
Preprint: Krzysztof Baciejowski, Damian Garbala, Szymon Zmijewski, Lech Madeyski (2023). Are Code Review Smells

and Metrics Useful in Pull Request-Level Software Defect Prediction?. In: Kryvinska, N., Greguš, M., Fedushko, S. (eds)

Developments in Information and Knowledge Management Systems for Business Applications. Studies in Systems,

Decision and Control, vol 466. Springer, Cham. DOI: 10.1007/978-3-031-27506-7_2 Preprint:

https://madeyski.e-informatyka.pl/download/BaciejowskiEtAl23.pdf

Are code review smells and metrics useful in pull
request-level software defect prediction?

Krzysztof Baciejowski, Damian Garbala, Szymon Żmijewski and Lech Madeyski

Abstract The process of software code review is a well-established practice in
software engineering. Previous research identified quality metrics for code review.
However, to our knowledge, this paper is the first that uses those review smells and
metrics as predictors in software defect prediction. We used review process metrics
used in other studies as well as created new ones. A machine learning model is fed
with various process metrics (code review) and product metrics (software code) to be
able to predict if a pull request might introduce a defect. For the GitHub repositories
examined, the mean absolute errors for predictive models were equal to 0.26 (for the
model built on product metrics only), 0.29 (for model built on review metrics only),
and 0.25 (for model built on combined metrics). The results indicate that the quality
of the code review conveys additional valuable information that can be utilized to
better predict software defects. In fact, review metrics alone appeared to be almost as
good predictors of software defects as investigated since a long time and widely used
software product metrics.

Krzysztof Baciejowski(B)
Wroclaw University of Science and Technology, Poland, e-mail: 246785@student.pwr.edu.
pl ORCID: 0000-0001-9572-1625

Damian Garbala
Wroclaw University of Science and Technology, Poland, e-mail: 247025@student.pwr.edu.
pl

Szymon Żmijewski
Wroclaw University of Science and Technology, Poland, e-mail: 246660@student.pwr.edu.
pl

Lech Madeyski
Wroclaw University of Science and Technology, Department of Applied Informatics, Poland e-mail:
lech.madeyski@pwr.edu.pl, ORCID: 0000-0003-3907-3357

https://doi.org/10.1007/978-3-031-27506-7_2
https://madeyski.e-informatyka.pl/download/BaciejowskiEtAl23.pdf
246785@student.pwr.edu.pl
246785@student.pwr.edu.pl
247025@student.pwr.edu.pl
247025@student.pwr.edu.pl
246660@student.pwr.edu.pl
246660@student.pwr.edu.pl
lech.madeyski@pwr.edu.pl


2 Krzysztof Baciejowski, Damian Garbala, Szymon Żmijewski and Lech Madeyski

1 Introduction

The software development process is bound to encounter unexpected defects in the
code base. The frequency of introducing these defects should be reduced by the
code review process. In fact, some studies have shown that greater coverage for code
review and greater participation reduce the chances of introducing a bug to code
[22, 23, 3]. Unfortunately, this process is often not able to filter all defective code.
The defective code that passes through the code review process might be the result of
poor review quality. The process of solving defects is very expensive, and, therefore,
the possibility of in-advance determination if the code changes might introduce a
bug would be invaluable.

In September 2020, Doğan [11] identified seven bad practices that could be
correlated with a lower quality of reviews and named them "code review smells". Six
of them were then described in detail and searched for in open-source projects. The
results of this research were later published in [12]. Unfortunately, the article did not
address the correlation between the quality of the review measured by "code review
smells" and inducing defects.

Using these sources as a reference point, our objective was to utilize code review
smells and metrics to predict inducing software defects with pull requests. Although
there are some papers on the use of code smells as predictors of software defects,
see [26], to our knowledge, this paper is the first that uses code review smells to
predict software defects.

2 Background

Doğan and Tüzün [12] have identified seven and defined six smells of code reviews.
The aim of this research is to check whether, based on code review smells and metrics,
one is able to predict if a pull request might induce a defect. To achieve this goal, the
following steps were executed:

• gathering information on other review qualities which possibly impact probability
of inducing software defect,

• finding alternative definitions of those qualities,
• finding already used code review metrics,
• introducing new code review metrics,
• checking whether those code review metrics and smells can be helpful to predict

software defects.

For the search for relevant literature, the following research questions were de-
fined:

RQ1 Is it possible to utilize code review smells as predictors of software defects for
pull requests?

RQ2 Is it possible to derive metrics from the code review smells defined by Doğan
and Tüzün [12]?



3. METHODS AND MATERIALS 3

RQ3 Is it possible to utilize code review quality metrics as predictors of software
defects for pull requests?

2.1 Relevant Literature

In order to answer the defined research questions, code review smells and metrics
needed to be gathered. During the study selection process, search strings were defined
that cover the subject area, titles, abstracts, and keywords. The results of this query
were then analyzed for relevance; possibly relevant sources were read in full to check
whether they can be helpful when pursuing the goal of this paper.

2.1.1 Search strings

All subjects of our interest can be described with the following search string:
TITLE-ABS-KEY(code-review* AND (quality OR metric* OR
smell*OR impact)) AND (PUBYEAR > 2014) AND (LIMIT-TO(
SUBJAREA, "COMP")) AND (LIMIT-TO(LANGUAGE, "English"))

2.1.2 Results of research for relevant literature

After evaluating the aforementioned search string on April 4, 2022 Scopus returned
341 results. 28 were labeled possibly relevant based on their title and abstract, but
after full-text analysis it appeared that only 16 of them contained information on
review-related smells and metrics.

Figure 1 illustrates the process of literature selection; Appendix contains lists of
articles accepted during first and second screening stage.

2.1.3 Already defined metrics

Table 1 contains information on explicitly defined metrics and those deduced from
relevant articles that are considered to be related to the review and possibly influence
code quality.

3 Methods and Materials

The conducted research consisted of several stages. First, we select repositories to
evaluate, after that we aim to reproduce the research by Doğan and Tüzün [12] by
implementing code review smells in our code base, then we develop new metrics



4 Krzysztof Baciejowski, Damian Garbala, Szymon Żmijewski and Lech Madeyski

Fig. 1 Literature selection process

that potentially might have impact on inducing a bug. Afterwards, we import metrics
from the dataset [17]. In the end, we feed a machine learning model with metrics and
smells.

3.1 Reproduction of Doğan and Tüzün research

The process of reproduction does not fully reflect the process provided by Doğan and
Tüzün[12], because our strategy relies on a larger amount of data. That is why the data
are stored in a database. Data on pull requests, users, files, their changes, and reviews
are retrieved from GitHub by means of the GitHub API for chosen repositories and
saved to the database. Then it is processed according to the specification provided by
the aforementioned paper.

For reproduction, VS Code, Tensorflow, and GitHub Desktop repositories were
chosen. The smell detection results are shown in Table 2 and are consistent with the
original research.



3.
M

E
T

H
O

D
S

A
N

D
M

A
T

E
R

IA
L

S
5

Table 1 Metrics and smells found in or deduced from relevant literature
Smell / Metric Type Description Source
No review smell PR closed without review [22, 29, 28, 21]
Self review smell PR contains only self-review [22, 29, 21]
Number of hasty reviews metric Number of reviews with checked 200loc/h [22, 29, 21]
Number of short reviews metric Number of short reviews [9]
Number of superficial reviews metric Number of superficial reviews [9]
Number of reviews without inline comments metric Number of negative reviews without inline comments [9]
Number of reviews metric Number of reviews [3, 19, 20, 29, 28, 31, 10, 9, 25, 33, 21, 32]
Number of author responses metric Number of author responses to reviews [19]
Number of reviews to churn ratio metric Number of reviews divided by number of changed loc [21]
Review window metric Time PR was opened for reviewing [29, 31, 25, 33]
Review window to churn ratio metric Time PR was opened for reviewing divided by changed loc [21]
Review delay metric Time between PR was opened and first review [28, 31, 10, 33, 32]
Number of reviewers metric Number of unique reviewers [3, 19, 20, 31, 10, 25, 33, 21, 32]
Number of non-author reviewers metric Number of reviewers who didn’t change code to be merged [31, 9, 33]
Disagreement ratio metric Ratio of non-approval reviews [31, 9, 33]
Number of revisions metric Number of commits after PR was opened [28, 31, 16, 33, 21]
Number of revisions without review metric Number of non-commented commits added in review window [31, 33]
Churn during code review metric Loc changed during review window [31, 33]
Negative sentiment in reviews metric Determined coefficient of negative sentiment [9]
Confused reviews metric Coefficient of confusion based on keywords [13, 9]
Number of discussion observers metric Number of discussion observers [19]
Important keywords used metric # of positive minus # of negative keywords [6]
Reviewing time metric Average time spent on reviewing [28, 16]
Review pace metric Average churn reviewed per hour [31]
Shepherding time metric Average time spent on review-related activities [16]



6 Krzysztof Baciejowski, Damian Garbala, Szymon Żmijewski and Lech Madeyski

Table 2 Reproduction results for Doğan and Tüzün research

Smell VS Code Desktop Tensorflow
Lack of review 57.57% 14.25% 12.48%
Missing PR description 24.51% 11.21% 43.93%
Large changeset 7.97% 5.25% 9.94%
Sleeping review 40.13% 41.39% 47.82%
Ping-pong 4.19% 10.67% 9.08%
At least one of:
– lack of review
– missing PR description
– large changeset
– sleeping review
– ping-pong

83.37% 63.16% 81.89%

Review buddies1 3.25% 7.39% 11.71%

3.2 Metrics

Doğan and Tüzün [12] have divided the metrics based on their extraction/calculation
method into ones extracted directly from pull requests, ones regarding single reviews
(but still collected for each pull request) and those calculated for the whole repository
(also assigning the results to single pull requests). Some additional metrics might
also be implemented as part of future work.

3.2.1 Imported metrics

We imported product metrics assigned to commits in the dataset from the article by
Keshavarz and Nagappan [18]. These metrics are:

• change date
• # of lines added
• # of lines deleted
• # of files touched
• # of directories touched
• # of of subsystems touched
• change entropy
• # of of distinct developers touched files
• the average time from last change
• # of of unique changes in files
• change author experience
• change author
• recent experience

1 Smell Review buddies was defined but not measured by Doğan and Tüzün [12].



3. METHODS AND MATERIALS 7

• change author subsystem experience

3.2.2 New metrics

We defined several metrics of the code review process to feed the machine learning
model with:

• Number of reviewers
It simply checks how many reviewers have reviewed a pull request.

• Number of reviewers different than the pull-request author
This metric is an improvement of the Number of reviewers metric. In the calcula-
tion, it excludes the reviewer who created a pull request. It is worth mentioning
that the author of a pull request may be different from the author of changes in
code (especially when multiple people have been contributing to the code).

• Number of reviews
This metric evaluates the number of reviews (without checking their authors) for
a given pull request.

• Number of commits after pull-request creation
This metric counts commits that were added after the pull request creation date.
It is assumed that such commits introduce improvements and are the result of
submitted reviews. It is also expected that a pull request containing these com-
mits is less likely to introduce a defect.

• Number of lines changed after pull-request creation
Reviews requesting some changes should result in new commits with improve-
ments. This metric counts the number of lines that were changed as a result of
a code review. It is worth mentioning that all changes introduced after a pull
request’s creation date are considered improvements, no matter if there were
already some reviews submitted.

• Review length (number of characters)
Review length metric counts the number of characters in each review for a pull
request. At the time of implementation, it is still unclear whether a bigger or
smaller number of characters is better. This metric is related to some other code
review metrics, e.g., Number of reviews and some project metrics, e.g., number
of changes lines.

• Review window per changed lines
This metric takes into account both the time passed between opening and closing
a pull request and the number of changed lines in order to calculate the ratio
between those two values. This way it is possible to establish more flexible



8 Krzysztof Baciejowski, Damian Garbala, Szymon Żmijewski and Lech Madeyski

threshold values to mark a pull request as smelly.

• Reviewed lines per hour
Reviewed lines per hour metric measures how many lines were changed for a
given pull request and calculates a ratio between this value and the opening hour
a the pull request.

• Review length per lines of code
This metric is an amplification of the Review length metric. It calculates the ratio
between the number of characters in all reviews in a given pull request and the
number of changed lines.

• Review window
This metric is extracted by calculating the time passed between opening and
closing a pull request. It has a few known flaws, as it does not consider the actual
time spent reviewing a request (limitations are mentioned in Section 5). Hence,
the request can be open for so long that it will be considered smelly, but still be
reviewed superficially.

• Review window per line
Reviews that last too long are considered smelly, but their duration should be
related to number of changed lines. Obviously, it is possible to change a lot of
lines of code barely changing the program logic or not changing it at all (e.g. by
renaming a variable or a function). Such cases should rather be the minority.

3.3 Data preparation

We used the dataset by Keshavarz [17] to assign a value if a commit induces a bug.
This dataset consisted of commits from 12 repositories of Apache projects. We have
downloaded the data of pull requests and reviews for the commits. With the data,
three random forest models can be trained.

We encountered a problem with granularity. We need to know if a pull request
induces a misbehaviour, not a commit (as it is in the dataset). We solved the granular-
ity problem deciding that a pull request is bug-inducing if one of the commits is. The
product metrics were assigned to the pull request using trimmed means of 10%.

3.4 Implementation

We implemented models generation with functions detecting smells and evaluating
metrics from review-related data using Python scripts. Our implementation can be
found in Github repository as explained in Appendix



4. RESULTS 9

4 Results

Three models were created, trained on 513 pull requests (PRs) and tested on 171
remaining entries, and these models will be marked as:

M1 based on metrics from dataset by Keshavarz and Nagappan [18],
M2 based on five of the smells created by Doğan and Tüzün [12] (large changesets

smell is not related to the quality of reviews, thus was omitted) and new metrics
(see Section 3.2.2) we developed and

M3 model which combines both aforementioned sources of PR evaluators.

Table 3 presents errors obtained when predicting whether PR is buggy for each
of the models for all GitHub repositories that exist in the dataset by Keshavarz and
Nagappan. As one can see, M2 has similar performance to M1 and is more or less
able to determine whether PR introduced bugs. It allows us to answer positively to
RQ1 and RQ3.

Table 3 Errors for prepared models

Error type M1 M2 M3
Mean absolute error 0.26 0.29 0.25
Mean squared error 0.13 0.16 0.13
Root mean squared error 0.37 0.40 0.36

In order to determine which metrics are most important for our experimental
models, metrics importance was evaluated based on mean decrease in impurity
(MDI). For M2, as shown in Figure 2, the most important features included review
window (41%), review window per line (26%), reviews characters per line of code
(10%) and total number of reviews characters (9%). For the combined model (M3),
the lines added were the most influential (33%), the rest of the metrics and smells
had an importance below 5% (e.g., review window 4%), this is shown in Figure 3. It
can be explained for some metrics with their boxplots for buggy and non-buggy pull
requests (see Appendix), where all other than review window and review window per
line do not show significant differences between those two groups. The entire report
is available in Appendix, including figures.

As can be seen in Figure 4, some metrics have a very high correlation; therefore,
the ones with the highest correlation could be removed.

In the context of the study, we formulated the following research questions:
RQ1 Is it possible to utilize code review smells as predictors of software defects for

pull requests?
Yes, they were successfully utilized in software defects predicting models
M2 and M3 as shown in Section 4.



10 Krzysztof Baciejowski, Damian Garbala, Szymon Żmijewski and Lech Madeyski

Fig. 2 Metrics and smells importance for M2

RQ2 Is it possible to derive metrics from code review smells defined by Doğan and
Tüzün?
Yes, we have derived 11 metrics what was presented in Section 3.2.2.

RQ3 Is it possible to utilize code review quality metrics as predictors of software
defects for pull requests?
Yes, they were successfully utilized in software defects predicting models
M2 and M3 as shown in Section 4.

5 Discussion

Analysis of nine Apache repositories showed code review smells and metrics can be
used to predict bug introduction with accuracy similar to model based on product-
related metrics. This opens the possibility to enhance existing models by adding a
whole new category of metrics and smells, which would be related to the review
process.



5. DISCUSSION 11

Fig. 3 Metrics and smells importance for M3



12 Krzysztof Baciejowski, Damian Garbala, Szymon Żmijewski and Lech Madeyski

Fig. 4 Correlation of metrics from Section 3.2.2

During the process of developing the model certain limitations were identified:
• Some commits that the dataset included could not be found from the GitHub

API. That caused the model to use less training and testing data than it would be
relevant.

• The dataset and our research had different levels of granularity; therefore, the
metrics for commit could not be easily applied on a pull request.

• GitHub does not measure the time that a reviewer has spent on a review, hence
this attribute is not accessible for our research. Other review tools—for instance,
Crucible—include the time spent. This is especially important, considering the
fact that the metrics based on time - review window appeared to be the most
impactful.

This work could have more reliable results and a broader scope if these limitations
were overcome.

There are areas where this work can be improved and included in future works:
• User metrics

such as reviewer reputation based on number of reviews made, the number of
projects contributed, etc.

• Review content
NLP (natural language processing) of reviews to estimate their relevance and
assess code changes based on reviewers’ opinions.



6. CONCLUSIONS 13

• Conflicting reviews
Calculated by checking if multiple reviews regarding the same changes in code
approve and disapprove them.

• Dataset
The results might differ once more data is provided, as mentioned in limitations.
Then the introduced model could be used to retrieve more relevant information
on the impact of the developed metrics.

It was discovered that reviewing process descriptors, such as those in Table 1, have
high potential when it comes to predicting bug introduction and should be included
in relevant models.

6 Conclusions

All posed research questions were answered and the results open up a new promising
research direction.

Using the answers and models defined in Section 4, it was shown that the review
smells and metrics allow predicting pull request bugginess to a similar extent as
classic software product metrics; however, this model is not fully satisfying and
performs better with more review metrics or when combined with software product
metrics. Thus, standard product metrics still remain important features of prediction
models. There is also room to introduce improvements and modifications to the
method used in this investigation, as described in Section 5.

CRediT authorship contribution statement

Krzysztof Baciejowski: Software, Data curation, Investigation, Writing – original
draft, Writing – review & editing, Visualization. Damian Garbala: Software, In-
vestigation, Writing – original draft Szymon Żmijewski: Software, Investigation,
Writing – original draft Lech Madeyski: Conceptualization, Methodology, Writing –
review & editing, Supervision.

Acknowledgment

The paper is an outcome of the Research and Development Project in Software
Engineering at Wroclaw University of Science and Technology.



14 Krzysztof Baciejowski, Damian Garbala, Szymon Żmijewski and Lech Madeyski

Appendix

Reproduction

Code utilized to perform reproduction of Doğan and Tüzün [12] is available on Github
(github.com/pwr-pbr22/M7/tree/reproduction). Scripts used to prepare models are
available in the same repository on the main branch (github.com/pwr-pbr22/M7).
Reproduction instructions are available in respective README files.

Relevant literature search

As mentioned in Section 2.1.2 28 articles passed title and abstract screen, 16 of them
passed full text screen and 12 were excluded. These articles can are listed below.

• Articles which passed title and abstract screen, but were excluded during full
text screen: [24, 27, 2, 7, 34, 1, 30, 5, 15, 4, 14, 8].

• Articles which passes title and abstract screen and were deemed relevant after
full text screen: [22, 3, 20, 6, 19, 29, 28, 31, 13, 10, 9, 25, 16, 33, 21, 32].

Appendix

Appendix includes the report, located below, from the implemented Jupyter Note-
book.

https://github.com/pwr-pbr22/M7/tree/reproduction
https://github.com/pwr-pbr22/M7






















References 25

References

[1] Alami A, Cohn ML, Wasowski A (2019) Why does code review work for open
source software communities? In: Proceedings of the 41st International Confer-
ence on Software Engineering, IEEE Press, ICSE ’19, p 1073–1083, DOI
10.1109/ICSE.2019.00111, URL https://doi.org/10.1109/ICSE.
2019.00111

[2] Baum T, Liskin O, Niklas K, Schneider K (2016) Factors influencing code
review processes in industry. In: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, Association
for Computing Machinery, New York, NY, USA, FSE 2016, p 85–96, DOI 10.
1145/2950290.2950323, URL https://doi.org/10.1145/2950290.
2950323

[3] Bavota G, Russo B (2015) Four eyes are better than two: On the impact of
code reviews on software quality. In: 2015 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pp 81–90, DOI 10.1109/ICSM.
2015.7332454

[4] Baysal O, Kononenko O, Holmes R, Godfrey MW (2016) Investigating tech-
nical and non-technical factors influencing modern code review. Empirical
Software Engineering 21(3):932–959, DOI 10.1007/s10664-015-9366-8, URL
https://doi.org/10.1007/s10664-015-9366-8

[5] di Biase M, Bruntink M, Bacchelli A (2016) A security perspective on code
review: The case of chromium. In: 2016 IEEE 16th International Working
Conference on Source Code Analysis and Manipulation (SCAM), pp 21–30,
DOI 10.1109/SCAM.2016.30

[6] Bosu A, Greiler M, Bird C (2015) Characteristics of useful code reviews: An
empirical study at microsoft. In: 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories, pp 146–156, DOI 10.1109/MSR.2015.21

[7] Bosu A, Carver JC, Bird C, Orbeck J, Chockley C (2017) Process aspects and
social dynamics of contemporary code review: Insights from open source de-
velopment and industrial practice at microsoft. IEEE Transactions on Software
Engineering 43(1):56–75, DOI 10.1109/TSE.2016.2576451

[8] Caulo M, Lin B, Bavota G, Scanniello G, Lanza M (2020) Knowledge Transfer
in Modern Code Review, Association for Computing Machinery, New York,
NY, USA, p 230–240. URL https://doi.org/10.1145/3387904.
3389270

[9] Chouchen M, Ouni A, Kula RG, Wang D, Thongtanunam P, Mkaouer MW,
Matsumoto K (2021) Anti-patterns in modern code review: Symptoms and
prevalence. In: 2021 IEEE International Conference on Software Analysis, Evo-
lution and Reengineering (SANER), pp 531–535, DOI 10.1109/SANER50967.
2021.00060

[10] Davila N, Nunes I (2021) A systematic literature review and taxonomy of mod-
ern code review. Journal of Systems and Software 177:110,951, DOI https://doi.
org/10.1016/j.jss.2021.110951, URL https://www.sciencedirect.
com/science/article/pii/S0164121221000480

https://doi.org/10.1109/ICSE.2019.00111
https://doi.org/10.1109/ICSE.2019.00111
https://doi.org/10.1145/2950290.2950323
https://doi.org/10.1145/2950290.2950323
https://doi.org/10.1007/s10664-015-9366-8
https://doi.org/10.1145/3387904.3389270
https://doi.org/10.1145/3387904.3389270
https://www.sciencedirect.com/science/article/pii/S0164121221000480
https://www.sciencedirect.com/science/article/pii/S0164121221000480


26 Krzysztof Baciejowski, Damian Garbala, Szymon Żmijewski and Lech Madeyski

[11] Doğan E (2020) Towards a taxonomy of code review smells. Master’s thesis,
Bilkent University, URL http://hdl.handle.net/11693/54183

[12] Doğan E, Tüzün E (2022) Towards a taxonomy of code review smells. In-
formation and Software Technology 142:106,737, DOI https://doi.org/10.
1016/j.infsof.2021.106737, URL https://www.sciencedirect.com/
science/article/pii/S0950584921001877

[13] Ebert F, Castor F, Novielli N, Serebrenik A (2017) Confusion detection in code
reviews. In: 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp 549–553, DOI 10.1109/ICSME.2017.40

[14] Ebert F, Castor F, Novielli N, Serebrenik A (2019) Confusion in code reviews:
Reasons, impacts, and coping strategies. In: 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pp
49–60, DOI 10.1109/SANER.2019.8668024

[15] Efstathiou V, Spinellis D (2018) Code review comments: Language matters.
In: Proceedings of the 40th International Conference on Software Engineering:
New Ideas and Emerging Results, Association for Computing Machinery, New
York, NY, USA, ICSE-NIER ’18, p 69–72, DOI 10.1145/3183399.3183411,
URL https://doi.org/10.1145/3183399.3183411

[16] Egelman CD, Murphy-Hill E, Kammer E, Hodges MM, Green C, Jaspan C, Lin
J (2020) Predicting developers’ negative feelings about code review. In: 2020
IEEE/ACM 42nd International Conference on Software Engineering (ICSE),
pp 174–185

[17] Keshavarz H, Nagappan M (2022) ApacheJIT: A Large Dataset for Just-In-
Time Defect Prediction. DOI 10.5281/zenodo.5907847, URL https://doi.
org/10.5281/zenodo.5907847

[18] Keshavarz H, Nagappan M (2022) Apachejit: A large dataset for just-in-time
defect prediction. ArXiv abs/2203.00101

[19] Kononenko O, Baysal O, Guerrouj L, Cao Y, Godfrey MW (2015) Investigat-
ing code review quality: Do people and participation matter? In: 2015 IEEE
International Conference on Software Maintenance and Evolution (ICSME),
pp 111–120, DOI 10.1109/ICSM.2015.7332457

[20] Kononenko O, Baysal O, Godfrey MW (2016) Code review quality: How de-
velopers see it. In: 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE), pp 1028–1038, DOI 10.1145/2884781.2884840

[21] Krutauz A, Dey T, Rigby PC, Mockus A (2020) Do code review measures
explain the incidence of post-release defects? Empirical Software Engineering
25(5):3323–3356, DOI 10.1007/s10664-020-09837-4, URL https://doi.
org/10.1007/s10664-020-09837-4

[22] McIntosh S, Kamei Y, Adams B, Hassan AE (2014) The impact of code review
coverage and code review participation on software quality: A case study of
the qt, vtk, and itk projects. In: Proceedings of the 11th Working Conference
on Mining Software Repositories, Association for Computing Machinery, New
York, NY, USA, MSR 2014, p 192–201, DOI 10.1145/2597073.2597076, URL
https://doi.org/10.1145/2597073.2597076

http://hdl.handle.net/11693/54183
https://www.sciencedirect.com/science/article/pii/S0950584921001877
https://www.sciencedirect.com/science/article/pii/S0950584921001877
https://doi.org/10.1145/3183399.3183411
https://doi.org/10.5281/zenodo.5907847
https://doi.org/10.5281/zenodo.5907847
https://doi.org/10.1007/s10664-020-09837-4
https://doi.org/10.1007/s10664-020-09837-4
https://doi.org/10.1145/2597073.2597076


References 27

[23] McIntosh S, Kamei Y, Adams B, Hassan AE (2016) An empirical study of
the impact of modern code review practices on software quality. Empirical
Software Engineering 21(5):2146–2189, DOI 10.1007/s10664-015-9381-9,
URL https://doi.org/10.1007/s10664-015-9381-9

[24] Morales R, McIntosh S, Khomh F (2015) Do code review practices impact
design quality? a case study of the qt, vtk, and itk projects. In: 2015 IEEE 22nd
International Conference on Software Analysis, Evolution, and Reengineering
(SANER), pp 171–180, DOI 10.1109/SANER.2015.7081827

[25] Paul R, Turzo AK, Bosu A (2021) Why security defects go unnoticed dur-
ing code reviews? a case-control study of the chromium os project. In: 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE),
pp 1373–1385, DOI 10.1109/ICSE43902.2021.00124

[26] Piotrowski P, Madeyski L (2020) Software defect prediction using bad code
smells: A systematic literature review. In: Poniszewska-Marańda A, Kryvin-
ska N, Jarząbek S, Madeyski L (eds) Data-Centric Business and Applications:
Towards Software Development (Volume 4), vol 40 of book series Lecture
Notes on Data Engineering and Communications Technologies, Springer In-
ternational Publishing, Cham, pp 77–99, DOI 10.1007/978-3-030-34706-2_5,
URL https://doi.org/10.1007/978-3-030-34706-2_5

[27] Rahman MM, Roy CK, Kula RG (2017) Predicting usefulness of code review
comments using textual features and developer experience. In: 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR), pp
215–226, DOI 10.1109/MSR.2017.17

[28] dos Santos EW, Nunes I (2018) Investigating the effectiveness of peer code
review in distributed software development based on objective and subjective
data. Journal of Software Engineering Research and Development 6(1):14,
DOI 10.1186/s40411-018-0058-0, URL https://doi.org/10.1186/
s40411-018-0058-0

[29] Shimagaki J, Kamei Y, Mcintosh S, Hassan AE, Ubayashi N (2016) A study of
the quality-impacting practices of modern code review at sony mobile. In: 2016
IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C), pp 212–221

[30] Sri-iesaranusorn P, Kula RG, Ishio T (2021) Does code review promote con-
formance? a study of openstack patches. In: 2021 IEEE/ACM 18th Interna-
tional Conference on Mining Software Repositories (MSR), pp 444–448, DOI
10.1109/MSR52588.2021.00056

[31] Thongtanunam P, McIntosh S, Hassan AE, Iida H (2015) Investigating code
review practices in defective files: An empirical study of the qt system. In: 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories, pp
168–179, DOI 10.1109/MSR.2015.23

[32] Thongtanunam P, McIntosh S, Hassan AE, Iida H (2017) Review participa-
tion in modern code review. Empirical Software Engineering 22(2):768–817,
DOI 10.1007/s10664-016-9452-6, URL https://doi.org/10.1007/
s10664-016-9452-6

https://doi.org/10.1007/s10664-015-9381-9
https://doi.org/10.1007/978-3-030-34706-2_5
https://doi.org/10.1186/s40411-018-0058-0
https://doi.org/10.1186/s40411-018-0058-0
https://doi.org/10.1007/s10664-016-9452-6
https://doi.org/10.1007/s10664-016-9452-6


28 Krzysztof Baciejowski, Damian Garbala, Szymon Żmijewski and Lech Madeyski

[33] Uchôa A, Barbosa C, Oizumi W, Blenilio P, Lima R, Garcia A, Bezerra C
(2020) How does modern code review impact software design degradation? an
in-depth empirical study. In: 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp 511–522, DOI 10.1109/ICSME46990.
2020.00055

[34] Zanaty FE, Hirao T, McIntosh S, Ihara A, Matsumoto K (2018) An empiri-
cal study of design discussions in code review. In: Proceedings of the 12th
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, Association for Computing Machinery, New York, NY, USA,
ESEM ’18, DOI 10.1145/3239235.3239525, URL https://doi.org/10.
1145/3239235.3239525

https://doi.org/10.1145/3239235.3239525
https://doi.org/10.1145/3239235.3239525

	Are code review smells and metrics useful in pull request-level software defect prediction?
	Krzysztof Baciejowski, Damian Garbala, Szymon Żmijewski and Lech Madeyski
	Introduction
	Background
	Relevant Literature

	Methods and Materials
	Reproduction of Doğan and Tüzün research
	Metrics
	Data preparation
	Implementation

	Results
	Discussion
	Conclusions
	Appendix
	References



