a given Java class. Each of the revisions
which were committed during the development of the investigated release of a software system
is considered. According to the CVS version control system, a modification in a given line of
source code is equivalent to removing the old version and subsequently adding a new version
of the line.

Is New (IN). It is a nominal metric. It shows whether the given class existed in the previous
version of the investigated system or whether it is a new one.

Number of Defects in Previous Version (NDPV). The NDPV metric counts the number of
defects which were repaired in a given class during the development of the previous release
of a software system.

3. Number of Revisions

There are several studies which investigate the number of historical revisions as a defect
indicator. Weyuker et al. [5, 6, 7, 8, 9] used the number of changes in the prior release, as
well as several other metrics, and created a very efficient defect prediction model by means of
negative binomial regression. The 20% of files selected by the model contained up to 92% of
the defects. They found in [6] that the files which were changed in the previous release had
about three times as many faults as detected in the unchanged files.

Ratzinger et al. [10] used the number of historical revisions in three different types of
defect prediction models and evaluated them on five industrial projects.

Graves et al. [11] concluded that the change history contains more useful information
than could be obtained from the product (size and structure) metrics. They found specifically
that the numbers of lines of code of a module (a metric widely used in the defect prediction
models) are not helpful in predicting faults when the number of times a module was changed
is taken into account.

Schröter et al. [12] mined the Eclipse bug and version databases and calculated the corre-
lations of process measurement with pre- and post-release failures. In the case of pre-release
failures the number of changes had the highest correlation coefficient among all the inves-
tigated process and product metrics. It was .34–.47 in the case of the Pearson correlation
and .44–.56 in the case of the Spearman correlation. The work was later extended by using
the metric in commercial projects [13] and by defining a metric which represents series of
changes [14].

Illes-Seifert and Paech [2] investigated a number of process metrics, among others Fre-
quency of Change. The Spearman’s correlation of the Frequency of Change metric with num-
ber of defects was high in all nine investigated projects (.43–.64). The metric was recom-
mended as a very good defect indicator.

Shihab et al. [15] investigated the Eclipse project in order to identify the metric subset that
will be as good as a full metric set. 34 different metrics were analysed. The authors reduced
the number of metrics to a much smaller, statistically significant and minimally collinear sub-
set. The subset contained four metrics including the NR metric. The small set of metrics was
used to build logistic regression models. The obtained models were compared to the models
that make use of the full set of metrics and a very little difference in prediction accuracy was
found.

Moser et al. [16] conducted a comparative analysis of the efficiency of the process and
the product metrics for defect prediction. The process metrics set contained metrics similar
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to NR, NDC, NML, NDPV and IN. The authors built three types of models: process metric
models, product metric models and combined models. The process metric models and the
combined models were more efficient than the product metrics models. Therefore, the authors
recommended using the process metrics in defect prediction.

4. Number of Distinct Commiters

The metric is considered in several studies. Weyuker et al. used the number of distinct
developers in a defect prediction model in [5] and then investigated the relevance of the met-
ric in [8] and [9]. The experiment included the addition of the developer’s information to
the defect prediction model, which resulted in a slight improvement of the prediction effi-
ciency. Without the developer information, the model was able to identify correctly 20% of
the files containing 76.4–93.8% of the defects. Inclusion of the developer information yielded
76.4–94.8%. Weyuker et al. investigated three large industrial systems with a succession of
releases over years of development.

Ratzinger et al. [10] included the number of developers in their defect prediction mod-
els. The authors did not study the usefulness of the NDC metric per se. Nevertheless, they
concluded that it is not the size and complexity measures that dominate defect-proneness but
rather many people-related issues.

The Number of developers metric was also used by Zimmermann et al. [17]. Zimmermann
et al. analysed twelve open-source and industrial projects in order to assess the possibility of
a successful cross project defect prediction.

Different results were obtained by Graves et al. [11]. A study of the code from a 1.5
million line subsystem of a telephone switching system gave no evidence that a large number
of developers working on a module caused it to be more faulty. The generalized linear models
were used to assess the usefulness of the metric.

Schröter et al. [12] analysed the Eclipse bug and version database and found a high corre-
lation coefficient of the number of authors metric with pre- and post-release failures. It was
.15–.41 in the case of the Pearson correlation and .13–.49 in the case of the Spearman correla-
tion. The findings were confirmed by Illes-Seifer and Paech [2]. The Spearman’s correlation
coefficients of the number of distinct authors with the number of defects vary from .16 to .74
in the nine software projects which were investigated by lles-Seifer and Paech.

The most sophisticated studies on developer-based defect predictions were described in [18]
and [19]. Both papers present the analysis of the relationship between a given developer and
the density of defects. The usefulness of that approach cannot be actually estimated, since the
papers come up with conflicting results.

Nagappan et al. [20] considered the metrics which describe organizational structure, among
others Number of Engineers. The authors used the metrics to make predictions for Windows
Vista. The obtained models had a precision and recall of 86.2% and 84.0%, respectively.

5. Number of Modified Lines

Considerable research has been performed on the extent to which the number of modified
lines of code impacts the defect counts. The metric was already investigated in 1996 by
Khoshgoftaar et al. [21]. The authors investigated two consecutive releases of a large legacy
software system for telecommunications and employed 16 static software product metrics and
the and the number of added or modified code lines in the prediction.

Layman et al. [22] defined four metrics that depend on the number of modified blocks:
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— Churn = NewBlocks + ChangedBlocks;
— RelativeChurn = (NewBlocks + ChangedBlocks) / TotalBlocks;
— Deleted churn = Deleted blocks / Total blocks;
— NCD churn = (NewBlocks + ChangedBlocks) / DeletedBlocks.

The models which identify fault-prone components were built using the four aforemen-
tioned, as well as several other, structure metrics. Principal Component Analysis and Stepwise
Logistic Regression were used in the construction procedure. The prediction accuracy of the
models was very high: 73.3–86.7%. The authors used them in Windows Server 2003 [23] and
Windows Vista [20, 14] projects.

Purushothaman et al. [24] investigated the number of lines that were changed and de-
scribed the distribution of modification size across files in a large, written in C/C++, telephone
switch which consisted of 50 subsystems. They found out that the probability of a one-line
change introducing one error was less then 4 percent.

A NML related metric was also investigated and advocated by Nagappan and Ball [23].
They concluded that it was an excellent predictor of defect density in a large industrial soft-
ware system.

The finding was later partly confirmed by Zimmermann et al. [17] through investigating
twelve open-source and industrial software projects and by Ratzinger et al. [10], who exam-
ined five industrial projects.

Śliwerski et al. [25] investigated Eclipse and Mozilla, and found that the larger the modi-
fication, the greater is the defect introduction probability.

Hassan [26] investigated five large open-source projects. He used the size of modification
to define module entropy and subsequently used the entropy to predict successfully defects in
the modules.

Giger et al. [27] employed in defect prediction a metric derived from the NML, namely
fine-grained source code changes (SCC). The SCC metric captures the semantics of changes
and was suggested by Fluri et al. [28, 29]. The SCC metric was investigated and compared
with the NML metric with regard to its correlation with the number of defect as well as the
prediction power (in univariate model). It was an empirical study conducted on 15 Eclipse
plug-ins. The results showed significant strong correlation between defects and SCC. Fur-
thermore, the SCC metric had a stronger correlation with defects than the NML metric. The
defect prediction was investigated with respect to two different prediction aims: classifying
a file as defect-prone or not defect-prone and predicting the number of defects. Based on
the obtained results the authors concluded that SCC is a good predictor for defect-prone and
not defect-prone files. Moreover, the SCC based models outperformed the models build with
the NML metric in both aforementioned cases. Nevertheless, the authors admitted that from
external validity point of view their work could be biased by the sole focus on Eclipse projects.
A further study with regard to the SCC metric was presented in [30]. The set of investigated
projects was extended to 16 Eclipse plug-ins. The authors defined a Gini coefficient that
reflects code ownership (i.e. developers were used as the ”population” and NR, NML or SCC
as the ”wealth”), hence the obtained metrics are similar to the NDC metric to some extent.
The Gini coefficients calculated for different metrics (i.e NR, NML and SCC) were investi-
gated with regard to the correlation with defects and prediction power (in univariate model).
The correlation coefficients for NR related metrics varies from -0.05 to -0.79 (median=-0.55);
NML from -0.34 to -0,75 (median=-0.54) and SCC from -0.29 to -0.76 and according to the
conduced tests the difference between correlations were not significant. Similar results (i.e.
no significant difference) were obtained in the case of prediction.
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6. Is New

The IN metric as well as the age of a class or file were considered in several studies [5,
31, 11, 2, 32, 33, 7, 9], but the definitions used in those works are not uniform and sometimes
differ from ours.

Ostrand et al. [33, 31] defined two file categories: New File and Old File; Illes-Seifer
and Paech [2] defined three categories: Newborn, Young, Old. In [5] the File age means the
number of months a given file has existed, in [7] and [9] — the number of consecutive prior
releases in which the file appeared. Graves et al. [11] measured the average age of the code.
They calculated the weighted average of the dates of the changes to the module, weighted by
the size of the change.

Khoshgoftaar et al. [32] defined two metrics which were connected with the age: Is New
(1 - If the module did not exist in the “ending” version (accepted by the customer or released
for operational testing) of prior build, 0 - Otherwise) and Age (0 - If the module is new, 1 - If
the module was new in the prior build, 2 - Otherwise).

The age of a class or a file was usually reported as a good defect count indicator. However,
the explanation of the nature of the relation between the age and the defect count differs among
studies.

Ostrand et al. [33, 31] successfully used the Is New metric in their model and discovered
that in every release the percentage of the faulty new files is larger than the percentage of
the faulty pre-existing files. The finding was confirmed by Bell et al. [5] — an exploratory
analysis indicated that fault-proneness decreases with the age of a file. Similar findings were
also obtained by Weyuker et al. [7, 8].

Khoshgoftaar et al. [32] observed that Is New varied in their significance and Age was a
variable with a negative coefficient with the number of defects.

The result supports the finding that older modules are more reliable.
Different results were obtained by Illes-Seifert and Peach [2]. They concluded that “a

file’s age is a good indicator for its defect count (...), but Newborn and Young files are not the
most fault-prone files”.

Graves et al. [11] found that the Age metric, when combined with the number of deltas,
greatly improved the fit of a defect prediction model to a point where it was slightly better
than the reference model.

7. Number of Defects in Previous Version

Another issue to which extensive research was devoted is the extent to which the number
of defects from the previous version impacts the defect counts in the current version.

Wahyudin et al. [34] constructed a Reliability Growth Model using the defects from pre-
vious version and successfully applied the model to a new release.

Arisholm and Briand [35] scrutinized the number of faults corrected in release i � 1 and
the number of faults corrected in release i � 2, as well as several other metrics in a large,
object-oriented, evolving legacy software system. They build a multivariate prediction model
using logistic regression on log-transformed variables. The obtained predictions were correct
in more than 80% cases.

Ostrand et al. [31, 7, 9] used negative binomial regression to develop models which predict
faults in software systems. One of the metrics employed in the project was the square root of
the number of faults identified during the previous release. The authors obtained very good
prediction efficiency, as it was reported above.
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Graves et al. [11] described a study using the fault history of the modules of a large
telecommunications system. The authors constructed several defect prediction models. One
of the models predicted the number of faults to be a constant multiple of the number of faults
that had been found in a period of time in the module. The model was not the best one but the
authors found it challenging to improve it.

Kim et al. [36] analysed seven open-source software systems and developed a cache based
algorithm to predict future faults. Two of the principles behind the algorithm were connected
with the NDPV metric: temporal locality (If an entity introduces a fault recently, it will tend
to introduce other faults soon) and spatial locality (If an entity introduced a fault recently,
”nearby entities” (in the sense of logical coupling) will also tend to introduce faults soon).
The algorithm was able to cover 73%–95% of faults by selecting 10% of the most fault prone
source code files.

Khoshgoftaar et al. [32] analysed a real-time military system and concluded that modules
with faults in the past are likely to have faults in the future.

Ostrand and Weyuker [33] investigated whether faultiness persists between the subsequent
releases and, according to the authors, there is moderate evidence that files remain high-fault
till later releases. 17% to 54% of the high-fault files of release i are still high-fault in release
i+ 1.

Gyimothy et al. [37] calculated the correlations between the numbers of defects associ-
ated with the different versions of classes (Mozilla versions 1.0 to 1.6 were analysed). The
correlations were on a high level and varied from .69 to .9.

Contradictory results were obtained by Illes-Seifert and Peach [2]. The authors concluded
that, according to the results of their correlation analysis, “the number of defects found in the
previous release of file does not correlate with its current defect count.”

One might also doubt whether the NDPV metric is useful in defect prediction once the
results obtained by Schröter et al. [12] are taken into consideration. Schröter et al. [12] calcu-
lated the correlation between pre- and post-release failures, but the obtained coefficients were
smaller than the correlation coefficients calculated from the two metrics mentioned before
(NR and NDC). Only three process metrics were considered in [12].

The analysis by Shihab et al. [15] showed that the NDPV metric is relevant in defect
prediction.

8. Summary

The summary of the studies on the use of process metrics in defect prediction is presented
in Table 1. The goals of each study are denoted as prediction (represents defect prediction
improvement) or correlation (represents the investigation of the correlation with number of
defects), while recommendations are denoted as: “%” (represents positive recommendation),
“&” (represents negative recommendation) or “–” (no recommendation).

There is a number of works that recommend process metrics. However, it could be risky to
arrive at a very optimistic conclusion, since the studies employed many different techniques
and investigated a limited number of software projects, which influences their external valid-
ity. Furthermore, the positive recommendations describe only the fact that the authors find the
metric useful in defect prediction. Specifically, a metric can be recommended in 2 studies but
in the first one — as positively correlated, and in the second one — as negatively correlated
with the number of defects. Nevertheless, that is a promising direction for further research,
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and the level of prediction accuracy of the obtained results makes them potentially useful
when employed in industry.

Table 1: Using process metrics in defect prediction: a summary of studies

Metric Paper Data sets Goal of study Recom-
mendation

NR Bel et al. [5] proprietary systems over a
2.5 year period

prediction; correlation %

Ostrand et al. [6] 13 releases of a propri-
etary system

prediction –

Weyuker et al. [7] 35 release of a proprietary
system

prediction %

Weyuker et al. [8] 35 release of a proprietary
system

prediction using devel-
oper information

–

Weyuker et al. [9] 3 proprietary systems with
17, 9 and 35 respectively
and 1 system without for-
mal releases

prediction –

Ratzinger et al. [10] a proprietary system Q-Mine: Predicting
Short-Term Defects for
Software Evolution

–

Graves et al. [11] subsystem of a telephone
switching system

prediction %

Schröter et al. [12] Eclipse correlation –
Illes-Seifert and Paech [2] 9 open-source projects correlation %
Shihab et al. [15] Eclipse prediction %
Moser et al. [16] Eclipse prediction %
Kim et al. [36] 7 open–source projects prediction –
Gao et al. [38] a proprietary system methods of limiting the

metrics set
%

Jureczko [39] 48 releases of 15
open-source and 38
releases of 7 proprietary
projects

prediction; correlation %

NDC Weyuker et al. [8] 35 release of a proprietary prediction using devel-
oper information

%

Weyuker et al. [9] 3 proprietary systems with
17, 9 and 35 respectively
and 1 system without for-
mal releases

prediction %

Ratzinger et al. [10] a proprietary system Q-Mine: Predicting
Short-Term Defects for
Software Evolution

–

Zimmermann et al. [17] 4 open-source and 7 pro-
prietary projects

cross-project defect
prediction

–

Graves et al. [11] subsystem of a telephone
switching system

prediction &

Schröter et al. [12] Eclipse correlation –
Matsumoto et al. [18] Eclipse the effect of developer

features
%

Weyuker et al. [19] 16 releases of a propri-
etary system

improving defect pre-
diction using developer
information

–

Continued on next page
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Table 1 – Continued from previous page
Metric Paper Data sets Goal of study Recom-

mendation
Nagappan et al. [20] Windows Vista improving defect pre-

diction using organiza-
tional complexity

%

Illes-Seifert and Paech [2] 9 open-source projects correlation %
Moser et al. [16] Eclipse prediction %
Bell et al. [40] 3 proprietary systems,

each containing 18
releases

improving defect pre-
diction using developer
information

–

Jureczko [39] 48 releases of 15
open-source and 38
releases of 7 proprietary
projects

prediction; correlation %

NML Khoshgoftaar et al. [21] 2 releases of proprietary
system

prediction %

Layman et al. [22] proprietary system prediction %
Nagappan and Ball [23] Windows Server 2003 prediction %
Nagappan et al. [20] Windows Vista improving defect pre-

diction using organiza-
tional complexity

–

Nagappan et al. [14] Windows Vista prediction %
Purushothaman et al. [24] distribution of defects

with regard to change
size

%

Zimmermann et al. [17] 4 open-source and 7 pro-
prietary projects

cross-project defect
prediction

–

Ratzinger et al. [10] a proprietary system Q-Mine: Predicting
Short-Term Defects for
Software Evolution

–

Śliwerski et al. [25] Mozilla, Eclipse prediction %
Hassan [26] 6 open–source projects prediction %
Giger et al. [27] 15 Eclipse plug–ins prediction %
Giger et al. [30] 16 Eclipse plug–ins prediction –
Graves et al. [11] subsystem of a telephone

switching system
prediction %

Moser et al. [16] Eclipse prediction %
Bell et al. [41] 18 releases of a propri-

etary system
prediction %

Shin et al. [42] 2 open–source projects predicting locations of
vulnerable code

%

Sisman et al. [43] AspectJ prediction %
Krishnan et al. [44] Eclipse prediction %
Khoshgoftaar et al. [32] subsystem a real time mil-

itary system
prediction %

Gao et al. [38] a proprietary system methods of limiting the
metrics set

%

Jureczko [39] 48 releases of 15
open-source and 38
releases of 7 proprietary
projects

prediction; correlation %

IN Ostrand et al. [33] 13 releases of a propri-
etary system

distribution of faults
with regard to files age

%

Continued on next page
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Table 1 – Continued from previous page
Metric Paper Data sets Goal of study Recom-

mendation
Ostrand et al. [31] 26 releases of 2 propri-

etary system
prediction –

Illes-Seifert and Paech [2] 9 open-source projects correlation –
Bel et al. [5] proprietary systems over a

2.5 year period
prediction; correlation –

Weyuker et al. [7] 35 release of a proprietary prediction %
Weyuker et al. [8] 35 release of a proprietary prediction using devel-

oper information
–

Weyuker et al. [9] 3 proprietary systems with
17, 9 and 35 respectively
and 1 system without for-
mal releases

prediction –

Graves et al. [11] subsystem of a telephone
switching system

prediction %

Khoshgoftaar et al. [32] subsystem a real time mil-
itary system

prediction –

Ostrand et al. [6] 13 releases of a propri-
etary system

prediction –

Moser et al. [16] Eclipse prediction %
Kim et al. [36] 7 open–source projects prediction –

NDPV Wahyudin et al. [34] Apache MyFaces prediction; correlation %
Arisholm and Briand [35] proprietary system prediction %
Ostrand et al. [33] 13 releases of a propri-

etary system
persistence of
high–fault files

%

Ostrand et al. [31] 26 releases of 2 propri-
etary system

prediction –

Weyuker et al. [7] 35 release of a proprietary prediction %
Weyuker et al. [9] 3 proprietary systems with

17, 9 and 35 respectively
and 1 system without for-
mal releases

prediction –

Graves et al. [11] subsystem of a telephone
switching system

prediction –

Kim et al. [36] 7 open–source projects prediction %
Khoshgoftaar et al. [32] subsystem a real time mil-

itary system
prediction %

Gyimothy et al. [37]
Illes-Seifert and Paech [2] 9 open-source projects correlation –
Schröter et al. [12] Eclipse correlation –
Shihab et al. [15] Eclipse prediction %
Ostrand et al. [6] 13 releases of a propri-

etary system
prediction –

Moser et al. [16] Eclipse prediction %
Sisman et al. [43] AspectJ prediction %
Gao et al. [38] a proprietary system methods of limiting the

metrics set
%

Jureczko [39] 48 releases of 15
open-source and 38
releases of 7 proprietary
projects

prediction; correlation %
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9. Conclusions and Further Work

On the basis of the review of process metrics presented in this paper we may set forth a
taxonomy of the metrics according to the information sources required to calculate them. It is
presented in Table 2.

Table 2. Taxonomy of process metrics

Metric Source code Developers Defects
Number of Revisions (NR) X

Number of Modified Lines (NML) X
Is New (IN) X

Number of Distinct Commiters (NDC) X X
Number of Defects in Previous Version (NDPV) X X

We may see that all of the process metrics rely on the information concerning the source
code artefact changes, but only some of them combine it with the number of developers re-
sponsible for the aforementioned changes or the defects in earlier version. It is easy to imagine
that new process metrics may include other sources of information than just source code arte-
facts. Changes in UML models or other artefacts, as well as a wide range of fluctuations in
development teams (with respect to their size or structure), serve as good examples how to
extend further the proposed taxonomy. It is also worth mentioning that some of the changes
may be not directly related to the software process used.

This paper shows, in our opinion, that process metrics can be an effective addition to soft-
ware defect prediction models usually built upon product metrics; however, the issue might
be elaborated on and developed further. Our next aim is to evaluate the added predictive
ability due to process metrics. Demonstration of a statistically significant association of a
new process metric with defect risk is not enough. Hence, the next aim is to propose the
evaluation framework in which it would be possible to assess the incremental value of new
process metrics.
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