

Chapter 8

Software Metrics in Boa Large-Scale Software
Mining Infrastructure: Challenges and Solutions

1. Introduction

Boa is a tool that can be used for data mining repositories of open-
source projects. It contains the full history of a repository—from every revi-
sion’s date and author, data on added, deleted and modified files to the com-
plete state of the repository at the moment of commit. All data can be obtained
by using the dedicated language. Boa provides a set of functions, which can be
used for advanced data filtering [1, 2].

Boa has already been used for a variety of studies, including developers’
willingness to adapt new Java features [3] or the licenses used in open-source
projects [4]. So far they have not been metrics-oriented, even though the tool is
intended to be used this way, as implicated by the inclusion of appropriate
examples in the documentation of Boa [5] (e.g., What are the number of at-
tributes (NOA), per-project and per-type?, What are the number of public
methods (NPM), per-project and per-type?).

In this paper we focus on using Boa infrastructure to answer three re-
search questions:
1) Which of the classic, widely known, software engineering metrics can

be implemented in Boa? The implementation of classic software engi-
neering metrics in Boa and publication of calculation scripts will make
it easier to extend existing small-scale empirical software engineering
research using software metrics, performed usually on a small number
of projects, to a large-scale research.

Agnieszka Patalas, Wojciech Cichowski, Michał Malinka, Wojciech Stępniak, Piotr
Maćkowiak, and Lech Madeyski, “Software Metrics in Boa Large-Scale Software Mining
Infrastructure: Challenges and Solutions” in Software Engineering: Improving Practice
through Research (B. Hnatkowska and M. Śmiałek, eds.), pp. 131–146, 2016.

132 Software Engineering: Improving Practice through Research

2) What new metrics, that take advantage of the Boa’s unique infrastruc-
ture, can be proposed? This paper will serve as a guide, for other re-
searchers and practitioners, who shows how to implement new software
metrics taking into account the unique features, as well as limitations, of
the Boa large-scale software repository mining platform.

3) What is the feasibility of defect prediction models based on large num-
ber of projects data obtained from Boa data sets? According to our
knowledge, this is one of the first attempts (if not the first) to build
large-scale software defect prediction models based on a very large
number of projects. Existing software defect prediction models usually
base on a very limited number of projects.
Presented study refers to state of Boa framework during October 2015 –

January 2016 period – when the source material was gathered.

2. Research methodology

In this section we introduce briefly into the following topics: how we se-
lected projects for further investigation (see Section 2.1), how we implemented
software metric scripts using the Boa language (see Section 2.2), and how we
built software defect prediction models using software metrics from Boa (see
Section 2.3), including also how we obtained data from the Boa output files
(see Section 2.4).

2.1. Projects selection

Boa source code described in this paper has been developed and tested
on two Boa data sets: September 2015 GitHub, and September 2013 Source-
Forge. A special filtering has been applied to select projects passing some
entry criteria. The software projects explored in our study had to pass the fol-
lowing criteria:
1) They have to have a code repository with revisions. The 2013 Sep-

tember/SourceForge data set consists of 700k projects. Our analysis
with Boa queries has shown that 30% of them have no code repository
[6, Section 2.1]. Out of remaining 489k (amount close to this stated by

 Software Metrics in Boa Large-Scale Software ... 133

Boa developers – 494,158 [7]) 4,767 projects have two repositories. Re-
positories in those projects have common history of revisions [6, Sec-
tion 1.1]. In case of projects with multiple repositories, only the first of
them is considered during study to avoid data duplication. Out of 489k
projects with one code repository, 423k of them had no code revisions
(commits) [6, Section 1.2]. It is difficult to determine whatever or not
Boa is missing some data—the data sets have been defined for a given
month in a given year, and current state of the repository might be dif-
ferent. The 2015 September/GitHub data set has 7.83 million projects.
95% of them have no code repository in the Boa framework, even
though the majority of them is available from the GitHub website. They
are active and public, but most of them have had no commits since 2013
[6, Section 1.3]. From 380k projects with repository, only 2486 of them
had commits in 2015 [6, Section 1.4]. Out of the entire GitHub dataset,
4% of projects have code repositories with revisions [6, Section 1.5].

2) They have to have over 100 commits. The projects picked should be
mature enough for metrics calculation. A larger number of commits
usually means a larger number of fixing revisions, which are in turn
used for development of software defect prediction models.

3) They have to be written in Java. Java has been picked for this research
due to being a mature, object-oriented language, popular among devel-
opers. It is also worth mentioning that Boa is written in Java, as well as
provides extra Java-specific options, such as recognizing Java source
files with and without parsing errors.

The Boa language implementation of filters to select projects fulfilling

the above mentioned criteria is presented in Listing 1.

before node: Project -> {

 # They have to be written in Java.

 ifall (i: int; !match(`^java$`,

 lowercase(node.programming_languages[i]))) stop;

 # They have to have a code repository with revisions.

 if(len(node.code_repositories) > 0) {

 visit(node.code_repositories[0]);

134 Software Engineering: Improving Practice through Research

 }

 stop;

}

before node: CodeRepository -> {

 # They have to have over 100 commits.

 if(len(node.revisions) < 100) stop;

 ...

}

Listing 1. Implementation of filters

The final number of projects that passed our entry criteria is presented in
Table 1.

Table 1. Data sets

Dataset All projects Accepted projects
GH small 7,988 29
GH medium 783,982 2485
GH large 7,830,023 25307
SF small 7,029 50
SF medium 69,735 666
SF large 699,331 7407

2.2. Implementation of SE metrics

All of the metrics are calculated for classes. Each of the metric is im-
plemented as a different Boa query, and is run on all Boa data sets mentioned
in Section 2.

Due to long execution time, only data from GH small and SF small data
sets are used for creating prediction models later on.

The output file of a query has to have the following data:
x the ID of the project
x the ID of the class
x the value of the calculated metric or the expected value.

This approach makes it possible to effortlessly merge all values gathered
as the outputs of Boa queries, so they can be used as an input data set for a
prediction model.

 Software Metrics in Boa Large-Scale Software ... 135

2.3. Defect prediction model

Software defect prediction model is aiming to find the classes that cause
the most defects. A simple strategy to find them is searching for the classes
that had been fixed most frequently.

2.3.1. Expected value – NCFIX

The expected value in our defect prediction model is Number of Class
Fixes. Based on Boa’s abilities, it is assumed the class has been fixed, if the
two following conditions have been met:

x the file containing the class has been modified in a revision;
x the revision is marked as a fixing revision by the Boa’s function isfix-

ingrevision [1].
The list of classes and their fixes is obtained by the following algorithm:

1) Create an empty key-value collection for storing respectively: files in
projects, number of fixing revisions for each file.

2) Visit a project’s repository revision.
3) Check if it’s a fixing revision.
4) Investigate the files changed in this revision.

(a) If a file is marked as deleted, remove it from the collection.
(b) If a file is added to the project in the current revision, add it to the
collection:
 i. with a value of 1 if the revision is a fixing one;

ii. with a value of 0 otherwise.
(c) If a file is modified in the current revision, update it in the collection

i. increment the number of fixes by one, if the revision is a fixing one;
ii. leave it otherwise.

5) 5. Repeat steps 2-4 until you reach the most recent revision and there is
no more revisions to check.

6) For all files stored in the collection, select only the ones that declare
classes. Return the identifiers of the classes, and numbers of fixes corre-
sponding to their files as the output.
The algorithm is inspired by the getsnapshot function implemented by

Boa [1], which returns the state of the repository at given time stamp.

136 Software Engineering: Improving Practice through Research

2.4. The use of Boa API and Weka

To allow easy management of Boa jobs and connecting job outputs with
development of defect prediction models, a simple Java program [8] has been
written. The software uses Boa Java API [9] release 0.1.0 to run jobs. Data
from Boa is transformed into .arff file of following format:

 @RELATION classes

 @ATTRIBUTE class ID string

 @ATTRIBUTE M_1 NUMERIC

 . . .

 @ATTRIBUTE M_N NUMERIC

 @ATTRIBUTE fixingRevisions NUMERIC

where classID is an identifier of a studied class; M_1 ... M_N is a vector of
calculated metrics for a class from latest repository SNAPSHOT; fixingRevi-
sions attribute is the expected value described in Section 2.3.1.

3. Results

In this section three kinds of contribution are discussed, related to im-
plementation of classic and new software metrics in Boa, as well as develop-
ment of software defect prediction models on a basis of very large number of
software projects. The latter can be seen as a way to address external validity
threats common for most of the empirical studies focused on software defect
prediction. All metrics’ implementations are available to download via links
provided in appendix [6, Section 3].

3.1. Implementation of classic software engineering metrics

This section presents how to implement scripts to collect some of the
well-known, classic software metrics [10] in Boa. The metrics were chosen
based on their popularity and Boa’s limitations.

 Software Metrics in Boa Large-Scale Software ... 137

3.1.1. Obtaining classes

Using getsnapshot function implemented in Boa, all files available in
the most recent revision of the project are gathered. Then, they are filtered so
that only the files containing classes are taken into consideration. The data
stored in the Declaration [1] and its attributes are used for calculating the
value of a metric.

3.1.2. Inheritance issue

Each declaration (class or interface) node in Boa has its array of parents
[1]. However, those parents are presented only as Types, meaning, they only
have TypeKind (determining if it’s a class, interface, or something else) and
name, without its full package path or any other identifier. If two classes or
interfaces in a project have the same name, but they are in different packages,
it is impossible to determine which one is the ancestor of a given declaration.
Therefore, all metrics using inheritance (such as all of the MOOD metrics
[11], Depth of Inheritance Tree, Number of Children and Coupling between
Object Classes [10]) had to be unfortunately, excluded from the study.

3.1.3. Metrics obtained directly from the Declaration node

Weighted Methods per Class (WMC) in its base version—the sum of
methods in a class, Number of Fields (NoF) and Number of Nested Declara-
tions (NoND), presented in Table 2, have been successfully implemented us-
ing the structure of the Declaration node alone.

Table 2. Declaration attributes and associated metrics

Attribute Metric
methods WMC
fields NoF
nested_declarations NoND

For each of those metrics, the value is a length of the attribute array. The

execution time for those metrics is relatively small, up to 10 minutes for the

138 Software Engineering: Improving Practice through Research

biggest data sets, which clearly shows the advantages of using Boa and the
approach to calculate metrics using the structure of the Declaration node, pre-
sented in this paper.

3.1.4. Response For a Class (RFC)

The RFC metric was implemented as a number of methods in the class,
added to number of remote methods directly called by methods of the class.
The issue with the implementation of this metric is that Boa makes it difficult
to recognize the difference between class’ inner method and method of the
external classes of the same identifier. For example: the method getId() of
class A, called in class B, is seen as the same as method getId() in class B. If
class A called two methods of the same name from different classes (class B
and class C), those would be indistinguishable as well. There is no direct
method that would allow to instantly determine the types of called methods’
arguments [1] as well as the type of instance of variable from which the
method was called [6, Section 1.6]. Such information can be obtained only by
deeper analysis of Boa’s AST tree, to the level of single Statements.

The simplified version of the metric, that ignores this nuance, has been
successfully implemented and ran for both Boa’s data sets.

3.2. Implementation of new software metrics

The metrics presented below have been developed by us upon learning
more about the Boa architecture and its tree structure.

3.2.1. Number of Statements in Methods

The NoSiM metric is calculated as a sum of all statements in class
methods. The nodes calculated are of the Boa type Statement. For studied Java
classes, those nodes are either blocks of code marked by ‘{}’ or single code
expressions. The implementation of this metric is a starting point for imple-
mentation of a Lines of Code (LoC) metric. To achieve the LoC metric, all
class’ fields, number of methods, and such, would have to be added.

 Software Metrics in Boa Large-Scale Software ... 139

3.2.2. Maximum Depth of Declaration Nesting

MDoDN is the maximum level of class nesting in a class. For the fol-
lowing code:
class A {

 class B {

 class C {}

 }

 class D {}

}

the result for class A would be 3 (the depth of C class). The metric is not calcu-
lated for nested classes (in the example: B, C, and D). For implementation of
this metric, Boa’s stack functions are used. Every time the node of a nested
Declaration is entered, it is pushed onto the stack. The metric value is the
stack’s element count.

3.2.3. Number of Anonymous Declarations

NoAD for Java is a sum of all anonymous children classes in the parent
class. To calculate this metric, the Expression Boa node is tested for having a
Declaration with a parameter of ANONYMOUS type.

3.2.4. Cumulative metrics

Metrics NoM, NoF, NoSiM, NoAD and NoND have been also success-
fully implemented in cumulative versions (CNoM [6, Section 1.7], CNoF [6,
Section 1.8], CNoSiM [6, Section 1.9], CNoAD [6, Section 1.10], CNoND [6,
Section 1.11]), where calculated value is a sum of metric for not only a class,
but also all its nested and local classes.

3.3. Defect prediction model

The defect prediction model presented below is a single defect predic-
tion model calculated for a high number of Boa projects. This is different from

140 Software Engineering: Improving Practice through Research

a traditional approach, with a single, or several projects used to develop defect
prediction models.

Data obtained from the Boa output files (described in Section 2.4) is
randomly separated into training set and testing set (in 9:1 proportion). The
fixingRevisions attribute in the testing set is nulled out, so it can be calculated
using prediction model.

We used Random Forest to build defect prediction model. Random For-
est generates a lot of random samples which are the subsets of training data
set. A decision tree is generated for each of the samples [12]. The parameters
listed below have been determined experimentally:

x number of trees: 200,
x max depth: 12,
x number of features: 12,
x cross-validation folds: 10,
x random seed: 1

The results of 10-fold cross-validation are presented in Table 3. Pearson
product-moment correlation coefficient r shows a low correlation between the
results from defect prediction model and real values, with high error ratio.
Those results are further analyzed in Section 4.

Table 3. Results of evaluation of the prediction model

Evaluation attribute GH 2015
(small)

SF 2013
(small)

Correlation coefficient (R) 0.215 0.244
Mean absolute error (MAE) 2.16 0.603
Root mean squared error (RMSE) 9.96 1.32
Relative absolute error (RAE) 102% 93.3%
Root relative squared error (RRSE) 100% 97.8%

3.4. Reference values of software metrics

The subsequent goal was to characterize a large number of open source
projects available from Boa by means of software metrics in order to create
reference values of software metrics. Table 4 presents descriptive statistics for
each of calculated metrics among the data sets.

 Software Metrics in Boa Large-Scale Software ... 141

4. Discussion

The presented prediction model was tested on small data sets, but with
correct resources it can be easily scaled to use full data sets with up to 25k
subjects. This use case would be, to the best of our knowledge, the first at-
tempt to create a large scale defect prediction model, as other examples from
literature show prediction models developed using less than 200 projects [13,
14, 15].

The performance of the prediction model is poor due to the fact that a
majority of classes studied has zero fixing revisions and therefore input data is
highly unbalanced, see Table 5. However, the quality of prediction model and
employing methods to deal with the class imbalance problem are not the main
objectives of the study. Our aim was to show that it is possible to collect all the
data necessary to build a large-scale software defect prediction model using
the Boa platform.

Results from Table 4 show that not for all metrics standard deviation is
lower for filtered datasets. This can be caused by the nature of metrics (such as
NoND, NoAD, MDoDN), which are unlikely to have a high mean value in
majority of projects.

4.1. Further research

It is worth to look at the way the fix in the revision is identified. Boa-
provided function isfixingrevision is based only on the commit message text
analysis. We assume this function is not ideal and integrating Boa API with
outside software, such as bug tracking systems, can be a better solution to de-
termine existing bugs in code revisions.

The data used for building prediction models in our study has big dis-
proportions. Applying different filters and criteria (more mature projects, dif-
ferent languages and so on) could provide better data set for analysis, with
more fixing revisions.

An interesting path of further research are process metrics [15, 16],
which reflect changes over time and are becoming the crucial ingredients of
software defect prediction models.

142 Software Engineering: Improving Practice through Research

Table 4. Mean, median and standard deviation for metrics calculated in the study.

Table 5. Number of classes with zero and more than zero fixes in datasets

Amount of class fixes GH 2015(small) SF 2013 (small)
0 13296 (58.9%) 30244 (80.1%)

>0 9260 (41.1%) 7504 (19.9%)

5. Conclusions

Overall, the goal of the research, as described with research questions –
implementation of software metrics in Boa and collecting data sets from a
large number of projects, e.g., for the sake of prediction models – has been
achieved.

We were able to implement some of the classic software engineering
metrics using Boa, we presented some Boa-specific metrics, and we made an
attempt to create a defect prediction model with the data we gathered. This
proves that Boa can be a useful tool for data mining analysis in this particular
field, as well as for creating sophisticated queries regarding its data sets. How-
ever, Boa is still a new framework that comes with a few disadvantages, and
some of the metrics and operations were impossible to implement at the mo-
ment. In the following sections, the challenges met and our solutions are pre-
sented.

 Software Metrics in Boa Large-Scale Software ... 143

5.1. Challenges

Boa uses visitor pattern – one of Boa’s greatest strengths – which some-
times might provide unexpected results if queries are not written properly.

5.1.1. Local and nested classes

One of the first issues we encountered creating Boa queries was a dif-
ferent size of output jobs. For our metrics, we gathered all classes from all
projects. Therefore, for the same data set, all queries should return the same
number of rows. As it turned out, the difference was caused by the behaviour
of the visitor pattern, used by Boa. When source code contains a local class
(class defined inside one of the methods) or a nested class (a class declared
inside of another class), this class is visited by the visitor pattern before the
analysis of the class containing it ends. Upon returning to the class-container,
some of its metrics and calculations had been assigned to the local or nested
class.

Solution: Boa offers implementation of stacks, which we started using
while visiting local and nested classes. We took advantage of this solution
implementing the Maximum Depth of Declaration Nesting metric described in
Section 3.2.2.

5.1.2. Boa code compilers

Boa uses two different code compilers for SourceForge and GitHub data
sets. As the framework is still in early development, sometimes the same query
acts differently depending on the data set used.

Example: One of Boa sample queries "How many committers are there
for each project?" [17] works fine in SF [6, Section 1.12], but causes compila-
tion error in GH [6, Section 1.13]. In that case, a small change in the code
notation solved the issue [6, Section 1.14]:

x Code resulting with error:
committers [p. code_repositories[i]. revisions[j].

 committer.username] = true;

144 Software Engineering: Improving Practice through Research

x Code resulting with success:
username : string = p. code_repositories[i].

 revisions[j].committer.username ;

 committers[username] = true ;

This example shows that a person creating queries with Boa might run
into different issues depending on the data set picked.

During our research, we often used Boa dictionaries. Dictionaries are
defined by Boa as map[key_type] of [value_type]. Boa returns an error, if int is
used as a value_type. We must have stored our integer values as strings, which
resulted in converting value to integer each time it was used in calculations,
and then back to string to update the map.

5.1.3. Debugging process

The errors reported by Boa are often lacking any sort of description. The
debugging process comes down to commenting out parts of queries to check
which fragments are causing errors. Each code test takes about a minute (and
then some follow-up time to check if the output data is correct), and some-
times multiple tests are required to find the source of an error. There is no way
of tracking the execution of the queries.

Solution: All variables used during the debugging process have to be
initiated, by defining its type and aggregation method, and then returned in the
output file.

5.2. Contribution

The paper describes our experience with using Boa platform for imple-
menting software engineering metrics and defect prediction models. Our find-
ings can be useful for both researchers – with solutions presented in Section
5.1 and provided source codes for metrics we implemented – as well as devel-
oper teams and project managers, providing an example for obtaining large-
scale SE metrics for projects of particular profile (i.e. number of commits,
used programming language and so on). The metric implementations proposed

 Software Metrics in Boa Large-Scale Software ... 145

by us are scalable – calculated for classes, but could be as well implemented
for packages or projects.

Based on our findings, we confirm that Boa can be a powerful data min-
ing tool, which can be used for a variety of research, alone and with usage of
other software, like Weka, as demonstrated in Section 2.4.

References

[1] Iowa State University of Science and Technology: The Boa Programming Guide.
http://boa.cs.iastate.edu/docs/, 2015, accessed: October 18, 2015.

[2] R. Dyer, H. A. Nguyen, H. Rajan, T. N. Nguyen. Boa: A language and infra-
structure for analyzing ultra-large-scale software repositories. In: Proceedings of
the 2013 International Conference on Software Engineering. pp. 422–431, IEEE
Press, 2013.

[3] R. Dyer, H. Rajan, H. A. Nguyen, T. N. Nguyen. Mining billions of fast nodes to
study actual and potential usage of java language features. In: Proceedings of the
36th International Conference on Software Engineering. pp. 779–790, ACM,
2014.

[4] C. Vendome, M. Linares-Vásquez, G. Bavota, M. Di Penta, D. German, D.
Poshyvanyk. License usage and changes: A largescale study of java projects on
github. In: The 23rd IEEE International Conference on Program Comprehension,
ICPC, 2015.

[5] Iowa State University of Science and Technology: Example Boa Programs,
http://boa.cs.iastate.edu/examples/, 2015, accessed: October 11, 2015.

[6] A. Patalas, W. Cichowski, M. Malinka, W. Stepniak, P. Mackowiak, L. Madey-
ski. Appendix to Software Metrics in Boa Large-Scale Software Mining Infra-
structure: Challenges and Solutions, 2016, http://madeyski.e-
informatyka.pl/download/PatalasEtAl16Appendix.pdf

[7] Iowa State University of Science and Technology: Boa. Mining Ultra-Large-
Scale Software Repositories. Dataset Statistics, http://boa.cs.iastate.edu/stats/,
2015, accessed: October 18, 2015.

[8] Java research software, source code for metrics and statistical tests,
https://github.com/Aknilam/metrics-research-software

[9] Iowa State University of Science and Technology: Boa. Mining Ultra-Large-
Scale Software Repositories. Client API, http://boa.cs.iastate.edu/api/, 2015, ac-
cessed: October 18, 2015.

[10] S. R. Chidamber, C. F. Kemerer. A metrics suite for object oriented design, IEEE
Transactions on Software Engineering 20(6), pp. 476–493, 1994.

[11] F.B. e Abreu. Design quality metrics for object-oriented software systems. ER-
CIM News 23, 1995.

[12] L. Breiman. Random forests. Machine Learning 45(1), pp. 5–32, 2001.

146 Software Engineering: Improving Practice through Research

[13] M. Jureczko, L. Madeyski. Towards Identifying Software Project Clusters with
Regard to Defect Prediction. In: Proceedings of the 6th International Conference
on Predictive Models in Software Engineering. pp. 9:1–9:10. PROMISE ’10,
ACM, New York, USA, 2010.

[14] M. Jureczko, L. Madeyski. Cross–project defect prediction with respect to code
ownership model: An empirical study. e-Informatica Software Engineering Jour-
nal 9(1), pp. 21–35, 2015.

[15] L. Madeyski, M. Jureczko. Which Process Metrics Can Significantly Improve
Defect Prediction Models? An Empirical Study. Software Quality Journal 23(3),
pp. 393–422, 2015.

[16] M. Jureczko, L. Madeyski. A review of process metrics in defect prediction stud-
ies. Metody Informatyki Stosowanej 30(5), pp. 133–145, 2011.

[17] Iowa State University of Science and Technology: Example Boa Programs,
http://boa.cs.iastate.edu/examples/, 2015, accessed: October 18, 2015.

