
 

 

Chapter 10 

Defect Prediction with Bad Smells in Code 

1. Introduction 

Among different aspects of software defect prediction process, one of 
the key elements is proper selection of metrics for training and verification 
dataset preparation. Most popular data is source code metrics [6, 11], but also 
different types of metrics are considered effective in term of defect prediction, 
such as design metrics [24], change metrics [21], mining metrics [22] or proc-
ess metrics [18, 13]. 

1.1. Related work and goal 

Separate group of design metrics are metrics based on code smells, also 
known as bad smells or code bad smells. The term was formulated by Kent 
Beck in 2006 [1]. The concept was popularized by Martin Fowler in his book 
Refactoring. Improving the structure of existing code [5]. Kent Beck was a co-
author of the chapter on code smells. 

Kent Beck on his website explains the idea of code smells [1]: 
Note that a Code Smell is a hint that something might be wrong, not a 
certainty. A perfectly good idiom may be considered a Code Smell be-
cause it's often misused, or because there's a simpler alternative that 
works in most cases. Calling something a Code Smell is not an attack; 
it's simply a sign that a closer look is warranted. 
 
Due to nature of code smells described above, there is ongoing discus-

sion if code smells could be used effectively in quality assurance in code  
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development [27, 26]. Major motivation for this research was to investigate, if 
code smells can improve software defect prediction. 

In industrial software development, only Holschuh et al. investigated 
code smells metrics effectiveness in defect prediction process for Java pro-
gramming language [7]. No code smells metrics for defect prediction in .NET 
oriented industrial software projects are known to authors. Thus, we decided 
use long-term defect prediction research project run in Volvo Group [9, 10] as 
an occasion for conducting an experiment with introduction of bad smells 
based metrics to prediction process and observe the results, if they improved 
prediction effectiveness or not: 

RQ: How Code Bad Smells based metrics impact defect prediction in 
industrial software development project? 

1.2. Research environment: Industrial software development project 

Project, on which the study was conducted, is a software development 
of critical industry system used in Volvo Group vehicle factories called 
PROSIT+. It is created based on client-server architecture. The main function-
ality of PROSIT+ system is: programming, testing, calibration and electrical 
assembly verification of Electronic Control Units (ECUs) in Volvo's vehicle 
production process. 

PROSIT+ system consists of few coexisting applications. The most im-
portant one, desktop application “PROSIT Operator”, communicates in real 
time with a mobile application, located on palmtop computer used by vehicle 
factory workers to transfer all production related information to a local server. 
The server is responsible for storage and distribution of configuration-, sys-
tem- and product-related data. Such communication can generate extremely 
heavy data transfer loads in large factories, when more than 100 mobile appli-
cations are used. Other application include: “PROSIT Designer”, “PROSIT 
Factory Manager” and web application “PROSIT Viewer”. All of them are 
also connected to the same server. 

Development of each PROSIT+ version lasts one year. After this period 
software is released to the end-user. As this period of time is connected to 
factory production cycle it cannot be fastened or postponed. 
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All applications within PROSIT+ system were developed using Micro-
soft .NET technology and Microsoft Visual Studio as the integrated develop-
ment environment. For version control purposes, Microsoft Team Foundation 
Server was used. Before release of version 11 of the PROSIT+ system, IBM 
ClearQuest was used for software defect management. Until the development 
of version 11, Team Foundation Server was used for defect tracking. 

Project lacks of bottlenecks described by Hryszko and Madeyski [8], 
which could hinder or prevent from applying defect prediction process. How-
ever, we observed relatively high number of naming issues in the project. 
Main reason of that situation we consider high maturity of the software system 
– over the time, naming conventions have changed. We consider naming is-
sues as negligible problem and we will exclude them from the further investi-
gation. 

2. Research Process 

Defect prediction was already an ongoing process in investigated pro-
ject. It used SourceMonitor software as metric source and as prediction tool – 
KNIME-based DePress Extensible Framework proposed by Madeyski and 
Majchrzak [19]. This tool, based on KNIME [17], provides with a wide range 
of data-mining techniques, including defects prediction, in various IT projects, 
independently of technology and programming language used. We will also 
use KNIME/DePress for purpose of our research. 

To investigate the possible impact of code-smell metrics on defect pre-
diction, we developed the following plan to follow: 
1) Generate metrics from SourceMonitor; 
2) Generate code smells metrics from CodeAnalysis; 
3) Parse results from CodeAnalysis and merge them with metrics from 

Source-Monitor. 
4) Link check-ins to defects; 
5) Link classes from check-ins to defects (the assumption is that if a class 

was changed while fixing a defect, that class was partially or fully re-
sponsible for that defect); 
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6) Merge list of classes with merged metrics from CodeAnalysis and Sour-
ceMonitor; 

7) Use different software defect prediction approaches combinations to 
select optimal prediction set-up for evaluation purposes; 

8) Divide PROSIT+ code into 20 sub-modules and run prediction model 
training and evaluation using data from each module separately; 

9) Collect and interpret the results. 

2.1. SourceMonitor as basic metrics source 

Defect prediction process in PROSIT+ is based on metrics that are gath-
ered using SourceMonitor tool [12]. That tool performs static computer code 
analysis on complete files and extracts 24 different kinds of metrics. Example 
metrics extracted are: 

x Lines of code, 
x Methods per class, 
x Percentage of comments, 
x Maximum Block Depth, 
x Average Block Depth. 

2.2. CodeAnalysis tool as code smells metrics source 

In our experiment, we decided to use Microsoft CodeAnalysis tool to 
gather code smells metrics. Primary deciding factor was cost: CodeAnalysis 
tool is delivered as a part of Microsoft Visual Studio software development 
suite for .NET based projects. Thus, there were no additional costs of introduc-
tion of this tool into the investigated software development project. 

CodeAnalysis for managed code analyzes managed assemblies and re-
ports information about the assemblies, such as violations of the pro-
gramming and design rules set forth in the Microsoft .NET Framework 
Design Guidelines [20]. 
 
According to documentation, there are approximately two hundred rules 

in CodeAnalysis [20], triggering 11 kinds of warnings (Table 1). Tool can be 
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run from command line and results are then stored in an .xml file, that can be 
later parsed and analyzed further. 

Table 1. Bad smell warnings in CodeAnalysis 

Bad smell warning Area covered 
Design  Correct library design as specified by the .NET Framework 

Design Guidelines 
Globalization World-ready libraries and applications 
Interoperability Interaction with COM clients 
Maintainability Library and application maintenance 
Mobility Efficient power usage 
Naming Adherence to the naming conventions of the .NET Frame-

work Design Guidelines 
Performance High-performance libraries and applications 
Portability Portability across different platforms 
Reliability Library and application reliability, such as correct memory 

and thread usage 
Security Safer libraries and applications 
Usage Appropriate usage of the .NET Framework 

3. Results 

We conducted our experiment by following the plan presented in previ-
ous section. Here we present the results. 

3.1 Automatically generated code: observed anomaly, cause and solution 

After analyzing the relation between numbers of reported code smells 
issues and file length metrics for complete software system, in datasets pre-
pared basing on CodeAnalysis and SourceMonitor tools, we observed that 
different numbers of issues are reported for the same, large file length values 
(Figure 1). As considered software contains only small number of large files, 
we interpreted that as an anomaly: different total number of code bad smell 
issues were reported for the same files. After investigation, we found that in 
investigated system files with more than 1000 lines of code (LOC) are in most 
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cases generated automatically and contain more than one class for a file, while 
CodeAnalysis tool calculates number of issues metric per class. That discrep-
ancy resulted in abnormal number of issue per file length relation: different 
number of issues values were collected for the same LOC values, because 
numbers of issues values were calculated for different classes located in the 
same files, identified by the same LOC value.  

 

Figure 1. Anomalies in number of issues metric per file length (measured in LOC)  
relation, introduced by automatically generated code, later removed from analysis 

 
Figure 2. Number of issues metric per file length (measured in LOC) relation for in-

vestigated software, with automatically generated code removed 
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As automatically generated code files exist only for installation and de-
ployment purposes and are not covered by tests and are not reachable for end-
users of the system, we decided to consider them as a source of information 
noise and we removed them from further analysis. Number of issue per file 
length relation improved after that step (Figure 2). 

3.2 Metrics breakdown difference: problem and solution 

After a thorough investigation of the above problem, we found that dif-
ferent values of issue number metric for the same LOC metric was caused by 
the different metrics breakdown used by two tools selected for metric datasets 
generation: CodeAnalysis gathers data for every class while SourceMonitor for 
every file. When results from two tools were merged into single dataset, Sour-
ceMonitor metrics, fixed for each file, were artificially divided per each class 
in the file (Table 2). 

Table 2. Example of dataset from first approach: single class per record (SourceMoni-
tor metrics are artificially divided per each class in file) 

File Class SourceMonitor LOC CodeAnalysis Issues 
File1.cs  Class1  33  3 
File1.cs  Class2  33  20 
File1.cs  Class3  33  6 
File2.cs  Class4  30  15 

 
To counteract against metric anomalies described in section 3.1, as well 

as against possible introduction of informational noise into the training dataset, 
we decided to change the approach and rearrange the datasets into single file 
metrics per record layout. To achieve this, metrics gathered by CodeAnalysis 
had to be aggregated (added; Table 3). 

Table 3. Example of dataset from second approach: single file per record (CodeAnaly-
sis metrics are artificially added) 

File  Class  SourceMonitor LOC  Code Analysis Issues 
File1.cs  Class1...3  100  29 
File2.cs  Class4  30  15 
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3.3 Optimal prediction mechanism selection 

To choose optimal prediction mechanism, we decided to test combina-
tion of different classifiers, feature selection and balance algorithms (Table 4) 
against two datasets: with- and without code bad smells metrics collected by 
CodeAnalysis tool. 

Table 4. Combinations of different approaches 

Classifier  Feature Selection  SMOTE  Bad smells metrics? 
Naive Bayes  None  With  Present 
Random Forest  Elimination  Without  Absent 
PNN Simulated Annealing 

 
We used SMOTE algorithm [4] to balance classes with defects and 

without them. 
To select most important metrics from all available, as some of them 

should have seemingly little impact on the presence of true software defects, 
e.g. Efficient power usage warning (Table 1), we decided to use in our re-
search two feature selection algorithms: KNIME's build-in reversed elimina-
tion greedy algorithm [16] and simulated annealing meta-heuristic algorithm 
by Kirkpatrick et al. [15] in form proposed by Brownlee [3]. 

As classifier, we used popular in defect prediction studies [6, 21, 14, 23] 
Naïve Bayes classifier and Probabilistic Neural Network (PNN), as well as 
Random Forest [2] classifier. 

Results of testing combinations of above machine learning elements in 
favour of best prediction results are presented in Table 5. Two datasets – with- 
and without code bad smells metrics included, were divided using stratified 
sampling method into two equal subsets, for training and evaluation purpose. 
Prediction models were evaluated using F-measure [25]. 

Highest F-measure value (0.9713) was observed for dataset with code 
bad smells used, when SMOTE algorithm and reversed elimination feature 
selection mechanism was used to select optimal subset for training and evalua-
tion of Random Forest classifier. And such combination was selected for final 
evaluation of usage of code smells based metrics in defect prediction process. 

 



 Defect Prediction with Bad Smells in Code 171 
 

 
 

Table 5. Results for optimal prediction set-up selection (defect-prone class) 

 

3.4 Datasets evaluation: CodeAnalysis (bad smells metrics) against Sour-
ceMonitor 

For final evaluation, if code bad smells-based metrics could be valuable 
for defect prediction purposes, we divided all available code, in considered 
industrial software development project, into 20 smaller, similar in size sub-
modules (ca. 700 records after SMOTE oversampling). Greater fragmentation 
of system's code was not technically possible. For each sub-module we col-
lected metrics using SourceMonitor or/and CodeAnalysis, to create different 
datasets: 

x 20 datasets of SourceMonitor metrics only; 
x 20 datasets of CodeAnalysis (code smells) metrics only; 
x 20 datasets of combined metric: SourceMonitor + CodeAnalysis. 

Additionally, each kind of datasets we decided to test against feature se-
lection (FS) process. During the evaluation, we collected Accuracy and 
Cohen's kappa measures for overall results (Table 6), and F-measure and Re-
call for defect-prone classes (Table 7). 
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Table 6. Final results of datasets evaluation 

Dataset  Measure  Mean  Std. deviation 
SourceMonitor without FS  Accuracy 0.9422  0.0187 

Cohen's kappa  0.8844  0.0374 
CodeAnalysis without FS Accuracy 0.676  0.0451 

Cohen's kappa  0.3518  0.0904 
SourceMonitor + CodeAnaly-
sis w/o FS 

Accuracy 0.9487 0.0226 
Cohen's kappa  0.8973  0.0453 

SourceMonitor with FS Accuracy  0.97  0.0122 
Cohen's kappa  0.9399  0.0245 

CodeAnalysis with FS Accuracy  0.8249  0.059 
Cohen's kappa  0.6497  0.1180 

SourceMonitor + CodeAnaly-
sis with FS 

Accuracy  0.9791  0.0135 
Cohen's kappa  0.9582  0.027 

3.5 Threads to validity 

Conclusion validity. In our research, we tested 20 datasets collected 
from different software modules. More research using larger data set, collected 
from different sources is needed to confirm our findings. 

Internal validity. We have used aggregation of CodeAnalysis metrics for 
each file, by adding metrics collected for each class. Such solution was intro-
duced to solve metrics breakdown difference problem and make combination 
of two metric sources possible, however it could impact the final result of our 
research. 

External validity. Our research is based only on metrics gathered from 
one software development project. Despite the fact, that we were able to col-
lect 34 different metric kinds for 20 different program modules, we were still 
constrained by single environment: development team and its programming 
habits, programming language, tools used, etc. Because of this fact, more re-
search is needed to verify our findings in other software development envi-
ronments (contexts). 
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Table 7. Measures for records marked as defect-prone 

Dataset  Measure  Mean  Std. deviation 
SourceMonitor without FS  Recall 0.9608  0.0278 

F-measure 0.9433  0.0188 
CodeAnalysis without FS Recall 0.666  0.2961 

F-measure 0.6447  0.1157 
SourceMonitor + CodeAnaly-
sis w/o FS 

Recall 0.9637  0.0303 
F-measure 0.9494  0.0228 

SourceMonitor with FS Recall 0.9824  0.0146 
F-measure 0.9704  0.012 

CodeAnalysis with FS Recall 0.8424  0.0542 
F-measure 0.8286  0.0559 

SourceMonitor + CodeAnaly-
sis with FS 

Recall 0.9859  0.0206 
F-measure 0.9792  0.0136 

4. Discussion 

When selecting optimal defect prediction set-up for further verification 
if code smell-based metrics can improve prediction results, we observed that 
best result was achieved for dataset with bad smell metrics included (F-
measure = 0.9713). However, for the same setup, but without code smells met-
rics, F-measure value was only by 0.0059 lower (Table 5) what makes the 
difference between SourceMonitor and CodeAnalysis results negligible. Final 
results collected from 20 different software sub-modules confirmed that state-
ment: Average accuracy value for prediction based on dataset constructed bas-
ing on both sources was only by 0.0091 better than result for SourceMonitor-
only based metrics (Average F-measure value difference = 0.0088), while 
standard deviation value was 0.0136. Worth noticing is drop of CodeAnalysis 
– only based prediction results, when feature selection (FS) process was re-
moved from the experimental setup. 

Results of our experiment of using code smells metrics in software de-
fect prediction, show irrelevant – in our opinion – impact on effectiveness of 
the process, when basic dataset (SourceMonitor-based) was extended by 
CodeAnalysis metrics. because even if prediction effectiveness measures are 
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slightly higher, the stay within the limits of error. But when only use of Code-
Analysis-based metrics were used for prediction (without basic set of Sour-
ceMonitor-based metrics), such process resulted with high accuracy (0.8249) 
and F-measure (0.8286) results. 

Thus, answering the research question: How Code Bad Smells based 
metrics impact defect prediction in industrial software development project? 
We want to state, that in industrial environment, such as PROSIT+ software 
development project, impact of code bad smells based metrics is negligibly 
small, and usage of CodeAnalysis-based metrics should not be considered 
useful, due to fact that additional effort needed for introducing code smell-
based metrics to software defect prediction process is not compensated by 
relatively high increase of prediction effectiveness. 

However, we observed surprisingly high effectiveness of prediction, 
when dataset based on CodeAnalysis only was used. Authors believe, that 
code bad smells can be effectively used for defect prediction process espe-
cially there, where other metrics are not available, or computing power is in-
sufficient to handle large sets of different metrics (for example 24 kinds of 
metrics for SourceMonitor), while CodeAnalysis metrics set, used in our re-
search, contained only 11 different kinds of metrics. Due these promising re-
sults, aspects of using code bad smells only based metrics in defect prediction 
processes should be investigated further. 

References 

[1]  K. Beck. Code Smell (2016), http://c2.com/cgi/wiki?CodeSmell, accessed: May 
8, 2016. 

[2]  L. Breiman. Random Forests. Machine Learning pp. 5–32, 2001. 
[3]  J. Brownlee. Clever Algorithms. Nature-Inspired Programming Recipes, Jason 

Brownlee, 2011. 
[4]  N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer. SMOTE: Synthetic 

Minority Over-sampling Technique. Journal of Artificial Intelligence pp. 321–
357, 2002. 

[5]  M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts. Refactoring: Improving 
the Design of Existing Code. Addison-Wesley Professional, 2006. 

[6]  T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell. A Systematic Literature 
Review on Fault Prediction Performance in Software Engineering. IEEE Trans-
actions on Software Engineering 38(6), pp. 1276–1304, 2012. 



 Defect Prediction with Bad Smells in Code 175 
 

 
 

[7]  T. Holschuh, M. Pauser, K. Herzig, T. Zimmermann, R. Premraj, A. Zeller. Pre-
dicting defects in SAP Java code: An experience report. In: ICSE-Companion 
2009, 31st International Conference on Software Engineering, pp. 172–181, 2009. 

[8]  J. Hryszko, L. Madeyski. Bottlenecks in Software Defect Prediction Implementa-
tion in Industrial Projects. Foundations and Computing and Decision Sciences 
40(1), pp. 17–33, 2015, http://dx.doi.org/10.1515/fcds-2015-0002 

[9]  J. Hryszko, L. Madeyski. Assessment of the Software Defect Prediction Cost 
Effectiveness in an Industrial Project. Advances in Intelligent Systems and Com-
puting (accepted), 2016. 

[10]  J. Hryszko, L. Madeyski, R. Samlik. Application of Defect Prediction-Driven 
Quality Assurance Methodology in Industrial Software Development Project, 
pre-print, 2016 

[11]  N. Jaechang. Survey on Software Defect Prediction (2014), hKUST PhD Quali-
fying Examination  

[12]   J.Holmes: SourceMonitor Site, 2016,  
http://www.campwoodsw.com/sourcemonitor.html, accessed: 2016.05.06 

[13]  M. Jureczko, L. Madeyski. A Review of Process Metrics in Defect Prediction 
Studies. Metody Informatyki Stosowanej 30(5), pp. 133–145, 2011, 
http://madeyski. e-informatyka.pl/download/Madeyski11.pdf 

[14]  T. M. Khoshgoftaar, A. S. Pandya, D. L. Lanning. Application of Neural Net-
works for Predicting Faults. Annals of Software Engineering 1(1), pp. 141–154, 
1995. 

[15]  S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. Optimization by Simulated Anneal-
ing. Science 220(13), pp. 671–680, 1983. 

[16]  KNIME.COM AG: Backward Feature Elimination, 2016, https://www.knime. 
org/files/nodedetails/_mining_meta_mining_features_Backward_Feature_Elimin
ation_Start_1_1_.html, accessed: June 28, 2016. 

[17]  KNIME.COM AG: KNIME Framework Documentation, 2016,  
https://tech.knime.org/documentation/, accessed: May 6, 2016. 

[18]  L. Madeyski, M. Jureczko. Which Process Metrics Can Significantly Improve 
Defect Prediction Models? An Empirical Study. Software Quality Journal 23(3), 
pp. 393–422, 2015, http://dx.doi.org/10.1007/s11219-014-9241-7 

[19]  L. Madeyski, M. Majchrzak. Software Measurement and Defect Prediction with 
Depress Extensible Framework. Foundations of Computing and Decision Sci-
ences, pp. 249–270, 2014. 

[20]  Microsoft: Code Analysis for Managed Code Overview, 2016,  
https://msdn.microsoft.com/en-us/library/3z0aeatx.aspx, accessed: May 6, 2016. 

[21]  R. Moser, W. Pedrycz, G. Succi. A Comparative Analysis of The Efficiency of 
Change Metrics and Static Code Attributes for Defect Prediction. In: Software 
Engineering, 2008. ICSE '08. ACM/IEEE 30th International Conference on. pp. 
181–190, 2008. 

[22]  N. Nagappan, T. Ball, A. Zeller. Mining Metrics to Predict Component Failures. 
In: Proceedings of the 28th International Conference on Software Engineering. 
pp. 452–461, 2006. 



176 Software Engineering: Improving Practice through Research 
 

 
 

[23]  R. W. Selby, A. Porter. Learning from Examples: Generation and Evaluation of 
Decision Trees for Software Resource Analysis. IEEE Transactions on Software 
Engineering 14(12), pp. 1743–1756, 1988. 

[24]  G. Succi, W. Pedrycz, M. Stefanovic, J. Miller. Practical Assessment of the 
Models for Identification of Defect-Prone Classes in Object-Oriented Commer-
cial Systems Using Design Metrics. Journal of Systems and Software 65(1), pp. 
1–12, 2003. 

[25]  I. H. Witten, E. Frank, M. A. Hall. Data Mining: Practical Machine Learning 
Tools and Techniques. Morgan Kaufmann, 2005. 

[26]  M. Zhang, T. Hall, N. Baddoo. Code Bad Smells: a review of current knowledge. 
Journal of Software Maintenance and Evolution: Research and Practice, pp. 179–
202, 2011. 

[27]  M. Zhang, T. Hall, N. Baddoo, P. Wernick. Do bad smells indicate "trouble" in 
code? In: DEFECTS '08 Proceedings of the 2008 workshop on Defects in large 
software systems, pp. 43–44, ACM, 2008. 

 


