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Which Static Code Metrics Can Help to Predict
Test Case Effectiveness? New Metrics and Their
Empirical Evaluation on Projects Assessed for
Industrial Relevance

Bartosz Boczar, Michał Pytka, Lech Madeyski

Abstract One of corner stones of software development are test cases, which help
in assessment of created production code. As long as they are properly designed,
they have a capacity to capture faults. In order to check whether tests are well made,
different procedures have been established, like statement coverage or mutation testing,
to evaluate their performance. This has an obvious downside of being computationally
expensive and as such is not employed on a wide enough scale. Finding solutions
to increase efficiency of assessing test cases, could lead to a more widespread
adoption and for that reason we investigate one such approach. We tested possibility
of predicting test case effectiveness, strictly on a basis of static code metrics of
production and test classes. To solve this task we employed three different learning
classifiers, to check feasibility of the process and compare their performance. We
created our own set of metrics all of which were later assessed for their impact on
prediction. Out of seven most impactful predictors, four of them were proposed by
us: Number Of test Cases used in Test class (NOCT), Number Of Defined Variables
in a class (NODV), Number of New Objects created in a class (NONO), Number
Of Assertions used In Test class (NOAIT). Created models yield a promising result,
with best of them achieving over 85% for both F-Measure and Precision along with
73% for Matthews Correlation Coefficient. With the fact of well balanced data used
in creation of model, it is safe to assume, that they hold some merit. All steps taken
to achieve this result are explained in detail.
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1 Introduction

In order to implement reliable software, the programmers need to prepare set of tests
that could indicate the errors present during the execution of the code. For that reason
tests implementation is an important process. One of the best methods of estimating
whether the test is good is mutation testing. Unfortunately this is a time consuming
process. The studies performed by Grano et al. (2019) prove that this process can be
simulated using Machine Learning methods, which costs significantly less time.
In our paper we present our attempts at reproducing study byGrano et al. (2019).
Furthermore, we describe the process of using similar Machine Learning methods to
create a model able to estimate effectiveness of the tests. However, our solution does
not use coverage, a measure which requires much greater computational power in
order to be computed, compared to other measures. Instead we present a solution
which uses metrics provided by JavaMetrics tool (Ziobrowski, 2020), earlier used
by Grodzicka et al. (2020), and our new set of proposed metrics.
Our studies can be reproduced with the package provided by us. All steps needed to
recreate this study are included in the appendix of this paper and appropriate scripts
are available in our repository1.
Our contributions in this paper are as follows:

• An attempt to reproduce study by Grano et al. (2019) including a detailed list of
issues we encountered.

• Completely new replication package addressing the issues in the original package
by Software Evolution and Architecture Lab (2018).

• Extending the study by Grano et al. (2019) to different (class and function level)
samples and projects assessed for industrial relevance Madeyski and Lewowski
(2020).

• Extension of the data sets proposed by Grano et al. (2019), by new metrics related
to source code, code coverage, and Java features related to testing.

• Empirical evaluation of the new metrics as predictors of mutation score indicator.

2 Literature review

Our literature review focused on finding work related to the subject of mutation
testing and finding bad code smells. Our main goal was extending the MLCQ data
set Madeyski and Lewowski (2020) by new metrics. We wanted to find simple metrics
that would identify the usage of new java features in code. That way we could also
verify whether those features increase or decrease the chances of bad smells.

1 https://github.com/pwr-pbrwio/PBR20M2

https://github.com/pwr-pbrwio/PBR20M2
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2.1 Lightweight Assessment of Test-Case Effectiveness using
Source-Code-Quality Indicators

Study by Grano et al. (2019) is a highly relevant paper that we tried to reproduce. The
main goal of Grano et al. (2019) was to create a model which uses code quality metrics
to estimate the effectiveness of the tests without creating and running mutation tests.
The model was trained using good and bad tests of 18 projects. They divided tests
into good and bad ones using their mutation score. To compute mutation score, they
used PIT, which provides 13 mutation operations. They considered 67 code quality
factors and 5 dimensions: Code Coverage, Test Smells, Code Metrics, Code Smells
and Readability. In total, Grano et al. (2019) used 18 open source Java projects.
Their first task was to determine whether there is a relationship between the chosen
quality factors and the effectiveness of the tests. The effects of their work indicate
that the greater the number of statements executed by test cases tend to improve their
effectiveness. Production code metrics also seem to be linked to test effectiveness,
which indicates that the code with higher quality is better at finding faults in the
production code. Similarly the results show that code smells can cause test cases
to be less effective, although test smells do not appear to have an impact on test
effectiveness.
Then they proceeded to check to what extent their tool can be used to estimate the
effectiveness of test cases as compared to mutation score. To answer this question
they used different Machine Learning classification algorithms: Random Forest,
K-Neighbours and Support Vector Machines. This lead to the creation and comparison
of 6 different models as each algorithm was used to create dynamic and static one.
A dynamic model uses the same data set as static model extended with coverage
because this is dynamic feature. Their experiments indicate that Random Forest
model achieves better results when it comes to evaluation metrics than K-Neighbours
and Support Vector Machines. Their study shows that Random Forest dynamic model
could achieve results of 95% in terms of metrics like F-Measure and AUC-ROC,
which confirms that Machine Learning models can be used for effective estimation of
test cases. It also appears that static model performs a little worse than dynamic one,
which has decreased performance by about 9%.
Finally they discussed how the created model can be used. One of the most important
possible usage would be integrating the model within the code analysis software to
let the developers diagnose their code. That would give them desired information
about potential effectiveness of test cases. Those information might be used to discard
non-effective tests or to study them to understand which operations cause test cases
to be non-effective. The model can also be used simply as an alternative to standard
mutation testing. This solution could save developers their time as mutation testing is
a time consuming method.
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2.2 Predictive Mutation Testing

Zhang et al. (2019) concerns mutation testing approaches. As that technique involves
a lot of computationally expensive operations, they proposed a novel classification
model, which would be used to predict, whether a mutant is to be killed or not.
This would be the main factor increasing the performance of tests, obtaining results
for mutants without executing them. Features used in that prediction were gathered
with the dynamic technique called PIE (propagation, infection, and execution) in
mind (Voas, 1992).
According to PIE, program’s computational behaviour can be estimated based on

three characteristics: probability of particular code section execution, probability of
that section influencing data state and probability of produced data state influencing
the output. With this in mind, selected features for PMT would indicate either the
execution of mutated statement, infection of the program state after the mutated
statement was executed or propagation of the infected program state leading to
different output. With features in place, several algorithms for the model were tested,
leading to selection of the best performing one, namely Random Forest.
The pipeline of creating a prediction is as follows: Selecting a project for which
testing is to be done, taking its previous release as training set, extracting the features
from both of gathered versions, teaching the model and finally predicting results.
Initial testing comprised of 9 projects, to make initial judgements and later expanded
to 154 projects. Obtained results were promising. A test was conducted, in order
to check performance of this approach under imbalanced data. This was done by,
selecting two groups of projects, one with mutation score lower than 0.2 and second
with score higher than 0.8. This yield a result, that the process is feasible despite
the selecting inherently imbalanced data. Result analysis with research questions,
shows that effectiveness of this method rivals the traditional execution of mutants
and it is significantly more efficient time wise. Additional data balancing steps were
not impacting results negatively nor positively, which was attributed to the Random
Forest and its ability to handle imbalanced data.
Features themselves were analysed in the context of their merit in prediction. Execution
and propagation features showed a visible impact on performance, while the infection
ones made no difference. This was attributed to the fact, that object oriented design
limits the propagation of infections, between test outcomes and such features would
be more impactful in procedural languages. Finally a consideration on predictability
was presented. In most projects, mutants with high predictability were the most
numerous group. Additionally mutants with higher amount of executions are more
predictable along side mutants with high killability.
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2.3 Comparison of Lightweight Assessment and Predictive Mutation
Testing

As Grano et al. (2019) and Zhang et al. (2019) are studies from which we base our
work, it is important to compare and contrast those two works.

• Outcome of classification: Grano et al. (2019) classifies tests to one of two classes:
good or bad. Zhang et al. (2019) classifies whether the mutant will be killed or
not and uses this knowledge to calculate mutation score.

• Focus of work: Grano et al. (2019) focuses on static code-quality features as
predictors of test quality. Additionally coverage of test cases is considered as such
predictor. Zhang et al. (2019) focuses on predicting outcomes of mutants

• Data used in their prediction: Grano et al. (2019) analyses code smells, test smells,
code coverage and readability. Zhang et al. (2019) considers features of generated
mutants, along with code quality.

• Research questions: Grano et al. (2019) enquire about relationship between code
quality and test-case effectiveness, see to what extent test case effectiveness can
be estimated and distinguish the most important factors in predicting effectiveness.
Zhang et al. (2019) enquires about how effective is this approach in predicting
whether mutants survive or get killed, how different application scenarios (cross-
project and cross-version) influence the prediction, applicability of the model,
impact of different features on outcome.

• Goal of work: Grano et al. (2019) focuses on characterising effective test cases
based on static features of code, finding impactful factors and informing about them
and estimating quality of code based on said factors. Zhang et al. (2019) focuses
on testing performance of PMT, evaluating the effect that different classification
parameters had on it, checking effectiveness under two different application
scenarios, checking viability of the proposed approach to evaluating mutants,
identifying features that are the most impactful, finding characteristics of mutants
that are hard/easy to predict.

• Effect of work: Grano et al. (2019) aims to give feedback to developers based
on easily accessible measures of static code, inform them about problematic
parts of code. The model created in their study might be integrated with already
existing software analysis tools. Zhang et al. (2019) aims to speed up tremendously
the process of mutation testing, clarify the connection between mutant features
and code quality. They present the new methodology which decreases the time
necessary for the process.

3 Methods and Materials

Our first task was reproducing the package provided by Grano et al. (2019) to verify
whether we can use their model in our research and extend it by our own metrics.
Then we wanted to prepare our own set of metrics which would be implemented in a
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tool Java Metrics by Ziobrowski (2020). The last step was to create a model with
those metrics, check the model’s effectiveness and find the most important metrics in
this model.

3.1 Study reproduction

Before we reproduced the package by Grano et al. (2019), we had to solve all the
issues encountered while building all the projects. We had to build each of the
projects separately and fix the ones that failed to build. Then we proceeded to generate
mutation tests and create the model.
Mutation tests using PIT and appropriate generated scripts were completed success-
fully without significant issues. This step ended with scores for each test case, that
had to be aggregated.
Scripts responsible for aggregating data, had some bugs, that needed changing in
order to complete their described tasks. All of the mentioned bugs were technical in
their nature, detailed description of needed changes will be provided in appendix.
As we were analysing the code responsible for creating the model, we noticed that
the input data used for training was included in the git repository Software Evolution
and Architecture Lab (2018). The mutation tests generated during previous steps of
our reproduction were not used which means that the whole process had no effect on
the final outcome. The training data was pre-calculated using tools that have not been
published yet. Therefore we are not able to correctly prepare data of model training
and our reproduction of study by Grano et al. (2019) is not successful.

3.2 New metrics propositions

We decided to propose our own metrics which could be used to estimate tests
effectiveness. These metrics are supposed to replace the coverage, because calculating
coverage is a time consuming process. We would like to continue Grano et al. (2019)’s
idea to create a lightweight solution. For that reason we performed further studies on
the same set of tests used by Grano et al. (2019). The list of metrics we proposed is
as follows:

• ALU - Assertion Library usage, the metric shows if the class uses Assertion
Library. The list of considered libraries: Hamcrest, Assertj, Atrium, Truth, Valid4j,
Datasource-Assert;

• NOAIT - Number of assertions used in test class;
• NOASIT - Number of assumptions used in test class (Junit 5.0 feature);
• NOAU - Number of @After annotations used in test class;
• NOBU - Number of @Before annotations used in test class;
• NOCT - Number of test cases used in test class;
• NODT - Number of dynamic tests in a test class (Junit 5.0 feature);
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• NODV - Number of defined variables in a class;
• NOECU - Usage of ErrorCollector in class (JUnit 4.0 feature);
• NOEET - Number of expected exception tests;
• NOET - Number of extended tests (Junit 5.0 feature);
• NOFS - Number of for statements in a class;
• NOIS - Number of if statements in a class;
• NONO - Number of new objects created in a class;
• NOPT - Number of parametrized tests (Junit 5.0 feature);
• NORT - Number of repeated tests (Junit 5.0 feature);
• NOST - Number of nested tests (Junit 5.0 feature).

To calculate metrics we decided to use a tool Java Metrics by Ziobrowski (2020),
which we extended by implementing our metrics. The metrics that were already
present in Java Metrics were also used to train the model.

3.3 Model creation

Our process of creating a model started with selecting 18 projects, which were also
used in Grano et al. (2019) and gathering them from their GitHub repositories. After
that manual building of those projects had to be done, as this process proved to be
too unfeasible to be completed automatically. With projects prepared, their static
code metrics were computed using Java-Metrics and outputs stored for later use.
Next mutation testing has to be done, in order to compute mutation score, which
was done with use of scripts from Software Evolution and Architecture Lab (2018)
reproduction package. Generated mutation values have to be then gathered. With
both metrics and mutation scores ready, preprocessing of data could be done, where
metrics of production classes get merged with metrics of their test classes and
appropriate mutation score. Additionally MIN, MAX, MEAN of McCabe Complexity
are calculated for each of classes. Final step in preparing a data frame is assigning a
classification for all of the computed rows, using first quartile of mutation scores as
Bad Tests and forth as Good Tests. This yield 1342 rows of data, with exactly even
split of 671 for both of classifications.
As classifier selection has a strong influence on outcome of classification, we chose to
test three different ones: Random Forest, K-Neighbours and Support Vector Machines.
Our method of training and testing was nested cross-validation. This choice was
made, to ensure best possible parameter selection for each of the models. Following
are set of tuned parameters:

• Random Forest

– ntree: (300:500)
– mtry: (10:40)
– nodesize: (5:20)

• K-Neighbours
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– k: (1:20)
– distance: (0.001:2)

• Support Vector Machines

– cachesize: (20:150)
– cost: (30:80)
– gamma: (0.00001:0.01)

4 Results

The following are model performance parameters obtained after their generation:

Table 1 Table showing the performance results of classification algorithms. Fbeta parameter is the
name of F-Measure in mlr3 package

Mcc Ce Precision Fbeta

Random Forest 0.729 0.135 0.880 0.853
KNN 0.703 0.148 0.876 0.837
SVM 0.631 0.184 0.802 0.810

Interestingly judging their performance based onMatthews Correlation Coefficient
different hierarchy of classifiers was obtained, as compared to Zhang et al. (2019)
and Grano et al. (2019). Random Forest still performed the best, but K-Neighbours
scored higher than Support Vector Machines.
Additionally we looked at the Importance of parameters, that was generated alongside
our Random Forest model, to later evaluate how impactful are certain predictors.

5 Discussion

Some of the key results for our study is the performance of obtained models, as
ultimately, that was one of the goals. With precision of 0.880 and a balanced data set,
it can be assumed that it has some merit and could be valuable when put into a real
life scenario. When judging classifier performance, we mostly tried to maximise for
Matthews Correlation Coefficient, as it takes into account all parts of a confusion
matrix.
To compare our results, we looked at final performance values obtained in Grano et al.
(2019), to see how effective our process is, when compared to other contemporary
work. Scenario we looked at, was the one without Code Coverage, as it resembles
our study the most. With values of precision equal to 0.880 and F-measure equal to
0.853, and values of both metrics achieved by Grano et al. (2019) equal to 0.864, it
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Table 2 Table showing the importance of the metrics. Positions with *.x suffix reference production
class metrics and *.y suffix reference test class metrics.

Metric name Importance Metric name Importance

MAX_CYCLO.x 0.0493 NOMR_C.x 0.0009
MEAN_CYCLO.x 0.0453 MRD.x 0.0008

NOCT.y 0.0429 LD.x 0.0006
NODV_C.y 0.0355 NOPA.y 0.0005
NOPA.x 0.0336 NOL_C.x 0.0003
Nono_C.x 0.0310 MIN_CYCLO.y 0.0002
NOAIT_C.y 0.0293 LD.y 0.0002
NPM.x 0.0267 NOAU.y 0.0002
NOAM.x 0.0257 NOL_C.y 0.0001
LOC_C.y 0.0243 ALU.y 0.0001

WMCNAMM.y 0.0220 NOAIT_C.x 0.0001
WOC.y 0.0191 ALU.x 0.0000
LOC_C.x 0.0191 NOMM.y 0.0000
WMC.y 0.0170 MIN_CYCLO.x 0.0000

WMCNAMM.x 0.0163 NOASIT_C.x 0.0000
WMC.x 0.0155 NOAU.x 0.0000
NOM.x 0.0154 NOBU.x 0.0000
NOM.y 0.0151 NOCT.x 0.0000
NPM.y 0.0146 NODT_C.x 0.0000
WOC.x 0.0143 NODT_C.y 0.0000
NODV_C.x 0.0137 NOECU_C.x 0.0000
NOIS_C.x 0.0136 NOECU_C.y 0.0000
Nono_C.y 0.0128 NOEET.x 0.0000
NOPV.x 0.0117 NOET.x 0.0000
NOAM.y 0.0102 NOET.y 0.0000
NOFS_C.y 0.0076 NONT.x 0.0000

MEAN_CYCLO.y 0.0067 NONT.y 0.0000
NOMM.x 0.0056 NOPT.x 0.0000
NOFS_C.x 0.0047 NOPT.y 0.0000
NOBU.y 0.0041 NORT.x 0.0000
NOEET.y 0.0035 NORT.y 0.0000

MAX_CYCLO.y 0.0029 NOMR_C.y 0.0000
NOPV.y 0.0020 MRD.y 0.0000
NOIS_C.y 0.0012 NOASIT_C.y 0.0000

can be said that both solutions are similarly capable.
We also would like to remark on performance of some of the predictors used in
the classification. As shown by Grano et al. (2019), Code Coverage was the most
important information in all of the predictions and because of this, metrics which are
the most closely connected to it have highest importance values, namely maximal
cyclomatic complexity for production class and mean cyclomatic complexity for
production class. This could be lead to an interpretation, that a single complex method
of a class, decreases its quality. Perhaps what is surprising, is the fact that out of
seven most impactful predictors, four of them were proposed by us (NOCT, NODV
and NONO for test classes and NOAIT for production classes). Among those NODV,
number of defined variables for test class, scores highly. This was an unexpected
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finding, seeing such correlation between this metric and test case effectiveness. A
significant portion of predictors, have an importance factor of zero, meaning they have
no bearing on the outcome. Given further exploration of this topic, those parameters
would have to be omitted, due to being of no relevance.

Table 3 Table showing the importance of metrics proposed by us. Positions with *.x suffix reference
production class metrics and *.y suffix reference test class metrics.

Metric name Importance Metric name Importance

MAX_CYCLO.x 0.0493 NOAIT_C.x 0.0001
MEAN_CYCLO.x 0.0453 ALU.x 0.0000

NOCT.y 0.0429 MIN_CYCLO.x 0.0000
NODV_C.y 0.0355 NOASIT_C.x 0.0000
Nono_C.x 0.0310 NOAU.x 0.0000
NOAIT_C.y 0.0293 NOBU.x 0.0000
NODV_C.x 0.0137 NOCT.x 0.0000
NOIS_C.x 0.0136 NODT_C.x 0.0000
Nono_C.y 0.0128 NODT_C.y 0.0000

MEAN_CYCLO.y 0.0067 NOECU_C.x 0.0000
NOFS_C.x 0.0047 NOECU_C.y 0.0000
NOFS_C.y 0.0076 NOEET.x 0.0000
NOBU.y 0.0041 NOET.x 0.0000
NOEET.y 0.0035 NOET.y 0.0000

MAX_CYCLO.y 0.0029 NOPT.x 0.0000
NOIS_C.y 0.0012 NOPT.y 0.0000

MIN_CYCLO.y 0.0002 NORT.x 0.0000
NOAU.y 0.0002 NORT.y 0.0000
ALU.y 0.0001 NOASIT_C.y 0.0000

6 Conclusions

In our studies we proposed newmetrics that could be used to estimate test effectiveness.
We tried recreating studies done in Grano et al. (2019), but were unable to finalise the
process, which in turn lead to creation of our proposed solution. Despite using separate
process, albeit similar to tested reproduction package, we created a model, which
performed similarly well to the one created by Software Evolution and Architecture
Lab (2018). After analysing the importance computed by the Random Forest model
we discovered that some of those metrics might be useful features in test effectiveness
estimation.
We have documented the whole process of our studies and provided reproduction
package that can be used by anyone who would like to reproduce our studies.
In the future we could expand our studies and examine model with only relevant
metrics. We could also propose and implement more metrics that might be useful
features for test effectiveness estimation.
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7 Appendix: Reproducibility of the presented research

This section presents materials and steps required to reproduce the presented re-
search. Details are available at https://github.com/pwr-pbrwio/PBR20M2/
blob/master/README.md.

7.1 Study reproduction

In the process of recreating the Software Evolution and Architecture Lab (2018) we
encountered several issues, which needed to be solved in order to yield a valid result.
We documented them, to transparently show what was changed.

7.1.1 Fixing the process of building projects

In order to reproduce study by Grano et al. (2019), we cloned the git repository2 and
attempted to follow instructions presented in the README.md file. The reproduction
was performed on Ubuntu machine with the following software versions:

• Maven 3.6.0 3

• Python 3.6 4

• Java 1.8 5

Themain problemwas encountered during the execution of the scriptget_projects.sh.
The script clones each project, that was used in the study, from its git repository and
performs maven installation. Unfortunately a few projects failed to build successfully.
The first project that could not be built was gson. The project uses flags supported
since JDK 1.9. We managed to resolve the issue by using JDK 14 to build this project.
We also had to correct the source and target version in the pom file to 1.9.
The next project that had to be fixed was cat. While installing the project maven
did not manage to download maven-source-plugin specified in pom file. The issue is
caused because The Central Repository does not support HTTP communication since
January 15, 2020. The repository can be accessed only with HTTPS. We resolved the
issue by correcting urls associated with maven repository in pom file to use HTTPS
communication.
Another problematic project was RXJava. The project uses Gradle6 and the script
uses maven to build it. The problem could be resolved by chaining the script to use
gradle install instead of mvn install for gradle projects. However this would cause

2 https://github.com/sealuzh/lightweight-effectiveness

3 Miller et al. (2010)
4 Van Rossum and Drake (2009)
5 Arnold et al. (2005)
6 https://gradle.org/

https://github.com/pwr-pbrwio/PBR20M2/blob/master/README.md
https://github.com/pwr-pbrwio/PBR20M2/blob/master/README.md
https://github.com/sealuzh/lightweight-effectiveness
https://gradle.org/
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problems during the process of creating mutation tests. For that reason we converted
the project to maven by generating a new pom file. In the generated pom file we
specified target and source version to be 1.9.
The last project that caused us problems was Opengrok. We resolved the issue by
installing necessary software present on the git repository. Furthermore, the build-
ing process had trouble with generating javadoc. The javadoc comments were not
necessary so we changed the pom settings to skip the generation process.

7.1.2 Fixing python script problems within the package

In order to complete the reproduction, a handful of python scripts has to be executed
in order as presented in the read me in git repository7. In process of recreating the
study, several issues has been found within them.
Script calculate_results.py8 was responsible for gathering all mutation scores of all
test cases into a csv file. In function of the same name (that is calculate_results), one
of operations required a path to a directory with mutation results. String representing
the path was not being created in a correct way, leading to finding no scores to gather.
This was fixed by changing the string creation.
Script aggregate_sources.py9 was responsible for combining data about mutation
scores with data on code metrics into a single file and dividing gathered data into sets
of good and bad tests. This script was placed in a different directory, than the one
mentioned in the read me. The function process_results which combined the data,
would in its first step check for the existence of different files and directories. Some
of the files (like test_readability.csv10 or source_readability.csv11) were not present
in the expected locations, which would lead to immediate halt of the script. This can
be solved in two ways, either modify the structure of the package and place all file
accordingly, or modify the code to accommodate for the different location. In the
process of recreation the first option was picked. Additionally it is important to note,
all files were present in the package, but their locations were different.
Script plots.py12 was responsible for creating plots after classification was complete.
Single problem with this script, was connected with a use of external service called
Plotly. In order to use it, in the script one has to provide credentials for their
account. Line of code, which authorises the user with given credentials was left with

7 https://github.com/sealuzh/lightweight-effectiveness

8 https://github.com/sealuzh/lightweight-effectiveness/blob/v1.0/
effectiveness/mutation/calculate_results.py

9 https://github.com/sealuzh/lightweight-effectiveness/blob/v1.0/
effectiveness/metrics/aggregate_sources.py

10 https://github.com/sealuzh/lightweight-effectiveness/blob/v1.0/metrics/
test_readability.csv

11 https://github.com/sealuzh/lightweight-effectiveness/blob/v1.0/metrics/
source_readability.csv

12 https://github.com/sealuzh/lightweight-effectiveness/blob/v1.0/
effectiveness/classification/plots.py

https://github.com/sealuzh/lightweight-effectiveness
https://github.com/sealuzh/lightweight-effectiveness/blob/v1.0/effectiveness/mutation/calculate_results.py
https://github.com/sealuzh/lightweight-effectiveness/blob/v1.0/effectiveness/mutation/calculate_results.py
https://github.com/sealuzh/lightweight-effectiveness/blob/v1.0/effectiveness/metrics/aggregate_sources.py
https://github.com/sealuzh/lightweight-effectiveness/blob/v1.0/effectiveness/metrics/aggregate_sources.py
https://github.com/sealuzh/lightweight-effectiveness/blob/v1.0/metrics/test_readability.csv
https://github.com/sealuzh/lightweight-effectiveness/blob/v1.0/metrics/test_readability.csv
https://github.com/sealuzh/lightweight-effectiveness/blob/v1.0/metrics/source_readability.csv
https://github.com/sealuzh/lightweight-effectiveness/blob/v1.0/metrics/source_readability.csv
https://github.com/sealuzh/lightweight-effectiveness/blob/v1.0/effectiveness/classification/plots.py
https://github.com/sealuzh/lightweight-effectiveness/blob/v1.0/effectiveness/classification/plots.py
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placeholder user information. This would lead to an error and was solved simply by
removing the line.

7.1.3 The issue unable to be solved

The process of generating mutation tests resulted in creating 26 csv files, each
file represented the specific mutation operation. Half of these files contained tests
classified as good ones, the other half contained tests classified as bad ones. The code
responsible for creating the model imported only the 2 of the 26 files which were
already present in the repository (one with good tests, the other one with bad tests).
Each of the generated files has the size of around 300 kB, while the 2 files used for
the training of the model have the size of around 400 kB each.
We do now know what causes the difference in the size. The problem with classifier
data was two fold. If data provided in the package was using only one mutation
operator, then we did not know which one that was and why our data sets had smaller
amount of entries. On the other hand, if their data includes all operators, the size of
our data set is significantly bigger. For that reason we were forced to stop our attempts
at reproducing the study by Grano et al. (2019).

7.2 Chosen Environment

We decided to use R programming language to prepare our own classification model,
because it provides useful Machine Learning libraries. We used mlr3 library to
create models and tune them. This library provides numerous objects that let the user
perform learning, re-sampling and analysing of Machine Learning models. There are
also many additional packages that can further extend functionalities provided by
mlr3.
The script we implemented creates three, each with different classification algorithm:
Random Forest, K-Nearest Neighbours and Support Vector Machine. The models are
tuned using Nested Cross Validation with 10 folds. We wanted to compare results of
our study to the results achieved by Grano et al. (2019). For that reason we chose the
same algorithms to create Machine Learning models.

7.3 Reproduction instructions

As our attempt at reproduction of aforementioned package was unsuccessful, this
meant that we could not improve on it either and created a separate one. Our package
was created from ground up, but with some use of scripts from Software Evolution
and Architecture Lab (2018). All of used scripts still reference the original author.
List of needed tools to recreate the process completely is as follows:
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• Ubuntu 18.04
• Maven 3.6.0
• Python 3.6 with pandas 1.0.4 package installed
• Java 1.8
• R 3.4.4 with pacman package installed

In order to reproduce our studies you need to clone our git repository. Then you need
to clone git repositories of the projects used in our studies into the projects folder.
The full list of used projects is listed in the projects.csv in our repository. However,
if you prefer you can use your own projects. In order for the package to work with
external projects, their names have to be added to the projects.csv as well.
In order to prepare the static code metrics, our fork of Ziobrowski (2020) has to be
used. It is available on this git repository13. Instructions on how to build and use
this tool are present on the repository page. After outputs from selected projects are
computed, .csv files with metrics have to be put into javametrics_outputs directory.
The next step is to build all the projects. To build the project you can open terminal in
the project’s root folder and use the command mvn clean install -DskipTests. Keep in
mind that all the projects must be build successfully. You need to resolve any issues
Yourselves and try to build the project again if the building process ends with failure.
Once the project is built successfully you should run unit tests with the command
mvn test -Dmaven.test.failure.ignore=true, which will also ignore failed tests.
In order to generate mutation tests and execute them, the same scripts were used, as
in Software Evolution and Architecture Lab (2018). All of them, are being executed
through our runExternalScipts.R, to stay in single environment. It is important to note,
that this script will take a considerable amount of time to complete. Outcome of this
script is mutationScoresGathered.csv, which holds mutation scores of all executed
tests. Alternatively, if any trouble would be met while executing this script, all of the
external scripts could be called individually in the following order:

• generate_script.py
• run_experiment_ALL.sh
• gatherMutations.py

In order to execute python scripts, the PYTHONPATH variable has to be set on
the root of the project. Additionally the bash script has to have it’s mode changed
to 777, as advised previously in Software Evolution and Architecture Lab (2018).
Both python scripts reside in python_scripts and the bash script is an outcome of the
generate_script.py.
The final step is to create the model. In order to do that you need to run the
preprocessing.R script in the r_scripts folder. The script will create the file clean-
Data.csv containing all the data prepared for machine learning. Finally you should run
basePipeline.R, which will train 3 models each with different classification algorithm:
K-Neighbours, Support Vector Machines and Random Forest. Created models are
saved in the folder saved_models and can be loaded into R environment.

13 https://github.com/michalpytka-pwr/JavaMetrics

https://github.com/michalpytka-pwr/JavaMetrics
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