

Chapter 10

Defect Prediction with Bad Smells in Code

1. Introduction

Among different aspects of software defect prediction process, one of
the key elements is proper selection of metrics for training and verification
dataset preparation. Most popular data is source code metrics [6, 11], but also
different types of metrics are considered effective in term of defect prediction,
such as design metrics [24], change metrics [21], mining metrics [22] or proc-
ess metrics [18, 13].

1.1. Related work and goal

Separate group of design metrics are metrics based on code smells, also
known as bad smells or code bad smells. The term was formulated by Kent
Beck in 2006 [1]. The concept was popularized by Martin Fowler in his book
Refactoring. Improving the structure of existing code [5]. Kent Beck was a co-
author of the chapter on code smells.

Kent Beck on his website explains the idea of code smells [1]:
Note that a Code Smell is a hint that something might be wrong, not a
certainty. A perfectly good idiom may be considered a Code Smell be-
cause it's often misused, or because there's a simpler alternative that
works in most cases. Calling something a Code Smell is not an attack;
it's simply a sign that a closer look is warranted.

Due to nature of code smells described above, there is ongoing discus-

sion if code smells could be used effectively in quality assurance in code

Jarosław Hryszko, Lech Madeyski, Marta Dąbrowska and Piotr Konopka, “Defect
Prediction with Bad Smells in Code” in Software Engineering: Improving Practice through
Research (B. Hnatkowska and M. Śmiałek, eds.), pp. 163–176, 2016.

164 Software Engineering: Improving Practice through Research

development [27, 26]. Major motivation for this research was to investigate, if
code smells can improve software defect prediction.

In industrial software development, only Holschuh et al. investigated
code smells metrics effectiveness in defect prediction process for Java pro-
gramming language [7]. No code smells metrics for defect prediction in .NET
oriented industrial software projects are known to authors. Thus, we decided
use long-term defect prediction research project run in Volvo Group [9, 10] as
an occasion for conducting an experiment with introduction of bad smells
based metrics to prediction process and observe the results, if they improved
prediction effectiveness or not:

RQ: How Code Bad Smells based metrics impact defect prediction in
industrial software development project?

1.2. Research environment: Industrial software development project

Project, on which the study was conducted, is a software development
of critical industry system used in Volvo Group vehicle factories called
PROSIT+. It is created based on client-server architecture. The main function-
ality of PROSIT+ system is: programming, testing, calibration and electrical
assembly verification of Electronic Control Units (ECUs) in Volvo's vehicle
production process.

PROSIT+ system consists of few coexisting applications. The most im-
portant one, desktop application “PROSIT Operator”, communicates in real
time with a mobile application, located on palmtop computer used by vehicle
factory workers to transfer all production related information to a local server.
The server is responsible for storage and distribution of configuration-, sys-
tem- and product-related data. Such communication can generate extremely
heavy data transfer loads in large factories, when more than 100 mobile appli-
cations are used. Other application include: “PROSIT Designer”, “PROSIT
Factory Manager” and web application “PROSIT Viewer”. All of them are
also connected to the same server.

Development of each PROSIT+ version lasts one year. After this period
software is released to the end-user. As this period of time is connected to
factory production cycle it cannot be fastened or postponed.

 Defect Prediction with Bad Smells in Code 165

All applications within PROSIT+ system were developed using Micro-
soft .NET technology and Microsoft Visual Studio as the integrated develop-
ment environment. For version control purposes, Microsoft Team Foundation
Server was used. Before release of version 11 of the PROSIT+ system, IBM
ClearQuest was used for software defect management. Until the development
of version 11, Team Foundation Server was used for defect tracking.

Project lacks of bottlenecks described by Hryszko and Madeyski [8],
which could hinder or prevent from applying defect prediction process. How-
ever, we observed relatively high number of naming issues in the project.
Main reason of that situation we consider high maturity of the software system
– over the time, naming conventions have changed. We consider naming is-
sues as negligible problem and we will exclude them from the further investi-
gation.

2. Research Process

Defect prediction was already an ongoing process in investigated pro-
ject. It used SourceMonitor software as metric source and as prediction tool –
KNIME-based DePress Extensible Framework proposed by Madeyski and
Majchrzak [19]. This tool, based on KNIME [17], provides with a wide range
of data-mining techniques, including defects prediction, in various IT projects,
independently of technology and programming language used. We will also
use KNIME/DePress for purpose of our research.

To investigate the possible impact of code-smell metrics on defect pre-
diction, we developed the following plan to follow:
1) Generate metrics from SourceMonitor;
2) Generate code smells metrics from CodeAnalysis;
3) Parse results from CodeAnalysis and merge them with metrics from

Source-Monitor.
4) Link check-ins to defects;
5) Link classes from check-ins to defects (the assumption is that if a class

was changed while fixing a defect, that class was partially or fully re-
sponsible for that defect);

166 Software Engineering: Improving Practice through Research

6) Merge list of classes with merged metrics from CodeAnalysis and Sour-
ceMonitor;

7) Use different software defect prediction approaches combinations to
select optimal prediction set-up for evaluation purposes;

8) Divide PROSIT+ code into 20 sub-modules and run prediction model
training and evaluation using data from each module separately;

9) Collect and interpret the results.

2.1. SourceMonitor as basic metrics source

Defect prediction process in PROSIT+ is based on metrics that are gath-
ered using SourceMonitor tool [12]. That tool performs static computer code
analysis on complete files and extracts 24 different kinds of metrics. Example
metrics extracted are:

x Lines of code,
x Methods per class,
x Percentage of comments,
x Maximum Block Depth,
x Average Block Depth.

2.2. CodeAnalysis tool as code smells metrics source

In our experiment, we decided to use Microsoft CodeAnalysis tool to
gather code smells metrics. Primary deciding factor was cost: CodeAnalysis
tool is delivered as a part of Microsoft Visual Studio software development
suite for .NET based projects. Thus, there were no additional costs of introduc-
tion of this tool into the investigated software development project.

CodeAnalysis for managed code analyzes managed assemblies and re-
ports information about the assemblies, such as violations of the pro-
gramming and design rules set forth in the Microsoft .NET Framework
Design Guidelines [20].

According to documentation, there are approximately two hundred rules

in CodeAnalysis [20], triggering 11 kinds of warnings (Table 1). Tool can be

 Defect Prediction with Bad Smells in Code 167

run from command line and results are then stored in an .xml file, that can be
later parsed and analyzed further.

Table 1. Bad smell warnings in CodeAnalysis

Bad smell warning Area covered
Design Correct library design as specified by the .NET Framework

Design Guidelines
Globalization World-ready libraries and applications
Interoperability Interaction with COM clients
Maintainability Library and application maintenance
Mobility Efficient power usage
Naming Adherence to the naming conventions of the .NET Frame-

work Design Guidelines
Performance High-performance libraries and applications
Portability Portability across different platforms
Reliability Library and application reliability, such as correct memory

and thread usage
Security Safer libraries and applications
Usage Appropriate usage of the .NET Framework

3. Results

We conducted our experiment by following the plan presented in previ-
ous section. Here we present the results.

3.1 Automatically generated code: observed anomaly, cause and solution

After analyzing the relation between numbers of reported code smells
issues and file length metrics for complete software system, in datasets pre-
pared basing on CodeAnalysis and SourceMonitor tools, we observed that
different numbers of issues are reported for the same, large file length values
(Figure 1). As considered software contains only small number of large files,
we interpreted that as an anomaly: different total number of code bad smell
issues were reported for the same files. After investigation, we found that in
investigated system files with more than 1000 lines of code (LOC) are in most

168 Software Engineering: Improving Practice through Research

cases generated automatically and contain more than one class for a file, while
CodeAnalysis tool calculates number of issues metric per class. That discrep-
ancy resulted in abnormal number of issue per file length relation: different
number of issues values were collected for the same LOC values, because
numbers of issues values were calculated for different classes located in the
same files, identified by the same LOC value.

Figure 1. Anomalies in number of issues metric per file length (measured in LOC)
relation, introduced by automatically generated code, later removed from analysis

Figure 2. Number of issues metric per file length (measured in LOC) relation for in-

vestigated software, with automatically generated code removed

 Defect Prediction with Bad Smells in Code 169

As automatically generated code files exist only for installation and de-
ployment purposes and are not covered by tests and are not reachable for end-
users of the system, we decided to consider them as a source of information
noise and we removed them from further analysis. Number of issue per file
length relation improved after that step (Figure 2).

3.2 Metrics breakdown difference: problem and solution

After a thorough investigation of the above problem, we found that dif-
ferent values of issue number metric for the same LOC metric was caused by
the different metrics breakdown used by two tools selected for metric datasets
generation: CodeAnalysis gathers data for every class while SourceMonitor for
every file. When results from two tools were merged into single dataset, Sour-
ceMonitor metrics, fixed for each file, were artificially divided per each class
in the file (Table 2).

Table 2. Example of dataset from first approach: single class per record (SourceMoni-
tor metrics are artificially divided per each class in file)

File Class SourceMonitor LOC CodeAnalysis Issues
File1.cs Class1 33 3
File1.cs Class2 33 20
File1.cs Class3 33 6
File2.cs Class4 30 15

To counteract against metric anomalies described in section 3.1, as well

as against possible introduction of informational noise into the training dataset,
we decided to change the approach and rearrange the datasets into single file
metrics per record layout. To achieve this, metrics gathered by CodeAnalysis
had to be aggregated (added; Table 3).

Table 3. Example of dataset from second approach: single file per record (CodeAnaly-
sis metrics are artificially added)

File Class SourceMonitor LOC Code Analysis Issues
File1.cs Class1...3 100 29
File2.cs Class4 30 15

170 Software Engineering: Improving Practice through Research

3.3 Optimal prediction mechanism selection

To choose optimal prediction mechanism, we decided to test combina-
tion of different classifiers, feature selection and balance algorithms (Table 4)
against two datasets: with- and without code bad smells metrics collected by
CodeAnalysis tool.

Table 4. Combinations of different approaches

Classifier Feature Selection SMOTE Bad smells metrics?
Naive Bayes None With Present
Random Forest Elimination Without Absent
PNN Simulated Annealing

We used SMOTE algorithm [4] to balance classes with defects and

without them.
To select most important metrics from all available, as some of them

should have seemingly little impact on the presence of true software defects,
e.g. Efficient power usage warning (Table 1), we decided to use in our re-
search two feature selection algorithms: KNIME's build-in reversed elimina-
tion greedy algorithm [16] and simulated annealing meta-heuristic algorithm
by Kirkpatrick et al. [15] in form proposed by Brownlee [3].

As classifier, we used popular in defect prediction studies [6, 21, 14, 23]
Naïve Bayes classifier and Probabilistic Neural Network (PNN), as well as
Random Forest [2] classifier.

Results of testing combinations of above machine learning elements in
favour of best prediction results are presented in Table 5. Two datasets – with-
and without code bad smells metrics included, were divided using stratified
sampling method into two equal subsets, for training and evaluation purpose.
Prediction models were evaluated using F-measure [25].

Highest F-measure value (0.9713) was observed for dataset with code
bad smells used, when SMOTE algorithm and reversed elimination feature
selection mechanism was used to select optimal subset for training and evalua-
tion of Random Forest classifier. And such combination was selected for final
evaluation of usage of code smells based metrics in defect prediction process.

 Defect Prediction with Bad Smells in Code 171

Table 5. Results for optimal prediction set-up selection (defect-prone class)

3.4 Datasets evaluation: CodeAnalysis (bad smells metrics) against Sour-
ceMonitor

For final evaluation, if code bad smells-based metrics could be valuable
for defect prediction purposes, we divided all available code, in considered
industrial software development project, into 20 smaller, similar in size sub-
modules (ca. 700 records after SMOTE oversampling). Greater fragmentation
of system's code was not technically possible. For each sub-module we col-
lected metrics using SourceMonitor or/and CodeAnalysis, to create different
datasets:

x 20 datasets of SourceMonitor metrics only;
x 20 datasets of CodeAnalysis (code smells) metrics only;
x 20 datasets of combined metric: SourceMonitor + CodeAnalysis.

Additionally, each kind of datasets we decided to test against feature se-
lection (FS) process. During the evaluation, we collected Accuracy and
Cohen's kappa measures for overall results (Table 6), and F-measure and Re-
call for defect-prone classes (Table 7).

172 Software Engineering: Improving Practice through Research

Table 6. Final results of datasets evaluation

Dataset Measure Mean Std. deviation
SourceMonitor without FS Accuracy 0.9422 0.0187

Cohen's kappa 0.8844 0.0374
CodeAnalysis without FS Accuracy 0.676 0.0451

Cohen's kappa 0.3518 0.0904
SourceMonitor + CodeAnaly-
sis w/o FS

Accuracy 0.9487 0.0226
Cohen's kappa 0.8973 0.0453

SourceMonitor with FS Accuracy 0.97 0.0122
Cohen's kappa 0.9399 0.0245

CodeAnalysis with FS Accuracy 0.8249 0.059
Cohen's kappa 0.6497 0.1180

SourceMonitor + CodeAnaly-
sis with FS

Accuracy 0.9791 0.0135
Cohen's kappa 0.9582 0.027

3.5 Threads to validity

Conclusion validity. In our research, we tested 20 datasets collected
from different software modules. More research using larger data set, collected
from different sources is needed to confirm our findings.

Internal validity. We have used aggregation of CodeAnalysis metrics for
each file, by adding metrics collected for each class. Such solution was intro-
duced to solve metrics breakdown difference problem and make combination
of two metric sources possible, however it could impact the final result of our
research.

External validity. Our research is based only on metrics gathered from
one software development project. Despite the fact, that we were able to col-
lect 34 different metric kinds for 20 different program modules, we were still
constrained by single environment: development team and its programming
habits, programming language, tools used, etc. Because of this fact, more re-
search is needed to verify our findings in other software development envi-
ronments (contexts).

 Defect Prediction with Bad Smells in Code 173

Table 7. Measures for records marked as defect-prone

Dataset Measure Mean Std. deviation
SourceMonitor without FS Recall 0.9608 0.0278

F-measure 0.9433 0.0188
CodeAnalysis without FS Recall 0.666 0.2961

F-measure 0.6447 0.1157
SourceMonitor + CodeAnaly-
sis w/o FS

Recall 0.9637 0.0303
F-measure 0.9494 0.0228

SourceMonitor with FS Recall 0.9824 0.0146
F-measure 0.9704 0.012

CodeAnalysis with FS Recall 0.8424 0.0542
F-measure 0.8286 0.0559

SourceMonitor + CodeAnaly-
sis with FS

Recall 0.9859 0.0206
F-measure 0.9792 0.0136

4. Discussion

When selecting optimal defect prediction set-up for further verification
if code smell-based metrics can improve prediction results, we observed that
best result was achieved for dataset with bad smell metrics included (F-
measure = 0.9713). However, for the same setup, but without code smells met-
rics, F-measure value was only by 0.0059 lower (Table 5) what makes the
difference between SourceMonitor and CodeAnalysis results negligible. Final
results collected from 20 different software sub-modules confirmed that state-
ment: Average accuracy value for prediction based on dataset constructed bas-
ing on both sources was only by 0.0091 better than result for SourceMonitor-
only based metrics (Average F-measure value difference = 0.0088), while
standard deviation value was 0.0136. Worth noticing is drop of CodeAnalysis
– only based prediction results, when feature selection (FS) process was re-
moved from the experimental setup.

Results of our experiment of using code smells metrics in software de-
fect prediction, show irrelevant – in our opinion – impact on effectiveness of
the process, when basic dataset (SourceMonitor-based) was extended by
CodeAnalysis metrics. because even if prediction effectiveness measures are

174 Software Engineering: Improving Practice through Research

slightly higher, the stay within the limits of error. But when only use of Code-
Analysis-based metrics were used for prediction (without basic set of Sour-
ceMonitor-based metrics), such process resulted with high accuracy (0.8249)
and F-measure (0.8286) results.

Thus, answering the research question: How Code Bad Smells based
metrics impact defect prediction in industrial software development project?
We want to state, that in industrial environment, such as PROSIT+ software
development project, impact of code bad smells based metrics is negligibly
small, and usage of CodeAnalysis-based metrics should not be considered
useful, due to fact that additional effort needed for introducing code smell-
based metrics to software defect prediction process is not compensated by
relatively high increase of prediction effectiveness.

However, we observed surprisingly high effectiveness of prediction,
when dataset based on CodeAnalysis only was used. Authors believe, that
code bad smells can be effectively used for defect prediction process espe-
cially there, where other metrics are not available, or computing power is in-
sufficient to handle large sets of different metrics (for example 24 kinds of
metrics for SourceMonitor), while CodeAnalysis metrics set, used in our re-
search, contained only 11 different kinds of metrics. Due these promising re-
sults, aspects of using code bad smells only based metrics in defect prediction
processes should be investigated further.

References

[1] K. Beck. Code Smell (2016), http://c2.com/cgi/wiki?CodeSmell, accessed: May
8, 2016.

[2] L. Breiman. Random Forests. Machine Learning pp. 5–32, 2001.
[3] J. Brownlee. Clever Algorithms. Nature-Inspired Programming Recipes, Jason

Brownlee, 2011.
[4] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer. SMOTE: Synthetic

Minority Over-sampling Technique. Journal of Artificial Intelligence pp. 321–
357, 2002.

[5] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts. Refactoring: Improving
the Design of Existing Code. Addison-Wesley Professional, 2006.

[6] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell. A Systematic Literature
Review on Fault Prediction Performance in Software Engineering. IEEE Trans-
actions on Software Engineering 38(6), pp. 1276–1304, 2012.

 Defect Prediction with Bad Smells in Code 175

[7] T. Holschuh, M. Pauser, K. Herzig, T. Zimmermann, R. Premraj, A. Zeller. Pre-
dicting defects in SAP Java code: An experience report. In: ICSE-Companion
2009, 31st International Conference on Software Engineering, pp. 172–181, 2009.

[8] J. Hryszko, L. Madeyski. Bottlenecks in Software Defect Prediction Implementa-
tion in Industrial Projects. Foundations and Computing and Decision Sciences
40(1), pp. 17–33, 2015, http://dx.doi.org/10.1515/fcds-2015-0002

[9] J. Hryszko, L. Madeyski. Assessment of the Software Defect Prediction Cost
Effectiveness in an Industrial Project. Advances in Intelligent Systems and Com-
puting (accepted), 2016.

[10] J. Hryszko, L. Madeyski, R. Samlik. Application of Defect Prediction-Driven
Quality Assurance Methodology in Industrial Software Development Project,
pre-print, 2016

[11] N. Jaechang. Survey on Software Defect Prediction (2014), hKUST PhD Quali-
fying Examination

[12] J.Holmes: SourceMonitor Site, 2016,
http://www.campwoodsw.com/sourcemonitor.html, accessed: 2016.05.06

[13] M. Jureczko, L. Madeyski. A Review of Process Metrics in Defect Prediction
Studies. Metody Informatyki Stosowanej 30(5), pp. 133–145, 2011,
http://madeyski. e-informatyka.pl/download/Madeyski11.pdf

[14] T. M. Khoshgoftaar, A. S. Pandya, D. L. Lanning. Application of Neural Net-
works for Predicting Faults. Annals of Software Engineering 1(1), pp. 141–154,
1995.

[15] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. Optimization by Simulated Anneal-
ing. Science 220(13), pp. 671–680, 1983.

[16] KNIME.COM AG: Backward Feature Elimination, 2016, https://www.knime.
org/files/nodedetails/_mining_meta_mining_features_Backward_Feature_Elimin
ation_Start_1_1_.html, accessed: June 28, 2016.

[17] KNIME.COM AG: KNIME Framework Documentation, 2016,
https://tech.knime.org/documentation/, accessed: May 6, 2016.

[18] L. Madeyski, M. Jureczko. Which Process Metrics Can Significantly Improve
Defect Prediction Models? An Empirical Study. Software Quality Journal 23(3),
pp. 393–422, 2015, http://dx.doi.org/10.1007/s11219-014-9241-7

[19] L. Madeyski, M. Majchrzak. Software Measurement and Defect Prediction with
Depress Extensible Framework. Foundations of Computing and Decision Sci-
ences, pp. 249–270, 2014.

[20] Microsoft: Code Analysis for Managed Code Overview, 2016,
https://msdn.microsoft.com/en-us/library/3z0aeatx.aspx, accessed: May 6, 2016.

[21] R. Moser, W. Pedrycz, G. Succi. A Comparative Analysis of The Efficiency of
Change Metrics and Static Code Attributes for Defect Prediction. In: Software
Engineering, 2008. ICSE '08. ACM/IEEE 30th International Conference on. pp.
181–190, 2008.

[22] N. Nagappan, T. Ball, A. Zeller. Mining Metrics to Predict Component Failures.
In: Proceedings of the 28th International Conference on Software Engineering.
pp. 452–461, 2006.

176 Software Engineering: Improving Practice through Research

[23] R. W. Selby, A. Porter. Learning from Examples: Generation and Evaluation of
Decision Trees for Software Resource Analysis. IEEE Transactions on Software
Engineering 14(12), pp. 1743–1756, 1988.

[24] G. Succi, W. Pedrycz, M. Stefanovic, J. Miller. Practical Assessment of the
Models for Identification of Defect-Prone Classes in Object-Oriented Commer-
cial Systems Using Design Metrics. Journal of Systems and Software 65(1), pp.
1–12, 2003.

[25] I. H. Witten, E. Frank, M. A. Hall. Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, 2005.

[26] M. Zhang, T. Hall, N. Baddoo. Code Bad Smells: a review of current knowledge.
Journal of Software Maintenance and Evolution: Research and Practice, pp. 179–
202, 2011.

[27] M. Zhang, T. Hall, N. Baddoo, P. Wernick. Do bad smells indicate "trouble" in
code? In: DEFECTS '08 Proceedings of the 2008 workshop on Defects in large
software systems, pp. 43–44, ACM, 2008.

