

Chapter 9

How to Improve Linking Between Issues and
Commits for the Sake of Software Defect

Prediction?

1. Introduction

Bug predictions and defect predictions can save a lot of money which
otherwise would be spent on bug fixes. Commit logs and bug reports are very
often not linked with each other [1] although those links can provide very
valuable information which can help in software defect predictions and project
evolution. According to bugs prone – by counting the number of bug reports
that are matched with them. For the project evolution, those links can generate
defect data – for example the number of defects related to various classes in a
project. As a result, it is possible to develop defect prediction models for soft-
ware projects, e.g., [3, 4, 5].

The other problem is misclassification between bugs and non-bugs –
many issues which are classified as ’bugs’ refer to maintenance, refactoring or
enhancements. Regarding to one of the reports regarding how misclassification
impacts bug prediction [1] this problem is very common. Authors of the article
[1] have conducted a manual examination of more than 700 issue reports of
five open source projects. Their result revealed that 33,8% bug reports were
misclassified – being not code fixes, but rather new features, refactorings or
documentation updates. There are many simple approaches in matching links
with issues, mainly based on simple textual matching. However, there are also
three promising approaches (ReLink, MLink and RCLinker) which are based
on repository changes and features extraction from bugs and issue trackers

Tomasz Gawęda, Ewa Nestorowicz, Oskar Wołk, Lech Madeyski and Marek Majchrzak,
“How to Improve Linking Between Issues and Commits for the Sake of Software Defect
Prediction?” in Software Engineering: Improving Practice through Research (B.
Hnatkowska and M. Śmiałek, eds.), pp. 147–162, 2016.

148 Software Engineering: Improving Practice through Research

metadata. One of the approaches (RCLinker) is based on the machine learning
too which is described in the section below.

In Section 2 we have described those three approaches to link issues
with commits. Defect Prediction in Software Systems (DePress) [6] Extensible
Framework allows building workflows in graphical manner. DePress is based
on the KNIME project. The main aim of the DePress Framework is the support
for empirical software analysis. It allows collecting, combining and analysing
data from various data sources like software repositories or software metrics.

Our work provides the following contributions:
1) We wanted to find a way to link effectively commit logs and bug re-

ports. That is why we have decided to use modified by us RCLinker ap-
proach. To achieve this, we have decided to use Defect Prediction in
Software Systems and implement our approach of the RCLinker algo-
rithm as a new node in the workflow. We used machine learning too.

2) To validate and check our approach we have tested it on the three pro-
jects – two open source projects by Pivotal Software: Spring Data Redis,
Spring OSGi and the proprietary commercial project provided by Cap-
gemini.

3) The RClinker approach uses metadata and textual features. We have
proposed new features based on the JIRA metadata to check if they will
improve the results.

2. Related Work

There are many approaches to linking issues with commit. We have re-
viewed literature using snowball sampling, described by Wohlin in [7]. De-
scriptions of the relevant articles are presented in the subsequent subsections.

2.1. ReLink: recovering links between bugs and changes

ReLink [8] is the simplest algorithm on which we will base our work.
Traditional approaches for linking issues with commits presuppose that devel-
opers are on three properties:

 How to Improve Linking Between Issues and Commits ... 149

1) Time interval – it is a time difference between commit date and issue
modification date. After each fix, developer must update issue in track-
ing system, so the time difference will be small.

2) Issue owner and commit author – if issue owner is the same as commit
author, this issue is probably connected with the commit

3) Text similarity – commit message should be similar to the issue descrip-
tion if they are linked. To normalize text in issue and commit message,
ReLink uses the following techniques: removing stop-words, stemming
and using synonyms – for example, change "additional" to "extra".

ReLink has a "learning" phase. To learn its model we must follow these

steps:
1) Assign a very small value to time interval.

(a) Assign a very small value to the text similarity threshold.
(b) Discover links with traditional heuristics for given time interval and

similarity threshold, then count number of discovered links and then
calculate F-measure using metrics like "Percent of commits that fixes
bugs" (more possibilities are below).

(c) Increase text similarity threshold a little bit
(d) Repeat steps 3 to 4 until we reach a maximum value of threshold

2) Increase time interval a little bit.
3) Repeat steps 3 to 6 until we reach a maximum value of time interval.
4) Choose threshold for two "properties" with the highest F-measure.
5) Return threshold and time interval.

To start discovering new connections, we must run two algorithms to

get proper criteria and then ReLink will "learn" these criteria. After that, Re-
Link checks links that fulfils criteria. After checking all links, ReLink returns
its list.

ReLink discovers up to 26% more links than the traditional approach
[8]. It is often used with the following metrics: percent of commits that fixes
bugs, percent of files with defects and average time of bug fixing.

150 Software Engineering: Improving Practice through Research

2.2. MLink: multi-layered approach for recovering links between bug reports
and Fixes

MLink [9] is a multi-layered approach to automatically recover issue
links. In comparison to ReLink, it is not only based on the terms-linking
method but it checks the changes in the code repository too and tries to link
them with the issues metadata.

MLink uses cascading layers – each layer has a detector with its own set
of textual and code features. The layers’ input is a filtered set of the candidate
links which comes from the previous layer – it means that each detector can be
used as a filter. It reduces the amount of the links and passes the set to the next
layer. Layers which have filters with higher levels of confidence on accurate
detection are applied at earlier levels.

This model consists of six detectors:
1) Pattern-based detector – this is similar to ReLink approach – issues

metadata and commits logs messages are checked if they contain some
typical patterns such as ’fix the issue ...’, ’fix the bug ID...’ etc.

2) Filtering layer – the remaining links from the previous layer are ana-
lyzed if they violate time constraint – it means that the commit time for
the fix must be between open and close time of the corresponding issue.

3) Patch-based detector – it extracts the patch code recommended by the
bug reporters or people who have mentioned it in the issues comments.

4) Name-based detector – it detects if the entities or other components
mentioned in the issue are the same as these which are in the commit
log.

5) Text-based detector – it is similar to the previous layer but extracts
comments in the changed code to and tries to link them with the issue
metadata.

6) Association-based detector – it is the last layer which is used if the text
used in the texts or entities names cannot be matched with the issue (the
texts are not similar). It uses association strengths between the terms in
the issue and the entity names.

MLink is better than ReLink because it checks and compares not only

terms but changes in the code repository too. It achieves high accuracy level:
F-score: 87-93%, recall: 85-90%, precision: 82-97% as outlined in [8].

 How to Improve Linking Between Issues and Commits ... 151

2.3. RCLinker: Automated Linking of Issue Reports and Commits Leverag-
ing Rich Contextual Information

RCLinker’s [2] authors discovered, that many commits are not contain-
ing relevant information in commit messages. It means that if we want to im-
prove linking issues with commits, we must use other contextual information.

RCLinker uses ChangeScribe [10] to generate additional messages
about commits. ChangeScribe adds information in following format (real ex-
ample from [2]):

This change set is mainly composed of:
1. Changes to package org.apache.solr.common.cloud:

(a) Modifications to ClusterState.java:
i. Remove an unused functionality to get shared

Messages, created by ChangeScribe, are then appended to each commit

message. RCLinker also uses other contextual information like commit date,
issue update date, issue comments’ date.

RCLinker uses machine learning – trained Random Forest. Authors de-
fined 9 text features (which are basing mostly on cosine distance between
texts) and 11 metadata features (which are basing mostly on issue, commit and
comments dates). We use this features to train Random Forest.

Usage of RCLinker is divided into two phases:
1) Learn phase – extending commit messages with ChangeScribe, extract-

ing features (T1 – T9 and M1 – M11) and training model with i.e. Weka
implementation of Random Forest.

2) Production phase – extending commit message with ChangeScribe, ex-
tracting features (T1 – T9 and M1 – M11) and using on created model to
choose proper issues for commit.
RCLinker is much better in case of very poor developers’ commit mes-

sages. It has approximately 136 % better results of F-measure than MLink,
however precision is lower than in MLink.

We have also checked articles that are citing [2, 8] or [9]. Most of them
are not related with linking issues with commits.

Empirical Evaluation of Bug Linking [11] is an empirical evaluation
with benchmark of ReLink algorithm. It does not propose any new tool. How-
ever this article shows that usage of ReLink is reasonable.

152 Software Engineering: Improving Practice through Research

In The Missing Links: Bugs and Bug-fix Commits [12] there is an analy-
sis of problems with issue-commit linking. Authors used Linkster tool and
expert knowledge to check 493 commits and link them to issues. Despite this
work did not propose any new tool or algorithm, it is a good article to under-
stand problems in linking issues with commits.

2.4. When do changes induce fixes?

This article [13] describes one of the simplest algorithms which we use
in our approach. In this case it is described how to link bugs from the bug da-
tabase with commits. This method is quite simple – every commit message is
split into a stream of tokens (syntactic analysis). Each token could be one of
the items: bug number (it is based on a simple regex), a plain number, a key-
word such as fixed, defects etc. and a word. After that, the syntactic confi-
dence is being counted – it is always an integer number between values 0 to 2.

This linking method is based on a semantic analysis too. There is also a
score if some of the following conditions were resolved: the bug has been re-
solved as fixed at least once, the bug description is used in the commit mes-
sage, the author of the commits has been assigned to it or one or more files
affected by the commit has been attached to the bug.

In our approach we use pattern matching and semantic analysis too.

3. Experimental Setup

In this section we want to describe why we have decided to use
RCLinker approach. According to MLink article [9], MLink is better than Re-
Link by 6-11% in F-score, 4-13% in recall, and 5-8% in precision. In
RCLinker article [2] authors sustain that RCLinker has gained far much better
results in F-measure by 138.66% in comparison to MLink. That is why we
have decided to use RCLinker approach.

 How to Improve Linking Between Issues and Commits ... 153

3.1. Research questions

x RQ1: How effective RCLinker is in recovering missing links between
issues and commits? In this RQ we will check how effective solutions
from literature are.

x RQ2: Is it possible to pick versatile machine learning settings giving
good effects for all kinds of projects? In this RQ we will check how
RCLinker’s results can be changed when we adjust classifiers’ set-
tings. We will try to check if it is possible to gain better results than
original authors.

x RQ3: Will RCLinker will be effective on projects with various diffi-
culty levels? We will run defect prediction on datasets that vary on
number of issues that could be matched with commit logs.

x RQ4: How to improve RCLinker algorithm? We will add new metrics
based on Jira metadata and evaluate on various machine learning
classifiers.

3.2. Datasets

The research will be performed using two open source projects by Piv-
otal Software: Spring Data Redis, Spring OSGi and the proprietary commer-
cial project provided by Capgemini.

To check commits and issue linking we have looked through Git history
of selected projects to find out if they contain Jira ticket numbers.

Outlined projects were chosen by discovering Spring’s projects cata-
logue. We chose projects which were created recently. The projects were com-
pared with each other minding commits coverage with Jira tags and overall
commits number. This dataset will be split into two parts. First one will be
used as training set, second one will have its Jira tags removed and used for
validation of output.

Spring OSGi will be used as dataset with higher complexity. This data
set is bigger and not fully tagged with Jira issues. Specific thing for Spring
OSGi commit history is tagging multiple commits with the same Jira issue
number. It is two times bigger than Spring Data Redis – consists of over two
thousands commits, while Spring Data Redis of around one thousand.

154 Software Engineering: Improving Practice through Research

Commercial project provided by Capgemini will be used in final devel-
opment of the algorithm. The data set used for the research comes from a sys-
tem produced for one of the biggest automotive companies in Europe and it
covers all aspects of car purchasing. The project is developed using agile
methodologies. Support and bug fixing is hierarchically organised using Kan-
ban technique as described in [14].

3.3. Knime workflow description

Our main goal is to implement a new DePress plugin. To supply data-
sets for the plugin (issues from JIRA and commit logs from GitHub) we
needed to prepare workspace and provide links to JIRA and GitHub reposi-
tory. More detailed information about reproduction (i.e. detailed steps of in-
stallation) can be found in Appendix A.

3.4. Metrics – model input

We will use two categories of metrics: based on commit message and
based on commit metadata. Metrics are similar to those used in RCLinker arti-
cle [2]. We have used them as a model input – independent predictors. As
dependent variable we predict if the given pair commit-issue is a true link or
not. For a list of notations, used in metrics table, please see Table 1. We will
use metrics described in Table 2.

Metrics J1a, J1b, J1c, J1d, J2a, J2b, J3a, J3b, J3c are metrics designed
by us, which are based on JIRA changes and metadata.

Model input consists of two additional indicators: realLink – valued as
1 if given pair of commit-issue exists in golden set, otherwise 0, and under-
sampled RealLink, which is output of undersampling process described in
RCLinker article [2]. Golden set is extracted from version control system re-
pository by traversing all the existing commit descriptions and matching issue
tracking IDs in them. If such ID is found in description of commit, it is consid-
ered as a part of golden set.

During first phase of experiment, we have learned model using Random
Forest. Next, we have tried to improve results using also the following classi-
fiers from Weka library: MultilayerPerceptron, BayesNet, NaiveBayes, SGD,

 How to Improve Linking Between Issues and Commits ... 155

AdaBoostM1, RealAdaBoost and changing default parameters’ values to get
better results. Unfortunately it did not improve the results, so we have decided
to use Random Forest classifier.

Table 1. List of notations used in metrics description

Msg Human-written commit message
Csmsg Commit message generated by ChangeScribe
cmtDate Commit date
summary Summary of an issue
Desc Description of an issue
Prio Priority of an issue
noCom Number of comments in issue
comi Comment (1 <= comi <= noCom)
words(D) Number of distinct words in document D
+ text concatenation
reportedDate Report date of an issue
updatedDate Last update date of an issue
date (commi) Date of ith comment in issue

3.5. Prediction model and measures

During experiment we have used a model to predict if the given issue
should be linked with the given commit. For each pair (issue, commit) we have
analysed if there is a link between them or not.

As an output of program returns a list of linked issues with commits –
pairs (issue, commit). We have evaluated the result in the matter of measures
such as precision, recall and F-measure.

4. Results

In this section are presented results which we have achieved by using
RCLinker approach without the ChangeScribe tool. In the first two tables can
be found results for open source projects, in the last one – for the commercial
Capgemini project.

156 Software Engineering: Improving Practice through Research

Table 2. Used textual and metadata metrics

 How to Improve Linking Between Issues and Commits ... 157

4.1. Spring Data Redis

Results for Spring Data Redis project are presented in Table 3.

Table 3. Spring Data Redis evaluation results

Description Recall Precision F-measure
no cross validation,
2 nearest neighbours

0.63 0.17 0.27

10 iterational cross validation, 10
nearest neighbours

0.52 0.10 0.16

10 iterational cross validation,
2 nearest neighbours

0.48 0.38 0.42

15 iterational cross validation,
2 nearest neighbours

0.46 0.37 0.40

10 iterational cross validation,
1 nearest neighbour

0.41 0.54 0.47

10 iterational cross validation,
0 nearest neighbours

0.38 0.79 0.51

The best achieved results processing Spring Data Redis project were re-

call: 0.38, precision 0.79 giving F-measure at point of 0.51.
During evaluation it turned out that producing nearest neighbours actu-

ally does not impact results in the positive way. It makes recall slightly rise,
but with cost of huge precision drop.

Using cross validation instead of random splitting data set into two
fixed-size subsets improved the result. When no cross validation was used,
with two nearest neighbours generated, there were F-measure equal to 0.27.
With the same nearest neighbour setting and cross validation used, the F-
measure raised to level of 0.42.

Increasing number of cross validation iterations did not bring significant
improvement comparing to extended computation time needed to process data.
Adding 5 iterations enhanced F-measure by 0.02.

4.2. Spring OSGi

Results for Spring OSGi project are presented in Table 4.

158 Software Engineering: Improving Practice through Research

Table 4. Spring OSGi evaluation results

Description Recall Precision F-measure
10 iterational cross validation, 1 near-
est neighbour

0.19 0.22 0.20

10 iterational cross validation, 0 near-
est neighbours

0.17 0.58 0.26

15 iterational cross validation, 0
nearest neighbours

0.19 0.60 0.29

In comparison to Spring Data Redis, Spring OSGi has far more less cor-

rect commits descriptions. While Spring Data Redis has almost all of them
well described, Spring OSGi has more or less 50%. That is why, the results are
much worse. Slightly better result we got by increasing the number of itera-
tions.

4.3. Capgemini project

Results for the commercial Capgemini project are presented in Table 5.

Table 5. Capgemini project evaluation results

Description Recall Precision F-measure
10 iterational cross validation, 2 near-
est neighbours

0.58 0.41 0.48

10 iterational cross validation, 1 near-
est neighbour

0.54 0.56 0.55

15 iterational cross validation, 0 near-
est neighbours

0.49 0.86 0.62

10 iterational cross validation, 0
nearest neighbours

0.49 0.88 0.63

Proprietary commercial project provided by Capgemini has quite good

results. First of all the dataset with commits and issues was not too big – this
was a period of 6 months. The other thing why results are good is caused by
good described commits’ messages – about 95% has good commit description.

 How to Improve Linking Between Issues and Commits ... 159

In comparison to Spring Data Redis – the best results were achieved when
nearest neighbours equalled 0. The recall and F-measure raised significantly:
recall from 0,56 to 0,88 and F-measure from 0,55 to 0,63.

5. Discussion

In this section, we have described why we have not used ChangeScribe
in our implementation of the RCLinker algorithm. ChangeScribe caused many
performance and implementation problems which are described below.

5.1. General discussion

As we can see in the results, RCLinker algorithm performs the best in
Capgemini proprietary project. Also results for the Spring Data Redis are still
quite good, however they are much worse than in the original RCLinker [2]
approach.

5.2. Problems

During implementation of RCLinker algorithm we have encountered
many performance and implementation problems.

First problem was with executing ChangeScribe in non-eclipse envi-
ronment. ChangeScribe was not describing properly all changes. We wrote to
ChangeScribe’s authors and created an issue on the GitHub repository. They
helped us and gave access to special, modified version of ChangeDistiller.

Second problem was memory complexity of ChangeDistiller. We have
tried to run application with various heap sizes, however even 15 GB of RAM
was not enough.

5.3. Validity threats

Golden set is extracted from version control system repository by pat-
tern matching potential issue IDs in commits’ description. This is a threat to
validity since there may be some mistakenly tagged descriptions and the

160 Software Engineering: Improving Practice through Research

golden set acquired this way may not be full. There is no other fully credible
way of achieving such a golden set in projects evaluated by us. Manual crea-
tion of golden set would be extremely time consuming and would not plausi-
bility of it would be arguable as well.

6. Conclusions

Connections between issues and commits are very valuable in defect
prediction. Unfortunately commit logs are often missing clear disclosure of
these links.

Our implementation of RCLinker was able to achieve results with F-
measure equal to 0.62 on the commercial project. This is promising result, but
is not enough for enterprise use of this tool. The result indicates need for fur-
ther development of the algorithm itself.

Due to problems with ChangeScribe results are inconclusive. Compar-
ing to the RCLinker paper our implementation achieves significantly worse
results. There is a possibility, that using ChangeScribe, the results would be
comparable to original RCLinker’s evaluation.

We wanted to check which features are significant and important for the
results. T1, T2 and T3 were good indicators when it comes to textual relevance
between commits and issues. Features T4 and T5 are normalized forms of T1-
T3 respectively and that is why we supposed that they may be not very essen-
tial — we have checked this assumption using different classifiers described
below. Features T6-T7 were used to compute the number of common words
between issue and commit bringing new information to the classifier so they
are relevant for classifier. Because T8 and T9 are the ratio of T6 to the number
of distinct word in issue and commit we consider them as not useful. Metadata
features M9, M10, M11 were based on the comments and dates between them
and did not provide valuable information for machine learning algorithms.
After evaluation we consider JIRA features J1a, J1b, J1c, J1d, J2a, J2b, J3a,
J3b, J3c as not relevant, as they were not improving result of machine learn-
ing.

Concluding the revision we decided to leave significant metrics T1, T2,
T3, T6, T7, M1-M8 and not use features: T4, T5, T8, T9, M9, M10, M11, J1a,

 How to Improve Linking Between Issues and Commits ... 161

J1b, J1c, J1d, J2a, J2b, J3a, J3b, J3c. We have tested it on the Spring Data
Redis dataset. The results were comparable: Recall: 0,36, Precision: 0,79, F-
measure: 0,49. With the previous features set we got: Recall: 0,38, Precision:
0,79 and F-measure: 0,51.

We have also tested our implementation using the following classifiers
from Weka library: MultilayerPerceptron, BayesNet, NaiveBayes, SGD,
AdaBoostM1, RealAdaBoost and Random Forest. However, Random Forest,
used in original paper [2], gave us the best results. We have checked how vari-
ous parameters will change the results. For Random Forest, the best parameter
set is: Max Depth: unlimited, number of trees: 10.

7. Future works

We were not able to gain such a good results as described in the article
about RCLinker [2]. We suppose that a tool which will be similar to
ChangeScribe can improve the results. Additional features which were based
on JIRA metadata did not improve the results. It is likely that a tool which
generates additional messages about commits will give significant information
about changes in the repository code — it will be possible to create a new set
of features. The decision to create a new tool instead of using ChangeScribe is
associated with the problems described in the subsection 5.2.

References

[1] K. Herzig, S. Just, and A. Zeller. It’s Not a Bug, It’s a Feature: How Misclassifi-
cation Impacts Bug Prediction, In: Proceedings of the 2013 International Confer-
ence on Software Engineering, ICSE ’13, Piscataway, NJ, USA, pp. 392–401,
IEEE Press, 2013.

[2] T.-D. B. Le, M. Linares-Vásquez, D. Lo, and D. Poshyvanyk, RCLinker. Auto-
mated Linking of Issue Reports and Commits Leveraging Rich Contextual In-
formation, In: Proceedings of the 2015 IEEE 23rd International Conference on
Program Comprehension, ICPC ’15, Piscataway, NJ, USA, pp. 36–47, IEEE
Press, 2015.

[3] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu. A General Software Defect-
Proneness Prediction Framework, IEEE Transactions in Software Engineering,
Vol. 37, pp. 356–370, 2011.

162 Software Engineering: Improving Practice through Research

[4] L. Madeyski and M. Jureczko. Which Process Metrics Can Significantly Improve
Defect Prediction Models? An Empirical Study, Software Quality Journal, Vol.
23, no. 3, pp. 393–422, 2015.

[5] M. Jureczko and L. Madeyski. Cross–project defect prediction with respect to
code ownership model: An empirical study, e-Informatica Software Engineering
Journal, Vol. 9, no. 1, pp. 21–35, 2015.

[6] L. Madeyski and M. Majchrzak. Software Measurement and Defect Prediction
with De-Press Extensible Framework, Foundations of Computing and Decision
Sciences, Vol. 39, no. 4, pp. 249–270, 2014.

[7] C. Wohlin. Guidelines for Snowballing in Systematic Literature Studies and a
Replication in Software Engineering, In: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering, EASE ’14,
New York, NY, USA, pp. 38:1–38:10, ACM, 2014.

[8] R.Wu, H. Zhang, S. Kim, and S.-C. Cheung. ReLink: Recovering Links Between
Bugs and Changes, In Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering,
ESEC/FSE ’11, New York, NY, USA, pp. 15–25, ACM, 2011.

[9] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, Multi-layered
Approach for Recovering Links Between Bug Reports and Fixes, In Proceedings
of the ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, FSE ’12, New York, NY, USA, pp. 63:1–63:11, ACM,
2012.

[10] ChangeScribe, https://github.com/SEMERU-WM/ChangeScribe, 2016.
[11] T. F. Bissyandé, F. Thung, S. Wang, D. Lo, L. Jiang, and L. Réveillère. Empiri-

cal Evaluation of Bug Linking, In: 17th European Conference on Software Main-
tenance and Reengineering (CSMR), pp. 89–98, 2013.

[12] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein. The Missing
Links: Bugs and Bug-fix Commits, In: Proceedings of the Eighteenth ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, FSE
’10, New York, NY, USA, pp. 97–106, ACM, 2010.

[13] J. Sliwerski, T. Zimmermann, and A. Zeller. When Do Changes Induce Fixes?,
In: Proceedings of the 2005 International Workshop on Mining Software Reposi-
tories, MSR ’05, New York, NY, USA, pp. 1–5, ACM, 2005.

[14] M. Majchrzak and L. Stilger. Experience Report: Introducing Kanban Into
Automotive Software Project, From Requirements to Software: Research and
Practice, Scientific Papers of the Polish Information Processing Society Scientific
Council, pp. 15–32, 2015.

