
Protocol for a Systematic Literature Review of Methods Dealing

with Equivalent Mutant Problem

Wojciech Orzeszynaa,b, Lech Madeyski∗,a, Richard Torkarb,c

aWroc law University of Technology, Wyb. Wyspiańskiego 27, 50370 Wroc law, Poland
bBlekinge Institute of Technology, S-371 79 Karlskrona, Sweden

cCertus Software V&V Center, Simula Research Laboratory, 1325 Lysaker, Norway

1. Introduction

Testing is the key method to ensure quality of software. But how does one find out if the
test suite is sufficiently covering all quality aspects? There are some established solutions for
evaluating if the number of test cases is adequate, but there are still fewer ways to evaluate
the quality of tests; mutation testing can be seen as one.

Mutation testing seeds artificial faults into an application (mutants) and checks whether
a test suite can detect these faults. If these faults are not found, the test suite is considered
as ‘not good enough’ [1]. There are also mutations, which keep the program semantics
unchanged and thus cannot be detected by any test suite. Finding a way to select, or not
select, these mutations is also known as the equivalent mutant problem.

The equivalent mutant problem has been increasingly studied since mutation testing was
first proposed in the 1971 by Richard Lipton a student paper [2]. The growth of this field
can also be dated in the late 1970s, when articles by DeMillo et al. [1], Hamlet [3] and Budd
et al. [4] were published.

1.1. Objectives of the SLR

The overall aim of the study is to develop a new, more effective method for overcoming
equivalent mutant problem or to enhance existing methods. To do that, a systematic litera-
ture review in the field of equivalent mutants problem is needed, to get to know the current
state of knowledge and to have a good starting point. The following objectives are defined
to meet the aim:

• Identify existing methods for dealing with equivalent mutants.

• Identify current state of development of existing methods for dealing with equivalent
mutant.

• Classify those methods.

• Rank existing methods according to the number of detected equivalent mutations (per-
centage).

• Analyze possibilities to improve existing methods.

∗Corresponding author: Lech Madeyski http://madeyski.e-informatyka.pl/

1



1.2. Research Questions

Research questions must determine the goal of the literature review and help to provide
expected results [5–9]. The main objective of study is to develop a method which will
detect all of equivalent mutants significantly faster than now, what means that the time
for executing mutation testing will be measured in minutes instead of hours or even days
for large programmes. Therefore in general there are two main factors [10, 11] - number of
detected equivalent mutations (percentage) and duration of the detecting process (mutants
per second). In relation to the mentioned factors, few questions were created for the literature
review. For each of them a short description of expected outcomes is provided in the next
paragraphs.

• RQ1: What methods exist that try to solve the problem of equivalent
mutants?
This is a very general question. In this case general ideas are also expected. Some
of them might have been implemented and evaluated while some might be theoretical
suggestions for further refinements.

• RQ2: How can those methods be classified?
As a result, the classification of existing methods to some general domains and areas
is expected.

• RQ3: What is the maturity of existing methods?
All existing methods will be grouped by their maturity.

• RQ4: What are the theoretical ideas on how to improve already empirically
evaluated techniques?
In this case, everything that the authors mention in e.g. “Future work” is to be anal-
ysed. Any possibilities that would lead to an increase in the number of detected
equivalent mutants are welcome.

2. Search Strategy

During the initial examination of the domain it was discovered that very little literature
is likely to exist. Due to this reason the search process was made in two iterations. Primary
search was automated, using search engines and digital libraries. Detailed description of
the resources is provided in further paragraphs. After this process the manual search was
conducted to scan the gray literature [7]. Second iteration includes checking reference lists
from relevant primary studies, conference proceedings, work at progress and contacting all
the authors asking them if they know of any unpublished results [6].

2.1. Search terms construction process

Following steps can be distinguished:

1. Develop search terms from the research questions. All possible terms which relate to
the research questions were listed.

2. Synonyms of already collected terms were added to the list of search terms.

2



3. New search terms were collected by changing the plurals to singular forms and singular
to plural forms.

4. New search terms were collected by gathering keywords from abstracts and conclusions
from a sample of relevant research papers.

5. New search terms were collected by browsing through grey literature (technical reports,
non peer reviewed articles, websites, etc.)

6. New search terms were constructed by using Boolean OR with synonyms of search
keywords.

7. New search terms were constructed by using Boolean AND for combining different
search terms.

2.2. Identifying search terms

For each research question related major terms were developed. The main set of terms is
the same for all of the questions, so to minimizing duplicates if the term was listed for one
research question, it will not be for next ones.

• RQ1: equivalent mutants, detection, methods, techniques, problem, mutation testing,
mutation analysis, equivalence

• RQ2: classification, ranking

• RQ3: empirical evaluation, implemented, development

• RQ4: further improvement, improve

2.3. Finding synonyms, alternative spellings and forms

* - means zero or more letters

• mutation testing, mutation analysis

• equivalen* mutant*

• detect*, find*, recognize*, catch*

• method*, technique*

• problem*, issue*, question*

• classification*, ranking*, classified, categorisation*, categorization*, systematisation,
type*, kind*

• empirical*, evaluat*, implement*, development, developed

• further, next, future, new

• improv*, progress*, enhanc*, refin*, increas*

3



2.4. Generic search terms

The title, abstract and keywords of the articles in the included electronic databases and
conference proceedings will be searched according to the following search terms:

1. equivalen* AND mutant* AND (mutation OR testing OR analysis)

2. equivalen* AND mutant* AND (detect* OR find* OR recognize* OR catch*) AND
(method* OR technique*)

3. equivalen* AND mutant* AND (problem* OR issue* OR question*)

4. equivalen* AND mutant* AND (method* OR technique*) AND (classification* OR
ranking* OR classified OR categorisation* OR categorization* OR systematisation
OR type* OR kind*)

5. equivalen* AND mutant* AND (method* OR technique*) AND (empirical* OR eval-
uat* OR implement* OR development OR developed)

6. equivalen* AND mutant* AND (method* OR technique*) AND (further OR next OR
future OR new)

7. equivalen* AND mutant* AND (method* OR technique*) AND (improv* OR progress*
OR enhanc* OR refin* OR increas*)

The detailed forms (due to differences in search capabilities between various databases)
are presented in the Appendix A.

2.5. Resources to be searched

2.5.1. Automatic Search

The main resources to be searched in the first iteration (automated search) are electronic
databases and conference proceedings. Access to them is provided directly from the web
page or using JabRef [12].

• ACM Digital Library

• IEEE Xplore

• Science Direct

• Springer Link

• Wiley Online Library

These databases were selected, because they have been used as sources for other reviews in
this area [2]. Also, we had a number of “key papers” [13–19] and we investigated if we could
find all of them in the above databases, to check if we have a good set of data sources.

2.5.2. Grey Literature

To cover the most important part of grey literature some alternative sources were scanned.
The manual search includes:

4



• Google scholar
We used three search terms, for the first phase, and for all of them checked the first
200 results. The search terms were modified slightly in order to adopt them to Google
scholar and to improve the effectiveness of the search process. The used search terms
were as follows:

– equivalen* AND mutant* AND (mutation OR testing OR analysis)

– equivalen* AND mutant* AND (method* OR technique*)

– equivalen* AND mutant* AND (problem* OR issue* OR question*)

• All the proceedings from “Mutation: The International Workshop on Mutation Anal-
ysis” (five editions: 2000–2010).

• Scanning lists of references in all primary studies (according to the snowball sampling
method [20]).

• Checking personal websites of all authors of primary studies, in search of the other
relevant sources (e.g. unpublished or latest results).

• Contacting all authors of primary studies. We are going to create a list of all the
authors of relevant sources and contact them to see if they have anything to add. The
authors will be contacted in order to make sure that all relevant material had been
found by our search.

2.6. Search Procedure for Automatic Search

To avoid multiple unnecessary searching operations of same issue there should be search
procedure.

1. Choose search term not already being searched,

2. For each database mentioned above type specific search term into the search engine,

3. If there is possibility choose publication category ”Software engineering”, ”Computer
Science” or similar,

4. Set the language of expected results to English, if search engine allows to do so,

5. Run search,

6. Download BibTeX data with abstract for all papers,

2.7. Documenting Search Results

Because of very little literature existing in this domain there is no need to create com-
plicated directory tree for the results. It is better to keep the original names of downloaded
files in case of need to re-search them.

5



For each found paper create table:.
Number
Filename
URL
Title
Author(s)
Relevant to RQ1
Relevant to RQ2
Relevant to RQ3
Relevant to RQ4
Included / Excluded

2.8. Results Selection Process

This section describes the selection criteria and the selection process used to choose only
those publications in the search results that are relevant to this systematic review.

2.8.1. Inclusion Criteria

The following inclusion criteria were taken into account when selecting the primary stud-
ies:

• Describes at least one method for detecting, suggesting or avoiding equivalent mutants
(this could include proof of concepts and empirically evaluated solutions, as well as
theoretical ideas).

• Discusses any classification of the aforementioned methods.

• Evaluates, analyses or compares the aforementioned methods.

• Determines current state of maturity of the methods dealing with EMP (theoretical
ideas/proofs of concept/empirically evaluated solutions).

• Proposes any theoretical ideas on how to improve the already evaluated methods deal-
ing with EMP.

• Refers to other primary studies.

2.8.2. Exclusion Criteria

The following type of studies were excluded:

• Article’s language is other than English.

• Article cannot be found in full-text.

• Article concerns mutations in other fields of study than software engineering or com-
puter science.

6



3. Results Selection Process

This section describes the selection criteria and the selection process used to choose only
those publications in the search results that are relevant to this systematic review.

3.1. Primary Study Selection Process

1. The title, abstract and conclusions (due to RQ4) of each article from each digital library
will be reviewed against the inclusion and exclusion criteria and any papers that are
clearly irrelevant will be excluded.

2. If paper meets any exclusion criteria then it will be marked as excluded.

3. Paper will be marked as included only when it touches the subject described by research
questions and none of exclusion criteria are met.

4. Only articles marked as included should be considered for next phase – Quality As-
sessment.

5. All of included papers will be described in BibTeX file (specified in “Documenting
selected papers”).

3.2. Documenting Selected Papers

Each selected paper should be described in BibTeX file format as in the following example:

@inproceedings{gruen-mutation-2009,

title = "The Impact of Equivalent Mutants",

author = "Bernhard J.M. Gruen and David Schuler and Andreas

Zeller",

filename = "gruen-mutation-2009.pdf",

year = "2009",

month = "April",

location = "Denver, Colorado, USA",

url = "http://www.st.cs.uni-saarland.de/publications/files/

gruen-mutation-2009.pdf",

included = "yes"

}

4. Quality Assessment

In addition to general inclusion and exclusion criteria, it is important to assess the quality
of primary studies [6]. Study quality assessment is adopted in order to determine the strength
of the evidence and to assign grades to the recommendations generated by the systematic
review [21]. The questionnaire used in this study was based on recommendations of [7, 21]
with some specific questions according to the research question and the type of study. Quality
assessment questionnaire is shown in Table 1.

All criteria will be summed and given in percentage evaluation system according to the
equation:

Quality Note =
Sum of points

Points possible to get
· 100% (1)

7



Table 1: Quality assessment questionnaire

Property Points and Estimation
Notes

1. Topic focus

1.1 To what degree does the paper topic covers research
question issue?

scale: 0, 1 or 2

1.2 Paper body fully meets issues provided in its abstract
(no unnecessary divagations)

0 - No; 2 - Yes

2. Analysis and Conclusions

2.1 Could you replace study? 0 - No; 1 - Partly; 2 - Yes

2.2 Described methods were empirically evaluated 0 - No; 2 - Yes

2.3 What kind of projects were used for empirical evalua-
tion?

0 - None; 0.5 - Own;
1 - Student’s;
2 - Open source or commer-
cial use

2.4 Are all study questions answered? 0 - No; 2 - Yes

2.5 Are the obtained numbers of detected equivalent mu-
tants process greater than in previous reports? (only if
described method was empirically evaluated and the re-
sults were given)

0 - No; 2 - Yes

2.6 Was there a control group with which to compare treat-
ments?

0 - No; 2 - Yes

2.7 Are there any ideas for futher investigation presented? 0 - No; 2 - Yes

3. References

3.1 Is the paper well referenced? 0 - No references;
1 - Document references un-
reliable sources or sources
from one institution/author
only, or number of sources is
poor (less than 15);
2 - More sources from vari-
ous authors and institutions

3.2 Paper contains links to previously selected resources 0 - No; 2 - Yes

8



Because of very little literature existing in this domain there is no need to design compli-
cated data extraction and data synthesis processes. Collected quality notes should be used
to assist primary study selection [5]. All of the included articles should be read precisely for
the final phase – writing up the results of the review and finding the coming out well further
investigations for the master thesis.

5. Reporting the review

5.1. Data extraction form

The data extraction forms were designed to collect all information necessary to address
the issues of review and the study quality assessment. The data extracted includes the
information needed to answer the research question and the criteria for assessing study
quality. For each found paper the form as presented in Table 2 should be filled in.

Table 2: Data extraction form

Method name

Described in article

Summary

Percentage of equivalent mutants detected

Current state of development (theoretical idea, implemented project, empiri-
cally evaluated project)

Method implemented for language

Ideas on how to improve the method

Quality Assessment result

9



6. Data extraction results

6.0.1. How to Overcome the Equivalent Mutant Problem and Achieve Tailored Selective Mu-
tation Using Co-evolution

Method name Tailored Selective Mutation Using Co-evolution
Described in article Adamopoulos2004 [22]
Summary The authors proposed a method basing on ge-

netic algorithms. They showed how to design
the fitness function which will allow to avoid
generation of equivalent mutants. “If Si is the
score of a mutant i and the individual consists
of L mutants the fitness Mf of this individual
is given by:

Mf =

{ ∑L
i=1 Si

L
if ∀i.Si 6= 1.

0 otherwise.

If there exists i sucha that Si = 1, then there
is a mutant killed by no test cases”[22]. The
proposed fitness function requires that for every
generated mutant exists at least one test case
which can kill it. For mutants which cannot be
killed by any test case, the value of fitness is very
low. This guarantees not to generate equivalent
mutants.

Percentage of equivalent
mutants detected

100% (equivalent mutants are not generated)

Current state of develop-
ment (theoretical idea, im-
plemented project, empiri-
cally evaluated project)

Theoretical idea. The real mutation testing tool
is currently under development.

Method implemented for
language

Not given

Ideas on how to improve the
method

Not given

Quality Assessment result 72%

10



6.0.2. Heuristics for Determining Equivalence of Program Mutations

Method name Using Compiler Optimization Techniques to De-
tect Equivalent Mutants

Described in article Baldwin1979 [13]
Summary The authors proposed an approach that uses

compiler optimization techniques to detect
equivalent mutants. The approach is based
on the idea that the optimization procedure of
source code will produce an equivalent applica-
tion, so an equivalent mutant should be detected
by optimization or reverse (“de-optimization”)
process. They proposed six types of heuristics:
Constant Propagation, Invariant Propagation,
Common Subexpression Elimination, Recogni-
tion of Loop Invariants, Hoisting and Sinking,
Dead Code Detection.

Percentage of equivalent
mutants detected

Not given

Current state of develop-
ment (theoretical idea, im-
plemented project, empiri-
cally evaluated project)

Theoretical idea

Method implemented for
language

Fortran

Ideas on how to improve the
method

Not given

Quality Assessment result 72%

11



6.0.3. Towards Mutation Analysis for Lustre Programs

Method name Lesar model-checker used for eliminating equiv-
alent mutant

Described in article Bousquet2008 [23]
Summary It is possible to construct proofs about the pro-

grams, since Lustre is based on mathematical
foundation. The authors used LESAR [24, 25],
a model-checker for Lustre which can be used
prove the correctness of an application or to
compare two programs. It needs “a verifica-
tion program that is a comparison of the mutant
and the original programs. When some environ-
ment description is provided with the original
program, it is possible to consider the mutant-
equivalency”[23].

Percentage of equivalent
mutants detected

Not given

Current state of develop-
ment (theoretical idea, im-
plemented project, empiri-
cally evaluated project)

Implemented tool (Alien-V). Empirically evalu-
ated only with 8 very small programs.

Method implemented for
language

Lustre

Ideas on how to improve the
method

Solve problems for some programs dealing with
integers.

Quality Assessment result 95%

12



6.0.4. The Csaw C Mutation Tool: Initial Results

Method name Using semantic differences in terms of running
profile to detect non-equivalent mutants

Described in article Ellims2007 [26]
Summary This paper describes initial results from the re-

search on mutation tool for C language. Sug-
gestions for futer research are the most valuable
part of this work from the perspective of equiva-
lent mutants problem: “Firstly to look at possi-
bilities for altering programs to prevent difficult-
to-kill mutations being generated. Secondly to
look at other external visible effects of mutants
such as CPU usage, memory usage etc. as a
means of detecting non-equivalent mutants”[26].

Percentage of equivalent
mutants detected

Not given

Current state of develop-
ment (theoretical idea, im-
plemented project, empiri-
cally evaluated project)

Theoretical idea

Method implemented for
language

Not Given

Ideas on how to improve the
method

Not Given

Quality Assessment result 75%

13



6.0.5. The Impact of Equivalent Mutants on Coverage

Method name The Impact of Equivalent Mutants on Coverage

Described in article Gr̀‘un2009 [14]
Summary The authors proposed an approach which “mea-

sures changes in program behavior between the
mutant and the original version. One aspect
that is particularly easy to measure is control
flow: If a mutation alters the control flow of the
execution, different statements would be exe-
cuted in a different order - an impact that is easy
to detect using standard coverage measurement
techniques. (...) By comparing the coverage of
the original execution with the coverage of the
mutated execution, we can determine the cover-
age difference. (...) This measure is motivated
by the hypothesis that a mutation that has non-
local impact on the coverage is more likely to
change the observable behavior of the program.
(...) if a mutation had impact on code coverage,
it was more likely to be non-equivalent; if it did
not have impact on code coverage, it was more
likely to be equivalent.”[14].

Percentage of equivalent
mutants detected

- (does not detect equivalent mutants - only sug-
gest them to the user)

Current state of develop-
ment (theoretical idea, im-
plemented project, empiri-
cally evaluated project)

Implemented in a tool (JAVALANCHE [27]),
empirical evaluation only on one bigger project
(JAXEN).

Method implemented for
language

Java

Ideas on how to improve the
method

Consider alternative impact measures

Quality Assessment result 100%

14



6.0.6. The Relationship Between Program Dependence and Mutation Analysis

Method name Avoiding equivalent mutants generation using
program dependence analysis

Described in article Harman2001 [28]
Summary There are three approaches to the way in

which mutant can be inspected: strong (output-
based), weak (state-based) and firm (compares
programs in the probe point). An approach pro-
posed in this paper uses firm mutation testing
[29]. The authors assume that “mutants which
fail to propagate ‘corrupted data’ to the inspec-
tion set at the probe point will be equivalent and
should be avoided”[28].

Percentage of equivalent
mutants detected

Not given

Current state of develop-
ment (theoretical idea, im-
plemented project, empiri-
cally evaluated project)

Theoretical idea

Method implemented for
language

Not given

Ideas on how to improve the
method

To use this technique in tandem with constraint-
based techniques.

Quality Assessment result 89%

15



6.0.7. Using Program Slicing to Assist in the Detection of Equivalent Mutants

Method name Using Program Slicing to Assist in the Detection
of Equivalent Mutants

Described in article Hierons1999 [15]
Summary In this article a new technique has been pro-

posed. “Instead of attempting to answer the
question of equivalence, the approach presented
here uses a program simplification process (pro-
gram slicing), attempting to create the simplest
program which denotes the question, this ap-
proach allows automation to be exploited in par-
tially answering the question. The simplified
program is an approximate answer; the greater
the level of simplification, the closer the approxi-
mation. While this does not answer the question
for the human analyst (...), it can reduce the ef-
fort involved in detecting equivalence. Where
the mutant is not equivalent, it can help the
tester find input that kills the mutant”[15].

Percentage of equivalent
mutants detected

Not given, but the authors say that this method
and constraint solving approach [17, 18] “are
of equal power in detecting equivalent mutants.
The difference between the two approaches lies
in the way each handles cases where it is not
possible to decide whether the mutant is equiv-
alent, where amorphous slicing may offer addi-
tional assistance over that available through the
constraint based approach”[15].

Current state of develop-
ment (theoretical idea, im-
plemented project, empiri-
cally evaluated project)

Theoretical idea

Method implemented for
language

Not given

Ideas on how to improve the
method

Using constraint solving approach and slicing to-
gether.

Quality Assessment result 89%

16



6.0.8. Java Exception Mutation

Method name Java Exception Mutation
Described in article Ji2009 [30]
Summary The authors proposed a set of mutation opera-

tors only for Java exceptions. Because of that
they “have provided a methodology for CBR
(Catch Block Replacement) and CBI (Catch
Block Insertion) to distinguish the equivalent
mutant generated through semantic exception
hierarchy”[30].

Percentage of equivalent
mutants detected

100%

Current state of develop-
ment (theoretical idea, im-
plemented project, empiri-
cally evaluated project)

Theoretical idea

Method implemented for
language

Java

Ideas on how to improve the
method

Not given

Quality Assessment result 78%

17



6.0.9. Higher Order Mutation Testing

Method name Higher Order Mutation Testing
Described in article Jia2009 [31]
Summary “This paper introduces a new paradigm for Mu-

tation Testing, which is called Higher Order
Mutation Testing (HOM Testing). Traditional
Mutation Testing considers only first order mu-
tants, created by the injection of a single fault.
Often these first order mutants denote trivial
faults that are easily killed. Higher order mu-
tants are created by the insertion of two or more
faults”[31]. The authors belive that High Or-
der Mutation Testing has three major benefits:
Increased subtlety, reduce test effort and, what
is the most important from the perspective of
equivalent mutants problem, reduce the number
of generated equivalent mutants.

Percentage of equivalent
mutants detected

Not given

Current state of develop-
ment (theoretical idea, im-
plemented project, empiri-
cally evaluated project)

Implemented (proof-of-concept)

Method implemented for
language

C

Ideas on how to improve the
method

Consider weak and firm High Order Mutation
Testing.

Quality Assessment result 83%

18



6.0.10. An Analysis and Survey of the Development of Mutation Testing

Method name -
Described in article Jia2010 [2]
Summary This technical report presents current state-of-

art in the field of Mutation Testing. One of the
sections provides a comprehensive summary of
equivalent mutants detection techniques.

Percentage of equivalent
mutants detected

-

Current state of develop-
ment (theoretical idea, im-
plemented project, empiri-
cally evaluated project)

-

Method implemented for
language

-

Ideas on how to improve the
method

-

Quality Assessment result 67%

6.0.11. Using a Fault Hierarchy to Improve the Efficiency of DNF Logic Mutation Testing

Method name Using a Fault Hierarchy to Improve the Effi-
ciency of DNF Logic Mutation Testing

Described in article Kaminski2009 [32]
Summary Using weak mutation testing (state-based in-

spection) and a set of logic mutation operators
only allowed the authors to introduce a fault
class hierarchy. In this hierarchy they have se-
lected operators which do not create equivalent
mutants.

Percentage of equivalent
mutants detected

Not given (this technique does not generate
equivalent mutants)

Current state of develop-
ment (theoretical idea, im-
plemented project, empiri-
cally evaluated project)

Empirically evaluated project (only on one
project - TCAS)

Method implemented for
language

Java

Ideas on how to improve the
method

Not given

Quality Assessment result 85%

19



6.0.12. Evaluating Mutation Testing Alternatives: A Collateral Experiment

Method name -
Described in article Kintis2010 [33]
Summary “In this paper several second order mutation

testing strategies are introduced, assessed and
compared along with weak mutation against
strong. (...) The experimental assessment of
weak mutation suggests that it reduces signif-
icantly the number of the produced equivalent
mutants on the one hand and that the test cri-
terion it provides is not as weak as is thought to
be on the other”[33].

Percentage of equivalent
mutants detected

Instead of detecting equivalent mutants, Higher
Order Mutation Testing aims to reduce the num-
ber of generated equivalent mutants. This re-
duction varies from 65,5% for HDom(50%) to
86,8% for SDomF strategy (both belongs to Hy-
brid Strategies) with the loss of test effectiveness
from only 1,75% for HDom(50%) to 4,2% for
SDomF .

Current state of develop-
ment (theoretical idea, im-
plemented project, empiri-
cally evaluated project)

Empirically evaluated project on fifteen small
programs (from 11 to 47 lines of code)

Method implemented for
language

Java

Ideas on how to improve the
method

Not given

Quality Assessment result 91%

20



6.0.13. A Fault Model and Mutation Testing of Access Control Policies

Method name Margrave’s change-impact analysis
Described in article Martin2007 [34]
Summary In this paper Margrave [35], a change-impact

analysis tool was used to detect equivalent mu-
tants among generated mutants. The authors
originally believed “equivalent mutant detec-
tion to be an important efficiency improvement
though they found in practice that evaluating
requests and comparing responses to be com-
putationally cheaper than performing change-
impact analysis with Margrave. Furthermore,
limitations of Margrave prevented the detection
of equivalent mutants for mutation operators on
conditions and some combining algorithms”[34].

Percentage of equivalent
mutants detected

Not given

Current state of develop-
ment (theoretical idea, im-
plemented project, empiri-
cally evaluated project)

Implemented project (only a proof-of-concept)

Method implemented for
language

XACML policies

Ideas on how to improve the
method

Not given

Quality Assessment result 78%

21



6.0.14. Efficiency of mutation operators and selective mutation strategies: An empirical
study

Method name Selective Mutation
Described in article Mresa1999 [36]
Summary The authors proposed a different type of selec-

tive mutation (reduction in the number of mu-
tants by reducing the number of applied muta-
tion operators). “Instead of trying to achieve a
small loss of test effectiveness, they also took the
cost of detecting equivalent mutants into consid-
eration. In their work, each mutation operator is
assigned a score which is computed by its value
and cost. Their results indicated that it was pos-
sible to reduce the number of equivalent mutants
while maintaining effectiveness”[2].

Percentage of equivalent
mutants detected

Not given.

Current state of develop-
ment (theoretical idea, im-
plemented project, empiri-
cally evaluated project)

Empirically evaluated project (on 11 small pro-
grams)

Method implemented for
language

Fortran 77

Ideas on how to improve the
method

Not given

Quality Assessment result 85%

22



6.0.15. Investigations of the Software Testing Coupling Effect

Method name Higher Order Mutation Testing
Described in article Offutt1992 [37]
Summary This is the first paper where higher order mu-

tation testing was proposed. The author con-
sider impact of coupling effect to support muta-
tion testing. “The coupling effect hypothesizes
that test data sets that detect simple types of
faults are sensitive enough to detect more com-
plex types of faults. (...) The major conclusion
from this investigation is the fact that by explic-
itly testing for simple faults, we are also implic-
itly testing for more complicated faults, giving
us confidence that fault-based testing is an ef-
fective way to test software”[37].

Percentage of equivalent
mutants detected

Not Given, but from the generated 2-order mu-
tants only from 0,53% to 1,4% were equivalent.
Comparing to 1-order mutants it is significantly
better result.

Current state of develop-
ment (theoretical idea, im-
plemented project, empiri-
cally evaluated project)

Empirically evaluated project (3 small programs
- from 16 to 28 lines of code)

Method implemented for
language

Fortran 77

Ideas on how to improve the
method

Not Given

Quality Assessment result 82%

23



6.0.16. Using Compiler Optimization Techniques to Detect Equivalent Mutants

Method name Complier optimizations to detect equivalent mu-
tants

Described in article Offutt1994 [16]
Summary The authors proposed algorithms for determin-

ing classes of equivalent mutants. “These al-
gorithms are based on data flow analysis and
six compiler optimization techniques”[16]: Dead
Code Detection, Constant Propagation, Invari-
ant Propagation, Common Subexpression De-
tection, Loop Invariant Detection and Hoist-
ing and Sinking. “The key intuition behind
this approach is that many equivalent mutants
are, in some sense, either optimizations or de-
optimizations of the original program. The
transformations produced from code optimizers
result in equivalent programs. When an equiv-
alent mutant satisfies a code optimization rule,
algorithms can detect that the mutant is in fact
equivalent”[16].

Percentage of equivalent
mutants detected

About 10%, with 25% standard deviation

Current state of develop-
ment (theoretical idea, im-
plemented project, empiri-
cally evaluated project)

Empirically evaluated project (15 small pro-
grams - from about 5 to 52 executable state-
ments)

Method implemented for
language

Fortran 77

Ideas on how to improve the
method

Treating elements of an array as individual data
items, further analysis of loops and using pro-
gram slicing.

Quality Assessment result 100%

24



6.0.17. Detecting Equivalent Mutants and the Feasible Path Problem

Method name Detecting Equivalent Mutants and the Feasible
Path Problem

Described in article Offutt1996 [17], Offutt1997 [18]
Summary “Constraint-based testing (CBT) [38] uses con-

straints for automatic test data generation. In
CBT, a constraint represents the conditions un-
der which a mutant will die. The technique in
this paper uses the fact that if a test case kills
the mutant, the constraint system will be true.
If the constraint system cannot be true, then
there is no test case that can kill the mutant
and the mutant is equivalent. The general ap-
proach to using constraints to detect equivalent
mutants is to look for infeasibility in constraint
systems”[17, 18].

Percentage of equivalent
mutants detected

47,63%

Current state of develop-
ment (theoretical idea, im-
plemented project, empiri-
cally evaluated project)

Implemented (proof-of-concept), empirically
evaluated on 11 small programs (from 11 to 30
executable statements)

Method implemented for
language

Fortran 77

Ideas on how to improve the
method

Recognising infeasible constraints, having better
constraints and/or analysing the execution after
the mutated statement

Quality Assessment result 100%

25



6.0.18. The Class-Level Mutants of MuJava

Method name Using Equivalency Conditions to Eliminate
Equivalent Mutants for Object Oriented Muta-
tion Operators

Described in article Offutt2006 [39]
Summary “This paper introduces specific techniques for

Java class mutation operators that are adapted
from constraint solving approaches. Instead of
running in a ‘post-processing mode’, after mu-
tants are generated,(...) MuJava integrates the
equivalent mutation analysis with mutant gen-
eration, as suggested by Hierons, Harman and
Danicic [15]. MuJava implements specific, fo-
cused, heuristics that avoid equivalent mutants
for specific mutation operators. This approach
is based on equivalency conditions for mutation
operators, which in turn is based on the condi-
tions under which mutants are killed”[39]. The
authors defined equivalency conditions for six-
teen mutation class-level operators.

Percentage of equivalent
mutants detected

Not given

Current state of develop-
ment (theoretical idea, im-
plemented project, empiri-
cally evaluated project)

Implemented (as a part of MuJava [10]), applied
on 866 classes from six applications.

Method implemented for
language

Java

Ideas on how to improve the
method

Identifying equivalency conditions for other
class-level mutation operators.

Quality Assessment result 95%

26



6.0.19. An Empirical Evaluation of the First and Second Order Mutation Testing Strategies

Method name -
Described in article Papadakis2010 [40]
Summary “This paper presents an empirical study for us-

ing mutation testing and its first and second
order mutation variants. (...) The results ob-
tained indicate that first order strategies are
generally more effective at detecting faults, than
their second order rivals however, at a greater
cost. Second order strategies can drastically de-
crease the number of equivalent mutants intro-
duced and provide significant savings to both
numbers of produced mutants and required test
cases. The results suggest that a reduction of ap-
proximately 80% to 90% of the equivalent mu-
tants generated by second order strategies can
be tackled. Moreover, second order strategies
can accomplish reductions of roughly 30% of the
required test cases with approximately 10% or
less on the loss of their fault detection ability
compared to strong mutation. Randomly select-
ing a percentage of first order mutants results
in a fault loss ranging from 26% to 6% for the
methods Rand 10% to 60%. Their test reduc-
tions range from 60% to 17%”[40].

Percentage of equivalent
mutants detected

Reduction of approx. 80% to 90% of the equiv-
alent mutants generated by second order strate-
gies.

Current state of develop-
ment (theoretical idea, im-
plemented project, empiri-
cally evaluated project)

Empirical evaluation on eight medium programs
(from 137 to 513 lines of code).

Method implemented for
language

C

Ideas on how to improve the
method

Not given

Quality Assessment result 91%

27



6.0.20. Efficient Mutation Testing by Checking Invariant Violations

Method name Impact of Dynamic Invariants
Described in article Schuler2009 [41]
Summary Instead of detecting equivalent mutants directly,

the authors proposed a technique which sug-
gest the tester mutants which are probably non-
equivalent. They “asses the impact of mutations
by checking dynamic invariants. (...) For each
learned invariant, they insert statements into the
bytecode that check for invariant violations be-
fore and after a method. If an invariant is vi-
olated, this is reported and the run resumes.
(...) If a mutant violates even very simple in-
variants, it is more likely to be detectable by
an actual test. When improving test suites, test
managers therefore should focus on those sur-
viving mutations that have the greatest impact
on invariants”[41].

Percentage of equivalent
mutants detected

Not given

Current state of develop-
ment (theoretical idea, im-
plemented project, empiri-
cally evaluated project)

Empirically evaluated project (on six programs).
Implemented in JAXEN [27].

Method implemented for
language

Java

Ideas on how to improve the
method

Alternative impact measures, consider impact as
similarity measure.

Quality Assessment result 100%

28



6.0.21. (Un-)Covering Equivalent Mutants

Method name Mutation Impact
Described in article Schuler2010 [19]
Summary “Equivalent mutants are defined as having no

observable impact on the programs output. This
impact of a mutation can be assessed by check-
ing the program state at the end of a computa-
tion, as tests do. However, we can also assess the
impact of a mutation while the computation is
being performed. In particular, we can measure
changes in program behavior between the mu-
tant and the original version. The idea is that
if a mutant impacts internal program behavior,
it is also more likely to change external program
behavior - and thus impacts the semantics of the
program. If we focus on mutations with impact,
we would thus expect to find fewer equivalent
mutants”[19].

Percentage of equivalent
mutants detected

Not given. This approach only suggest (non-
)equivalent mutants. “If the mutation changes
coverage, it has a 75% chance to be non-
equivalent”[19].

Current state of develop-
ment (theoretical idea, im-
plemented project, empiri-
cally evaluated project)

Empirically evaluated project (on seven pro-
grams, from 5,000 to 100,000 lines of code). Im-
plemented in JAXEN [27].

Method implemented for
language

Java

Ideas on how to improve the
method

Not given

Quality Assessment result 91%

29



6.0.22. Bayesian-Learning Based Guidelines to Determine Equivalent Mutants

Method name Bayesian-Learning Based Guidelines to Deter-
mine Equivalent Mutants

Described in article Vincenzi2002 [42]
Summary “This paper aims at reducing the effort needed

to analyze the live mutants instead of pro-
viding a way to automatic detect the equiva-
lents. The idea presented here is to provide
guidelines to ease the determination of equiv-
alent mutants and also the identification of non-
equivalents, which is useful to improve the test
set. Based on historical data (...) the ap-
proach, named Bayesian Learning-Based Equiv-
alent Detection Technique (BaLBEDeT), uses
the Brute-Force algorithm to estimate which
is the most promising group of mutants that
should be analyzed”[42].

Percentage of equivalent
mutants detected

Not given

Current state of develop-
ment (theoretical idea, im-
plemented project, empiri-
cally evaluated project)

Empirically evaluated project (on 5 small pro-
grams)

Method implemented for
language

C

Ideas on how to improve the
method

Consider the frequency of execution.

Quality Assessment result 100%

A. Generic Search Terms

A.1. ACM Digital Library and IEEE Xplore

1. equivalen* AND mutant* AND (mutation OR testing OR analysis)

2. equivalen* AND mutant* AND (detect* OR find* OR recognize* OR catch*) AND
(method* OR technique*)

3. equivalen* AND mutant* AND (problem* OR issue* OR question*)

4. equivalen* AND mutant* AND (method* OR technique*) AND (classification* OR
ranking* OR classified OR categorisation* OR categorization* OR systematisation
OR type* OR kind*)

5. equivalen* AND mutant* AND (method* OR technique*) AND (empirical* OR eval-
uat* OR implement* OR development OR developed)

6. equivalen* AND mutant* AND (method* OR technique*) AND (further OR next OR
future OR new)

30



7. equivalen* AND mutant* AND (method* OR technique*) AND (improv* OR progress*
OR enhanc* OR refin* OR increas*)

A.2. Science Direct

1. TITLE-ABSTR-KEY(equivalen* AND mutant* AND (mutation OR testing OR anal-
ysis))[All Sources(Computer Science)]

2. TITLE-ABSTR-KEY(equivalen* AND mutant* AND (detect* OR find* OR recog-
nize* OR catch*) AND (method* OR technique*))[All Sources(Computer Science)]

3. TITLE-ABSTR-KEY(equivalen* AND mutant* AND (problem* OR issue* OR ques-
tion*))[All Sources(Computer Science)]

4. TITLE-ABSTR-KEY(equivalen* AND mutant* AND (method* OR technique*) AND
(classification* OR ranking* OR classified OR categorisation* OR categorization* OR
systematisation OR type* OR kind*))[All Sources(Computer Science)]

5. TITLE-ABSTR-KEY(equivalen* AND mutant* AND (method* OR technique*) AND
(empirical* OR evaluat* OR implement* OR development OR developed))[All Sources(Computer
Science)]

6. TITLE-ABSTR-KEY(equivalen* AND mutant* AND (method* OR technique*) AND
(further OR next OR future OR new))[All Sources(Computer Science)]

7. TITLE-ABSTR-KEY(equivalen* AND mutant* AND (method* OR technique*) AND
(improv* OR progress* OR enhanc* OR refin* OR increas*))[All Sources(Computer
Science)]

A.3. Springer Link

1. ab:(equivalen* AND mutant* AND (mutation OR testing OR analysis))’ with filters:
Computer Science Software Engineering

2. ab:(equivalen* AND mutant* AND (detect* OR find* OR recognize* OR catch*) AND
(method* OR technique*))’ with filters: Computer Science Software Engineering

3. ab:(equivalen* AND mutant* AND (problem* OR issue* OR question*))’ with filters:
Computer Science Software Engineering

4. ab:(equivalen* AND mutant* AND (method* OR technique*) AND (classification* OR
ranking* OR classified OR categorisation* OR categorization* OR systematisation OR
type* OR kind*))’ with filters: Computer Science Software Engineering

5. ab:(equivalen* AND mutant* AND (method* OR technique*) AND (empirical* OR
evaluat* OR implement* OR development OR developed))’ with filters: Computer
Science Software Engineering

6. ab:(equivalen* AND mutant* AND (method* OR technique*) AND (further OR next
OR future OR new))’ with filters: Computer Science Software Engineering

7. ab:(equivalen* AND mutant* AND (method* OR technique*) AND (improv* OR
progress* OR enhanc* OR refin* OR increas*))’ with filters: Computer Science Soft-
ware Engineering

31



A.4. Wiley Online Library

1. equivalen* AND mutant* AND (mutation OR testing OR analysis) in Abstract OR
equivalen* AND mutant* AND (mutation OR testing OR analysis) in Article Titles
OR equivalen* AND mutant* AND (mutation OR testing OR analysis) in Keywords
AND 1099-1689 in ISSN

2. equivalen* AND mutant* AND (detect* OR find* OR recognize* OR catch*) AND
(method* OR technique*) in Abstract OR equivalen* AND mutant* AND (detect* OR
find* OR recognize* OR catch*) AND (method* OR technique*) in Article Titles OR
equivalen* AND mutant* AND (detect* OR find* OR recognize* OR catch*) AND
(method* OR technique*) in Keywords AND 1099-1689 in ISSN

3. equivalen* AND mutant* AND (problem* OR issue* OR question*) in Abstract OR
equivalen* AND mutant* AND (problem* OR issue* OR question*) in Article Titles
OR equivalen* AND mutant* AND (problem* OR issue* OR question*) in Keywords
AND 1099-1689 in ISSN

4. equivalen* AND mutant* AND (method* OR technique*) AND (classification* OR
ranking* OR classified OR categorisation* OR categorization* OR systematisation
OR type* OR kind*) in Abstract OR equivalen* AND mutant* AND (method* OR
technique*) AND (classification* OR ranking* OR classified OR categorisation* OR
categorization* OR systematisation OR type* OR kind*) in Article Titles OR equiv-
alen* AND mutant* AND (method* OR technique*) AND (classification* OR ranking*
OR classified OR categorisation* OR categorization* OR systematisation OR type*
OR kind*) in Keywords AND 1099-1689 in ISSN

5. equivalen* AND mutant* AND (method* OR technique*) AND (empirical* OR eval-
uat* OR implement* OR development OR developed) in Abstract OR equivalen* AND
mutant* AND (method* OR technique*) AND (empirical* OR evaluat* OR imple-
ment* OR development OR developed) in Article Titles OR equivalen* AND mutant*
AND (method* OR technique*) AND (empirical* OR evaluat* OR implement* OR
development OR developed) in Keywords AND 1099-1689 in ISSN

6. equivalen* AND mutant* AND (method* OR technique*) AND (further OR next
OR future OR new) in Abstract OR equivalen* AND mutant* AND (method* OR
technique*) AND (further OR next OR future OR new) in Article Titles OR equivalen*
AND mutant* AND (method* OR technique*) AND (further OR next OR future OR
new) in Keywords AND 1099-1689 in ISSN

7. equivalen* AND mutant* AND (method* OR technique*) AND (improv* OR progress*
OR enhanc* OR refin* OR increas*) in Abstract OR equivalen* AND mutant* AND
(method* OR technique*) AND (improv* OR progress* OR enhanc* OR refin* OR in-
creas*) in Article Titles OR equivalen* AND mutant* AND (method* OR technique*)
AND (improv* OR progress* OR enhanc* OR refin* OR increas*) in Keywords AND
1099-1689 in ISSN

32



References

[1] R. DeMillo, R. Lipton, and F. Sayward, “Hints on test data selection: Help for the
practicing programmer,” Computer, vol. 11, pp. 34–41, Apr 1978.

[2] Y. Jia and M. Harman, “An analysis and survey of the development of mutation testing,”
IEEE Transactions on Software Engineering, vol. 99, no. PrePrints, 2011.

[3] R. Hamlet, “Testing programs with the aid of a compiler,” Software Engineering, IEEE
Transactions on, vol. SE-3, pp. 279–290, Jul 1977.

[4] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “The design of a prototype
mutation system for program testing,” in Proceedings of the AFIPS National Computer
Conference, (Anaheim, New Jersey), pp. 623–627, Jun 1978.

[5] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. E.
Emam, and J. Rosenberg, “Preliminary guidelines for empirical research in software
engineering,” IEEE Transactions on Software Engineering, vol. 28, no. 8, pp. 721–734,
2002.

[6] B. Kitchenham, “Procedures for performing systematic reviews,” tech. rep., Keele Uni-
versity and NICTA, 2004.

[7] B. Kitchenham and S. Charters, “Guidelines for performing systematic literature re-
views in software engineering,” Tech. Rep. EBSE 2007-001, Keele University and
Durham University Joint Report, 2007.

[8] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman,
“Systematic literature reviews in software engineering - a systematic literature review,”
Information and Software Technology, vol. 51, no. 1, pp. 7–15, 2008.

[9] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil, “Lessons from
applying the systematic literature review process within the software engineering do-
main,” Journal of Systems and Software, vol. 80, no. 4, pp. 571–583, 2007.

[10] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “MuJava: an automated class mutation system,”
Software Testing, Verification and Reliability, vol. 15, no. 2, pp. 97–133, 2005.

[11] J. W. Wilkerson, Closing the defect reduction gap between software inspection and test-
driven development: applying mutation analysis to iterative, test-first programming.
PhD thesis, University of Arizona, Tucson, AZ, USA, 2008. Adviser-Nunamaker, Jay
F.

[12] JabRef, “JabRef - reference manager.” http://jabref.sourceforge.net, Jan 2011.

[13] D. Baldwin and F. G. Sayward, “Heuristics for determining equivalence of program
mutations,” techreport 276, Yale University, New Haven, Connecticut, 1979.

33



[14] B. J. M. Grün, D. Schuler, and A. Zeller, “The impact of equivalent mutants,” in
Proceedings of the IEEE International Conference on Software Testing, Verification,
and Validation Workshops, (Denver, Colorado, USA), pp. 192–199, IEEE Computer
Society, 2009.

[15] R. Hierons, M. Harman, and S. Danicic, “Using program slicing to assist in the detection
of equivalent mutants,” Software Testing, Verification and Reliability, vol. 9, no. 4,
pp. 233–262, 1999.

[16] A. J. Offutt and W. M. Craft, “Using compiler optimization techniques to detect equiv-
alent mutants,” Software Testing, Verification and Reliability, vol. 4, no. 3, pp. 131–154,
1994.

[17] A. J. Offutt and J. Pan, “Detecting equivalent mutants and the feasible path problem,”
in Proc. Eleventh Annual Conf. ’Systems Integrity Computer Assurance COMPASS ’96
Software Safety. Process Security’, pp. 224–236, 1996.

[18] A. J. Offutt and J. Pan, “Automatically detecting equivalent mutants and infeasible
paths,” Software Testing, Verification and Reliability, vol. 7, no. 3, pp. 165–192, 1997.

[19] D. Schuler and A. Zeller, “(Un-)covering equivalent mutants,” in Proceedings of the 3rd
International Conference on Software Testing Verification and Validation (ICST’10),
(Paris, France), pp. 45–54, Apr 2010.

[20] L. Goodman, “Snowball sampling,” The Annals of Mathematical Statistics, vol. 32,
pp. 148–170, Mar 1961.

[21] K. S. Khan, G. T. Riet, J. Glanville, A. J. Sowden, and J. Kleijnen, “Undertaking
systematic reviews of research on effectiveness CRD s guidance for those carrying out
or commissioning reviews,” Tech. Rep. 4, University of York, 2001.

[22] K. Adamopoulos, M. Harman, and R. M. Hierons, “How to overcome the equivalent mu-
tant problem and achieve tailored selective mutation using co-evolution,” in In GECCO
(2), volume 3103 of Lecture Notes in Computer Science, vol. 3103 of Lecture Notes in
Computer Science, pp. 1338–1349, Springer Berlin / Heidelberg, 2004.

[23] L. du Bousquet and M. Delaunay, “Towards mutation analysis for Lustre programs,”
Electronic Notes in Theoretical Computer Science, vol. 203, no. 4, pp. 35–48, 2008.

[24] N. Halbwachs, D. Pilaud, F. Ouabdesselam, and A.-C. Glory, “Specifying, programming
and verifying real-time systems using a synchronous declarative language,” in Proceed-
ings of the international workshop on Automatic verification methods for finite state
systems, (New York, NY, USA), pp. 213–231, Springer-Verlag New York, Inc., 1990.

[25] N. Halbwachs, F. Lagnier, and C. Ratel, “Programming and verifying real-time sys-
tems by means of the synchronous data-flow language Lustre,” IEEE Transactions on
Software Engineering, vol. 18, pp. 785–793, Sep 1992.

34



[26] M. Ellims, D. Ince, and M. Petre, “The Csaw C mutation tool: initial results,” in
Proceedings of the Testing: Academic and Industrial Conference Practice and Research
Techniques - MUTATION, (Washington, DC, USA), pp. 185–192, IEEE Computer So-
ciety, 2007.

[27] D. Schuler and A. Zeller, “Javalanche: efficient mutation testing for Java,” in
ESEC/FSE ’09: Proceedings of the 7th joint meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ESEC/FSE ’09, (New York, New York, USA), p. 297, ACM
Press, 2009.

[28] M. Harman, R. Hierons, and S. Danicic, “The relationship between program dependence
and mutation analysis,” in Mutation testing for the new century (W. E. Wong, ed.),
pp. 5–13, Norwell, MA, USA: Kluwer Academic Publishers, 2001.

[29] M. Woodward and K. Halewood, “From weak to strong, dead or alive? an analysis of
some mutation testing issues,” in Software Testing, Verification, and Analysis, 1988.,
Proceedings of the Second Workshop on, pp. 152–158, Jul 1988.

[30] C. Ji, Z. Chen, B. Xu, and Z. Wang, “A new mutation analysis method for testing java
exception handling,” in Proc. 33rd Annual IEEE Int. Computer Software and Applica-
tions Conf. COMPSAC ’09, vol. 2, pp. 556–561, 2009.

[31] Y. Jia and M. Harman, “Higher order mutation testing,” Information and Software
Technology, vol. 51, pp. 1379–1393, Oct 2009.

[32] G. Kaminski and P. Ammann, “Using a fault hierarchy to improve the efficiency of DNF
logic mutation testing,” in Proc. Int. Conf. Software Testing Verification and Validation
ICST ’09, pp. 386–395, 2009.

[33] M. Kintis, M. Papadakis, and N. Malevris, “Evaluating mutation testing alternatives: A
collateral experiment,” in Proc. 17th Asia Pacific Software Engineering Conf. (APSEC),
pp. 300–309, 2010.

[34] E. Martin and T. Xie, “A fault model and mutation testing of access control policies,”
in Proceedings of the 16th international conference on World Wide Web, WWW ’07,
(New York, New York, USA), pp. 667–676, ACM Press, 2007.

[35] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz, “Verification and
change-impact analysis of access-control policies,” in Proceedings of the 27th interna-
tional conference on Software engineering, ICSE ’05, (New York, NY, USA), pp. 196–
205, ACM, 2005.

[36] E. S. Mresa and L. Bottaci, “Efficiency of mutation operators and selective mutation
strategies: an empirical study,” Software Testing, Verification and Reliability, vol. 9,
no. 4, pp. 205–232, 1999.

35



[37] A. J. Offutt, “Investigations of the software testing coupling effect,” ACM Trans. Softw.
Eng. Methodol., vol. 1, pp. 5–20, Jan 1992.

[38] R. A. DeMillo and A. J. Offutt, “Constraint-based automatic test data generation,”
IEEE Transactions on Software Engineering, vol. 17, pp. 900–910, Sep 1991.

[39] J. Offutt, Y.-S. Ma, and Y.-R. Kwon, “The class-level mutants of MuJava,” in Proceed-
ings of the 2006 international workshop on Automation of software test - AST ’06, AST
’06, (New York, New York, USA), pp. 78–84, ACM Press, 2006.

[40] M. Papadakis and N. Malevris, “An empirical evaluation of the first and second order
mutation testing strategies,” in Proceedings of the 2010 Third International Conference
on Software Testing, Verification, and Validation Workshops, ICSTW ’10, pp. 90–99,
IEEE Computer Society, 2010.

[41] D. Schuler, V. Dallmeier, and A. Zeller, “Efficient mutation testing by checking invariant
violations,” in ISSTA ’09: Proceedings of the Eighteenth International Symposium on
Software Testing and Analysis, ISSTA ’09, (New York, New York, USA), pp. 69–80,
ACM Press, 2009.

[42] A. M. R. Vincenzi, E. Y. Nakagawa, J. C. Maldonado, M. E. Delamaro, and R. A. F.
Romero, “Bayesian-learning based guidelines to determine equivalent mutants,” Inter-
national Journal of Software Engineering and Knowledge Engineering, vol. 12, no. 6,
pp. 675–690, 2002.

36


