
 

 

Chapter 8 

Software Metrics in Boa Large-Scale Software  
Mining Infrastructure: Challenges and Solutions 

1. Introduction 

Boa is a tool that can be used for data mining repositories of open-
source projects. It contains the full history of a repository—from every revi-
sion’s date and author, data on added, deleted and modified files to the com-
plete state of the repository at the moment of commit. All data can be obtained 
by using the dedicated language. Boa provides a set of functions, which can be 
used for advanced data filtering [1, 2]. 

Boa has already been used for a variety of studies, including developers’ 
willingness to adapt new Java features [3] or the licenses used in open-source 
projects [4]. So far they have not been metrics-oriented, even though the tool is 
intended to be used this way, as implicated by the inclusion of appropriate 
examples in the documentation of Boa [5] (e.g., What are the number of at-
tributes (NOA), per-project and per-type?, What are the number of public 
methods (NPM), per-project and per-type?). 

In this paper we focus on using Boa infrastructure to answer three re-
search questions: 
1) Which of the classic, widely known, software engineering metrics can 

be implemented in Boa? The implementation of classic software engi-
neering metrics in Boa and publication of calculation scripts will make 
it easier to extend existing small-scale empirical software engineering 
research using software metrics, performed usually on a small number 
of projects, to a large-scale research. 
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2) What new metrics, that take advantage of the Boa’s unique infrastruc-
ture, can be proposed? This paper will serve as a guide, for other re-
searchers and practitioners, who shows how to implement new software 
metrics taking into account the unique features, as well as limitations, of 
the Boa large-scale software repository mining platform. 

3) What is the feasibility of defect prediction models based on large num-
ber of projects data obtained from Boa data sets? According to our 
knowledge, this is one of the first attempts (if not the first) to build 
large-scale software defect prediction models based on a very large 
number of projects. Existing software defect prediction models usually 
base on a very limited number of projects. 
Presented study refers to state of Boa framework during October 2015 – 

January 2016 period – when the source material was gathered. 

2. Research methodology 

In this section we introduce briefly into the following topics: how we se-
lected projects for further investigation (see Section 2.1), how we implemented 
software metric scripts using the Boa language (see Section 2.2), and how we 
built software defect prediction models using software metrics from Boa (see 
Section 2.3), including also how we obtained data from the Boa output files 
(see Section 2.4). 

2.1. Projects selection 

Boa source code described in this paper has been developed and tested 
on two Boa data sets: September 2015 GitHub, and September 2013 Source-
Forge. A special filtering has been applied to select projects passing some 
entry criteria. The software projects explored in our study had to pass the fol-
lowing criteria: 
1) They have to have a code repository with revisions. The 2013 Sep-

tember/SourceForge data set consists of 700k projects. Our analysis 
with Boa queries has shown that 30% of them have no code repository 
[6, Section 2.1]. Out of remaining 489k (amount close to this stated by 
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Boa developers – 494,158 [7]) 4,767 projects have two repositories. Re-
positories in those projects have common history of revisions [6, Sec-
tion 1.1]. In case of projects with multiple repositories, only the first of 
them is considered during study to avoid data duplication. Out of 489k 
projects with one code repository, 423k of them had no code revisions 
(commits) [6, Section 1.2]. It is difficult to determine whatever or not 
Boa is missing some data—the data sets have been defined for a given 
month in a given year, and current state of the repository might be dif-
ferent. The 2015 September/GitHub data set has 7.83 million projects. 
95% of them have no code repository in the Boa framework, even 
though the majority of them is available from the GitHub website. They 
are active and public, but most of them have had no commits since 2013 
[6, Section 1.3]. From 380k projects with repository, only 2486 of them 
had commits in 2015 [6, Section 1.4]. Out of the entire GitHub dataset, 
4% of projects have code repositories with revisions [6, Section 1.5]. 

2) They have to have over 100 commits. The projects picked should be 
mature enough for metrics calculation. A larger number of commits 
usually means a larger number of fixing revisions, which are in turn 
used for development of software defect prediction models. 

3) They have to be written in Java. Java has been picked for this research 
due to being a mature, object-oriented language, popular among devel-
opers. It is also worth mentioning that Boa is written in Java, as well as 
provides extra Java-specific options, such as recognizing Java source 
files with and without parsing errors. 
 
The Boa language implementation of filters to select projects fulfilling 

the above mentioned criteria is presented in Listing 1. 
 

before node: Project -> { 

  # They have to be written in Java. 

  ifall (i: int; !match(`^java$`, 

    lowercase(node.programming_languages[i]))) stop;  

 

  # They have to have a code repository with revisions. 

  if(len(node.code_repositories) > 0) { 

    visit(node.code_repositories[0]); 



134 Software Engineering: Improving Practice through Research 
 

 
 

  } 

  stop; 

} 

before node: CodeRepository -> { 

  # They have to have over 100 commits. 

  if(len(node.revisions) < 100) stop; 

  ... 

} 

Listing 1. Implementation of filters 

The final number of projects that passed our entry criteria is presented in 
Table 1. 

Table 1. Data sets 

Dataset  All projects Accepted projects 
GH small  7,988 29 
GH medium  783,982 2485 
GH large  7,830,023 25307 
SF small  7,029 50 
SF medium  69,735 666 
SF large  699,331 7407 

2.2. Implementation of SE metrics 

All of the metrics are calculated for classes. Each of the metric is im-
plemented as a different Boa query, and is run on all Boa data sets mentioned 
in Section 2. 

Due to long execution time, only data from GH small and SF small data 
sets are used for creating prediction models later on. 

The output file of a query has to have the following data: 
x the ID of the project 
x the ID of the class 
x the value of the calculated metric or the expected value. 

This approach makes it possible to effortlessly merge all values gathered 
as the outputs of Boa queries, so they can be used as an input data set for a 
prediction model. 
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2.3. Defect prediction model 

Software defect prediction model is aiming to find the classes that cause 
the most defects. A simple strategy to find them is searching for the classes 
that had been fixed most frequently. 

2.3.1. Expected value – NCFIX 

The expected value in our defect prediction model is Number of Class 
Fixes. Based on Boa’s abilities, it is assumed the class has been fixed, if the 
two following conditions have been met: 

x the file containing the class has been modified in a revision; 
x the revision is marked as a fixing revision by the Boa’s function isfix-

ingrevision [1]. 
The list of classes and their fixes is obtained by the following algorithm: 

1) Create an empty key-value collection for storing respectively: files in 
projects, number of fixing revisions for each file. 

2) Visit a project’s repository revision. 
3) Check if it’s a fixing revision. 
4) Investigate the files changed in this revision. 

(a) If a file is marked as deleted, remove it from the collection. 
(b) If a file is added to the project in the current revision, add it to the 
collection: 
 i. with a value of 1 if the revision is a fixing one; 

ii. with a value of 0 otherwise. 
(c) If a file is modified in the current revision, update it in the collection 

i. increment the number of fixes by one, if the revision is a fixing one; 
ii. leave it otherwise. 

5) 5. Repeat steps 2-4 until you reach the most recent revision and there is 
no more revisions to check. 

6) For all files stored in the collection, select only the ones that declare 
classes. Return the identifiers of the classes, and numbers of fixes corre-
sponding to their files as the output. 
The algorithm is inspired by the getsnapshot function implemented by 

Boa [1], which returns the state of the repository at given time stamp. 
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2.4. The use of Boa API and Weka 

To allow easy management of Boa jobs and connecting job outputs with 
development of defect prediction models, a simple Java program [8] has been 
written. The software uses Boa Java API [9] release 0.1.0 to run jobs. Data 
from Boa is transformed into .arff file of following format: 

  @RELATION classes 

  @ATTRIBUTE class ID string 

  @ATTRIBUTE M_1 NUMERIC 

  . . . 

  @ATTRIBUTE M_N NUMERIC 

  @ATTRIBUTE fixingRevisions NUMERIC 

 

where classID is an identifier of a studied class; M_1 ... M_N is a vector of 
calculated metrics for a class from latest repository SNAPSHOT; fixingRevi-
sions attribute is the expected value described in Section 2.3.1. 

3. Results 

In this section three kinds of contribution are discussed, related to im-
plementation of classic and new software metrics in Boa, as well as develop-
ment of software defect prediction models on a basis of very large number of 
software projects. The latter can be seen as a way to address external validity 
threats common for most of the empirical studies focused on software defect 
prediction. All metrics’ implementations are available to download via links 
provided in appendix [6, Section 3]. 

3.1. Implementation of classic software engineering metrics 

This section presents how to implement scripts to collect some of the 
well-known, classic software metrics [10] in Boa. The metrics were chosen 
based on their popularity and Boa’s limitations. 



 Software Metrics in Boa Large-Scale Software ... 137 
 

 
 

3.1.1. Obtaining classes 

Using getsnapshot function implemented in Boa, all files available in 
the most recent revision of the project are gathered. Then, they are filtered so 
that only the files containing classes are taken into consideration. The data 
stored in the Declaration [1] and its attributes are used for calculating the 
value of a metric. 

3.1.2. Inheritance issue 

Each declaration (class or interface) node in Boa has its array of parents 
[1]. However, those parents are presented only as Types, meaning, they only 
have TypeKind (determining if it’s a class, interface, or something else) and 
name, without its full package path or any other identifier. If two classes or 
interfaces in a project have the same name, but they are in different packages, 
it is impossible to determine which one is the ancestor of a given declaration. 
Therefore, all metrics using inheritance (such as all of the MOOD metrics 
[11], Depth of Inheritance Tree, Number of Children and Coupling between 
Object Classes [10]) had to be unfortunately, excluded from the study. 

3.1.3. Metrics obtained directly from the Declaration node 

Weighted Methods per Class (WMC) in its base version—the sum of 
methods in a class, Number of Fields (NoF) and Number of Nested Declara-
tions (NoND), presented in Table 2, have been successfully implemented us-
ing the structure of the Declaration node alone. 

Table 2. Declaration attributes and associated metrics 

Attribute  Metric 
methods  WMC 
fields  NoF 
nested_declarations  NoND 

 
For each of those metrics, the value is a length of the attribute array. The 

execution time for those metrics is relatively small, up to 10 minutes for the 
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biggest data sets, which clearly shows the advantages of using Boa and the 
approach to calculate metrics using the structure of the Declaration node, pre-
sented in this paper. 

3.1.4. Response For a Class (RFC) 

The RFC metric was implemented as a number of methods in the class, 
added to number of remote methods directly called by methods of the class. 
The issue with the implementation of this metric is that Boa makes it difficult 
to recognize the difference between class’ inner method and method of the 
external classes of the same identifier. For example: the method getId() of 
class A, called in class B, is seen as the same as method getId() in class B. If 
class A called two methods of the same name from different classes (class B 
and class C), those would be indistinguishable as well. There is no direct 
method that would allow to instantly determine the types of called methods’ 
arguments [1] as well as the type of instance of variable from which the 
method was called [6, Section 1.6]. Such information can be obtained only by 
deeper analysis of Boa’s AST tree, to the level of single Statements. 

The simplified version of the metric, that ignores this nuance, has been 
successfully implemented and ran for both Boa’s data sets. 

3.2. Implementation of new software metrics 

The metrics presented below have been developed by us upon learning 
more about the Boa architecture and its tree structure. 

3.2.1. Number of Statements in Methods 

The NoSiM metric is calculated as a sum of all statements in class 
methods. The nodes calculated are of the Boa type Statement. For studied Java 
classes, those nodes are either blocks of code marked by ‘{}’ or single code 
expressions. The implementation of this metric is a starting point for imple-
mentation of a Lines of Code (LoC) metric. To achieve the LoC metric, all 
class’ fields, number of methods, and such, would have to be added. 
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3.2.2. Maximum Depth of Declaration Nesting 

MDoDN is the maximum level of class nesting in a class. For the fol-
lowing code: 
class A { 

  class B { 

    class C {} 

  } 

  class D {} 

} 

 

the result for class A would be 3 (the depth of C class). The metric is not calcu-
lated for nested classes (in the example: B, C, and D). For implementation of 
this metric, Boa’s stack functions are used. Every time the node of a nested 
Declaration is entered, it is pushed onto the stack. The metric value is the 
stack’s element count. 

3.2.3. Number of Anonymous Declarations 

NoAD for Java is a sum of all anonymous children classes in the parent 
class. To calculate this metric, the Expression Boa node is tested for having a 
Declaration with a parameter of ANONYMOUS type. 

3.2.4. Cumulative metrics 

Metrics NoM, NoF, NoSiM, NoAD and NoND have been also success-
fully implemented in cumulative versions (CNoM [6, Section 1.7], CNoF [6, 
Section 1.8], CNoSiM [6, Section 1.9], CNoAD [6, Section 1.10], CNoND [6, 
Section 1.11]), where calculated value is a sum of metric for not only a class, 
but also all its nested and local classes. 

3.3. Defect prediction model 

The defect prediction model presented below is a single defect predic-
tion model calculated for a high number of Boa projects. This is different from 
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a traditional approach, with a single, or several projects used to develop defect 
prediction models. 

Data obtained from the Boa output files (described in Section 2.4) is 
randomly separated into training set and testing set (in 9:1 proportion). The 
fixingRevisions attribute in the testing set is nulled out, so it can be calculated 
using prediction model. 

We used Random Forest to build defect prediction model. Random For-
est generates a lot of random samples which are the subsets of training data 
set. A decision tree is generated for each of the samples [12]. The parameters 
listed below have been determined experimentally: 

x number of trees: 200, 
x max depth: 12, 
x number of features: 12, 
x cross-validation folds: 10, 
x random seed: 1 

The results of 10-fold cross-validation are presented in Table 3. Pearson 
product-moment correlation coefficient r shows a low correlation between the 
results from defect prediction model and real values, with high error ratio. 
Those results are further analyzed in Section 4. 

Table 3. Results of evaluation of the prediction model 

Evaluation attribute GH 2015 
(small) 

SF 2013 
(small) 

Correlation coefficient (R)  0.215 0.244 
Mean absolute error (MAE)  2.16 0.603 
Root mean squared error (RMSE)  9.96 1.32 
Relative absolute error (RAE)  102% 93.3% 
Root relative squared error (RRSE) 100%  97.8% 

3.4. Reference values of software metrics 

The subsequent goal was to characterize a large number of open source 
projects available from Boa by means of software metrics in order to create 
reference values of software metrics. Table 4 presents descriptive statistics for 
each of calculated metrics among the data sets. 
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4. Discussion 

The presented prediction model was tested on small data sets, but with 
correct resources it can be easily scaled to use full data sets with up to 25k 
subjects. This use case would be, to the best of our knowledge, the first at-
tempt to create a large scale defect prediction model, as other examples from 
literature show prediction models developed using less than 200 projects [13, 
14, 15]. 

The performance of the prediction model is poor due to the fact that a 
majority of classes studied has zero fixing revisions and therefore input data is 
highly unbalanced, see Table 5. However, the quality of prediction model and 
employing methods to deal with the class imbalance problem are not the main 
objectives of the study. Our aim was to show that it is possible to collect all the 
data necessary to build a large-scale software defect prediction model using 
the Boa platform. 

Results from Table 4 show that not for all metrics standard deviation is 
lower for filtered datasets. This can be caused by the nature of metrics (such as 
NoND, NoAD, MDoDN), which are unlikely to have a high mean value in 
majority of projects. 

4.1. Further research 

It is worth to look at the way the fix in the revision is identified. Boa-
provided function isfixingrevision is based only on the commit message text 
analysis. We assume this function is not ideal and integrating Boa API with 
outside software, such as bug tracking systems, can be a better solution to de-
termine existing bugs in code revisions. 

The data used for building prediction models in our study has big dis-
proportions. Applying different filters and criteria (more mature projects, dif-
ferent languages and so on) could provide better data set for analysis, with 
more fixing revisions. 

An interesting path of further research are process metrics [15, 16], 
which reflect changes over time and are becoming the crucial ingredients of 
software defect prediction models. 
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Table 4. Mean, median and standard deviation for metrics calculated in the study. 

 

Table 5. Number of classes with zero and more than zero fixes in datasets 

Amount of class fixes GH 2015(small) SF 2013 (small) 
0 13296 (58.9%) 30244 (80.1%) 

>0 9260 (41.1%) 7504 (19.9%) 

5. Conclusions 

Overall, the goal of the research, as described with research questions – 
implementation of software metrics in Boa and collecting data sets from a 
large number of projects, e.g., for the sake of prediction models – has been 
achieved. 

We were able to implement some of the classic software engineering 
metrics using Boa, we presented some Boa-specific metrics, and we made an 
attempt to create a defect prediction model with the data we gathered. This 
proves that Boa can be a useful tool for data mining analysis in this particular 
field, as well as for creating sophisticated queries regarding its data sets. How-
ever, Boa is still a new framework that comes with a few disadvantages, and 
some of the metrics and operations were impossible to implement at the mo-
ment. In the following sections, the challenges met and our solutions are pre-
sented. 
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5.1. Challenges 

Boa uses visitor pattern – one of Boa’s greatest strengths – which some-
times might provide unexpected results if queries are not written properly. 

5.1.1. Local and nested classes 

One of the first issues we encountered creating Boa queries was a dif-
ferent size of output jobs. For our metrics, we gathered all classes from all 
projects. Therefore, for the same data set, all queries should return the same 
number of rows. As it turned out, the difference was caused by the behaviour 
of the visitor pattern, used by Boa. When source code contains a local class 
(class defined inside one of the methods) or a nested class (a class declared 
inside of another class), this class is visited by the visitor pattern before the 
analysis of the class containing it ends. Upon returning to the class-container, 
some of its metrics and calculations had been assigned to the local or nested 
class. 

Solution: Boa offers implementation of stacks, which we started using 
while visiting local and nested classes. We took advantage of this solution 
implementing the Maximum Depth of Declaration Nesting metric described in 
Section 3.2.2. 

5.1.2. Boa code compilers 

Boa uses two different code compilers for SourceForge and GitHub data 
sets. As the framework is still in early development, sometimes the same query 
acts differently depending on the data set used. 

Example: One of Boa sample queries "How many committers are there 
for each project?" [17] works fine in SF [6, Section 1.12], but causes compila-
tion error in GH [6, Section 1.13]. In that case, a small change in the code 
notation solved the issue [6, Section 1.14]: 

x Code resulting with error: 
committers [p. code_repositories[i]. revisions[j].  

  committer.username] = true; 
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x Code resulting with success: 
username : string = p. code_repositories[i].  

   revisions[j].committer.username ; 

      committers[username] = true ; 

 

This example shows that a person creating queries with Boa might run 
into different issues depending on the data set picked. 

During our research, we often used Boa dictionaries. Dictionaries are 
defined by Boa as map[key_type] of [value_type]. Boa returns an error, if int is 
used as a value_type. We must have stored our integer values as strings, which 
resulted in converting value to integer each time it was used in calculations, 
and then back to string to update the map. 

5.1.3. Debugging process 

The errors reported by Boa are often lacking any sort of description. The 
debugging process comes down to commenting out parts of queries to check 
which fragments are causing errors. Each code test takes about a minute (and 
then some follow-up time to check if the output data is correct), and some-
times multiple tests are required to find the source of an error. There is no way 
of tracking the execution of the queries. 

Solution: All variables used during the debugging process have to be 
initiated, by defining its type and aggregation method, and then returned in the 
output file. 

5.2. Contribution 

The paper describes our experience with using Boa platform for imple-
menting software engineering metrics and defect prediction models. Our find-
ings can be useful for both researchers – with solutions presented in Section 
5.1 and provided source codes for metrics we implemented – as well as devel-
oper teams and project managers, providing an example for obtaining large-
scale SE metrics for projects of particular profile (i.e. number of commits, 
used programming language and so on). The metric implementations proposed 
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by us are scalable – calculated for classes, but could be as well implemented 
for packages or projects. 

Based on our findings, we confirm that Boa can be a powerful data min-
ing tool, which can be used for a variety of research, alone and with usage of 
other software, like Weka, as demonstrated in Section 2.4. 
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