MLCQ: Industry-Relevant Code Smell Data Set

Lech Madeyski
Faculty of Computer Science and Management, Wroclaw University of Science and Technology
Wyb.Wyspianskiego 27, 50370 Wroclaw, Poland
lech.madeyski@pwr.edu.pl

Tomasz Lewowski
Faculty of Computer Science and Management, Wroclaw University of Science and Technology
Wyb.Wyspianskiego 27, 50370 Wroclaw, Poland
tomasz.lewowski@pwr.edu.pl

ABSTRACT
Context Research on code smells accelerates and there are many studies that discuss them in the machine learning context. However, while data sets used by researchers vary in quality, all which we encountered share visible shortcomings—data sets are gathered from a rather small number of often outdated projects by single individuals whose professional experience is unknown.

Aim This study aims to provide a new data set that addresses the aforementioned issues and, additionally, opens new research opportunities.

Method We collaborate with professional software developers (including the code quest company behind the codebeat automated code review platform integrated with GitHub) to review code samples with respect to bad smells. We do not provide additional hints as to what do we mean by a given smell, because our goal is to extract professional developers’ contemporary understanding of code smells instead of imposing thresholds from the legacy literature. We gather samples from active open source projects manually verified for industry-relevance and provide repository links and revisions. Records in our MLCQ data set contain the type of smell, its severity and the exact location in source code, but do not contain any source code metrics which can be calculated using various tools. To open new research opportunities, we provide results of an extensive survey of developers involved in the study including a wide range of details concerning their professional experience in software development and many other characteristics. This allows us to track each code review to the developer’s background. To the best of our knowledge, this is a unique trait of the presented data set.

Conclusions The MLCQ data set with nearly 15000 code samples was created by software developers with professional experience who reviewed industry-relevant, contemporary Java open source projects. We expect that this data set should stay relevant for a longer time than data sets that base on code released years ago and, additionally, will enable researchers to investigate the relationship between developers’ background and code smells’ perception.

CCS CONCEPTS
- Software and its engineering \rightarrow Software organization and properties; Software creation and management;

KEYWORDS
data set, code smells, bad code smells, software development, software quality

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

EASE 2020, April 15–17, 2020, Trondheim, Norway
© 2020 Copyright held by the owner/author(s).
https://doi.org/10.1145/3383219.3383264

1 Corresponding author.

1 https://codebeat.co

2 "Regular developer" is a position in industry with experience expected to be somewhere between a junior developer and a senior developer.
All the reviewers were volunteers. In case of senior and regular developers they were mostly coming from code quest software development company, while the rest of reviewers were volunteers with industrial experience recruited among MSc students from the software engineering track involved in the R&D project in software engineering course provided by the first author. The second author, since employed as a lead developer, was involved in code smells assessment as well. Our MLCQ\(^3\) data set consists of 14739 reviews in total.

To allow further research based on developer experience profile, we collected data from these developers using comprehensive surveys on Typeform\(^4\). Data obtained via survey is published together with the primary code smell data set. Six out of 26 reviewers did not complete the survey. The total number of samples reviewed by users that did not complete the survey equals 454 (\(\approx\)3% of the data set). Only one of those users has reviewed more than 60 samples. All those samples still have a reviewer identifier, so they can be used in research that requires only to be able to assign each sample to a unique developer (without relying on the developer’s experience etc.). These 454 samples can be easily removed if appear not needed. Hence, we decided not to remove them upfront.

The contributions of this paper are:

1. Contemorary and large data set including code samples from actively developed software projects available from GitHub that were assessed for industry-relevance, where four code smells (Blob, Data Class, Feature Envy and Long Method) were manually assessed on four-level severity scale (critical, major, minor, and none) on both the class level, as well as the method level, by developers with industrial experience. More details about how the software projects were selected can be found in [7], while the R script to filter possibly relevant GitHub projects, built by the authors using the GitHub GraphQL API, can be found in the reproducer R package available from CRAN [10]. Please note that our previous study [7] included only the selection of software projects and did not concern the selection or review of any code samples, which is the core part of this paper.

2. Auxiliary context data, collected via survey, describing the background of software developers assessing the severity of the code smells. Both, the primary code smell data set and the auxiliary data set is available on Zenodo at https://doi.org/10.5281/zenodo.3666840, as well as in the subsequent version of the reproducer R package on CRAN, as we did in our previous papers (e.g., [4, 5, 7–9]) to streamline the usage of the research results.

The rest of the paper is structured as follows. Section 2 outlines briefly some other code smell data sets published to date. Section 3 describes the procedures we used for data acquisition. In Section 4 we present some numeric characteristics of the gathered data. Section 5 contains detailed metadata, while in Section 6 we list several threats to validity and misunderstandings that are likely. We conclude the paper describing possible applications in Section 7.

\(^3\)MLCQ is an abbreviation formed from the initial letters of the words Madeyski Lewowski Code Quest

\(^4\)https://www.typeform.com/
the majority of samples is gathered by developers that are neither students nor researchers,
the data set provides unique and detailed insights related to professional and academic background of the reviewers.

In [15] authors conducted a survey about code smell perception. While [15] does not focus on developers’ experience, results can be compared to the ones from our survey to identify differences between analysed populations. It is worth noting that survey results is one of main contributions of [15], while in our case it only brings in the auxiliary information.

3 DATA ACQUISITION PROCEDURE
The whole data set consists of two parts—code smell reviews and surveys. Surveys are manually anonymized, so while they still can be linked to reviews by using the identifier of the reviewer, they cannot be linked to any physical person.

3.1 Acquisition tool
To simplify the process of collecting data, a supporting tool for displaying code samples and gathering the results of code smell reviews was developed at code quest. The tool is not publicly available, thus we do not include hyperlink to the UI or to the code there. The tool may be published by code quest at some point in the future, but the URLs would then change.

3.2 Sample creation procedure
Code samples were generated from Java projects selected from GitHub. We used the project data set described in [7]. We did not apply any manual filters and all samples from all 792 projects were used. Detailed sample acquisition flow is shown in Figures 1 and 2.

Figure 1: Acquiring set of samples

- Projects selection
- Code samples (classes & functions) extraction
- Saving samples for future review

In the rest of this paper, a sample will mean either a class or interface (for the class-level smells) or a method (for the method-level smells). Developer is presented with a piece of source code (if method is presented, the class is not immediately visible) together with fully qualified name and link to the source code on GitHub if there is a need for further, more contextual investigation.

We did not record whether developers used any external information to review the samples.

3.3 Smell selection and gathering reviews of code samples
We decided to focus on four code smells: Feature Envy and Long Method on the method level and Data Class and Blob on the class level. They were selected as they appeared to be the most popular code smells analysed in literature according to our internal report (yet unpublished) prepared in a form of systematic review for the code quest company in 2017 and 2018.

To gather review samples the following procedure is executed:
(1) Code sample is selected for review using process described below.
(2) Developer assigns the severity of possible code smells on the four-level scale (critical, major, minor, and none). Developer is free to skip any sample that he or she is uncertain of.
(3) Developer approves the selection by clicking “Next” button.
(4) Each pair (sample, smell) is saved in the database as a separate review.

Developer can choose whether she or he wants to assess the severity of both smells on a given, class or method, level or only one of them. Developer is able to change his (or hers) assessment later. We did not conduct any training related to code smell identification, because we believe that our goal is to extract professional developers’ understanding of code smells, instead of imposing thresholds from the legacy literature or our own expectations what constitutes particular code smells.

In total we gathered 14739 reviews of 4770 code samples, 8040 reviews of classes (2340 distinct classes from 437 projects) and 6699 reviews of functions (2430 functions from 426 projects). Reviews were performed by 26 developers, 20 of which have completed the survey described in Section 3.4.

Sample selection was not uniform during data acquisition, and there were four phases. In the first two phases, we sampled from 678278 classes and 5101141 functions from 785 projects (7 projects could not be analysed), the third one - from 552750 classes and 2297722 functions (due to filtering out less than 4 line samples) from 785 projects while in the last phase we only performed crosscheck on already reviewed samples:
(1) The first 2175 samples (date range: March 27, 2019 - April 2, 2019) were selected when there was a defect in randomisation part of selection query, and only 1 sample from each hundred could have been selected. Nevertheless, they were still selected randomly, but from a smaller population, and
inserted randomly into database—therefore we decided to leave those as potentially valuable samples.

(2) The next 2648 samples (date range: April 3, 2019 - April 12, 2019) were selected randomly from all available.

(3) The next 4801 samples (date range: April 13, 2019 - July 25, 2019) were selected randomly from all samples longer than 4 lines, including opening and closing braces. This was the only filtering rule, and it was only removing most trivial functions and classes. This filter was suggested by code reviewers and the aim was not to waste the precious time of developers and to better focus their effort on reviewing potentially smelly code samples.

(4) The last 5115 samples (date range: July 26, 2019 - September 13, 2019) were selected to perform a crosscheck—only from samples already tagged with severity higher than ‘none’. Samples selected from crosscheck were those that had only 1 review or 2 reviews with different severities. These samples were gathered by the group of developers involved in earlier phases, with a restriction that developer could not crosscheck his or her own review.

The split into phases was not initially intended, but we encountered the defect from the first phase only after starting the acquisition. Then it turned out that the amount of “none” samples is higher that we have estimated, thus the need to focus the effort of professional developers on valuable samples that can reasonably constitute code smells to balance the data set. The last phase, crosscheck, was needed to reach more reliable conclusions.

Since there were many more method samples than class samples, and we wanted to gather similar number of both, we decided that the first selection step in the first three phases will be selecting whether we are looking for a class sample or method sample (and both were selected with equal probability). The last step (crosscheck) is the reason why the number of reviews for classes is higher than for functions—there was less agreement on the former.

While the whole data set includes reviews of code samples gathered from projects that are industry relevant, semi-industry-relevant, and industry irrelevant, it is easy to select the subset of samples from industry-relevant projects, which constitute 80% of the total number of projects. Also the number of reviews of code taken from industry-relevant projects constitutes 92.5% of total code samples and reviews.

3.4 Survey

The survey was prepared using Typeform® and all reviewers were asked to complete it. However, six reviewers did not complete the survey. The survey was an internal one and we did not publish it in any external services. Its sole purpose was to provide us with information about reviewers and it was not meant to be a tool for general software development research.

The survey contained 59 questions, including detailed questions about professional experience, programming languages used throughout the career, used tools, occupied positions, sizes of projects that developer was involved in, known paradigms, open source involvement, review habits, knowledge about code smells and opinions about state-of-the-art tools. Completing the survey took 48 minutes on average.

One of the questions in the survey was GitHub login of reviewer—by utilising it, we were able to map survey answers to reviews (our review tool used GitHub-based authentication).

Of course, published version of the survey is stripped of all personal data (emails, logins). We also decided to remove company names, so that there will be no misunderstanding—this research was only supported by the code quest company and all other participants completed the survey and reviews in their own free time.

4 DATA CHARACTERISTICS

We provide basic characteristics of the collected code smell and survey data.

4.1 Smell data

The basic characteristics of the code smell data (presented in Table 1) illustrate the size of the collected data set (e.g., in terms of the number of sample reviews conducted by developers, the number of unique samples, and the number of projects from which the samples were gathered). It has taken about half a year to collect the data set from over 500 software projects, and the number of software developers with industrial experience involved in data collection exceeded two dozens. Hence, the effort behind the data collection can be considered large.

Table 1: Basic characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>total # of reviews</td>
<td>14739</td>
</tr>
<tr>
<td># reviews from industry-relevant projects</td>
<td>12710</td>
</tr>
<tr>
<td># reviews from semi-industry-relevant projects</td>
<td>924</td>
</tr>
<tr>
<td># reviews from industry irrelevant projects</td>
<td>1105</td>
</tr>
<tr>
<td>total # of samples</td>
<td>4770</td>
</tr>
<tr>
<td># of samples from industry-relevant projects</td>
<td>4129</td>
</tr>
<tr>
<td># of samples from semi-industry-relevant projects</td>
<td>290</td>
</tr>
<tr>
<td># of samples from industry irrelevant projects</td>
<td>351</td>
</tr>
<tr>
<td># projects</td>
<td>523</td>
</tr>
<tr>
<td># reviewers</td>
<td>26</td>
</tr>
<tr>
<td># smell types</td>
<td>4</td>
</tr>
<tr>
<td>time span</td>
<td>27.03.2019–13.09.2019</td>
</tr>
</tbody>
</table>

The distribution severities of code smells (presented in Table 2) shows how rare (according to developers with industrial experience) some code smells are, especially critical instances of Feature Envy.

The distribution of the number of reviews performed by developers that have taken part in the study (presented in Table 3) shows that some developers were more involved in code smell reviews than other. Hence, the data set is imbalanced with this regard. However, the average professional experience in programming of the five developers who preformed more than 1000 reviews was much higher than the average professional experience of all the developers involved in the study (i.e., 10 years vs 4 years).
<table>
<thead>
<tr>
<th>Code smell</th>
<th>#reviews</th>
<th>#critical</th>
<th>#major</th>
<th>#minor</th>
<th>#none</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blob</td>
<td>4019</td>
<td>127</td>
<td>312</td>
<td>535</td>
<td>3045</td>
</tr>
<tr>
<td>Data Class</td>
<td>4021</td>
<td>146</td>
<td>401</td>
<td>510</td>
<td>2964</td>
</tr>
<tr>
<td>Long Method</td>
<td>3362</td>
<td>78</td>
<td>274</td>
<td>454</td>
<td>2556</td>
</tr>
<tr>
<td>Feature Envy</td>
<td>3337</td>
<td>24</td>
<td>142</td>
<td>288</td>
<td>2883</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td># Master (MSc)</td>
<td>9</td>
</tr>
<tr>
<td># Bachelor (BSc)</td>
<td>9</td>
</tr>
<tr>
<td># W/o BSc or MSc</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td># Senior/Lead Developer</td>
<td>8</td>
</tr>
<tr>
<td># Regular Developer</td>
<td>4</td>
</tr>
<tr>
<td># Junior Developer</td>
<td>8</td>
</tr>
</tbody>
</table>

5 DATA SHEET
The data sheet for this data set is inspired by the ESA\(^7\) datasheet standard, adapted by us to match our needs in software engineering. Due to the paper length limitation we focus here on the primary data sheet (MLCQCodeSmellSamples), while the complete description of the data sets, including the auxiliary data sheet (MLCQCodeSmellDevelopersSurvey), is presented in detail in the online appendix\(^8\).

Each of the records (reviewed samples) contains, among others, the following information:

- id a numeric identifier of the (code sample) review,
- reviewer_id a numeric identifier of the reviewer,
- smell a name of the code smell (Blob, Data Class, Feature Envy, Long Method),
- severity severity of the code smell (critical, major, minor, none),
- review_timestamp date and time (millisecond precision) when the sample was acquired,
- type whether the reviewed code sample is a class or a function,
- code_name a fully qualified name of the code sample – format: Package.ClassName[#FunctionName arg1[arg2]...]
 (e.g., org.eclipse.swt.widgets.Menu#setLocation int[int],
 link] link to view the sample in a browser.

6 THREATS AND LIMITATIONS
Samples selected for review were chosen in four separate phases (described in detail in Section 3.3). This means that the population of source code entities used for selection was not uniform during the whole research. While this is well-documented in this paper,

\(^7\)https://esajournals.onlinelibrary.wiley.com/hub/journal/19399170/resources/data_paper_inst_ecy
\(^8\)http://madeyski.e-informatyka.pl/download/MadeyskiLewowskiMLCQAppendix.pdf
this can still be confusing both for researchers and for machine learning algorithms.

Unfortunately, we are not able to guarantee the good will of all participants. We did conduct an additional crosscheck in the end of research to verify the samples and assigned smell severities. However, we only did this with samples that were initially tagged with severity above none—therefore it is possible that some samples which should have severity above none do not have it.

While we did gather nearly 15 thousand samples, over 77% show no smells (none severity). We believe that this is still a useful result since negative samples are also relevant. However, we also acknowledge the possibility that our code smell data set in large part describes what is not a code smell, instead of what is one.

We do not provide any metrics. This is due to a few reasons:

- the set of possible metrics is ever expanding and for Java they are relatively easy to obtain, so we believe that interested researchers will manage to calculate ones that suit them best,
- any defects in metrics calculated software could then be replicated in future research,
- our initial study did not find out any of popular metrics that would work particularly well.

Some projects or files may no longer be available—if a repository is removed, the project will be no longer accessible. The expected removal rate has to be studied separately.

Of course, since the number of reviewers is relatively small (26), and almost half of them are from the same company, there is always possibility of bias. We acknowledge such a possibility. However, we believe that various backgrounds of the core contributors (as evidenced by the survey) address this problem at least partially.

7 APPLICATIONS

This data set can be applied in a number of research setups. Code smell detection is probably the most obvious one, but this data set can also be used to understand differences in perception between junior developers and senior developers or to find out traits from professional background that correlate with specific code smell perception.

The data set can also be used as an auxiliary data set for defect prediction or other complex scenarios where existence of code smells may serve as a predictor.

ACKNOWLEDGMENTS

This work was sponsored by the National Centre for Research and Development (NCBiR) project POIR.01.01.00-00-0792/16 with the aim to improve the codebeat platform (http://codebeat.co) by code quest sp. z o.o.. We would like to thank all of the developers involved in the study.

A SUPPLEMENTARY MATERIALS

Supplementary materials for this paper include the online appendix, as well as data sets. The data set is available on Zenodo.

REFERENCES

