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Abstract. Traditional mutation testing is a powerful technique to evaluate the quality of test suites. Unfortunately, it is not
yet widely used due to the problems of a large number of generated mutants, limited realism (mutants not necessarily reflect
real software defects), and equivalent mutants problem. Higher order mutation (HOM) testing has been proposed to overcome
these limitations of first order mutation testing. We present an empirical evaluation of our approach to higher order mutation
testing. We apply different multi-objective optimization algorithms (including one modified by us), as well as our classification
of HOMs, proposed objectives and fitness functions. We search for “High Quality and Reasonable HOMs” able to replace all
of its constituent FOMs without scarifying test effectiveness and to reflect complex defects requiring more than one change to
correct them. Our approach leads to: 1) reduced cost of mutation testing due to reduced number of HOMs, 2) harder to kill
mutants (which mimic harder to find defects), 3) reduced cost of mutation testing as it does not waste resources for creating
easy-to-kill mutants. Furthermore, we establish a relevant upper bound on mutation order in higher order mutation testing and
thus reduce the cost of mutation even further.

Keywords: Mutation testing, Higher Order Mutation Testing, Higher Order Mutants, Multi-objective optimization algorithm,
Upper bound order

1. Introduction

Mutation testing (called also First Order Mutation
Testing (FOMT)) is used to evaluate the fault detec-
tion capability of the test suits by inserting changes
into the original program to generate mutants, and then
checking whether the given set of test cases is good
enough to detect the difference between original pro-
gram and its mutants or not. Mutants are the differ-
ent versions of an original program generated by in-
serting, via a mutation operator, only one semantic
change (or fault) into the original program. Mutation
operators depend on programming languages. For ex-
ample, there are some traditional mutation operators
like deletion of a statement; replacement of Boolean

expressions; replacement of arithmetic expression; or
replacement of a variable. If a test case distinguishes
between the mutant and the original program, it is said
to kill the mutant. In other words, the mutant is killed
by the test case. If a mutant was killed by all of given
TCs, it is named “Easy to kill”. Conversely, a mutant is
said to be alive if no test case detects the injected fault.

In mutation testing, we can use Mutation Score
(MS) or Mutation Score Indicator (MSI) to evalu-
ate quality of a set of test cases. MS is the ratio of
killed mutants to the difference between all generated
mutants and equivalent mutants [4,1], while MSI is
the ratio of killed mutants to all generated mutants
[12,13,14,16]. Value of above mentioned scores lies
between 0 and 1. A low score means that the majority

1876-1364/17/$17.00 c© 2017 – IOS Press and the authors. All rights reserved

http://dx.doi.org/10.3233/JIFS-169117
http://dx.doi.org/10.3233/JIFS-169117
http://madeyski.e-informatyka.pl/download/NguyenMadeyski17JIFS.pdf


1174Nguyen, Madeyski / Addressing mutation testing problems by applying multi-objective optimization algorithms and higher order mutation

of faults cannot be detected accurately by the test set.
A higher score indicates that most of the injected faults
have been identified with this particular test set. When
score is close to 1, we can say that the given set of test
cases is a good one. If score is zero, there is no test
case that can kill the mutants.

Although Mutation Testing (MT) has been intro-
duced as an automated technique to assess the quality
of the test cases, the problem is a large number of gen-
erated first order mutants (FOMs). Furthermore, most
of mutants are simple, often easily to detect and do not
denote realistic faults [8,21]. Besides, one of mutation
testing problems is the generation of too many equiva-
lent mutants [16,7,5,21], which have the same seman-
tic meaning as the original program under test.

There are many different approaches which have
been proposed for overcoming the problems of MT
[21] including second order mutation testing [16,19,
26,30,28] and higher order mutation testing [7,5,11,6]
in general. The main goal of higher order mutation
testing is to generate higher order mutants (HOMs)
that can be used to improve the effectiveness of muta-
tion testing. Instead of using only one simple change as
traditional mutation testing, higher order mutation test-
ing uses more complex changes to generate mutants
by applying two or more mutation operators. Higher
Order Mutation Testing (HOMT), an idea of Jia and
Harman [7,5], not only is the unique approach able to
address all of the three mutation testing problems si-
multaneously, but also is the only one to deal with the
problem of realism of injected defects as there is an
empirical evidence that real defects require more than
one change to fix them [29].

Still there is little research in the field of applying
multi-objective optimization algorithms to search for
valuable HOMs, e.g., Strongly Subsuming and Cou-
pled HOMs [7,5], although this is a promising ap-
proach. It allows to find higher order mutants that rep-
resent more realistic complex faults, which are harder
to kill than first order mutants. There are three papers,
by Harman et al. [5] and Langdon et al. [10,11], which
focused on multi-objective higher order mutation test-
ing with genetic programming. Haider et al. [3] pro-
posed fuzzy based optimization approach in combina-
tion with all path coverage criterion to safely reduce a
test suite to a single solution and they found that the
approach significantly reduces the test suite to a pre-
cise test suite.

In this paper, we investigate applying multi-objective
optimization algorithms for finding “High Quality and
Reasonable HOMs” (one of 11 HOM categories in

our HOMs classification described in Section 2). Our
main goal is to carry out an empirical evaluation of
the proposed approach, which can be used to construct
difficult to kill and more realistic HOMs, especially
“High Quality and Reasonable HOMs”, as well as to
reduce the number of generated higher order mutants.
We want to bring out some useful findings for applying
multi-objective optimization algorithms in the area of
higher order mutation testing for overcoming the lim-
itations of traditional mutation testing. As a result, it
could be used to improve the mutation testing effec-
tiveness in general.

The rest of the paper is organized as follows. Section
2 presents the landscape of the reported research on
higher order mutation testing applying multi-objective
optimization algorithms. The kinds of higher order
mutants based on our HOMs classification also are in-
cluded in this section. Section 3 describes the posed
research questions that the study will answer. The next
section is used to shortly present the selected algo-
rithms, programs under test and supporting tool. Sec-
tion 5 shows the experimental results needed to an-
swer the posed research question as well as to bring out
some useful findings. The last section presents conclu-
sions, discussions of threats to validity and proposition
of future works.

2. Background

As we mentioned in Section 1, still there is little re-
search on applying multi-objective optimization algo-
rithms in higher order mutation testing.

In fact, there are many optimization problems,
which have more than one objective function and the
objective functions are conflicting, to some extent,
preventing simultaneously the simple optimization of
each objective. Hence, multi-objective optimization al-
gorithms have been devised for solving optimization
problems and making the decisions that satisfy multi-
ple objectives.

Harman et al. [5] and Langdon et al. [10,11] are the
first authors who focused on applying multi-objective
optimization algorithm with genetic programming in
HOMT. In order to produce better mutants, they sug-
gested inserting “semantically close” faults instead
of inserting “syntactically close” faults to the origi-
nal program under test. They then applied a multi-
objective optimization algorithm (NSGAII) with ge-
netic programming in the area of higher order muta-
tion testing and the obtained results demonstrated that
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this approach is able to find harder to kill higher order
mutants that represent more realistic complex faults.

In our previous works [22,23,24,25], we proposed a
new classification of HOMs to cover all of the avail-
able cases of generated HOMs, as well as we described
our objectives and fitness functions. Our HOMs clas-
sification consists of eleven kinds of HOMs which are
illustrated in Table 1. The notations are explained be-
low:

– H1: Live (potentially equivalent) Mutant)
– H2: Non-Quality, Un-Reasonable and With New

TCs
– H3: Non-Quality, Un-Reasonable and With Mixed

TCs
– H4: Non-Quality, Reasonable and With New TCs
– H5: Non-Quality, Reasonable and With Mixed

TCs
– H6: Non-Quality, Reasonable and With Old TCs
– H7: High Quality and Reasonable
– H8: Quality, Reasonable and With Mixed TCs
– H9: Quality, Reasonable and With Old TCs
– H10: Quality, Un-Reasonable and With Old TCs
– H11: Quality, Un-Reasonable and With Mixed

TCs

We performed the empirical evaluation of multi-
objective optimization algorithms in HOMT. Differ-
ent from Langdon et al. [5,10,11], who have suggested
directly inserting more than one fault into a program
under test to generate higher order mutants, we intro-
duced another method as follows. First, we generate
the set of available first order mutants and then gener-
ate valuable higher order mutants by combining two or
more first order mutants.

Our experimental results are as follows: the total
number of generated HOMs is small (about 30% in
comparison to number of FOMs), the mean ratio of
reasonable HOMs (subsuming HOMs) to all found
HOMs is about 54%, while the mean ratio of “High
Quality and Reasonable HOMs” (strongly subsuming
and coupled HOMs) to all found reasonable HOMs
(subsuming HOMs) is fairly high (around 8%) [23].

It is worth emphasizing that higher order mutation
testing in general and the presented approach in partic-
ular is able to address all of the three main problems
of mutation testing (a large number of generated mu-
tants, limited realism of artificial defects and equiva-
lent mutant problem) simulataneously [20]. In this pa-
per, we build upon our previous research [22,23,24,25]
and collect empirical evidence to answer new research
questions (e.g., RQ1, RQ2, RQ3.2, RQ3.5) posed in

Table 1

Eleven categories of HOMs based on the combination of sets of test
caces

HOM category Illustration

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

H11
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Section 3 on a basis of extended number of programs
under test (e.g., in [23] we used three programs under
test, while in this paper we use five, see Table 2). These
answers are essential to extend our understanding of
higher-order mutation testing as a viable alternative to
traditional first order mutation testing.

3. Research questions

We pose the following Research Questions (RQs)
that the study will answer.

RQ1. What is the ratio of the number of generated
HOMs to the number of generated FOMs?

RQ2. What is MSI of HOMT by applying multi-
objective optimization algorithm?

RQ3. How popular are higher order mutants (HOMs)
in the identified mutant categories?

We split RQ3 into 5 sub-questions to answer:

– RQ3.1. What are the ratios of the number of
HOMs in the identified mutant categories to all
generated HOMs?
The goal of the RQ3.1 is to investigate the number
(distribution) of HOMs in the identified mutant
categories.

– RQ3.2. What are the ratios of “not good” HOMs
that are generated?
“Not good” HOM mean “Non-quality and Un-
reasonable HOM” (H2 and H3) which are eas-
ier to kill than their constituent FOMs and there
is lack of test cases that can kill simultaneously
HOM and its constituent FOMs.

– RQ3.3. What are the ratios of the number of
HOMs in the mutant order to all generated
HOMs?
By means of this question, we want to obtain the
percentage of generated HOMs in the mutant or-
der.

– RQ3.4. What are the ratios of “High Quality and
Reasonable HOMs” (H7) to all generated HOMs
in the mutant order?
This question focuses on a kind of mutants be-
ing of special interest. The aim is to obtain the
frequency of generating “High Quality and Rea-
sonable HOMs” (H7). Such mutants not only re-
flect harder to kill mutants, which reflect realistic,
complex faults but also could be used to replace
all of its constituent FOMs.

– RQ3.5. What are the ratios of “live (potentially
equivalent) mutants” (H1) to all generated HOMs
in the mutant order?

Live mutants can be “really-equivalent mutants”
or “difficult-to-kill mutant”. They cannot be killed
by the given set of test cases which are included
in the selected project under test (but they perhaps
could be killed by some new test cases). Reduc-
tion of Live (potentially equivalent) mutants leads
to reduced mutation testing execution cost of the
given set of test cases on those live mutants. An-
swering this question (together with the answer-
ing the question RQ3.4) may help to find the rel-
evant order of higher order mutation testing.

RQ4. Which multi-objective optimization algo-
rithms are more suitable for searching for “Reasonable
HOMs” and “High Quality and Reasonable HOMs”?
How can one improve the quality of the mentioned
algorithms in terms of mutant reduction, generating
difficult-to-kill mutants and constructing “High Qual-
ity and Reasonable HOMs”?

RQ5. Which strategies using the set of first order
mutants to generate higher order mutants are useful in
driving new quality test cases development?

By the means of RQ5, we want to evaluate which
of the proposed approaches using the set of first or-
der mutants to generate higher order mutants is better
suited to drive development of new test cases by using
MSI and, as a result, to improve the software quality.

4. Algorithms, projects under test and supporting
tool

Five selected multi-objective optimization algo-
rithms [23] are briefly described below.

NSGA-II is the second version of the Non-dominated
Sorting Genetic Algorithm for solving non-convex and
non-smooth single and multi-objective optimization
problems. NSGA-II uses an elitist principle, empha-
sizes non-dominated solutions, and uses an explicit di-
versity preserving mechanism. NSGA-III is the ex-
tension of NSGA-II which is based on the supply
of a set of reference points and demonstrated its ad-
vantages in three to 15-objective optimization prob-
lems. The eNSGA-II extends NSGA-II’s concepts by
adding e-dominance, adaptive population sizing, and
self-termination to minimize the need for parameter
calibration. E-dominance is a concept where a user is
able to specify the precision with which he wants to
obtain the Pareto-optimal solutions to a multi-objective
problem, in essence giving him the ability to assign a
relative importance to each objective. The eMOEA is
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a steady state multi-objective evolutionary algorithm
that co-evolves both an evolutionary algorithm popu-
lation and an archive population by randomly match-
ing individuals from the population and the archive to
generate new solutions. The Random search is used
to generate random solutions, which are evaluated and
all non-dominated solutions are retained. The result is
the set of all non-dominated solutions.

There are five selected Projects Under Test (PUTs):
BeanBin, Barbecue, JWBF, CommonsChain 1.2 and
CommonsValidiator 1.4.1, which are five real-world,
open source projects downloaded from SourceForge
(https://sourceforge.net/). Table 2 shows the projects
selected for the experiment along with their number of
classes (NOC), lines of code (LOC) and number of test
cases (NOT). For each project under test, we run the
HOMT process 5 times for each selected algorithm.

Table 2
Projects under test

Project NOC LOC NOT

BeanBin 72 5925 68
Barbecue 57 23996 190
JWBF 51 13572 305
CommonsChain 1.2 103 13410 17
CommonsValidiator 1.4.1 144 25422 66

Our supporting tool is Judy [16,17], a mutation test-
ing tool, which has been written in Java and for Java.
Judy is easy to configure and use. It allows to config-
ure and launch mutation testing via command line in
Windows, Linux and Mac OS X. Judy supports a large
set of mutation operators for first order mutation test-
ing, as well as higher order mutation testing such as:
mutants generation, mutants execution and mutation
analysis. Judy also supports build-in cluster for dis-
tributed computations. The list of some mutation oper-
ators available in Judy is presented in [16,17] as well
as in [23].

5. Results and analysis

5.1. Answer to RQ1

Table 3 shows the mean number of FOMs which
were generated by applying all Judy operators to pro-
duce mutants, and the mean number of total generated
HOMs (from the set of generated FOMs) for differ-

ent PUTs by applying the selected multi-objective op-
timization algorithms.

Table 3
The mean number of generated FOMs and HOMs

Number of FOMs Number of HOMs

1965 416

The first step of our experimental procedure is to
generate all possible FOMs, and our purpose is to com-
pare the number of generated FOMs with the num-
ber of generated HOMs. From the set of FOMs, valu-
able HOMs were generated and evaluated by applying
multi-objective optimization algorithms, guided by our
objectives and fitness functions. According to the re-
sults which are presented in Table 3, The total num-
ber of generated HOMs of order 2 to 15 was reduced
to about 22% of the number of FOMs. While, accord-
ing to results of Langdon et al. [10,11], the number of
generated HOMs grows exponentially with order. This
is because we use the proposed objectives and fitness
functions to focus on constructing the valuable (high
quality and reasonable) HOMs instead of generating
all possible HOMs.

Finding 1. Our approach leads to reduced cost of
mutation testing by reducing the number of HOMs.

5.2. Answer to RQ2

The mean values of mutation score indicator (MSI)
in our experimentation and in Langdon et al.’s [10,11]
experimentation after higher order mutation testing ex-
ecution are presented in Table 4.

Table 4
The mean MSI values of HOMT (%)

Our experimentation Langdon et al.
(of order 2 to 15) (of order 2 to 4)

68 99

The experimental results indicate that our approach
seems to be better than the approach of Langdon et al.
[10,11] in terms of generating difficult-to-kill higher
order mutants by applying multi-objective optimiza-
tion algorithm. This is because the number of live (po-
tentially equivalent) mutants, which cannot be killed
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by the given test suite (albeit could be killed by new
and high quality test cases), in our approach (about
32%) is much larger than in Langdon et al.’s (about
1%).

Finding 2. Our approach leads to hard to kill mu-
tants, which mimic harder to find defects and drive
development of higher quality test cases.

5.3. Answer to RQ3

Answer to RQ3.1
The results presented in Figure 1 indicate that the

majority of generated HOMs are H6 (Non-Quality,
Reasonable and With Old TCs) and H1 (Live (po-
tentially equivalent) mutants). A high number of H6
shows that there are many generated HOMs which are
more difficult to kill than FOMs and can only be killed
by TCs belonging to the union of sets of TCs that can
kill their constituent FOMs, but not all of their con-
stituent FOMs. A large number of H1 indicates that we
need more new test cases (with better quality than the
given test cases) to kill them.

The mean proportion of H7 in total of generated
HOMs is similar to H3, H4 and H10, around from
4.2% to 5.5%, whilst the numbers of H2, H5, H8, H9
and H11 are very small.

Fig. 1. The mean proportion of 11 categories of HOMs in total of
HOMs(%)

Answer to RQ3.2
According to the experimental results (see Fig-

ure 1), the mean percentage of Non-quality and Un-
reasonable HOMs (H2 and H3, which are easier to kill
than their constituent FOMs and there are no any test
cases which can kill them and simultaneously all their
constituent FOMs) is not large, around 5.5% in total.

Finding 3. Our approach do not waste computa-
tional resources for creating mutants, which are
easy to kill by most test cases, and addresses the
problem of cost of mutation testing.

Answer to RQ3.3, RQ3.4 and RQ3.5
Table 5 shows the mean ratios of number of HOMs

(H1-H11) of a particular order (2-15) to all generated
HOMs (Column 2) as well as the mean ratios of High
quality - Reasonable HOMs (H7) and live HOMs (H1)
to all produced HOMs in each individual order (Col-
umn 3 and 4). The results indicate that generally for
lower orders, the number of generated HOMs is larger
than for higher orders.

Obtained empirical results also show that we can
find many “High Quality and Reasonable HOMs” (H7)
from the 2nd − order to the 5th − order. For the
6th−order, as well as for higher orders, generated H7
are rare. There is lack of H7 in many cases (see Table 5
and Figure 2). As a result, we may conclude that higher
order mutation up to the 5th − order can be reward-
ing wrt. searching for H7 by applying multi-objective
optimization algorithms. While the ratio of Live (po-
tentially equivalent) mutants (H1) to total number of
HOMs is large, 22% to 55%, for every order (see Ta-
ble 5 and Figure 2).

Table 5

The mean percentage of number of total generated HOMs (H1-H11),
H7 and H1 in the mutant order (%)

Order H1-H11 H7 H1

2 11.50 14.90 54.34
3 14.80 8.10 44.40
4 14.90 5.60 30.21
5 14.00 2.50 25.28
6 9.20 0.30 25.23
7 7.60 0.39 32.25
8 5.00 0.25 33.11
9 4.50 0.67 33.12
10 3.60 0.41 36.11
11 3.30 0.00 39.77
12 3.60 0.54 37.46
13 3.10 0.00 35.11
14 2.40 0.00 34.94
15 2.50 0.00 34.80
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Fig. 2. The ratios of H1 and H7 to all generated HOMs per order (%)

Finding 4. Five (5) is a relevant upper bound on
mutation order in higher order mutation testing as
the ratio of “High Quality and Reasonable HOMs”
(H7) to total number of HOMs is relatively high for
orders between 2 and 5. This ratio is low, close to
zero, for orders higher than 5, while the ratio of
live (and potentially equivalent) mutants to the total
number of HOMs is large for every order. Our find-
ing suggests that a possible way to reduce the cost
of mutation is by a limited order of HOMs.

5.4. Answer to RQ4

Figure 3 shows the percentage of “High Quality and
Reasonable HOMs” (H7) compared with total gen-
erated HOMs and the number of Reasonable HOMs
(H4-H9). According to the results of five applied algo-
rithms, the mean ratio of H7 to all found Reasonable
HOMs (H4-H9) is about 8%. This number is relatively
high because the proportion of all Reasonable HOMs
to all generated HOMs is quite a large (see Table 6),
while the ratios of the number of H1 to the total num-
ber of HOMs are more or less the same for five algo-
rithms.

Table 6
The ratios of Reasonable HOMs to generated HOMs

Algorithm %Reasonable HOMs %Live HOMs

eMOEA 55.10 35.58
NSGAII 54.93 34.16
eNSGAII 52.24 37.61
NSGAIII 54.44 34.26
Random 51.27 36.28

This indicates that we can find the mutants that are
harder to kill and more realistic (reflecting real, com-

Fig. 3. The ratios of H7 to total HOMs and Reasonable HOMs(%)

plex faults) than FOMs by applying multi-objectives
optimization algorithm. Especially “High Quality and
Reasonable HOMs” can be used to replace the set of
their constituent FOMs without lost of testing effec-
tiveness. In addition, our experimental results indicate
that the mean ratio of the number of TCs which kill
generated HOMs to the number of TCs which kill their
constituent FOMs is about 0.6. This means that, ba-
sically, the HOMs which were generated by applying
multi-objective optimization algorithms based on our
approach are harder to kill than the generated FOMs in
terms of number of test cases that can kill the mutants.

Finding 5. Our approach leads to reduced cost of
mutation testing, increases realism of mutants, gen-
erates harder-to-kill mutants than FOMs and drives
development of higher quality test cases at the same
time.

According to our experimental results, the eMOEA
algorithm is the best in terms of constructing Reason-
able HOMs (H4-H9) (see Table 6), while the eNSGAII
algorithm is the best for searching for “High Quality
and Reasonable HOMs”. Approximately 12% of Rea-
sonable HOMs, which were found by eNSGAII algo-
rithm, are classified as “High Quality and Reasonable
HOMs” (see Figure 3).
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In 2004, McConnell, who has been two-time winner
of the Software Development Magazine Jolt Award,
came to the following conclusions based on the re-
sults of his study [18]: “Industry average experience
is about 1–25 errors per 1000 lines of code for de-
livered software” and “The Applications Division at
Microsoft experiences about 10–20 defects per 1000
lines of code during in-house testing and 0.5 defects
per 1000 lines of code in released product”. Hence,
we may speculate that in the complete versions of the
software projects, a single line of code rarely has more
than one error. From that, we propose an approach to
modify the multi-objective optimization algorithm ap-
plied to construct higher order mutants. Instead of cre-
ating a random initial list of HOMs (parent population)
from list of FOMs, we create an initial list of HOMs by
combining n FOMs guided by the rule “apply no more
than one mutation operator to each line of code”. We
choose the eNSGAII algorithm to modify, because it is
the best algorithm in terms of constructing the “High
Quality and Reasonable HOMs”. The modified algo-
rithm is named eNSGAII-DiffLOC algorithm.

Results of the empirical comparison of two algo-
rithms (eNSGAII and eNSGAII-DiffLOC) are shown
in Table 7. The notations are explained below:

– NoM is the ratio of the number of generated
HOMs to the number of FOMs.

– NoT is the ratio of the number of TCs which kill
generated HOMs to the number of TCs which kill
their constituent FOMs.

– NoR is the ratio of generated “reasonable HOMs”
to all generated HOMs.

– NoH7 is the ratio of H7 (“High Quality and Rea-
sonable HOMs”) to all generated HOMs.

– NoH1 is the ratio of H1 (live (potentially equiva-
lent) HOMs) to all generated HOMs.

Table 7
A comparison of two algorithms (%)

Algorithm NoM NoT NoR NoH7 NoH1

eNSGAII 15.33 62.4 58.03 6.14 31.79
eNSGAII-DiffLOC 14.72 60.01 59.25 6.72 33.01

The obtained results indicate that eNSGAII-DiffLOC
is slightly better than the original eNSGAII algorithm
in terms of mutant reduction (slightly smaller NoM
of eNSGAII-DiffLOC), generates harder-to-kill mutant
(slightly smaller NoT and bigger NoR of eNSGAII-

DiffLOC) and is able to construct “High Quality
and Reasonable HOMs” (slightly higher NoH7 of
eNSGAII-DiffLOC).

On the other hand, slightly larger number of Live
(potentially equivalent) mutants (NoH1) can be seen as
a disadvantage, due to the fact that H1 mutants include,
to some extent, equivalent mutants. However, H1 mu-
tants include also “difficult-to-kill mutants”, which are
valuable.

Finding 6. The proposed eNSGAII-DiffLOC seems
to be slightly better than original eNSGAII al-
gorithm in terms of mutant reduction, generating
harder-to-kill mutant and constructing “High Qual-
ity and Reasonable HOMs”.

5.5. Answer to RQ5

To answer the RQ5, we have performed an empirical
study, in which HOMs are generated in three ways. In
the first way (HOMT1), HOMs are generated by com-
bining FOMs from the set of all generated FOMs. In
the second way (HOMT2), we delete first live FOMs
from set of generated FOMs, and then create HOMs
by combining FOMs from the set of killed FOMs. And
the last (HOMT3), first delete all of easy-to-kill FOMs,
which were killed by all of given TCs, from set of gen-
erated FOMs, then create HOMs by combining FOMs
from the remaining set of FOMs (named set of not-
easy-to-kill FOMs). Then we use mutation score in-
dicator (MSI) as the indicator of usefulness of higher
order mutation in driving development of TCs. The
live mutants, which cannot be killed by the given test
suite, make up a significant part of generated mutants
and may drive the development of new test cases. The
experimental results are shown in Table 8, in which
FOMT is implementation of first order mutation test-
ing.

Table 8
The mean value of MSI for each project under test (%)

PUT Bar Bean Chain Validator JWBF

FOMT 15.79 15.11 41.65 47.10 12.96
HOMT1 69.82 38.23 87.28 92.69 92.35
HOMT2 98.72 100 100 99.77 100
HOMT3 63.94 63.59 46.69 85.91 82.90

The results presented in Table 8 indicate that the
given sets of TCs of PUTs have lower MSI in first or-
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der mutation testing. It means that there are many live
FOMs and the given sets of TCs are not good enough
to detect the difference between original program and
their mutants and, therefore, need to be improved fol-
lowing the results of mutation analysis based on the
FOMT strategy. The numbers of live FOMs makes up
from 53% to 87% of generated mutants. Only a small
number of FOMs were killed by the given sets of TCs.
In the case of live FOMs, we have to check whether
the live FOMs are equivalent mutants or not, but it of-
ten involves additional human effort [16]. If mutants
are not equivalent, developers or testers need to cre-
ate new TCs, as in Test-Driven Development (TDD) or
Continuous Test-Driven Development (CTDD) [15],
and check whether they are able to kill live FOMs or
not. If live FOMs are equivalent mutants, TCs, which
can kill them, do not exist. The most striking result is
that the HOMT2 strategy appeared to be useless as it
gives a false impression that TCs are of high quality
(MSI is equal or close to 100%) and the usefulness of
HOMT2 is strongly limited, i.e., opportunities of test
case improvement guided by results of HOMT2 muta-
tion analysis are rare if any. Almost all of higher de-
gree mutants, which were constructed by combining
the killed FOMs, are also killed. This indicates that,
combining first order killed mutants to create higher
degree mutants is not a good way to evaluate and im-
prove the quality of given set of test cases because the
generated HOMs are easy to kill. The HOMT1 and
HOMT3 strategies seem to be better and offer more
opportunities to improve the quality of given set of test
cases, as MSI (and the number of killed mutants) de-
creased in comparison to HOMT2.

Finding 7. We should not use first order killed mu-
tants to create difficult (but possible) to kill higher
order mutants. Furthermore, using not-easy-to-kill
mutants to generate higher order mutants seems to
be a promising method to improve the quality of
TCs.

6. Conclusions and future work

In this paper, we have performed the experimental
evaluation of the effect of applying multi-objective op-
timization algorithms in the area of higher order mu-
tation testing based on our proposed HOMs classifica-
tion, objectives and fitness functions using Judy mu-
tation testing tool for Java and open source projects.
The results indicate that our approach can be used to

construct the difficult to kill and more realistic HOMs,
especially “High Quality and Reasonable HOMs”, as
well as to reduce the number of generated HOMs. As
a result, the approach can be used to improve the mu-
tation testing effectiveness in general.

We have empirically evaluated our approach to
HOMT presented some findings, which can be useful
from the point of view of the effectiveness of mutation
testing. Our approach can lead to reduced cost of mu-
tation testing, can produce hard to kill mutants (which
mimic hard to find defects and drive development of
high quality test cases), suggests that there is an up-
per bound on the order of mutants, which allows to re-
duce the cost of mutation even further and do not waste
computational resources for creating mutants, which
are easy to kill by most test cases. The proposed ap-
proach, being a HOMT approach, also addresses the
problem of realism of mutants. eNSGAII-DiffLOC,
being a modified version of eSNGAII, seems to be a
good starting point for further research and develop-
ment of algorithms, which are better in terms of mutant
reduction, harder-to-kill mutant generation and “High
Quality and Reasonable HOMs” construction.

Further research is recommended because using
only 5 selected projects under test (PUTs) may not be
a representative sample of all Java programs. In addi-
tion, the obtained results may also depend on program-
ming language, applied mutation tool, mutation oper-
ators and algorithms. Beside to this, the number of an-
alyzed projects under test is too small to derive more
firm conclusions using, even using robust statistical
methods [9]. Hence, further research should focus on
collecting more data. Furthermore, the obtained differ-
ences in the analyzed projects under test are small so
new modifications and algorithms should be searched
for and empirically evaluated. It would be also inter-
esting to combine the proposed approach with a tech-
nique that utilizes a data-flow analysis to decrease the
number of mutation points and consequently to reduce
the number of higher order mutants [2], as well as to
compare the outcomes of software reliability models
applied to tests [27] with mutation testing.
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