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ABSTRACT
Explainable Artificial Intelligence (XAI) has recently been applied
to vulnerability predictionmodels to understand the decisions made
and to improve the transparency of those models. We are the first
to leverage XAI explanations to improve vulnerability prediction
performance. The performance of vulnerability prediction models
relies on the quality of the vulnerability dataset and the machine
learning model. We use XAI information to identify biases in vulner-
ability prediction datasets and limitations in deep learning-based
prediction models. Our XAI analysis is based on using a state-of-the-
art deep-learning vulnerability prediction model (LineVul) and an
explainability algorithm (Layered Integrated Gradients) to generate
XAI information. The XAI information that we generated allowed
us to improve our understanding of how our models worked, such
that we were able to identify important improvement opportunities.
Consequently, we present some surprising findings: while LineVul
accurately predicted vulnerable functions, in 43% of cases, the use
of XAI data allowed us to identify that those predictions were based
on dataset biases rather than on actual vulnerable lines. By sys-
tematically removing these dataset biases, we achieved a notable
performance improvement, increasing LineVul’s F-Measure from
92% to 96%. Additionally, the insight we gained from XAI also al-
lowed us to identify a fundamental limitation in LineVul’s reliance
on CodeBERT, a pre-trained language model limited to 512 tokens.
By integrating LongCoder, a pre-trained model capable of process-
ing longer sequences, we achieved an F-measure and MCC increase
from 92% and 91%, respectively, to 94%, highlighting the potential
for improved handling of complex, long-sequence vulnerabilities.
We conclude that XAI has important additional applications that
go beyond providing users with information describing the basis
of predictions.
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1 INTRODUCTION
With the availability of large databases and recent advances in deep
learning techniques, AI systems are now achieving, and in some
cases surpassing, human-level performance in a growing array of
tasks. Nevertheless, deep learning-based models operate as black
boxes, making it challenging to ascertain whether their effective
performance stems from correct learning or if dataset biases are
present that result in overly optimistic performance [3, 4].

Vulnerability prediction is one area where deep learning has
helped make impressive strides in recent years. The latest state-of-
the-art models, e.g. LineVul, have shown very good F1 scores of over
90% [10, 16]. However, our work uncovers startling evidence that
these high scores mask underlying biases in a widely used dataset,
leading to unreliable predictions. This raises critical questions about
the validity of past research and underscores the urgent need for
more rigorous approaches.

Explainable Artificial Intelligence (XAI) is the process of pro-
viding explanations for the decisions made by an artificial intelli-
gence model [24]. XAI has been used to improve trust [19] and
transparency [6, 27] in deep learning models in domains such as
autonomous vehicles [26] and healthcare [1]. In contrast to prior
work, we aim to leverage XAI not just for transparency but as a
powerful tool to improve model performance and dataset quality,
introducing a novel technique that bridges explanation and im-
provement. To achieve our aim, we answer the following research
questions:
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RQ1: Can explainability help in identifying potential bias
in vulnerability prediction datasets? To ensure reliable predic-
tions, the data to train and evaluate models must be unbiased. To
answer RQ1, we analyse whether LineVul attributes correctly pre-
dicted vulnerabilities (true positives) to the code features causing
the vulnerability or if predictions result from bias in the BigVul
dataset [7]. We use the Layered Integrated Gradients algorithm [23]
to extract the lines LineVul attributes to the vulnerable decision,
compare these to the actual vulnerable lines, and measure the per-
centage agreement. If a model achieves a high F-Measure but a low
line-level attribution score, bias in the dataset (e.g. duplicates or in-
correct labelling) may be incorrectly helping the model differentiate
between vulnerable and non-vulnerable instances.
1 void rs_filter_graph(RSFilter *filter) {

2 GString *str = g_string_new("digraph G
↩→ {\n");

3 g_string_append_printf(str, "}\n");

4 g_file_set_contents("filter-graph", str->str, str->len,
NULL);

5 if (0 != system("gnome-open/tmp/
↩→ rs-filter-graph.png"))

6 g_warning("Calling gnome-openfailed.");

7 }

Listing 1: Output of a C++ function after applying the
line-level explainer showing correct attributions (green),
incorrect attributions (blue), or missed vulnerable line
(red).

RQ2: Can explainability help in identifying limitations in
deep learning vulnerability prediction models? It is important
to have confidence that predictions are correct. However, the black-
box nature of deep learning models makes identifying potential
problems difficult. To answer RQ2, we focus on vulnerabilities
missed by the model (false negatives). We examine explanations of
vulnerable instances where LineVul failed to detect the vulnerability
and look for common patterns in attributing features (lines) that
led to incorrect classifications.

Since the original dataset, BigVul [7], keeps a record of the vul-
nerable lines, we can compare the results of the explanations to the
vulnerable lines of code to understand whether or not the model
is attributing the vulnerable lines to classification decisions. List-
ing 1 shows an example of a vulnerable function after applying the
line-level explainer [15].

To our knowledge, this paper presents the first approach using
XAI to help identify dataset bias and model limitations in software
vulnerability prediction.

2 BACKGROUND
Tantithamthavorn and Jiarpakdee [25] introduced Explainable AI
for Software Engineering (XAI4SE) to improve explainability in
software engineering tasks. They published several papers on the
explainability of defect prediction [12–14], a field closely related to
vulnerability prediction, to help developers identify the character-
istics of software defects and provide fixing suggestions.

LineVul [10] is a leading vulnerability prediction model that
employs a transformer-based, line-level approach by integrating
BERT’s self-attention layers with CodeBERT to enhance vector

representations with lexical and logical semantics. Utilising BERT’s
attention mechanism, LineVul identifies vulnerable lines, achieving
a 91% F-measure for function-level prediction on the BigVul dataset,
surpassing other models by 160–379%. For line-level prediction,
it attained a 65% top-10 accuracy1. LineVul was selected for its
superior performance, and enhancing it could significantly improve
less effective models.

Layered Integrated Gradients (LIG) [23] provides a means of
attributing importance scores to individual input features by ap-
proximating the integral of gradients of the model’s output with
respect to the inputs along a specified path. This enables a bet-
ter understanding of which features have the most influence on
the model’s output. We have applied LIG to gain insights into the
decision-making of deep learning vulnerability prediction models.

3 DESIGN AND EXPERIMENTAL SETUP
Given a vulnerability prediction dataset, instances are split into
training and testing data. The training data consists of the source
code of functions and the binary label for every function (vulnerable
or non-vulnerable). The training data is used to train the vulnerabil-
ity prediction model (LineVul). The test data comprises the source
code of functions and the line-level ground truths (vulnerable lines)
in every vulnerable function. The source code is used to evaluate
the performance of the model. Then, using an explainability tool,
the XAI algorithm produces an attribution score for every input
token in the source code. We aggregate the scores for tokens in
each line to produce line-level attributions. Then, we use the line-
level ground truths to measure the correctness of the line-level
attributions. Listing 1 shows a coloured version of vulnerable func-
tions in the test data, where lines are coloured based on line-level
attribution agreement with the ground truth.

To assess the quality of the vulnerability prediction dataset (RQ1),
we examine instances where the model correctly predicts the vul-
nerability (true positive). As Chakraborty et al. [2] point out, a
biased dataset can lead to overly optimistic model performance.

Dataset. LineVul is originally evaluated using the BigVul dataset
from Fan et al. [7], which provides line-level ground truths indicat-
ing which lines in a function cause vulnerabilities. In contrast, other
datasets like Devign [28] and Reveal [2] offer only function-level
ground truths. BigVul is among the largest vulnerability datasets
with line-level annotations, compiled from 348 open-source GitHub
projects. It includes 91 CWE types from 2002 to 2019, encompass-
ing 188,636 C/C++ functions with a 5.7% vulnerability rate (10,900
vulnerable functions) and 5,060,449 lines of code, of which 0.88%
(44,603 lines) are vulnerable. Within the vulnerable functions, the
percentage of vulnerable lines ranges from 2.5% to 20%, with a
median of 7%. We use the BigVul dataset to analyse model explana-
tions at the line level, employing the same data splits as LineVul’s
reproduction package: 80% training, 10% validation, and 10% test-
ing. We run all models on the same test set to maintain evaluation
consistency.

Line-Level Vulnerability Explanations. To answer our re-
search questions, we rely on the vulnerability prediction model’s
explanations for each instance in the dataset. Such explanations

1Top-n Accuracy measures the percentage of vulnerable functions where at least one
actual vulnerable line appears in the top n lines predicted vulnerable [18].
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provide an understanding of the reason behind every prediction.
Using the LIG algorithm [23], we perform attribution analysis on
LineVul to extract the amount of contribution (a number between
-1 and 1, where a positive number means a positive contribution)
every input token (i.e., code word) has on the prediction decision.
We chose LIG over other XAI algorithms like Saliency [21] and
DeepLift [20] because the way LineVul is structured results in
Saliency and DeepShift only producing positive attributions. Since
we are interested in the line-level contributions, we follow existing
techniques [10, 22] by aggregating the token contribution for every
line in the function and considering the lines with a positive total
as the lines contributing to the prediction. We publish our datasets
and scripts in our reproduction package [9].

Table 1: LineVul reproduction on the original dataset.

Original Results Reproduced Results

Precision Recall F1 Precision Recall F1
0.97 0.86 0.91 0.96 0.88 0.92

4 RESULTS
To improve LineVul [10] and the BigVul dataset [7], we must ensure
we reproduce the original results reported by LineVul. Table 1 shows
the precision, recall, and F-Measure reported by LineVul compared
to our reproduction results. Our reproduction results are within a
2% difference compared to the original paper in general.

In all subsequent models, we ran the evaluation 10 times to
measure the standard deviation, the statistical significance using
the Wilcoxon signed-rank test, and the effect size.

RQ1: Can explainability help in identifying potential bias
in vulnerability prediction datasets?We focus on and collect the
correctly predicted vulnerable functions in the test data. From 1055
vulnerable functions in the test data, LineVul correctly predicted
937 functions (89%). Then, for each of the 937 vulnerable functions,
we compute the line-level attributions given by the explainability
tool Captum and compare them to the line-level ground truths in
the BigVul dataset. A correctly predicted vulnerable line is one that
exists within the line-level attributions that influence the prediction
positively.

We found that out of 937 correctly predicted vulnerable func-
tions, LineVul attributed only 62% of the actual vulnerable lines to
the prediction. This means that in 38% of cases, LineVul’s predic-
tions were not based on the actual vulnerable lines. Manual analy-
sis revealed two potential biases. First, LineVul appeared to learn
from lines containing vulnerability-prone assertions (e.g., memory
management, input validation) that were not directly vulnerable.
To address this, we incorporated patched versions of vulnerabili-
ties, following Chakraborty et al. [2], so that the negative sample
also includes vulnerability-prone assertions. While BigVul includes
patched versions, they are in a field that LineVul does not use. We
included them to improve the dataset’s quality, though this only in-
creased the negative sample by 5%. Additionally, in 39% of correctly
predicted vulnerable functions, LineVul attributed at least one com-
ment line to its decision. Since comment lines do not affect code
behaviour, we removed all comments from the dataset to mitigate

this bias. After removing comment lines, we removed vulnerable
functions that showed no difference between the vulnerable code
and the patched code (i.e. the original difference was in comment
lines). Removing such vulnerable functions resulted in a reduction
in vulnerable functions from 10,900 to 7,716.

Table 2 presents the results of LineVul on the original dataset as
well as the dataset with biases removed (cleaned). The table shows
the F-measure, MCC and line-level attribution. Table 2 shows that
after removing bias from the BigVul dataset (cleaned), LineVul had
an improved F-measure and MCC (from 92% and 91%, respectively,
to 96%) with a standard deviation 𝜎 < 0.1 for both metrics. The
Wilcoxon signed-rank test showed 𝑊 = 0 and 𝑝 = 0.0019 for
F-measure and MCC, meaning the improved performance is sta-
tistically significant. Also, Cohen’s 𝑑 value showed 𝑑 > 4 for both
F-measure and MCC, suggesting a strong effect. Additionally, the
line-level attribution rises from 62% to 68%. This suggests that the
cleaned BigVul dataset not only improved the performance of Line-
Vul but also increased the line-level attribution percentage, which
shows that the model should be more reliable in practice. The find-
ings indicate that explainability can aid in identifying potential bias
in vulnerability prediction datasets.

Table 2: Performance measures of LineVul evaluated on the
original BigVul dataset and the cleaned version.

BigVul Version F1 MCC Line-level Attr.
Original 0.92 0.91 62%
Cleaned 0.96 0.96 68%

RQ2: Can explainability help in identifying limitations
in deep learning vulnerability prediction models? To answer
RQ2, we focus on the false negatives in the test data. First, we collect
the vulnerable functions that were incorrectly predicted. LineVul
predicted 118 (11%) of the 1055 vulnerable functions in the test
data incorrectly (false negatives). Then, for each of the 118 vulner-
able functions, we compute the line-level attributions generated
by the explainability tool Captum. Because LineVul inaccurately
predicted the functions as non-vulnerable, the positive line-level
attributions give us the lines that attribute to the non-vulnerable
prediction. LineVul accurately predicted 17,771 (99.8%) out of 17,809
non-vulnerable functions. With such a minimal false positive rate
of 0.2%, we decided not to focus on strategies for reducing false
positives.

We manually examined the explanations for the 118 incorrectly
predicted vulnerable functions and discovered that the primary
cause of the incorrect prediction was that LineVul uses a Code-
BERT [8] pre-trained language model to generate vector represen-
tations of source code, which only preserves the first 512 tokens
from each function. We found that 69% of vulnerable lines in the
BigVul dataset occur outside the 512 token limit. Therefore, instead
of CodeBERT, we decided to use the LongCoder [11] pre-trained
language model, which can generate a vector representation of
source code up to 4096 tokens to improve LineVul’s performance.
Due to memory resource constraints, we limited the maximum
token vector size to 1024. Increasing the vector size above 1024 may
potentially result in further improvement in model performance.
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Table 3 presents the results of evaluating LineVul and Line-
Vul+LongCoder on the BigVul dataset. While keeping precision
at 96%, using LongCoder to generate a vector representation of
source code increased the recall from 88% to 93%, resulting in an
increased F-measure and MCC from 92% and 91%, respectively,
to 94% with a standard deviation 𝜎 < 0.1 for both metrics. The
Wilcoxon signed-rank test showed𝑊 = 0 and 𝑝 = 0.0019, meaning
the improved performance is statistically significant. Also, Cohen’s
𝑑 value showed 𝑑 > 3.8 for both F-measure and MCC, suggesting a
strong effect. The results show that using LongCoder improves the
performance of LineVul.

Table 3: Performance measures of LineVul and LinveVul +
LongCoder evaluated on the original BigVul dataset.

Model Precision Recall F1 MCC
CodeBERT (original) 0.96 0.88 0.92 0.91
LongCoder 0.96 0.93 0.94 0.94

Table 4: Performance measures of LineVul using LongCoder
evaluated on BigVul (cleaned).

Model Precision Recall F1 MCC
CodeBERT (original) 0.98 0.95 0.96 0.96
LongCoder 0.99 0.94 0.96 0.96

Table 4 presents the results of evaluating LineVul and Line-
Vul+LongCoder on the cleaned BigVul. While precision slightly in-
creased from 98% to 99% using LongCoder, the recall decreased from
95% to 94%, resulting in a similar F-measure and MCC. These results
indicate that incorporating LongCoder did not affect the overall
performance of LineVul trained on the cleaned BigVul dataset.

The literature discusses the inclusion of patched versions of
vulnerable functions in the training set and CodeBERT’s token size
limitation [2, 5]. However, the effects of these limitations on LineVul
could only be quantified using Explainable AI. Our XAI analysis
showed that for 39% of correctly predicted vulnerable functions,
LineVul based its decisions on comment lines. Additionally, XAI
allowed us to measure that 68% of vulnerable lines were beyond
the 512 token limit set by CodeBERT.

5 RELATEDWORK
Recent studies in software vulnerability prediction [10, 22] have
applied explainability techniques for various purposes. LineVul [10]
uses explainability to help developers identify potential causes of
vulnerable functions. Steenhoek et al. [22] surveyed nine deep learn-
ing models on popular datasets (Devign and BigVul) and analysed
model explanations and important features used for predictions. Al-
though this paper also focuses on model explanations, we use them
to improve the performance of vulnerability prediction models.

Chakraborty et al. [2] evaluated four vulnerability prediction
models—ReVeal [2], VulDeePecker [17], SySeVR [16], andDevign [28]
and found that their training datasets often contained synthetic or

duplicate data. These training sets led the models to learn irrelevant
artefacts, such as variable or function names, instead of actual vul-
nerability causes. When re-evaluated using real-world Github data,
the models’ performance declined significantly. Our work applies
XAI to further expose potential biases in vulnerability prediction
datasets.

Al Debeyan et al. [5] investigated how different types of neg-
ative instances in vulnerability prediction datasets affect model
performance. They distinguished between easy negatives (largely
different from positive samples) and hard negatives (sharing many
characteristics with positives). Their findings show that datasets
containing only one type of negative instance can introduce bias,
leading to overly optimistic results. They also found that a 1:15 ratio
of hard to easy negatives yields the best performance for predicting
vulnerabilities across projects. Our work introduces a new method
for identifying bias in such datasets.

6 LIMITATIONS
In this paper, we employ the Integrated Gradient algorithm to gen-
erate line-level attributions for model predictions. It is important
to note that these attributions may vary depending on the specific
algorithm and the explainability tool utilised, potentially leading to
different conclusions.We tried using other explainability algorithms
like Saliency maps and DeepLift, but due to the architecture of Line-
Vul, these algorithms were only producing positive attributions,
limiting the ability for negative attribution analysis. Consequently,
suggested improvements may not consistently improve either the
dataset or the model under test and thus must be evaluated thor-
oughly.
On the other hand, using XAI can be beneficial in identifying widely
occurring patterns that result in dataset bias or model limitations.
However, deriving limitations from a limited set of instances could
potentially lead to model overfitting.

Finally, in this paper, we utilised changed lines from vulnera-
bility fixes as vulnerable lines. However, changed lines may not
always be the root cause of the vulnerability. We acknowledge that
a dataset encompassing root cause lines could potentially impede
the achievement of more favourable results; however, to the best
of our knowledge, there are currently no available vulnerability
datasets that incorporate root cause lines.

7 FUTURE PLANS
Our work focused on using XAI to help identify bias in the BigVul
dataset and to identify limitations in LineVul. We focused on true
positives and false negatives to identify potential bias in datasets
and limitations in deep learning models. We plan to extend our
work to examine the other two quadrants (false positives and true
negatives) as they may reveal other limitations in deep learning
models. Additionally, we plan to extend our work by examining
a wider list of datasets and vulnerability prediction models and
investigating whether further improvements can be achieved on
lower-performing vulnerability prediction models. We also plan
to extend the work to eliminate the need for manual inspection of
explanations by using AI to automatically find common patterns
that limit the performance of deep learning models.
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We also intend to expand our research to provide a framework
for using explainability to improve the performance of machine
learning models for other software engineering tasks, such as defect
prediction and automatic program repair. We envision building a
scalable system that, when given a dataset and a model as inputs,
offers insights into potential dataset biases and model limitations
using explainability.

8 CONCLUSION
In this paper, we explore using explainability to enhance the perfor-
mance of deep learning vulnerability prediction models. By using
the Layered Integrated Gradients algorithm to calculate line-level
attributions for each prediction, we were able to identify potential
bias in the dataset as well as identify limitations to a deep learn-
ing vulnerability prediction model. Taking the LineVul model and
the BigVul dataset as a use case, we found that although LineVul
accurately predicted vulnerable functions, LineVul only attributed
the vulnerable prediction to actual vulnerable lines in 57% of cases.
We identified two biases in how LineVul uses BigVul: 1) LineVul
does not include patched versions of vulnerable functions, and 2)
LineVul attributed at least one comment line to 39% of its vulnerable
predictions. Removing biases resulted in improving the F-measure
of LineVul from 92% to 96%. Our study has also revealed a limitation
in LineVul. We found that LineVul’s use of a limited vector size
from the CodeBERT language model led to incorrect predictions. By
incorporating a more comprehensive language model (LongCoder),
we increased the F-measure and MCC of LineVul from 92% and 91%,
respectively, to 94% on the original BigVul dataset. These findings
show a greater benefit from removing dataset bias compared to
increasing the vector size limit for LongCoder. It is worth exploring
these effects on other lower-performing vulnerability prediction
models. These findings not only validate the transformative poten-
tial of XAI but also signal a paradigm shift in software vulnerability
prediction research.
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