
The Journal of Systems and Software 211 (2024) 112003

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

The impact of hard and easy negative training data on vulnerability
prediction performance✩

Fahad Al Debeyan a,∗, Lech Madeyski b,a, Tracy Hall a, David Bowes a

a School of Computing and Communications, Lancaster University, Lancaster, UK
b Department of Applied Informatics, Wroclaw University of Science and Technology, Wroclaw, Poland

A R T I C L E I N F O

Keywords:
Software vulnerability prediction
Vulnerability datasets
Machine learning

A B S T R A C T

Vulnerability prediction models have been shown to perform poorly in the real world. We examine how the
composition of negative training data influences vulnerability prediction model performance. Inspired by other
disciplines (e.g. image processing), we focus on whether distinguishing between negative training data that is
‘easy’ to recognise from positive data (very different from positive data) and negative training data that is ‘hard’
to recognise from positive data (very similar to positive data) impacts on vulnerability prediction performance.
We use a range of popular machine learning algorithms, including deep learning, to build models based on
vulnerability patch data curated by Reis and Abreu, as well as the MSR dataset. Our results suggest that models
trained on higher ratios of easy negatives perform better, plateauing at 15 easy negatives per positive instance.
We also report that different ML algorithms work better based on the negative sample used. Overall, we found
that the negative sampling approach used significantly impacts model performance, potentially leading to
overly optimistic results. The ratio of ‘easy’ versus ‘hard’ negative training data should be explicitly considered
when building vulnerability prediction models for the real world.
1. Introduction

The rapid adoption of technology in all aspects of our lives poses
major challenges to privacy and security. The National Vulnerability
Database (NVD) defines software vulnerabilities as a weakness in code
that, when exploited, results in a negative impact to confidentiality, integrity,
or availability of software systems.1 Current techniques to automatically
detect software vulnerabilities, such as static and dynamic analysis,
produce a high percentage of false positives and false negatives. For
example, Pixy (Jovanovic et al., 2006), one of the most cited static
analysers for vulnerability prediction, reports 48% false negatives.
Therefore, developers are looking for better solutions to automatically
detect software vulnerabilities in code (Johnson et al., 2013; Smith
et al., 2015).

One possible solution is to use machine learning to predict whether
areas of source code are likely to contain software vulnerabilities.
Software vulnerability prediction models rely on datasets that contain
instances of vulnerable code and other instances of non-vulnerable
code to learn what is associated with a piece of code being vulnerable.
In recent years, several software vulnerability prediction models have

✩ Editor: Dr. Hongyu Zhang.
∗ Corresponding author.
E-mail addresses: f.aldebeyan@lancaster.ac.uk (F. Al Debeyan), lech.madeyski@pwr.edu.pl (L. Madeyski), tracy.hall@lancaster.ac.uk (T. Hall),

bowesd2@lancaster.ac.uk (D. Bowes).
1 https://nvd.nist.gov/vuln

been published in the literature that show promising performance
levels (Zhou et al., 2019; Li et al., 2018, 2022; Sultana et al., 2021).
However, the performance of such models falls dramatically when
tested on real-world systems (Chakraborty et al., 2022). Chakraborty
et al. (2022) suggest the performance drop is a consequence of training
and evaluating vulnerability prediction models on datasets that do not
represent real-world scenarios. Such datasets may include duplicates,
include synthetic data, or are not labelled correctly (Chakraborty et al.,
2022). Previously (Al Debeyan et al., 2022) we re-evaluated several
vulnerability prediction models in the literature on a dataset collected
from GitHub projects and saw a similar performance drop. When we
investigated what the reason might be for such a drop, we found that
one main difference in the datasets used was the way the negative
sample was collected. While some datasets include entire projects in the
negative sample (e.g. Sultana et al. (2021)), other datasets only include
the fixed version of vulnerable methods (e.g. Liu et al. (2020), Li et al.
(2018)).

Unlike in software defect prediction, where datasets consist of an
entire project, vulnerability prediction datasets consist of multiple dif-
ferent projects with a subset of the codebase included in the negative
vailable online 20 February 2024
164-1212/© 2024 The Author(s). Published by Elsevier Inc. This is an open access a

https://doi.org/10.1016/j.jss.2024.112003
Received 14 July 2023; Received in revised form 14 December 2023; Accepted 10
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

February 2024

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
mailto:f.aldebeyan@lancaster.ac.uk
mailto:lech.madeyski@pwr.edu.pl
mailto:tracy.hall@lancaster.ac.uk
mailto:bowesd2@lancaster.ac.uk
https://nvd.nist.gov/vuln
https://doi.org/10.1016/j.jss.2024.112003
https://doi.org/10.1016/j.jss.2024.112003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2024.112003&domain=pdf
http://creativecommons.org/licenses/by/4.0/

The Journal of Systems & Software 211 (2024) 112003F. Al Debeyan et al.
Fig. 1. Image examples of a positive, a hard negative, and an easy negative associated with the word ‘‘bus’’.
sample (Gkortzis et al., 2018; Ponta et al., 2019; Fan et al., 2020). The
reason for not including the entire codebase in vulnerability prediction
datasets is that, due to the rarity of vulnerabilities, the percentage of
vulnerable code in projects can be as low as 0.1% in some projects.
The immense imbalance between vulnerable and non-vulnerable code
creates a challenge for vulnerability prediction models to learn from
the vulnerable sample. To address the imbalance issue, researchers use
datasets that exclude huge portions of the negative sample, resulting in
a test set that does not accurately represent a real-world scenario where
projects that include the entire negative sample are being evaluated.

The assembly of the negative sample and how the diversity of the
negative sample impacts predictive performance have been neglected
in vulnerability prediction. Other prediction domains have previously
explored the negative sample. In particular, the concept of ‘hard’ and
‘easy’ negatives is used in computer vision (Xuan et al., 2020). Fig. 1
shows an example of images associated with the word ‘‘bus’’, including
a positive, a hard negative and an easy negative.

Applying the same principle of including both hard and easy neg-
atives to software vulnerabilities, we consider vulnerable methods as
the positive sample. Hard negatives are methods similar to the positive
sample but are still considered negative (not vulnerable). There are
likely to be a range of different types of hard negatives in vulnerability
data. Currently these types of negative data have not been investigated
previously, but we propose that one type of hard negative is the
patched versions of vulnerable methods. These patched methods are
usually similar to the vulnerable version, except for the code changed
to fix the vulnerability. Random methods from the latest version of a
project where no known vulnerabilities have been identified are likely
to be easy negatives. This easy negative sample would include simple
methods such as getters and setters, as well as methods that have
minimum similarities to the vulnerable sample. Future work is needed
to uncover additional potential types of hard and easy negatives, and
to identify ways in which these negatives can be mined.

In this paper, we investigate how the performance of vulnerability
prediction models for real-world systems might be impacted by the
training data. In particular, we investigate the effect of different ap-
proaches to collecting the negative sample in datasets for training and
evaluating software vulnerability prediction models. Comparing two or
more vulnerability prediction models on test sets that do not reflect
the way models are used in practice may not be a fair comparison if
the negative sampling strategy has an effect on the performance of a
model.

We evaluate different machine learning models that predict soft-
ware vulnerabilities in datasets that use different approaches to collect
negative samples and we measure performance differences based on the
negative sampling strategy. To do so, we ran our experiments using
three vulnerability prediction models that showed promising results
in the literature. The first is by using AST n-grams, taken from our
previous work (Al Debeyan et al., 2022). The second model uses code
metrics that showed promising performance predicting software vulner-
abilities (Morrison et al., 2015; Sultana et al., 2021). he third model
is a deep learning model named LineVul (Fu and Tantithamthavorn,
2022). LineVul is a transformer-based vulnerability prediction model
that is known for its strong predictive abilities, with an F-measure
of 91%. A recent study by Steenhoek et al. (2023) took a fresh look
2

at multiple vulnerability prediction models, including LineVul, using
different datasets such as Devign (Zhou et al., 2019) and MSR (Fan
et al., 2020). LineVul stood out as the only model that consistently
delivered good performance, with an F-measure exceeding 60%, across
all the datasets. We also use AutoML (Feurer et al., 2015), a method to
automatically search for and select a machine learning model achieving
the highest performance measure for a given dataset. For each negative
sampling strategy, we apply AutoML to find the machine learning
model scoring the highest Matthews’s correlation coefficient (MCC), a
metric suitable for imbalanced datasets (Yao and Shepperd, 2020), to
assess whether the choice of model changes based on the choice of
negative sampling strategy. Finally, we measure how a model trained
on a dataset that only includes hard negatives performs when evaluated
on a dataset that only includes easy negatives and vice versa. Some
vulnerability prediction models in the literature (e.g. Li et al. (2018,
2022), Sultana et al. (2021)) are evaluated on datasets that only include
one type of negative instances. However, non-vulnerable code in the
real world is likely to contain a mixture of easy and hard negatives.

We aim to understand what makes a good negative sample in
software vulnerability datasets and we answer the following research
questions:

RQ1: Does the strategy of collecting negative samples affect the
performance of ML models?

We explore whether optimistic predictive performance is observed
in models using specific negative sampling strategies. We assemble
four types of datasets, each differing in the way the negative sam-
ple is collected. Each dataset is evaluated using a range of popular
machine learning classifiers (detailed in Section 3). We report the
highest-performing classifiers (Random Forest, Naïve Bayes, Support
Vector Machine, and Gradient Boosting). We report two other classifiers
which produced lower performances (k-Nearest Neighbour and Logistic
Regression) in our reproduction package (Al Debeyan, 2023).
RQ2: Does the strategy of collecting negative samples affect the
choice of the ML algorithm and/or hyperparameter tuning?

When researchers present a new vulnerability prediction model,
they often compare the performance of their model with other vulnera-
bility prediction models in the literature. In some cases, the models are
evaluated on different datasets where the negative sample is collected
using different strategies. The answer to RQ2 will assist in determining
whether the choice of machine learning algorithm changes depending
on the negative sampling strategy. If this is the case, it demonstrates
that the superior performance of one vulnerability prediction model
over another can be claimed only if both models are evaluated on a test
set that is representative of the real world. The way we have addressed
RQ2 is by using automated machine learning (AutoML), based on Auto-
Sklearn (Feurer et al., 2015), on four datasets that only differ in the
negative sampling strategy and by observing whether the model uses
the same algorithm and hyperparameter settings or not.
RQ3: How would a vulnerability prediction model trained on hard
negative methods perform in predicting easy negative methods?

There are vulnerability prediction models in the literature that are
evaluated on datasets that only include hard negatives (e.g. Li et al.
(2022, 2018)). But if such models are to be used in practice, they
must also be able to identify easy negatives. The answer to RQ3 will

The Journal of Systems & Software 211 (2024) 112003F. Al Debeyan et al.

v
a
l
w
i
t
o
t
t
p
u
w
L
s
h

2

2

w
(
d
s
m
s
t
c
f
d
d
a
c
p
t
s

s

help establish how a model trained on a dataset that only includes
hard negatives responds when faced with easy negatives. To address
RQ3, we trained an SVM model with code metrics, an SVM model
with AST n-grams, and a deep learning model named LineVul (Fu and
Tantithamthavorn, 2022) on datasets that include only hard negatives
and evaluated these models on instances of easy negatives to measure
if there is any performance difference.

RQ4: How would a vulnerability prediction model trained on easy
negative methods perform in predicting hard negative methods?

In software vulnerability prediction, some researchers use the code
base of an entire project as the dataset for evaluation (e.g. Sultana
et al. (2021), Fu and Tantithamthavorn (2022)). Doing so can result
in a negative sample that is almost entirely easy negatives. For exam-
ple, Sultana et al. (2021) evaluated their proposed model on Apache
CXF where there are 45 vulnerability fixes out of 26,366 negative
methods. That means that less than 0.2% of the negative sample is
hard negatives. The answer to RQ4 will help us understand how a
model that is only trained on easy negatives would perform predict-
ing hard negatives. To answer RQ4, we trained a Gradient Boosting
model with code metrics, a Random Forest model with AST n-grams,
and LineVul (Fu and Tantithamthavorn, 2022) on a dataset that only
included easy negatives and evaluated these models on instances of
hard negatives to measure the change in performance.
RQ5: What ratio of positives/easy negatives in the training set
provides the highest performance on test sets that include entire
projects? As described in Section 1, including the entire codebase in a
ulnerability prediction dataset introduces a great challenge for vulner-
bility prediction models to learn from vulnerable instances due to the
arge imbalance between vulnerable and non-vulnerable instances. To
ork around this problem, we reduce the size of the negative sample

n the training set while keeping all negative instances in the test set. If
he negative sampling strategy does have an effect on the performance
f the vulnerability prediction model, RQ5 will provide insight into
he ratio of positives to easy negatives to include in the training set
hat will yield the highest MCC when the model is evaluating entire
rojects, a scenario that is more realistic of how programmers would
se vulnerability prediction models in the real world. To answer RQ5,
e trained three types of models (AST n-grams, code metrics, and
ineVul) on training sets of different ratios of positive to easy negative
amples and tested on a test set that includes the full set of easy and
ard negatives.

. Background

.1. Software vulnerability prediction

Software vulnerabilities have been said to be a subset of soft-
are defects (Shin and Williams, 2008). However, Morrison et al.

2015) showed that using the same model features from defect pre-
iction models to predict vulnerabilities does not always achieve the
ame performance level. Morrison et al. suggest that model features
ust be revisited to achieve acceptable performance, possibly through

ecurity-specific metrics. Shin and Williams (2008) published one of
he first papers that uses a logistic regression model to identify code
omplexity features that differentiate vulnerable functions and faulty
unctions. Shin and Williams found that vulnerable functions have
istinctive characteristics compared to non-vulnerable functions. The
istinctive features are particularly related to nested complexity. Shin
nd Williams also report that predicting vulnerabilities from source
ode using complexity metrics is a feasible approach with low false
ositives but still misses many vulnerabilities. Another difference is
he way datasets are curated between software defect prediction and
oftware vulnerability prediction.

Although software vulnerability prediction can be considered a
ubset of software defect prediction, the datasets used for vulnerability
3

prediction are different from the datasets used for defect prediction
with respect to the negative sample. In defect prediction, the nega-
tive sample usually includes the entire project’s code base. However,
in vulnerability prediction, due to the low number of vulnerabilities
in projects, vulnerability prediction datasets are usually assembled
to include vulnerable instances collected from multiple projects. The
negative sample in vulnerability prediction datasets is usually either
collected from vulnerability fixes (e.g. Li et al. (2018, 2022)), or from
a small sample of clean methods (e.g. Chakraborty et al. (2022)). In this
paper, we study whether the type of negative samples in vulnerability
prediction datasets has an effect on the performance of models.

Many vulnerability prediction models that use code metrics as
features rely on conventional machine learning classifiers such as Ran-
dom Forest, Naïve Bayes, SVM, and others (Shin and Williams, 2008,
2013; Sultana et al., 2021). Conventional machine learning models
are suitable when independent variables can be identified as opposed
to using deep learning techniques where models do not necessarily
rely on predefined independent variables (Janiesch et al., 2021). When
the order of neighbouring elements in the data is important, such
as in natural language processing, it becomes a challenge to identify
meaningful independent variables to be used for conventional machine
learning (Janiesch et al., 2021). In our previous work, we proposed
using Abstract Syntax Tree (AST) n-grams (i.e. sets of Java AST nodes
that define the low-level programming constructs used, as well as their
order) as independent variables for a random forest model to predict
software vulnerabilities (Al Debeyan et al., 2022). Our approach first
transforms ASTs into a sequence of nodes. Then, we extract n-grams
for the node sequences and use the n-grams as independent variables.
The benefit of using AST n-grams as independent variables is that AST
n-grams produce a dataset that contains clearly defined independent
variables while holding valuable information about adjacent tokens
and their order from ASTs which can be useful in identifying software
vulnerabilities that spread across multiple adjacent AST tokens (Al De-
beyan et al., 2022). In this paper, we collect static code metrics,
which is a common approach followed by other researchers (Shin and
Williams, 2013; Sultana et al., 2021), as well as AST n-grams, proposed
in our recent paper (Al Debeyan et al., 2022), to produce software
vulnerability datasets to answer the research questions posed.

Deep learning has assisted in making significant progress in software
vulnerability prediction in recent years. The most recent cutting-edge
models, such as SySeVR (Li et al., 2022) and LineVul (Fu and Tan-
tithamthavorn, 2022), have achieved F1 scores of more than 90%.
LineVul is a transformer-based function-level vulnerability prediction
model with exceptional predictive performance (F-measure of 91%
[9]). Steenhoek et al. (2023) have re-evaluated many vulnerability pre-
diction models, including LineVul, using a range of datasets (including
Devign (Zhou et al., 2019) and MSR (Fan et al., 2020)). In all datasets
utilised by Steenhoek et al. (2023), LineVul was the only model that
consistently achieved acceptable performance (> 60% F-measure). In
this paper, we include LineVul because of these outstanding results.

2.2. The quality of vulnerability prediction datasets

Chakraborty et al. (2022) evaluated a selection of datasets used in
some state-of-the-art software vulnerability prediction models such as
VulDeePecker (Li et al., 2018), SySeVR (Li et al., 2022), Russell et al.
(2018) and Devign (Zhou et al., 2019). Chakraborty et al. asked ‘‘how
well do the state-of-the-art DL-based techniques perform in a real-world
vulnerability prediction scenario?’’ and reported that the performance
of the state-of-the-art models dropped by more than 50% on average
compared to the results reported by the original papers. Chakraborty
et al. investigated what causes such a precipitous performance drop
and found that existing vulnerability prediction datasets suffer from
multiple challenges, such as containing synthetic data, being labelled
using a static analyser, or containing a balanced ratio of vulnerable to

non-vulnerable instances, which the authors suggest does not represent

The Journal of Systems & Software 211 (2024) 112003F. Al Debeyan et al.

t
a
h
i
t
f
e
p

2

o
e
a
e
o
m
w
t
r
h
m
i
2
(
t
(
T
t
p
s
p
t
a
a
l
p
o
t
d
a
f

m
m
t
v
e

Fig. 2. Example of a vulnerable method (positive), a vulnerability fix (hard negative) and a random clean method (easy negative).
k

he real world. When a vulnerability prediction model is evaluated on
dataset, it is crucial that the test set represents the real world to

ave any hope of achieving similar performance results when the model
s deployed in real settings. In this paper, we measure the change in
he performance of vulnerability prediction models on test sets that
ollow different negative sampling strategies, including a test set of
ntire projects, which is a more realistic scenario of how vulnerability
rediction models would be used.

.3. The quality of negative sample

Classifiers are commonly used in machine learning applications to
rganise data into predefined classes or categories automatically. For
xample, a classifier might be trained on a dataset of animal images
nd used to predict which type of animal is in a new image (Valletta
t al., 2017). A classifier typically works by learning the characteristics
f each class from a training dataset and using that information to
ake predictions on new data. To demonstrate, for a classifier to learn
hat represents a cat, the dataset has to contain instances of images

hat represent a cat (positive sample), as well as images that do not
epresent a cat (negative sample). The quality of the negative sample
as been studied in a variety of machine learning domains such as
edicine (Liang et al., 2020), bioinformatics (Cheng et al., 2017),

mage processing (Robinson et al., 2020; Fan et al., 2022; Xuan et al.,
020) and video moment localisation (Zheng et al., 2022). Liang et al.
2020) evaluated the prediction of drug side effects with a refined nega-
ive sample selection strategy that uses the Random Walk with Restart
RWR) algorithm to find drugs with low probabilities of side effects.
hese drugs are then included in the negative sample. Liang et al. found
hat the refined strategy produces significantly higher performance in
redicting drug side effects. Cheng et al. (2017) studied the effect of
electing high-quality negative samples on the efficiency of predicting
rotein-RNA interactions and reported an accuracy improvement of up
o 204%. Xuan et al. (2020) argue that in computer vision, previous
pproaches in the literature do not focus on hard negatives, which
re negative images that are similar to the positive sample, as they
ead to bad local minima early on in training. However, Xuan et al.
ropose a simple modification to a standard loss function to fix bad
ptimisation behaviour with hard negative examples and demonstrate
hat the modification improves the current state-of-the-art results on
atasets with high intra-class variance. Similar to the work done in the
forementioned fields, we study the effect of the negative sample in the
ield of software vulnerability prediction.

Fig. 2 shows a vulnerable method on the top left, a hard negative
ethod on the top right, which is a patched version of the vulnerable
ethod, and an easy negative method on the bottom. We can see that

he patched version of the vulnerable method matches the vulnerable
ersion in 31 of 33 lines of code, being harder to differentiate than an
4

asy negative method. m
2.4. Automated machine learning

Automated Machine Learning (AutoML) has recently received sig-
nificant attention, and its state-of-the-art is (to a large extent) captured
in recent surveys by He et al. (2021) and Talbi (2020). AutoML is the
process of automating multiple machine learning tasks, such as pre-
processing, model selection, and hyperparameter optimisation (Feurer
et al., 2015). Therefore, it can be used to find an optimised tuned
machine learning algorithm, decreasing the expertise required by its
user. Given a dataset, an AutoML system can recommend a pipeline
(sequence of tasks) to solve a machine-learning problem. Using AutoML
enables us to establish whether the machine learning algorithm and
hyperparameters vary according to different negative sampling strate-
gies. We take advantage of a Python package named Auto-Sklearn that
implements the principles of AutoML in a Python environment.

3. Methodology

This section describes the methodology to answer the research
questions posed in three parts. First, we describe how we gathered eight
different datasets (four AST n-grams datasets and four code metrics
datasets) to answer RQ1 (see Section 3.1). The second part concerns
applying AutoML to our datasets to answer RQ2 (see Section 3.2).
Finally, in Section 3.3, we describe the methodology of how we apply
appropriate splits to the datasets to answer RQ3 and RQ4.

3.1. Dataset gathering

To gather real-world samples of software vulnerabilities along with
hard negatives and easy negatives, we took advantage of a vulnerability
patch database published by Reis and Abreu (2021). The vulnerability
patch database contains a list of software vulnerability patches on
GitHub that include the CVE ID,2 the project GitHub link, and the patch
commit ID for various programming languages. Due to the maturity
of Java code metrics tools compared to other languages, as well as
the compatibility of the AST parser we used, the first step we took
was to filter the vulnerability patches to include only those related
to the Java programming language. After that, we used the commit
ID from the project GitHub repository to identify the files that were
changed to patch the vulnerability. From the changed files, we collect
the changed Java methods. The version of the method before the
commit is considered vulnerable, whereas the version after the commit
is considered fixed or hard negative. We were able to collect 7165
vulnerable methods. To collect easy negative samples, we consider the
latest version of each of the projects included in the dataset as the

2 Common Vulnerabilities and Exposures unique identifiers for publicly
nown vulnerabilities in publicly released software packages. https://cve.
itre.org/.

https://cve.mitre.org/
https://cve.mitre.org/

The Journal of Systems & Software 211 (2024) 112003F. Al Debeyan et al.
Fig. 3. The process of collecting vulnerable and non-vulnerable methods from Git fix commits.
Table 1
Distribution of vulnerable, hard negative and easy negative methods for the datasets
used in the paper.

Dataset Vulnerable Hard negative Easy negative

N-grams 6515 6467 3,236,762
Metrics 2836 2827 4,771,803
MSR 10,900 10,900 2,706,845

version that contains no known vulnerabilities. We randomly collected
a sample of these versions and considered them easy negatives. Fig. 3
shows the full process of extracting vulnerable methods, vulnerability
fixes, and random clean methods. Section 4 explains how we extract
AST n-grams and software code metrics from all the methods collected.

To evaluate LineVul, we use the MSR (Fan et al., 2020) dataset
used in LineVul’s original paper (Fu and Tantithamthavorn, 2022). The
MSR dataset is one of the largest vulnerability datasets. The dataset
is collected from 348 open-source Github projects, which includes 91
different CWEs from 2002 to 2019, 188,636 C/C++ functions with a
ratio of vulnerability functions of 5.7% (i.e., 10,900 vulnerable func-
tions), and 5,060,449 LOC with a ratio of vulnerable lines of 0.88%
(i.e., 44,603 vulnerable lines). While the MSR contains vulnerability
fixes, LineVul’s original evaluation does not include vulnerability fixes
in the training and testing sets. To collect the clean methods from
the latest versions of Git repositories, we follow the same approach in
Fig. 3.

Table 1 shows the distribution of vulnerable, hard negative and easy
negative methods for each dataset after removing duplicates. It is worth
noting that the slight difference in the number of vulnerable and hard
negative methods is due to multiple vulnerable methods having the
same fixed version.

To study the effect of the negative sampling strategy on the perfor-
mance of vulnerability prediction models, we collected four types of
datasets, each with a different negative sampling strategy:
Only Hard Negatives: In addition to positive (vulnerable) methods,
only includes hard negative methods (vulnerability fixes). The ratio of
positive to hard negative to easy negative instances is 1:1:0.
One-to-One: A dataset that, in addition to positive (vulnerable) meth-
ods, includes one hard negative, as well as one easy negative (random
clean) method for every positive (vulnerable) method. The ratio of
positive to hard negative to easy negative instances is 1:1:1.
One-to-Five: A dataset that, in addition to positive (vulnerable) meth-
ods, includes one hard negative, as well as five easy negative methods
for every positive method. The ratio of positive to hard negative to
easy negative instances is 1:1:5. We specifically chose to include 5 easy
negatives for every positive instance because we examined all projects
5

included in the datasets and found the project with the lowest ratio of
positive to easy negative instances was Jenkins3 with a ratio of 1:5.
Only Easy Negatives: In addition to positive (vulnerable) methods,
includes five easy negative methods for each positive method. The ratio
of positive to hard negative to easy negative instances is 1:0:5.

We chose these four types of negative sampling strategies based on
their use in the literature (Zhou et al., 2019; Li et al., 2018, 2022;
Chakraborty et al., 2022). The NVD dataset (used in VulDeePecker (Li
et al., 2018) and SySeVR (Li et al., 2022)) only includes hard nega-
tives. ReVeal (Chakraborty et al., 2022) includes hard negatives and a
subset of easy negatives (similar to One-to-One or One-to-Five) while
Devign (Zhou et al., 2019) and Sultana et al. (2021) use datasets that
include a subset of easy negatives (similar to Only Easy Negatives).
The four types examine the models’ behaviour across different ratios
of hard and easy negatives. We publish all datasets used in this paper
in our reproduction package (Al Debeyan, 2023) as wider adoption
of reproducible research would be beneficial for empirical software
engineering research (Madeyski and Kitchenham, 2017).

3.1.1. AST n-grams
We followed the process in our previous work (Al Debeyan et al.,

2022) to convert Java methods into AST n-grams. For each Java
method, we first parse the corresponding AST. After that, we traverse
through the AST nodes using a depth-first search to get an AST node
sequence. Finally, we transform the AST node sequence to n-grams
where 0<n≤3. We eliminate instances where the AST does not change
between the vulnerable method and its fix for two reasons. The first
reason is to remove vulnerable methods where the change does not
affect the behaviour of the method, like adding comments or changing
variable names. The second reason is that we would eliminate instances
where they were labelled non-vulnerable but were later found to be
vulnerable. We also remove duplicates as they can produce overly
optimistic performance measures (Chakraborty et al., 2022). The to-
tal number of vulnerable methods in the AST n-grams datasets after
removing duplicates and conflicts was 6515.

3.1.2. Code metrics
To gather code metrics for our Java dataset, we rely on the Under-

stand4 tool to collect 26 method-level metrics. The 26 code metrics are
listed and defined in the online appendix included in our reproduction
package (Al Debeyan, 2023). Similarly to what we did with AST n-
grams, we removed conflicting instances and duplicates where the
code metrics do not change between a vulnerable method and its fix.
The total number of vulnerable methods in the code metrics datasets

3 https://www.jenkins.io/
4 https://www.scitools.com/features/

https://www.jenkins.io/
https://www.scitools.com/features/

The Journal of Systems & Software 211 (2024) 112003F. Al Debeyan et al.
Fig. 4. The process of AutoML to automatically find the ML-tuned model with highest performance.
after removing duplicates and conflicts was 2836. There were fewer
vulnerable methods in the code metrics datasets than in the AST n-
grams because there were instances where the AST changed between a
vulnerable method and its fix while there was no change in the metrics.

3.2. Automated machine learning

It is common practice in the field of vulnerability prediction to
compare the performance of a proposed machine learning model with
other state-of-the-art models in the literature (Zhou et al., 2019; Li
et al., 2018, 2022; Chakraborty et al., 2022). However, models in the
literature do not always follow the same negative sampling strategy.
This section describes how we use AutoML to investigate whether the
choice of machine learning algorithm remains the same throughout the
four types of datasets we gather discussed in Section 3. If the ma-
chine learning algorithm changes depending on the negative sampling
strategy, we can conclude that a comparison between models in the
literature may not be reliable unless the negative sampling strategy for
all models is the same.

Fig. 4 shows the methodology of how we used AutoML to find
the model with the highest performance for each dataset. In the first
step, we split the dataset into a training set, which is given to Au-
toML as input, and a test set to evaluate the model produced by
AutoML. Following other researchers (Shu et al., 2022), we split the
dataset 85:15 where 85% of the dataset is the training set, and 15%
is the test set. Next, we run AutoML using the training set perform-
ing a 5-fold cross-validation on the training set to automatically find
the machine learning model with the highest MCC. AutoML performs
cross-validation on 16 different machine learning classifiers with hy-
perparameter tuning and returns the model that achieves the highest
performance. The list of machine learning classifiers and their hyper-
parameters supported by AutoML are listed in the online appendix
included in our reproduction package (Al Debeyan, 2023). We then test
the model produced on our test set and report the performance of that
model. It is important to note that the test set is never seen by AutoML
during the comparison process. We isolate the test set to increase the
generalising capability of the models.

3.3. Cross-evaluation

Part of our work in this paper is to investigate how a model that is
trained on one type of negative sample behaves when tested on another
type of negative sample (RQ3 and RQ4). To perform such experiments,
we split the samples in our dataset into three different types: positive
sample, hard negative sample, and easy negative sample as described in
Section 3.1. After that, we split the positive sample 85:15, where 85%
of the positive sample is used for training and 15% for testing. Then,
we train two different models, one that is trained on the hard negative
sample along with 85% of the positive sample, and another that is
trained on the easy negative sample along with 85% of the positive
sample. Finally, we test the first model on easy negative samples along
with 15% of the positive sample, and we test the second model on hard
negative samples along with 15% of the positive sample. The choice of
6

the machine learning algorithm and hyperparameter tuning for each
model is based on AutoML’s highest MCC model for the matching
training dataset. Fig. 5 shows the cross-evaluation process.

To answer RQ5, we collect all vulnerable methods in every project
included in the dataset along with all hard negative (vulnerability fix)
methods as well as all easy negative methods. Collecting every method
would ensure we include the entire set of methods for each of the
three types. Typically, in a real-world scenario where a vulnerability
prediction model would be used to examine an entire project for
vulnerabilities, the model would have to analyse every method in the
project where each method would fall under one of the three types
(vulnerable, hard or easy negative).

After collecting the real-world dataset, we split the dataset 85%
for training and 15% for testing. The test set remains the same for
all models while we run AutoML using different ratios of positives to
easy negatives to asses which ratio results in the best performance on
the real-world test set. We also run AutoML with the same ratios but
without hard negatives to measure the effect of adding hard negatives
in the training set. We include ratios starting with a training set with
no easy negatives (1:0) and increasing the ratio by one up to 20
easy negatives for every vulnerable method (1:20). We implement the
process for AST N-grams and software code metrics resulting in 84
training sets and two real-world test sets. With every training set, we
run AutoML on the training set, performing a 5-fold cross-validation
and finding the algorithm and hyperparameters that achieve the highest
MCC. Using the trained model selected by AutoML, we reevaluate
the model on the real-world test set and report the Precision, Recall,
F-measure and MCC.

3.4. Performance measures

We compare performance levels using two measures, F-measure
and Matthews correlation coefficient (MCC). We report the F-measure
due to its prominence in other vulnerability prediction models in the
literature. However, Yao and Shepperd (2020) suggest not using F-
measure when evaluating models on imbalanced datasets. Yao et al.
showed that when dealing with imbalanced datasets, MCC is suitable
for handling such cases. Since all our datasets are imbalanced, we
include MCC in our evaluation. We also include Precision, Recall and
AUC in our reproduction package (Al Debeyan, 2023).

Precision, Recall, F-measure and MCC rely on true positives (TP),
true negatives (TN), false positives (FP) and false negatives (FN).

Precision, Recall and F-measure are defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = TP
TP + FP 𝑅𝑒𝑐𝑎𝑙𝑙 = TP

TP + FN 𝐹1 = 2 × Precision × Recall
Precision + Recall

Matthews correlation coefficient is defined as:

𝑀𝐶𝐶 = TP × TN − FP × FN
√

(TP + FN)(TP + FP)(TN + FN)(TN + FP)

3.5. Statistical analysis

To measure the statistical significance of the difference in perfor-
mance between models, we calculate the effect size using Cliff’s 𝛿 (Cliff,
1993). Cliff’s 𝛿 is non-parametric and suggested by Kitchenham et al.

The Journal of Systems & Software 211 (2024) 112003F. Al Debeyan et al.
Fig. 5. The process of training a model using one negative sampling strategy and testing on the other.
Table 2
Performance results in both Python and R (in brackets) for 8 datasets.
Metric Dataset Random forest Naïve Bayes SVM Gradient boosting

F-measure

N-grams Only Hard 0.73 (0.68) 0.59 (0.61) 0.56 (0.58) 0.61 (0.56)
N-grams 1–1 0.70 (0.63) 0.32 (0.32) 0.09 (0.04) 0.26 (0.28)
N-grams 1–5 0.70 (0.57) 0.34 (0.33) 0.10 (0.04) 0.21 (0.24)
N-grams Only Easy 0.82 (0.79) 0.49 (0.47) 0.59 (0.56) 0.57 (0.53)

Metrics Only Hard 0.46 (0.47) 0.29 (0.58) 0.67 (0.49) 0.51 (0.46)
Metrics 1–1 0.38 (0.33) 0.15 (0.43) 0.00 (NaN) 0.19 (0.20)
Metrics 1–5 0.31 (0.23) 0.00 (0.34) 0.00 (NaN) 0.11 (0.06)
Metrics Only Easy 0.71 (0.68) 0.01 (0.43) 0.01 (0.55) 0.63 (0.61)

MCC

N-grams Only Hard 0.46 (0.36) −0.03 (0.01) −0.03 (−0.01) 0.13 (0.07)
N-grams 1–1 0.57 (0.47) 0.11 (0.11) 0.01 (0.00) 0.18 (0.16)
N-grams 1–5 0.66 (0.54) 0.22 (0.21) 0.12 (0.05) 0.23 (0.23)
N-grams Only Easy 0.80 (0.76) 0.38 (0.36) 0.56 (0.53) 0.54 (0.49)

Metrics Only Hard −0.08 (−0.08) 0.00 (0.01) 0.00 (0.00) 0.00 (0.01)
Metrics 1–1 0.10 (0.09) 0.00 (0.18) −0.02 (0.00) 0.06 (0.09)
Metrics 1–5 0.22 (0.17) 0.02 (0.25) 0.00 (0.00) 0.10 (0.08)
Metrics Only Easy 0.66 (0.64) 0.05 (0.39) 0.04 (0.52) 0.59 (0.57)
for small sample sizes (Kitchenham et al., 2017). The effect size |𝛿| >
0.428 is considered large, 0.276 ≤ |𝛿| < 0.428 is medium, 0.112 ≤ |𝛿| <
0.276 is small, and |𝛿| < 0.112 is negligible.

4. Evaluation and analysis

In this paper, we investigate the effect of the negative sampling
strategy on the performance of software vulnerability prediction models
to answer the following research questions:
RQ1: Does the strategy of collecting negative samples affect the
performance of ML models?

Table 2 shows the performance of four machine learning classifiers
based on the datasets collected. We chose to evaluate a Random Forest
(RF) model, a Naïve Bayes model, a Support Vector Machines (SVM)
model and a Gradient Boosting Machine (GBM) model. We decided
to choose these models due to their wide use in machine learning
and specifically vulnerability prediction (Chakraborty et al., 2022;
Sultana et al., 2021). To answer RQ1, we are not looking for the
highest-performing model but rather studying the difference in model
performance based on the negative sampling strategy. For that reason,
we used the default hyperparameters for each model in the Python
package Scikit-learn5 and the default hyperparameters in the R package
mlr3 (Lang et al., 2019). The default hyperparameters between the two

5 https://scikit-learn.org/stable/
7

packages differ which can result in a difference in the performance of
the same machine learning algorithm.

The results in Table 2 show that for F-measure, the model performs
best 4 out of 8 times when we include easy negatives and exclude hard
negatives from the dataset using Scikit-learn and 4 out of 8 times when
using mlr3. However, as we describe in Section 3.4, MCC provides
a better comparison measurement due to the nature of the datasets
having different vulnerable to non-vulnerable ratios. For MCC, the
model performs best for all models in both scikit-learn and mlr3 when
we include only easy negatives in the dataset. Also, in most cases, the
model performs worst in MCC when the dataset only includes hard
negatives without including easy negatives. These results are in line
with our expectation as it would be harder for a model to distinguish
between a positive (vulnerable) method and a hard negative (vulnera-
bility fix) since the two methods would have a lot of similarities, with
the exception of a small change to fix the vulnerability (as illustrated
in Fig. 2).

Table 3 shows the effect size and statistical significance of the results
in Table 2. To calculate the effect size, we define the baseline as the
dataset that includes only hard negatives and compare the results of
the remainder of the datasets to the baseline. For each of the machine
learning models, we can see that there exists at least one dataset that
has a large effect size (|𝛿| ≥ 0.428) with a 𝑝-value < 0.05. The results
from Tables 2 and 3 lead to the finding labelled Finding 1. Other
performance measures such as precision, recall and area under the
curve (AUC) are reported in our reproduction package (Al Debeyan,
2023).

https://scikit-learn.org/stable/

The Journal of Systems & Software 211 (2024) 112003F. Al Debeyan et al.
Table 3
Effect size (Cliff’s 𝛿) and 𝑝-value for the difference in performance compared to the baseline datasets (N-grams only hard and metrics only hard).

Metric Dataset Random forest Naïve Bayes SVM Gradient boosting

F-measure

N-grams 1–1 Lg** Lg** Lg** Lg**
N-grams 1–5 Lg** Lg** Lg** Lg**
N-grams Only Easy Lg** Lg** Lg** Lg**

Metrics 1–1 Lg** Sm*** Lg** Lg**
Metrics 1–5 Lg** Md*** Lg** Lg**
Metrics Only Easy Lg** Ng*** Lg** Lg**

MCC

N-grams 1–1 Lg** Lg** Lg* Lg**
N-grams 1–5 Lg** Lg** Lg** Lg**
N-grams Only Easy Lg** Lg** Lg** Lg**

Metrics 1–1 Lg** Sm*** Ng*** Lg**
Metrics 1–5 Lg** Md*** Sm*** Lg**
Metrics Only Easy Lg** Lg* Lg** Lg**

Effect Size: Large(Lg) |𝛿| ≥ 0.428, Medium (Md) 0.276 ≤ |𝛿| < 0.428,
Small (Sm) 0.112 ≤ |𝛿| < 0.276, Negligible (Ng) |𝛿| < 0.112
* Statistical Significance: p < 0.05
** Statistical Significance: p < 0.01
*** Statistical Significance: p ≥ 0.05
Table 4
Highest MCC machine learning algorithm per dataset.

Dataset Model F-measure MCC

N-grams Only Hard SVM 0.69 0.50
N-grams 1–1 K-Nearest Neighbour 0.70 0.59
N-grams 1–5 K-Nearest Neighbour 0.69 0.67
N-grams Only Easy Random Forest 0.82 0.80

Metrics Only Hard SVM 0.39 0.13
Metrics 1–1 Extra Trees 0.62 0.39
Metrics 1–5 Gradient Boosting 0.56 0.51
Metrics Only Easy Gradient Boosting 0.81 0.77

Finding 1: The negative sampling strategy significantly affects
the performance of machine learning models that perform
software vulnerability prediction. A model that performs well
on one negative sampling strategy may not achieve the same
performance results when evaluated on datasets that use other
negative sampling strategies.

RQ2: Does the strategy of collecting negative samples affect the
choice of the ML model and/or hyperparameter tuning?

To answer RQ2, using the same eight datasets gathered to answer
RQ1, we used the Python package Auto-sklearn.6 Auto-sklearn is a
Python implementation of AutoML. For each dataset, we ran Auto-
sklearn for 10 h, performing cross-validation and comparing MCC to
find the model with the highest performance. We set the memory limit
to 4 GB and used 10 threads. We ran all Auto-ML experiments on The
High-End Computing facility at Lancaster University. Table 4 shows the
results of AutoML on the eight datasets gathered.

For AST n-grams datasets, we see that an SVM model scored the
highest MCC for the dataset that includes only hard negatives, while a
random forest model scored the best MCC on the dataset with only easy
negatives. For AST n-gram datasets that included a mixture of easy and
hard negatives (1–1 and 1–5), K-Nearest Neighbour models scored the
best MCC. For code metric datasets, an SVM model was selected as the
highest performing for the dataset including only hard negatives. For
the dataset where there is 1 easy negative and 1 hard negative for every
positive instance, extra trees was the selected model, while a Gradient
Boosting model scored the highest MCC for the dataset including 1 hard
negative and 5 easy negatives as well as the dataset that only includes
easy negatives. These results lead to the finding labelled Finding 2.

6 https://automl.github.io/auto-sklearn/master/
8

Finding 2: The model and/or hyperparameter tuning for
software vulnerability prediction with the highest perfor-
mance changes depending on the negative sampling strategy.
Therefore, we can confirm that the superior performance
of one vulnerability prediction model over another can be
claimed only in a scenario that matches the ratio of easy/hard
negatives in the test set.

RQ3: How would a vulnerability prediction model trained on hard
negative methods perform in predicting easy negative methods?
RQ4: How would a vulnerability prediction model trained on easy
negative methods perform in predicting hard negative methods?

We address RQ3 and RQ4 together because they both assess the
performance change when the training set and the evaluation set follow
different negative sampling strategies. From Tables 2 and 4, we can
see that the more easy negatives are added to the data set, the better
a model performs in predicting software vulnerabilities. Some models
in the literature use datasets that only include hard negatives (vulner-
ability fixes) in their datasets (Li et al., 2018, 2022). However, when
such models are used in practice, they need to successfully identify easy
negatives as well, which are examples on which the model was not
trained. It is important to study how a model performs when trained
on hard negatives and evaluated on easy negatives and vice versa, how
a model performs when trained on easy negatives and evaluated on the
hard ones.

To answer RQ3 and RQ4, we separated instances in AST n-grams
and code metrics representations into three different types: positive,
hard negative, and easy negative instances. We followed the process
described in Section 3.3 to create two training sets and two test sets for
each representation. After that, we use the model selected by AutoML
depending on the negative sampling strategy. For LineVul, we train the
model on a training set that includes one type of negative instances and
evaluate the model on a test set that includes the other type of negative
instances. We reproduced the results of LineVul on the original MSR
dataset to ensure LineVul is set up correctly. Table 5 shows the precision,
recall, and F-measure reported by LineVul compared to our reproduction
results. Our reproduction results are within a 2% difference compared
to the original paper in general.

Table 6 shows the results when the models are trained on hard
negatives and evaluated on easy negatives.

For AST n-grams, the SVM model was tuned based on the AutoML
results for the dataset containing only hard negatives. The F-measure
dropped from 0.76 in Table 4 to 0.07. MCC also dropped from 0.52 to
0.03. For code metrics, the SVM model was also tuned based on the

https://automl.github.io/auto-sklearn/master/

The Journal of Systems & Software 211 (2024) 112003F. Al Debeyan et al.

a
m
c
0
B
d
0
m
0

Table 5
LineVul reproduction on the original dataset (MSR).

Original results Reproduced results

Precision Recall F1 Precision Recall F1

0.97 0.86 0.91 0.96 0.88 0.92

Table 6
F-measure and MCC when model is trained on hard negatives and tested on easy
negatives.

Dataset Model F-measure MCC

N-grams SVM 0.07 0.03

Metrics SVM 0.05 −0.05

MSR LineVul 0.01 0.02

Table 7
F-measure and MCC when model is trained on easy negatives and tested on hard
negatives.

Dataset Model F-measure MCC

N-grams Random Forest 0.25 0.07

Metrics Gradient Boosting 0.14 −0.06

MSR LineVul 0.68 0.22

AutoML results for the dataset containing only hard negatives. The F-
measure for the code metrics dataset dropped from 0.39 to 0.05. MCC
also dropped from 0.13 to −0.05. For LineVul, F-measure dropped from
0.92 to 0.01, while MCC dropped from 0.92 to 0.02. These results lead
to the finding labelled Finding 3.

Finding 3: The performance of a vulnerability prediction
model trained on hard negatives drops when evaluated on easy
negatives. This means that a model that is only trained on hard
negatives may not be suitable for use in practice.

Table 7 shows the results when models are trained on easy negatives
nd evaluated on hard negatives. For AST n-grams, a random forest
odel was tuned based on the results of AutoML for the dataset

ontaining only easy negatives. The F-measure dropped from 0.82 to
.25, and MCC dropped from 0.79 to 0.03. For code metrics, a Gradient
oosting model was tuned based on the results of AutoML for the
ataset containing only easy negatives. The F-measure dropped from
.81 to 0.14, and MCC dropped from 0.77 to −0.06. For LineVul, F-
easure dropped from 0.92 to 0.68, while MCC dropped from 0.92 to
.22. These results lead to the finding labelled Finding 4.

Finding 4: The performance of a vulnerability prediction
model trained on easy negatives drops when evaluated on hard
negatives. This means that a model that is only trained on
easy negatives may not be suitable to use in scenarios where
all methods are prone to vulnerabilities (vulnerable or hard
negatives).

RQ5: What ratio of positives/easy negatives in the training set
provides the highest performance on test sets that include entire
projects? To answer RQ5, using the dataset collected that includes
methods from entire projects, we used Auto-sklearn on training sets
with different positive to easy negative ratios. We ran Auto-sklearn for
10 h on each model, setting the memory limit to 20 GB and using 5
threads.

Fig. 6 shows the precision and recall of the six types of models (AST
N-grams with hard negatives, AST N-grams without hard negatives,
9

Metrics with hard negatives, Metrics without hard negatives, LineVul
with hard negatives, and LineVul without hard negatives) evaluated on
three test sets that represent entire projects. For precision, we see that
for all six types of models, precision is at its lowest when the training set
only includes hard negatives. Precision increases as we add more easy
negatives in the training set. On the other hand, recall tends to be more
stable throughout different easy negative ratios with a slight decrease
with the exception of training sets with no easy negatives where the
three models (N-grams, metrics and LineVul) have completely different
behaviour.

Fig. 7 shows the F-measure and MCC of the six types of models.
In all six types of models, we see a trend where both F-measure
and MCC increase as the positive to easy negative ratio decreases
reaching a plateau when the easy negative ratio is 1:15. For AST N-
grams and LineVul, we see models trained on datasets that include
hard negatives have better F-measure and MCC compared to models
trained on datasets without hard negatives. On the other hand, for
code metrics, while all models perform poorly in terms of F-measure
and MCC, models trained on datasets without hard negatives perform
slightly better in both F-measure and MCC. it is worth noting that as we
decrease the ratio of positives to easy negatives from 1:1 to 1:20, we
create a larger imbalance ratio between the positive and the negative
samples. We have incorporated the oversampling technique known as
SMOTE as well as Random Over-Sampling (ROS) on the N-grams and
metrics models on all training sets twice, once while including hard
negatives and once without hard negatives. While SMOTE is a well-
known oversampling technique, Yang et al. (2023) report that ROS
results in the best increase in performance for vulnerability prediction
models. Our findings indicate that neither SMOTE nor ROS had a
positive impact on the models’ performance when compared to models
without oversampling. These results have been included in our online
appendix included in our reproduction package (Al Debeyan, 2023).
The results in Figs. 6 and 7 lead to Finding 5 and Finding 6.

Finding 5: As the ratio of positive to easy negatives decreases
in the training set, the precision of a vulnerability prediction
model increases, resulting in an overall increase in F-measure
and MCC reaching a plateau at the ratio 1:15. This means
that models perform best assessing entire projects when the
number of easy negatives in the training set is 15 times the
number of vulnerable instances.

Finding 6: Although the code metrics used in this paper
reached acceptable performance levels on some vulnerability
prediction datasets (see Table 4), these metrics models per-
formed poorly when evaluated on a test set that represents
entire projects. This means that models should be evaluated on
test sets representing entire projects before deciding whether
they are suitable to be used by developers.

5. Discussion

Our goal was to answer the five research questions posed in Sec-
tion 1 related to the effects of different strategies to collect negative
samples in datasets used to train and evaluate software vulnerability
prediction models.

Our results suggest that the strategy of selecting a negative sample
strongly affects the performance of ML models (RQ1 and Finding 1),
as well as the choice of the highest performing ML models and their
hyperparameters whose values control the learning process (RQ2 and
Finding 2).

Despite the effect that the negative sampling strategy seems to

have on performance, to the best of our knowledge, the effect of the

The Journal of Systems & Software 211 (2024) 112003F. Al Debeyan et al.
Fig. 6. Precision and recall of AST N-grams and code metrics models trained on datasets with different numbers of easy negatives for every positive instance.
Fig. 7. F-measure and MCC of AST N-grams and code metrics models trained on datasets with different numbers of easy negatives for every positive instance.
negative sampling strategy has not been studied previously. Therefore,
to analyse the effect even further, in subsequent research questions, we
analysed how vulnerability prediction models trained on hard negative
methods perform in predicting easy negative methods (RQ3), as well
as the opposite, i.e. how vulnerability prediction models trained on
easy negative methods perform in predicting hard negative methods
(RQ4). This analysis enabled a better understanding of the impact that
different strategies have on the performance of the models, especially
in settings that are different from the ones in which the models were
trained. We also try to explain the observation by Chakraborty et al.
(2022) that the performance of state-of-the-art models drops in a real-
world vulnerability prediction scenario. We found (see Findings 3 and
4) that the performance of vulnerability prediction models trained on
one kind of negative sample (easy or hard negatives) drops when
evaluated on another kind of negative sample (hard or easy nega-
tives, respectively). The drop in performance is also highlighted by
Chakraborty et al. when pre-trained models were evaluated on a new
dataset. The pre-trained models were trained on datasets with negative
samples that contained different distributions of hard vs. easy negatives
compared to the evaluation dataset. Further research is needed to fully
explain the phenomena observed by Chakraborty et al. (2022).

Knowing the influence of the negative sampling technique on vul-
nerability prediction model performance (Finding 1), we evaluated
alternative ratios of easy negatives in the training set that provide the
best performance in a more realistic scenario of assessing entire projects
(RQ5). We discovered that, up to a point, the more easy negative
samples in the training set, the better the model performs on a test
set that represents entire projects. However, the performance advan-
tage reaches a point where increasing the size of the easy negative
sample yields no performance gain (Finding 5). We also demonstrated
10

the importance of evaluating models on test sets that include entire
projects’ code base to ensure the models’ adequacy for use in real-world
scenarios (Finding 6).

Summary of Findings 1-6: The findings of our study show
that the strategy of selecting a negative sample has non-
negligible effects not only on the performance of machine
learning models but also on the selection of the models (in-
cluding their hyperparameters) and external validity of the
vulnerability prediction models, i.e., how they perform in
different (e.g., real-world) settings and applications.

Implication of Findings 1-6: A vulnerability prediction
model’s superior performance in one dataset does not necessar-
ily translate into a similar advantage in real-world scenarios.
Vulnerability prediction models should only be recommended
for use in practice if they perform well on a test set replicating
the ratio of easy to hard negative instances found in real-world
scenarios.

We suggest that different negative sampling strategies can serve
different purposes depending on what researchers are trying to achieve.
For example, when a vulnerability prediction model is trained on a
dataset that only includes easy negatives, i.e., random methods from
projects, the model performs well predicting vulnerability-prone meth-
ods without differentiating between the vulnerable or the fixed version
of the method. This kind of prediction can be useful for developers
to narrow down the search space and manually examine the method
to establish whether it contains the necessary checks to prevent a
vulnerability. On the other hand, vulnerability prediction models that

The Journal of Systems & Software 211 (2024) 112003F. Al Debeyan et al.

S
l
n
s
p
t
p

d
t
s
a
n

7

7

c
m
c
b
f
l
l
v

m
c
d
o
l
c
m
w
m

w
t
a
n
w
m
n
t
o

are trained on a dataset which only includes hard negatives, i.e. the
fixed version of vulnerable methods, are useful for developers when
they already know a method is vulnerability-prone and want to au-
tomatically assess whether the method includes the necessary checks
to prevent the vulnerability. We suggest that fellow researchers eval-
uate vulnerability prediction models on a test set that includes entire
projects while training the model on training sets that include different
ratios of easy/hard negatives to maximise the performance of the model
in a real-world setting.

6. Related work

To our knowledge, measuring the effect of the strategy to collect
the negative sample on vulnerability prediction models has not been
previously studied or discussed in the literature. Even in the more
mature field of defect prediction, we could not find papers that discuss
the impact of the negative sample. The reason is that in defect predic-
tion, researchers mainly evaluate models on an entire project due to
the larger sample size of defects compared to vulnerabilities. For that
reason, defect prediction datasets would include both hard and easy
negatives by default.

Chakraborty et al. studied the characteristics of software vulnera-
bility datasets used in the literature for vulnerability prediction
(Chakraborty et al., 2022). Chakraborty et al. discussed the issue of
existing datasets being balanced where only vulnerability fixes are
included (hard negatives). They mitigate the balanced dataset problem
by adding clean methods that were not related to vulnerabilities (easy
negatives) by including all unchanged methods in a fix commit. We
suggest that doing so is a better approach than only including vul-
nerability fixes. However, methods that are not changed in one fix
commit can be labelled as vulnerable in later fix commits, and that
would create conflicts in the dataset. We suggest that sampling the
easy negatives from the projects’ latest versions where there are no
known vulnerabilities eliminates conflicting instances in the dataset.
Moreover, Chakraborty et al. re-evaluated multiple vulnerability pre-
diction models in the literature on their dataset which fixes multiple
issues with current datasets such as containing synthetic data, being
balanced or labelled using a static analyser. However, the re-evaluation
did not address to what extent each of the issues raised contributes to
the decrease in performance.

Croft et al. (2023) studied data quality in vulnerability predic-
tion datasets. Croft et al. examined four state-of-the-art vulnerability
prediction datasets and inspected the labelling accuracy, uniqueness
of instances, consistency of labels and completeness of code in each
dataset. Croft et al. report that 20%–71% of labels were inaccurate
in real-world datasets, and 17%–99% of data points were duplicated.
Although the work done by Croft et al. is essential to the quality of
vulnerability datasets, they only address the quality of the positive
sample. Our work complements the work of Croft et al.

Garg et al. (2022) proposed a new approach to train vulnerability
prediction models using Realistic Training Data Settings. In contrast to
Clean Training Data Settings, where the component’s labelling informa-
tion (vulnerable/non-vulnerable) is always available regardless of time,
Realistic Training Data Settings require only vulnerability labels that
are available at training time to be used for training the prediction
models. For instance, in Realistic Training Data Settings, at a given
time t, only the vulnerabilities known at time t should be available
for training. Although the model presented by Garg et al. showed
promising MCC levels, the model only works on a file level rather than
a method level leaving security engineers with a larger search area to
further inspect.

VulDeePecker is one of the state-of-the-art vulnerability prediction
models (Li et al., 2018). The model achieves promising prediction per-
formance, reaching an F-measure of 86.6% and 95% predicting buffer
error vulnerabilities and memory management vulnerabilities, respec-
tively. However, as Chakraborty et al. report, the datasets used to eval-
11

uate the model contain up to 80% of duplicate instances (Chakraborty
et al., 2022). Such duplicates create bias in model evaluation since the
model is tested on instances it has already been trained on. Moreover,
after we examined the datasets, we found that the datasets only in-
clude vulnerability fixes (hard negatives) which makes the evaluation
results not generalisable to real-world scenarios. When VulDeePecker
was re-evaluated on a dataset more representative of a real-world
scenario, the model plummeted in performance to an F-measure of 12%
(Chakraborty et al., 2022). Other state-of-the-art models in the litera-
ture, such as SySeVR (Li et al., 2022), Russell et al. (2018), and Zhou
et al. (2019) have all suffered a similar drop in performance when
evaluated on a dataset more representative of real-world scenarios.

Sultana et al. (2021) presented a vulnerability prediction model that
uses code metrics to predict software vulnerabilities in Java projects.
The model was evaluated on Tomcat,7 Apache CXF8 and Stanford
ecuriBench9 achieving an F-measure between 75% and 85%. However,
ooking at the datasets used for evaluation, the percentage of hard
egatives is between 0.17% and 1.43%. As the results in this paper
uggest, these low percentages of hard negatives can over-optimise the
erformance results of vulnerability prediction models compared to
he results they may achieve when deployed and used to assess entire
rojects.

Yang et al. (2023) assessed the impact of data sampling for the
ata imbalance problem in deep learning-based vulnerability predic-
ion models. While Yang et al. found that oversampling techniques,
pecifically random oversampling, improve the performance of vulner-
bility prediction models, our experiments with oversampling showed
o advantage over using original datasets.

. Threats to validity

.1. Internal validity

Multi-function Vulnerabilities At times, a software vulnerability
an affect multiple methods instead of just one. Some of these methods
ay not be vulnerable when used individually. Since we consider all

hanged methods in a fix commit to be vulnerable, such methods would
e labelled as vulnerable in the process. One way to overcome multi-
unction vulnerabilities is to change the level of granularity to the
evel of a file instead of a method. We suggest that using method-
evel granularity has more benefits than the drawback of multi-method
ulnerabilities.
Refactoring Non-vulnerable Methods We gathered vulnerable

ethods for our dataset by tracing changed methods from GitHub
ommits that fixed vulnerabilities. However, during a vulnerability fix,
evelopers may change the structure of methods by adding comments
r changing the names of variables. Such methods should not be
abelled as vulnerable as they are not related to the vulnerability the
ommit fixes. To eliminate such methods, we only include the changed
ethods that differ in their ASTs before and after the fix. Because the
ay we parse the AST disregards variable names and comments, such
ethods not related to the vulnerability are minimised in our dataset.
Contaminated Easy Negatives To gather the easy negative sample,

e consider the methods from the latest version of each project in
he dataset as easy negatives since the latest version does not contain
ny known vulnerabilities. When doing so, vulnerability fixes (hard
egatives) would automatically be included in the sample as well,
hich contaminates the easy negative sample. However, when we
anually checked the percentage of hard negatives to the overall
umber of methods in the latest version of each project, we found that
he number is less than 2% and, therefore, would not have a great effect
n the results. Furthermore, in this paper, we focus on one type of hard

7 https://tomcat.apache.org/
8 https://cxf.apache.org/
9
 https://suif.stanford.edu/~livshits/securibench/stats.html

https://tomcat.apache.org/
https://cxf.apache.org/
https://suif.stanford.edu/~livshits/securibench/stats.html

The Journal of Systems & Software 211 (2024) 112003F. Al Debeyan et al.
negatives (vulnerability fixes). We realise that there can be other types
of methods that can be classified as hard negatives. Future work should
focus on techniques to identify and extract other types of hard negative
methods.

7.2. External validity

Randomness of AutoML The AutoML model we used relies on
random model selection and model configurations over a specified
period of time. The random element of AutoML means that for every
run, AutoML has a different order for model selection and tuning. For
that reason, we chose to run AutoML for 10 h on each dataset using 10
threads, which is 50 times the resources set as the default. Moreover,
the purpose of the AutoML experiments was not to find the absolute
best tuning for each dataset but rather to show that the choice of model
and tuning changes depending on the strategy of the negative sampling
used.

8. Conclusion

We evaluated the effect of the negative sampling strategy in datasets
on the performance of vulnerability prediction models. We gathered
four types of datasets using two different code representations (code
metrics and AST), making a total of eight datasets that differ in the
way the negative sample is collected. We then evaluated four ma-
chine learning classifiers on the datasets to measure the difference in
performance based on the negative sampling strategy. We found that
the negative sampling strategy seems to affect the performance of a
machine learning model predicting software vulnerabilities. We also
ran AutoML on all eight datasets to examine if the highest-performing
machine learning algorithm changes based on the negative sampling
strategy. We found that the choice of the machine learning algorithm
changes based on the negative sampling strategy used in a dataset. We
also showed that a model that is trained on hard negatives does not
perform as well predicting easy negatives and vice versa. Finally, we
showed that, up to a certain level, models perform better in a real-
world setting when they are trained on datasets that include higher
ratios of easy negatives. Our findings suggest that researchers should
evaluate vulnerability prediction models on test sets that represent
entire projects to decide the fitness of the model to be used in practice.

CRediT authorship contribution statement

Fahad Al Debeyan: Conceptualization, Data curation, Methodol-
ogy, Resources, Software, Writing – original draft, Writing – review
& editing. Lech Madeyski: Data curation, Methodology, Supervision,
Validation, Writing – review & editing. Tracy Hall: Conceptualization,
Methodology, Supervision, Writing – review & editing. David Bowes:
Methodology, Writing – review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Lech Madeyski reports financial support was provided by Engineering
and Physical Sciences Research Council (EPSRC).

Data availability

I have shared the link to the replication package that includes the
data.

Acknowledgements

Lech Madeyski worked on the paper during his research internship
12

at Lancaster University at the invitation of Prof. Tracy Hall. Lech
Madeyski was partially funded by an Engineering and Physical Sciences
Research Council (EPSRC), UK grant EP/S005730/1. Calculations in R
have been carried out using resources provided by Wroclaw Centre for
Networking and Supercomputing (http://wcss.pl), grant No. 578.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.jss.2024.112003.

References

Al Debeyan, F., 2023. Reproduction package for the paper ‘‘The Impact of Hard and
Easy Negative Training Data on Vulnerability Prediction Performance’’. Zenodo,
http://dx.doi.org/10.5281/zenodo.8426023.

Al Debeyan, F., Hall, T., Bowes, D., 2022. Improving the performance of code
vulnerability prediction using abstract syntax tree information. In: Proceedings
of the 18th International Conference on Predictive Models and Data Analytics in
Software Engineering. In: PROMISE 2022, Association for Computing Machinery,
New York, NY, USA, pp. 2–11.

Chakraborty, S., Krishna, R., Ding, Y., Ray, B., 2022. Deep learning based vulnerability
detection: Are we there yet? IEEE Trans. Softw. Eng. 48 (9), 3280–3296.

Cheng, Z., Huang, K., Wang, Y., Liu, H., Guan, J., Zhou, S., 2017. Selecting high-quality
negative samples for effectively predicting protein-RNA interactions. BMC Syst. Biol.
11 (2), 9.

Cliff, N., 1993. Dominance statistics: Ordinal analyses to answer ordinal questions.
Psychol. Bull. 114 (3), 494.

Croft, R., Babar, M.A., Kholoosi, M.M., 2023. Data quality for software vulnera-
bility datasets. In: 2023 IEEE/ACM 45th International Conference on Software
Engineering. ICSE, IEEE, pp. 121–133.

Fan, J., Li, Y., Wang, S., Nguyen, T.N., 2020. A C/C++ code vulnerability dataset
with code changes and CVE summaries. In: Proceedings of the 17th International
Conference on Mining Software Repositories. MSR ’20, Association for Computing
Machinery, New York, NY, USA, pp. 508–512. http://dx.doi.org/10.1145/3379597.
3387501.

Fan, Z., Wei, Z., Li, Z., Wang, S., Huang, X.-J., Fan, J., 2022. Negative sample is
negative in its own way: Tailoring negative sentences for image-text retrieval.
In: Findings of the Association for Computational Linguistics. NAACL 2022, pp.
2667–2678.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.,
2015. Efficient and robust automated machine learning. In: Advances in Neural
Information Processing Systems, vol. 28, pp. 2962–2970.

Fu, M., Tantithamthavorn, C., 2022. Linevul: A transformer-based line-level vulnera-
bility prediction. In: Proceedings of the 19th International Conference on Mining
Software Repositories. pp. 608–620.

Garg, A., Degiovanni, R., Jimenez, M., Cordy, M., Papadakis, M., Le Traon, Y., 2022.
Learning from what we know: How to perform vulnerability prediction using noisy
historical data. Empir. Softw. Eng. 27 (7).

Gkortzis, A., Mitropoulos, D., Spinellis, D., 2018. Vulinoss: a dataset of security
vulnerabilities in open-source systems. In: Proceedings of the 15th International
Conference on Mining Software Repositories. pp. 18–21.

He, X., Zhao, K., Chu, X., 2021. AutoML: A survey of the state-of-the-art. Knowl.-Based
Syst. 212, 106622.

Janiesch, C., Zschech, P., Heinrich, K., 2021. Machine learning and deep learning.
Electron. Mark. 31 (3), 685–695.

Johnson, B., Song, Y., Murphy-Hill, E., Bowdidge, R., 2013. Why don’t software
developers use static analysis tools to find bugs? In: 2013 35th Intern Confer on
Software Engineering. ICSE, IEEE, pp. 672–681.

Jovanovic, N., Kruegel, C., Kirda, E., 2006. Pixy: A static analysis tool for detecting
web application vulnerabilities. In: 2006 IEEE Symposium on Security and Privacy.
S&P’06, IEEE, p. 6.

Kitchenham, B., Madeyski, L., Budgen, D., Keung, J., Brereton, P., Charters, S., Gibbs, S.,
Pohthong, A., 2017. Robust statistical methods for empirical software engineering.
Empir. Softw. Eng. 22, 579–630.

Lang, M., Binder, M., Richter, J., Schratz, P., Pfisterer, F., Coors, S., Au, Q., Casalic-
chio, G., Kotthoff, L., Bischl, B., 2019. mlr3: A modern object-oriented machine
learning framework in R. J. Open Source Softw.

Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Chen, Z., 2022. SySeVR: A framework for using
deep learning to detect software vulnerabilities. IEEE Trans. Dependable Secure
Comput. 19 (4), http://dx.doi.org/10.1109/TDSC.2021.3051525.

Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., Zhong, Y., 2018. VulDeeP-
ecker: A deep learning-based system for vulnerability detection. In: Network and
Distributed Systems Security (NDSS) Symposium. San Diego, CA, USA.

Liang, H., Chen, L., Zhao, X., Zhang, X., 2020. Prediction of drug side effects with a
refined negative sample selection strategy. Comput. Math. Methods Med. 2020.

Liu, S., Lin, G., Han, Q.-L., Wen, S., Zhang, J., Xiang, Y., 2020. DeepBalance: Deep-
learning and fuzzy oversampling for vulnerability detection. IEEE Trans. Fuzzy Syst.
28 (7), 1329–1343.

http://wcss.pl
https://doi.org/10.1016/j.jss.2024.112003
http://dx.doi.org/10.5281/zenodo.8426023
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb2
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb2
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb2
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb2
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb2
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb2
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb2
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb2
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb2
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb3
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb3
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb3
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb4
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb4
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb4
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb4
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb4
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb5
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb5
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb5
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb6
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb6
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb6
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb6
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb6
http://dx.doi.org/10.1145/3379597.3387501
http://dx.doi.org/10.1145/3379597.3387501
http://dx.doi.org/10.1145/3379597.3387501
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb8
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb8
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb8
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb8
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb8
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb8
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb8
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb9
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb9
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb9
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb9
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb9
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb10
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb10
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb10
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb10
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb10
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb11
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb11
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb11
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb11
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb11
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb12
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb12
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb12
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb12
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb12
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb13
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb13
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb13
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb14
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb14
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb14
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb15
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb15
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb15
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb15
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb15
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb16
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb16
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb16
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb16
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb16
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb17
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb17
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb17
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb17
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb17
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb18
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb18
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb18
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb18
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb18
http://dx.doi.org/10.1109/TDSC.2021.3051525
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb20
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb20
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb20
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb20
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb20
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb21
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb21
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb21
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb22
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb22
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb22
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb22
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb22

The Journal of Systems & Software 211 (2024) 112003F. Al Debeyan et al.
Madeyski, L., Kitchenham, B., 2017. Would wider adoption of reproducible research be
beneficial for empirical software engineering research? J. Intell. Fuzzy Systems 32
(2), 1509–1521. http://dx.doi.org/10.3233/JIFS-169146.

Morrison, P., Herzig, K., Murphy, B., Williams, L., 2015. Challenges with applying
vulnerability prediction models. In: Proceedings of the 2015 Symposium and
Bootcamp on the Science of Security. HotSoS ’15, Association for Computing
Machinery, New York, NY, USA.

Ponta, S.E., Plate, H., Sabetta, A., Bezzi, M., Dangremont, C., 2019. A manually-curated
dataset of fixes to vulnerabilities of open-source software. In: 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories. MSR, IEEE, pp. 383–387.

Reis, S., Abreu, R., 2021. A ground-truth dataset of real security patches. CoRR,
abs/2110.09635.

Robinson, J., Chuang, C.-Y., Sra, S., Jegelka, S., 2020. Contrastive learning with hard
negative samples. arXiv preprint arXiv:2010.04592.

Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer, J., Ozdemir, O., Ellingwood, P.,
McConley, M., 2018. Automated vulnerability detection in source code using deep
representation learning. In: 2018 17th IEEE International Conference on Machine
Learning and Applications. ICMLA, IEEE, pp. 757–762.

Shin, Y., Williams, L., 2008. An empirical model to predict security vulnerabilities using
code complexity metrics. In: Proceedings of the Second ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement. ESEM ’08,
Association for Computing Machinery, New York, NY, USA, pp. 315–317.

Shin, Y., Williams, L., 2013. Can traditional fault prediction models be used for
vulnerability prediction? Empir. Softw. Eng. 18 (1), 25–59.

Shu, R., Xia, T., Williams, L., Menzies, T., 2022. Dazzle: using optimized generative
adversarial networks to address security data class imbalance issue. In: Proceedings
of the 19th International Conference on Mining Software Repositories. pp. 144–155.

Smith, J., Johnson, B., Murphy-Hill, E., Chu, B., Lipford, H.R., 2015. Questions devel-
opers ask while diagnosing potential security vulnerabilities with static analysis.
In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. pp. 248–259.

Steenhoek, B., Rahman, M.M., Jiles, R., Le, W., 2023. An empirical study of deep
learning models for vulnerability detection. In: 2023 IEEE/ACM 45th International
Conference on Software Engineering. ICSE, IEEE, pp. 2237–2248.

Sultana, K.Z., Anu, V., Chong, T.-Y., 2021. Using software metrics for predicting
vulnerable classes and methods in java projects: A machine learning approach.
J. Softw. Evol. Process 33 (3), e2303, e2303 smr.2303.

Talbi, E.-G., 2020. Optimization of deep neural networks: a survey and unified
taxonomy. working paper or preprint, URL https://hal.inria.fr/hal-02570804.

Valletta, J.J., Torney, C., Kings, M., Thornton, A., Madden, J., 2017. Applications of
machine learning in animal behaviour studies. Anim. Behav. 124, 203–220.
13
Xuan, H., Stylianou, A., Liu, X., Pless, R., 2020. Hard negative examples are hard, but
useful. In: European Conference on Computer Vision. Springer, pp. 126–142.

Yang, X., Wang, S., Li, Y., Wang, S., 2023. Does data sampling improve deep
learning-based vulnerability detection? yeas! and nays! In: 2023 IEEE/ACM 45th
International Conference on Software Engineering. ICSE, IEEE, pp. 2287–2298.

Yao, J., Shepperd, M., 2020. Assessing software defection prediction performance:
Why using the matthews correlation coefficient matters. In: Proceedings of the
Evaluation and Assessment in Software Engineering. pp. 120–129.

Zheng, M., Huang, Y., Chen, Q., Liu, Y., 2022. Weakly supervised video moment
localization with contrastive negative sample mining. In: Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 1. p. 3.

Zhou, Y., Liu, S., Siow, J., Du, X., Liu, Y., 2019. Devign: Effective vulnerability
identification by learning comprehensive program semantics via graph neural
networks. Adv. Neural Inf. Process. Syst. 32.

Fahad Debeyan: Fahad, currently pursuing a Ph.D. in computer science at Lancaster
University, specialises in the field of software engineering. His primary research focus
centres on code analysis, with a strong emphasis on identifying and predicting software
vulnerabilities. His particular interest lies in leveraging machine learning techniques for
the prediction of these vulnerabilities.

Lech Madeyski: Is an Associate Professor and Deputy Head of the Department of
Applied Informatics at Wroclaw University of Science and Technology. Dr. Madeyski
is interested in industry-relevant research, focused on finding novel solutions to real
problems within software engineering and empirical evaluation of the proposed ap-
proaches via statistical methods. His research focuses on empirical software engineering,
artificial intelligence and machine learning in software engineering (e.g., software
defect/vulnerability prediction, code smell detection), reproducible research, and robust
statistical methods.

Tracy Hall: Is a Professor in Software Engineering at Lancaster University, UK.
Professor Hall’s main research interests are in the analysis of code and the detection,
prediction and repair of defects and vulnerabilities in code. She is particularly interested
in automatic approaches to defect and vulnerability repair. Her interests also include
software testing and the human factors in relation to the developers producing code. In
particular, the errors developers make that result in faults and vulnerabilities in code.

David Bowes: Previously a Senior Lecturer in the School of Computing and Communi-
cations at Lancaster University. Dr Bowes researches Software Engineering techniques
for real world industrial application.

http://dx.doi.org/10.3233/JIFS-169146
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb24
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb24
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb24
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb24
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb24
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb24
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb24
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb25
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb25
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb25
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb25
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb25
http://arxiv.org/abs/2110.09635
http://arxiv.org/abs/2010.04592
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb28
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb28
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb28
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb28
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb28
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb28
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb28
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb29
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb29
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb29
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb29
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb29
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb29
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb29
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb30
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb30
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb30
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb31
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb31
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb31
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb31
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb31
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb32
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb32
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb32
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb32
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb32
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb32
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb32
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb33
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb33
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb33
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb33
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb33
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb34
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb34
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb34
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb34
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb34
https://hal.inria.fr/hal-02570804
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb36
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb36
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb36
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb37
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb37
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb37
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb38
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb38
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb38
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb38
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb38
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb39
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb39
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb39
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb39
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb39
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb40
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb40
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb40
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb40
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb40
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb41
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb41
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb41
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb41
http://refhub.elsevier.com/S0164-1212(24)00046-3/sb41

	The impact of hard and easy negative training data on vulnerability prediction performance
	Introduction
	Background
	Software Vulnerability Prediction
	The Quality of Vulnerability Prediction Datasets
	The Quality of Negative Sample
	Automated Machine Learning

	Methodology
	Dataset Gathering
	AST n-grams
	Code Metrics

	Automated Machine Learning
	Cross-Evaluation
	Performance Measures
	Statistical Analysis

	Evaluation and Analysis
	Discussion
	Related Work
	Threats to Validity
	Internal Validity
	External Validity

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A. Supplementary data
	References

