
Preprint: Marcel Jerzyk and Lech Madeyski (2023). Code Smells: A Comprehensive Online Catalog and Taxonomy.
In: Kryvinska, N., Greguš, M., Fedushko, S. (eds) Developments in Information and Knowledge Management Systems
for Business Applications. Studies in Systems, Decision and Control, vol. 462, p. 543–576, Springer, Cham. DOI:
10.1007/978-3-031-25695-0_24

Preprint: https://madeyski.e-informatyka.pl/download/JerzykMadeyski23.pdf

Code Smells: A Comprehensive Online Catalog
and Taxonomy

Marcel Jerzyk and Lech Madeyski

Abstract Context: Code Smells—a concept not fully understood among program-
mers, crucial to the code quality, and yet unstandardized in the scientific literature.
Objective: Goal (#1): To provide a widely accessible Catalog that can perform useful
functions both for researchers as a unified data system, allowing immediate infor-
mation extraction, and for programmers as a knowledge base. Goal (#2): To identify
all possible concepts characterized as Code Smells and possible controversies. Goal
(#3): To characterize the Code Smells by assigning them appropriate characteristics.
Method: We performed a combined search of formally published literature and grey
material strictly on Code Smell and related concepts where it might never have been
mentioned, along with the term ”Code Smell” as a keyword. The results were an-
alyzed and interpreted using the knowledge gathered, classified, and verified for
internal consistency.
Results: We identified 56 Code Smells, of which 15 are original propositions, along
with an online catalog. Each smell was classified according to taxonomy, synonyms,
type of problem it causes, relations, etc. In addition, we have found and listed 22
different types of Bad Smells called hierarchies and drew attention to the vague dis-
tinction between the Bad Smell concepts and Antipatterns.
Conclusion: This work has the potential to raise awareness of how widespread and
valuable the concept of Code Smells within the industry is and fill the gaps in the ex-
isting scientific literature. It will allow further research to be carried out consciously
because access to the accumulated information resource is no longer hidden or dif-
ficult. Unified data will allow for better reproducibility of the research, and the sub-
sequent results obtained may be more definitive.

Key words: bad smells, code smells, taxonomy, catalog, smell hierarchies

Marcel Jerzyk
Wroclaw University of Science and Technology e-mail: marcerzyk@gmail.com

Lech Madeyski
Wroclaw University of Science and Technology e-mail: lech.madeyski@pwr.edu.pl

https://doi.org/10.1007/978-3-031-25695-0_24
https://madeyski.e-informatyka.pl/download/JerzykMadeyski23.pdf
marcerzyk@gmail.com
lech.madeyski@pwr.edu.pl

2 Marcel Jerzyk and Lech Madeyski

1 Introduction and Motivation

The number of new developers increases proportionally to market demand in the IT
industry. One of the main issues in software development is technical debt. It is safe
to assume that without the assistance and expertise of an experienced developer, the
code developed by newcomers is very error-prone. Moreover, this is not the only
group that can create code with which problems may arise somewhere in the future.
Some practices and tools that try to minimize this problem are Code Reviews, Lin-
ters, or Static Analysis Tools. However, despite the best attempts and willingness,
knowledge and skills, planning, or design, something that Fowler defined as a ”bad
code smell” may appear at some point of implementation.

Code Smell is an indication that usually, but not always, corresponds to a deeper
problem in the system’s architecture, the structure of the project, or the quality of the
code, in general. If they are overlooked and left unsolved, they contribute directly to
technical debt. It is critical for any successful long-term project to avoid them, but
this task is often tricky, ambiguous, and unexpected. Like a Schrodinger cat, one can
often only become aware of a problem when one first notices the problem during
some further development.

As experience shows, long and semi-long projects sometimes can reach a lifespan
counted in years. Thus, it is crucial to be aware of code smells and remove them
as soon as one realizes that something might be wrong during the initialization or
the development phase. The longer the smelly place remains unrefactored, the more
influential and irritating it may become. This situation is not just something that will
cause potential employees to have slightly lower morale. The destructive scope is
much broader: the code, filled with smells, becomes progressively more challenging
to maintain, which will require unnecessarily more dedicated person-hours. Adding
more functionalities may take an irrationally long time, and it becomes difficult to
estimate how long it would take. Finally, the code can become so complicated that
it cannot be further supported.

Since the day it was defined by Fowler, many activities have been carried out
from the scientific as well as a practical-lecture side, to name a couple: some new
books were created with new Code Smells proposals along with their respective
appropriate refactoring methods, new scientific articles trying to impose a more de-
fined framework (definitions, predictors, impact), detection using machine learning
techniques.

Despite that, there is a noticeable problem with standardization and access to
data and content on this topic. This can be seen in the disproportionate amount of
research conducted on individual Code Smells, the use of different, intermixed tax-
onomies, and different names for the same concepts. One of the latest meta-analyses
reached the same conclusions [1]. Despite the confirmed features that characterize it
as significant for the quality of the code, the Code Smells has far too little awareness
among developers, which it did not deserve.

Both of these things may result directly from the lack of a homogeneous source
that could be used for standardized and updated information. In an ideal world, there
would be a catalog in which anyone interested could find information on the subject

2. RELATED WORK 3

in an easily digestible form, while allowing the scientist to perform unified research
on it. Additionally, anyone could easily update this catalog without the required
technical knowledge of web-building, focusing on the merits.

In this paper, we provide such a tool and a summary of the literature available
on this topic in terms of definitions and higher ”categorizations” - not only from the
white literature, but also from the ”grey sources”. We try to find any controversy
and suggest alternatives for them. We also add completely new concepts classified
as Code Smells, both resulting from our practical experience and among existing,
although ”hidden” issues in the literature, which have not been related to the term
Code Smell. In addition, in search of them, we also scour the Internet, including
message boards, developers’ home pages, and any other source containing substan-
tive three cents on this topic.

2 Related Work

This work directly addresses the problem that has been explicitly presented in the
massive Tertiary Systematic Review of 2020, which points to an existing problem
with the standardization of information [1]. They notice that Bad Smells appear with
different definitions and that different Bad Smells refer to the very same concept
without distinction. They sum it up with a call for the creation of a call to create
a cataloging tool that would enable the unification and standardization of data
on Code Smells.

2.1 Formulating Research Questions

Analyzing existing research has led us to the following research questions.

1. RQ1: What is the amount research on different code smells?

- If there is a situation in which there is a disproportion in the amount of
literature for a given Code Smell, it would be worth pointing to. A holistic
approach would be preferred to ensure that nothing escapes a potential classi-
fication.

2. RQ2: Is there a source that aggregates all the Code Smells?

- A place that one can reach to find out about all the existing Code Smells is
essential to approach further research quickly and reliably with a solid starting
database of information.

3. RQ3: Are there any inconsistencies in the research as to the adopted assumptions,
definitions, the taxonomy, or the Code Smells themselves?

4 Marcel Jerzyk and Lech Madeyski

- Consistency in the concepts used is vital to be sure, with subsequent re-
search, about increasing the certainty of information about a given issue with-
out dispersing the results into synonyms.

4. RQ4: Are the Code Smells themselves (definitions, validity) discussed in scien-
tific papers?

- It is pretty interesting if the information about Code Smells is contested or
accepted without reflection. Similarly, if any investigations are carried out,
whether some Code Smell can still be called a Code Smell, or if its name or
definition should not be corrected by chance.

5. RQ5: Are there any investigation studies that look for new Code Smells?

- Is there a significant difference in the amount of information about Code
Smells in ”grey knowledge” (outside the scientific literature) compared to sci-
entific papers? Are there any searches to extract phrases that fit the definition
of a Code Smell, which have not been named yet so by anyone so far?

2.2 Sources of Research

The literature review was, to a large extent, inspired by the methodology behind
rapid reviews [2]. Scopus was used as the primary source of research using search
strings. Furthermore, we have also searched for available resources on Google
Scholar and the surface Internet through Google Search Engine to find a full spec-
trum of various sources such as discussion forums (i.e., StackOverflow, Software
Engineering - StackExchange, Reddit, GitHub Gists), blog entries of various field
experts, courses and guides prepared by respected IT authorities, as well as websites
and videos devoted to Code Smells. We also dug for information that does not nec-
essarily mention themselves in the context of Code Smells but may address topics
closely related to them, or even literally issues that describe Code Smells, without
using them as a phrase. It should also be noted that we have excluded studies that
are not published in English.

To illustrate the numerical values (and answer RQ1), we collected very general
information on the amount of searchable research in the context of Code Smells for
each Code Smell, with a simple search query that looks up for code smells or
bad smells in the title or abstract of the research paper, and for the particular
code smell name (see Listing 1). This action imitates a quick look-up as if some-
one hearing about the topic wanted to get more information quickly. Please note
that the latter part of the query might show a different result based on other, syn-
onymous terms for given smells. We have performed multiple modified queries to
verify interchangeable naming of a smell (for example, Repeated Switching was
searched through repeated AND switching, switch AND statement,
and switch AND case). To ensure that the plural form of the word smells does
not affect the search, we checked in advance that ”TITLE-ABS-KEY (code

2. RELATED WORK 5

AND smells)” and ”TITLE-ABS-KEY (code AND smell)” lead to
the same number of results, which is 1555.

Listing 1 Search String Queries Structure

TITLE-ABS-KEY (
(

code
AND
smells

) OR (
bad
AND
smells

)
) AND ALL (

<CODE_SMELL_NAME>
)

We have aggregated the results from the search queries into a sorted table (see Ta-
ble 1), listing the results with the highest number of results from top to bottom.
Please, keep in mind that this is an overview list - the results do not mean that there
are precisely as many papers for a given element, but rather a loose approximation of
the number of papers in which at least the words, wherever they are, are mergeable
into a phrase of a given Code Smell. In any case, that is enough to notice that there
is a dramatic disproportion. It reminds me of two statistics that are based on power
law, one from economics and the other from statistical mathematics, the Pareto Law
and Zipf’s Law:

• The vast majority of the results found are held by the top few percentages of
Code Smells.

• The frequency of Code Smells is somewhat inversely proportional to its rank in
the table.

2.3 Literature Review & General Investigation

After reading the data and the information that we have collected, it is clear that the
preferred taxonomy used in the literature is the one proposed by Mäntylä - based on
smells defined by Fowler - from his Code Smell Taxonomy paper from 2003 [3] that
features seven groups: Bloaters, Object-Oriented Abusers, Change Preventers, Dis-
pensables, Encapsulators, Couplers, and Others. He adjusted his work in 2006 [4]
when he moved Parallel Inheritance Hierarchies into the category of Change Pre-
venters. Despite that, studies place particular smells in different categories (that is,
the article from 2018, where Parallel Inheritance Hierarchies is once again labeled in
Object-Oriented Abusers [5]). These shifts may indicate that there is trouble reach-
ing the information (or a problem with getting to the corrected information) or/and
that there might be disputes about how a given smell should be categorized. Instead,

6 Marcel Jerzyk and Lech Madeyski

Code Smell # Code Smell #
Data Class** 379 Inconsistent Style 2
Large Class 370 Incomplete Library Class 2
Long Method 187 Inappropriate Intimacy 2
Feature Envy 129 Inappropriate Static 2
Regions* 89 BC. Depends on Subclass 1
Global Data 76 Vertical Separation 1
Comments** 58 Type Embedded in Name 1
Duplicate Code 46 Status Variables 1
Side Effects 45 Tramp Data 1
Loops*,** 38 Null Check 1
Refused Bequest 27 Binary Operator In Name 1
Dead Code 23 Afraid to Fail 0
Message Chains 18 Req. Setup or Teardown 0
P. Inheritance Hierarchies 14 Indecent Exposure 0
Long Parameter List 13 Insider Trading 0
Hidden Dependencies 11 Uncommunicative Names 0
Conditional Complexity 9 Explicity Indexed Loops 0
Middle Man 9 Boolean Blindness 0
Combinatorial Explosion 6 Flag Arguments 0
Primitive Obsession 6 Mutable Data 0
Speculative Generality 6 Callback Hell 0
Repeated Switching 5 Oddball Solution 0
Data Clumps 5 Clever Code 0
AC w/ DI 4 Comp. Boolean Expression 0
Magic Numbers 4 Comp. Regex Expression 0
Inconsistent Names 4 ”What” Comment 0
Temporary Field 3 Fallacious Comment 0
Lazy Element 3 Fallacious Method Name 0
Incons. Abstration Levels 2 Code Smell*** 1555

* - these terms could give a lot of false positives.
** - controversial code smells (see Section 6.2)

*** - number of results for a query without any particular Code Smell name

Table 1 Results of Code Smell Search Queries in Scopus

we would consider it an exciting conclusion that there is a possibility that a category
should be treated as some feature-like labels, thus allowing them to be assigned to
more than one ”bag”.

There are numerous intriguing studies summarizing the current literature and
each of them presents a different variation of the taxonomy, if any at all. Some latest
examples:

• The simplified Mäntylä taxonomy (2006) classification in a tertiary systematic
review from 2020 on code smells and refactorings [1] and in the systematic re-
view of the literature on bad smell machine-learning detection techniques [6].
The previous also mentions categorizing the smells within and smells between
classes.

2. RELATED WORK 7

• The extended Mäntylä taxonomy (2003) in the 2020 systematic review article
of the literature on the relationship between code smells and software quality
attributes [7] and the prioritization of the 2021 code smell review article [8]. The
previous also mentions the intra- and inter-class smell classification.

• No taxonomy is mentioned in the 2017 systematic review of the literature on
refactoring to reveal code smells [9].

• Systematic review of 2019, in which the authors’ removed Change Preventers
and Dispensables while simultaneously introducing Design Rule Abusers and
Lexical Abusers [10]

Another thing is that there is no delimitation of what a Bad Smell is. Quite vague
statements are used to separate the over categories of Smells (such as Code Smell,
Implementation Smell, Design Smell). Considering this issue, we were unable to
determine at first whether a Feature Envy is defined as a Code Smell [11] and only
a Code Smell or should it be a Design Smell [12] and, therefore, whether it should
be only a Design Smell or should it be both. Then it came up as Bad Smell [13], and
so on. This ambiguity makes it hard to figure out what exactly is being discussed,
whether the information read is an update on the subject matter, whether it is a
redefinition of some sort, a new additional information contribution, or even maybe
an entirely different (or the very same) issue but regarded from another perspective.

Another issue is using ”Bad Smell” interchangeably for any Smell category. At
the very beginning, it would be understandable as there was only the case of ”Bad
Code Smells”, but right now, it might create much confusion for the newcomers.

An issue with a similar problem is using ”Antipatterns” interchangeably with
”Smells”. Sometimes the difference is observed (sometimes, it is distinguishable;
sometimes, it is minimal [9]), but in turn, some Bad Smells are designated as antipat-
terns and the other way round. This lack of perimeters hampers targeted research;
researchers are forced to include all these concepts in their search string queries, as
in the example search query listing (see Listing 2), which in this particular example
misses the papers that the Unpleasant Smell query can find [14]. This lack of
distinction and the arbitrary use of both terms make them even more confusing and
difficult to understand. More interestingly, the Antipattern has one precise definition
that most strongly agrees with: ”an antipattern is a bad solution to a recurring design
problem that has a negative impact on the quality of system design” [15].

Listing 2 Search String Query for Bad Smells Investigation

TITLE-ABS-KEY (
(

"code smells"
OR
"bad smell"
OR
"antipattern"
OR
"anti-pattern"
OR
"anti pattern"

) AND (

8 Marcel Jerzyk and Lech Madeyski

...
)

) AND ALL (
...

)

This directly answers the RQ3 - taxonomies are inconsistent, and this lack of
standardization may lead to the omission of some data, cause less precise classi-
fication, or result in not reproducible results. Moreover, even if two of the same
taxonomies were used in the study, they also happen to be not internally consistent.
Therefore, the idea of aggregating all the information in an easily accessible form is
attractive.

Some studies are focusing more globally on inspecting all smells as a whole,
in different contexts such as the evolution of smells [10], their effects [16], and
many more on detection accompanied by machine learning, predictors, and metrics.
More extensive papers that focus on a more broad subject, such as investigating O-O
problems, often use the bad smell term as a higher abstraction of different classes
of smells. Their contents discuss the smells without clear distinction when exactly
something is about a Code Smell, Design Smell, Architectural Smell, or an Antipat-
tern, which makes these concepts blurry. The lack of standardization has led to the
fact that there are also works that use yet another word - Unpleasant Smell [10],
making it harder and harder to pinpoint everything by a predefined search query;
more about that in the Bad Smell Hierarchies section (ref. Section 3). Narrowing
the Perspective to Individual Code Smells, Large Class has the most subvariations
(Brain Class, Complex Class, God Class, Schizophrenic Class [17], Blob, Ice Berg
Class), and it is confusing to have no source that differentiates or defines them.
Some name the same thing, some are slightly different, and some use slightly dif-
ferent predictors. The Tertiary Systematic Review paper from 2020 concludes the
same observation as theirs RQ#2: ”A smells naming standardization is neces-
sary, allowing the terminology and its precise meaning to be unified. With this
standardization, cataloging the smells defined up to the present time should be
possible, determining those that refer to the same smell with different names”.
[1] Answering RQ5: These subvariations of existing smells are the only new Code
Smells that appear in the literature, but speaking of Bad Smells in general - numer-
ous new hierarchies are created that define completely new smells (ref. Section 3).

The most recent comprehensive study that aggregates Smells comes from 2020
[1], where the authors conducted a systematic review with a great deal of detective
work and accumulated data from the literature on Code Smells. They found various
taxonomies (Mäntylä, Wakes, and Perez), although they missed the Marticorena
taxonomy [18] (or the Jeff Atwood taxonomy outside the scientific literature). They
have found Code Smells defined by Fowler (both from the book from 2003 and the
updated one from 2018), Wake, and Kerviesky and listed them additively in sub-
sequent tables for each new Smell defined by the subsequent person. This way of
presentation is acceptable, although it would be nice to have everything listed in
a cumulative matter for an overview. Furthermore, the table contains old and new
names for some of the smells (that is, Lazy Element and Lazy Class), and one of

2. RELATED WORK 9

the new smells was omitted (Loops) without mentioning the reason inside the arti-
cle. They performed incomparably more in-depth work to identify the most popular
Code Smells and various issues (like technical debt, design smells), perspectives
(like co-occurrence), and reasons. They came to the same conclusion that the most
popular Code Smells are those listed by Fowler. Speaking of RQ2 - currently, this
is the most up-to-date source of information.

The authors are fully aware of the issues concerning standardization of the avail-
able Code Smell information and the spread of the data. They have investigated
the consequences that it causes (disproportion in research or even complete lack of
research). Most importantly, they strongly agree on creating a tool for standard-
ization purposes, insisting on another study they investigated that suggests the
creation of something like a Code Smell Catalog that we started to develop before
reaching this paragraph, because of the same observations, reasons, and conclusions.

Thus far, we see that the Code Smells have been disproportionately investigated.
Some of them have been completely omitted. The various smell hierarchies (de-
sign smells, code smells; ref. Section 3) occasionally intertwine smoothly without
distinctions. But what about Code Smells’ discussions (RQ4)? The study of 2021
[19] mentions ”for Data Class various exceptions to the definition are discussed,
which are actually best practices, that some practitioners doubt whether Data Class
is a code smell. For this reason, Data Class is, even though structurally very sim-
ple, rather difficult to automatically detect without considering human design ex-
pertise”. Another study from 2008 [20] focuses on constraining the definitions of
natural language for a few smells given by Fowler with the definitions based on
patterns. In addition to scientific literature, software discussion boards have more
than a few threads titled with questions about some of the smells: Why do they
smell and, furthermore, whether the name of a smell is misleading. For example,
in Stack Exchange - Software Engineering, the most upvoted answers to the open
question ”What do you think about ’comments are code smell?’” is that only the
comments that describe what the code is doing are smelly, and one highly upvoted
answer highlights the value of having a comment near a research algorithm. Sim-
ilarly, topics about the Data Classes conclude that they can be regarded as smelly
in a proper Object-Oriented context. However, the reality has shown that the True
Object-Oriented world is error-prone and, preferentially, might be supplemented
with functional programming practices; thus, there is nothing wrong with data ob-
jects, especially in the emerging rise of functional programming with immutable
data objects.

Regarding new definitions, none was found in the literature in the period of
Karievsky’s publication (Oddball Solution) from 2005 [21] up to the updated book
by Fowler in 2018 [22]. This lack of updates suggests a lack of scientific research to
investigate new code smells that have not yet been scientifically mentioned as Code
Smells. There is no back-to-back examination of the Internet and discussion forums
for the insights and ideas of the community, and no search outside Code Smell as a
phrase to find existing phrases that fit the characteristics of Code Smells and are yet
not described as Code Smells. This could give a false impression that there are no
more universally suspicious code blocks or solutions that could imply potential fu-

10 Marcel Jerzyk and Lech Madeyski

ture problems with comprehensibility, readability, maintainability, or extendability.
This impression is incorrect. We have found one more Code Smell Tramp Data that
was mentioned in a book by McConnell, ”Code Complete”, before the existence of
the term Code Smell, which is also recalled in the ”grey data source” by Smith in his
”Refactoring Course” from 2013 [23, 24]. He also mentions six more code smells
absent in the scientific literature. We have also found the term Boolean Blindness
which is used in the functional programming community and the scientific literature,
although it has never been tied to the Code Smell phrase, making it undiscoverable
in Bad Smell research. Finally, we have defined 15 more Code Smells, but more on
that is given in the Code Smell List (see Section 6).

3 Smell Hierarchies and Definitions

There are numerous types of Bad Smells in the literature. We have reached 22 con-
cepts in the field of software engineering that address a specific sector of Bad Smells.
Before listing them, we would like to draw attention to a particular problem in defin-
ing what Bad Smell is. Currently, bad smell is used synonymously for the discussed
issue (e.g., Code Smell, Design Smell) or as an acronym (e.g., Bad Architecture
Smell, Bad Code Smells). There is also the concept of Antipatterns, which is some-
times used synonymously for Bad Smells, and sometimes there is a conscious dif-
ference.

Returning to these 22 concepts, we call them Bad Smells Hierarchies and use the
term ”Bad Smells” as an umbrella term that captures all specific terms from each
hierarchy. To clarify and maintain the current terminology used in the literature,
each hierarchy can be referred to as a whole, for example, Bad Code Smells and,
briefly, Code Smells. We would distinguish Antipatterns from Bad Smells to avoid
blurring their definitions. Interestingly, Antipatterns have a description that seems to
be agreed upon by the vast majority: ”an antipattern is a bad solution to a recurring
design problem that has a negative impact on the quality of system design” [15],
while Bad Smell suffers from the lack of precise exact definition. Going back to the
place where it was defined, in 1999, Fowler put in his book that ”code smell is a
surface indication that usually corresponds to a deeper problem in the system” [11].
Without further suspense, the list of these hierarchies (without the Code Smells)
goes as follows:

1. Architectural Smells

- Set of architectural design decisions that negatively impact system lifecycle
properties (understandability, extensibility, reusability, testability) [25]

2. Design Smells

- Recurring poor design choices [26]

3. Implementation Smells

3. SMELL HIERARCHIES AND DEFINITIONS 11

- Subset of Code Smells that has the ”within” expanse attribute and other
specific granularity based on Sharma’s House of Cards paper from 2017 [27]

4. Comments Smells

- Comments that can degrade software quality or comments that do not help
readers much in terms of code comprehension [28] [29]

5. Linguistic Smells

- Smells related to inconsistencies between method signatures, documenta-
tion, and behavior and between attribute names, types, and comments. [30]

6. Energy Smells

- Implementation choices that make the software execution less energy effi-
cient. [31]

7. Performance Smells

- Common performance mistakes found in software architectures and de-
signs. [32] [33]

8. Test Smells

- Poorly defined tests; their presence negatively affects comprehension and
maintenance of test suites. [34]

9. UML Smells

- Model smells and model refactorings applicable in the early stage of model-
based software development that violates its 6C Goals - Correctness, Com-
pleteness, Consistency, Comprehensibility, Confinement, Changeability [35]

10. Code Review Smells

- Violating a set of standard best practices and rules that both open-source
projects and companies are converging on that should be followed [36]

11. Community Smells

- Sub-optimal organizational and socio-technical patterns in the organiza-
tional structure of the software community [37]

12. Bug Tracking Process Smells

- Set of deviations from the best practices that developers follow throughout
the bug tracking process [38]

13. Configuration Smells

- Granularized to design configuration smell and implementation configura-
tion smell. Things that make the quality of configuration questionable (naming
convention, style, formatting, indentation, design, or structure) [39]

12 Marcel Jerzyk and Lech Madeyski

14. Environment Smells

- Smells that make work less comfortable by, for example, requiring more
steps than it should be to achieve specific actions [29]

15. Presentation Smells

- Guidelines to create better presentations [40]

16. Spreadsheet Smells

- Intra-Code Smells but for Worksheet End-User Programmers [41]

17. Database Smells

- Antipatterns in terms of logical database design, physical database design,
queries, and application development [42]

18. Usability Smells

- Indicators of poor design on an application’s user interface, with the po-
tential to hinder not only its usability but also its maintenance and evolution
[43]

19. Android Smells

- Violation of standard principles and practices that have an impact on the
quality, performance, comprehension, and maintenance of mobile applica-
tions [44]

20. Security Smells

- Security mistakes that may jeopardize the security and privacy, identifica-
tion of avoidable vulnerabilities [45]

21. or even Grammar Smells with double nested categories that are referred to as
sub-smell groups (which for clarity of understanding could be just referred to as
grouping) [46] like:

- Organization Smells
- Convention Smells
- Notation Smells
- Parsing Smells
- Duplication Smells

- Navigation Smells
- Spaghetti Smells
- Shortage Smells
- Mixture Smells

- Structure Smells
- Proxy Smells
- Dependency Smells
- Complexity Smells

3. SMELL HIERARCHIES AND DEFINITIONS 13

Belonging to a given hierarchy is a feature of an individual Bad Smell. Bad
Smells can belong to one or more hierarchies and are not necessarily tied only to
precisely one (refer to the example Vienna diagram in Figure 1). Using an exam-
ple in the literature, Feature Envy is referred to as a Code Smell [11] and a Design
Smell [12]. What is the difference? Similarly to software architecture, we would
like to emphasize the importance of perspective. It defines from what angle we can
observe a given Bad Smell. This way of understanding solves the problem of un-
clear terminology and supports the knowledge of our papers, where these terms are
not necessarily used deliberately. For example, Uncommunicative Names can be ob-
served only from the code itself, but Feature Envy might be perceived when looking
from both the design perspective and the code perspective.

Fig. 1 Example Vienna diagram of Hierarchies of Bad Smells

In summary of all this information, we propose the following definition: “Bad
Smell indicates a problem in the system that may cause difficulties with its main-
tainability, extendibility, comprehensibility, or usability”. This allows the Antipat-

14 Marcel Jerzyk and Lech Madeyski

tern to intertwine with Bad Smells, and thus, the current scientific literature will
be consistent. There is a question - most likely, all the Antipatterns are some Bad
Smells, but are all the Bad Smells Antipatterns? There is room for investigation.

4 Code Smell Taxonomies

Currently, there are two main types of grouping upon which the Code Smells are
divided. The most common is the taxonomy proposed by Mäntylä [47]. This tax-
onomy does not exist in one form; different versions or permutations are used.
Sometimes, the Encapsulators group that appeared in the original proposition from
the Mäntylä Master Thesis of 2003 is abandoned. The smells of this subgroup are
moved to Dispensables and Object-Oriented Abusers [4]. Individual elements ap-
pear in different subgroups, such as Parallel Inheritance Hierarchies, which can
be found listed under Object-Oriented Abusers [47, 10, 1] and Change Preventers
[18, 4], which may indicate that smells are not in a bijection relationship with their
corresponding grouping, and they may be intertwined. More extensive modifications
may constitute a separate new proposal that uses only part of this grouping. An ex-
ample would be the latest systematic review in which the authors kept the Bloaters,
Encapsulators, Couplers, and Object-Oriented Abusers groups while adding Design
Rule Abusers and Lexical Abusers [10].

The other reasonably common characteristic defines whether a Code Smell can
be observed from within a class or whether it needs a broader context. The origin of
this type of segregation is possibly Atwood’s ”Coding Horror” website from 2006,
where he explicitly writes about Code Smells that can appear within a class and
Code Smells between classes [48]. This conception appeared in the literature in the
Marticorena paper of the same year, calling it a Boolean INTRA attribute [4].

4.1 Obstruction Grouping

We have updated the Mäntylä taxonomy based on its most common form, modify-
ing it with the addition of three new groups. We call this categorization an ”obstruc-
tion” grouping because the Code Smells are dividable into the type of problem they
cause or make difficult, or the practices they break. In this group, we have: Bloaters,
Change Preventers, Couplers, Data Dealers, Dispensables, Functional Abusers, Lex-
ical Abusers, Obfuscators, Object-Oriented Abusers, and Others.

5. CODE SMELLS CATALOG 15

4.2 Expanse Grouping

The second group we formed is the ”expanse” grouping, which defines whether the
smells are within the space of a class or if, for detection, a broader scope is required
- in other words, smells exist between classes.

4.3 Occurrence Grouping

Lastly, we introduce the ”occurrence” grouping, which is inspired by the chapter
names in the Wake book from 2004 [49]. It contains information about the place or
type of code where the smell is located. The subgroups are as follows: Conditional
Logic, Data, Duplication, Interfaces, Measured Smells, Message Calls, Names, Re-
sponsibility, Unnecessary Complexity.

5 Code Smells Catalog

The heart of this paper and its main contribution is the aforementioned in the ti-
tle, the Code Smell Catalog. It is both an open-source data repository1 and a self-
building website2. When creating this tool, we had a few crucial points in mind.

Accessibility Three out of ten developers do not know the existence of such a
concept as Code Smell. Another 50% of the developers never delved into Code
Smells [50]. No publicly available source could explain the specific issues of all
Code Smells. It would be great if the potential source of data on Code Smells
could also serve as an information presentation in an easily accessible and di-
gestible form.
The catalog was created using the latest web solutions that meet modern visual
standards. The user can interact with the website using filters and go to subpages
that contain information about Code Smells in the form of Wiki-like articles.

Data Source The data included in the catalog should be easily accessible as re-
search data. It should not be a problem to use them as a unified and standardized
data source that can be reused in the future and support reproducibility.
The data sources in the directory are files, where each file represents one Code
Smell. These files are in the markdown format3, which is one of the most popular
text formats. They are divided into two parts, the header, and the text. The head-
ings contain all the features and attributes assigned to a particular code smell.
The text provides additional explanations for understanding the topic at hand.

1 Code Smell Catalog Repository - https://github.com/luzkan/smells/
2 Code Smell Catalog Page - https://luzkan.github.io/smells/
3 Markdown Syntax - https://www.markdownguide.org/basic-syntax/

16 Marcel Jerzyk and Lech Madeyski

Code Smell Obstruction Expanse Occurrence
M. Fowler (2003)

Long Method Bloaters Within Meas. Smells
Large Class Bloaters Within Meas. Smells
Long Parameter List Bloaters Within Meas. Smells
Primitive Obsession Bloaters Between Data
Data Clumps Bloaters Between Data
Temporary Fields O-O Abusers Within Data
Conditional Complexity O-O Abusers Within Cond. Logic
Refused Bequest O-O Abusers Between Interfaces
AC with DI O-O Abusers Between Duplication
Parallel Inh. Hierarchies Ch. Prevent. Between Responsibility
Divergent Change Ch. Prevent. Between Responsibility
Shotgun Surgery Ch. Prevent. Between Responsibility
Lazy Element Dispensables Between Unn. Complx.
Speculative Generality Dispensables Within Unn. Complx.
Dead Code Dispensables Within Unn. Complx.
Duplicate Code Dispensables Within Duplication
Data Class** Dispensables Between Data
Message Chain Encapsulators Between Message Calls
Middle Man Encapsulators Between Message Calls
Feature Envy Couplers Between Responsibility
Insider Trading Couplers Between Responsibility
Comments** Obfuscators Within Meas. Smells
Incomplete Library Class Other Between Interfaces

W. Wake (2004)
Uncommunicative Name Lex. Abusers Within Names
Magic Number Lex. Abusers Within Names
Inconsistent Names Lex. Abusers Within Names
Type Embedded In Name Couplers Within Names
Combinatorial Explosion Obfuscators Within Responsibility
Comp. Boolean Expressions Obfuscators Within Cond. Logic
Conditional Complexity O-O Abusers Within Cond. Logic
Null Check Bloaters Between Cond. Logic

Table 2 Proposed Taxonomy as of 2022 (part 1/2)

We have also prepared a corresponding Python script that extracts the header in-
formation in the Smells content directory that serializes the data to JSON format
(for researchers’ convenience).

Ease of Contribution Optimization of the minimum knowledge requirements needed
to contribute to the project. This addition of new content should be as simple as
possible so that any great person who wants to contribute to the topic is not lim-
ited by technology.
The aforementioned markdown file format supports this idea since, on their ba-
sis, the entire website is created automatically through the continuous integra-
tion pipelines. Substantive contribution requires only text editing and common
knowledge of the git workflow.

Currently, as of the date of publication of this paper, the catalog is filled with
67 Code Smells - the main page with twelve examples of Code Smells can be seen

5. CODE SMELLS CATALOG 17

Code Smell Obstruction Expanse Occurrence
J. Karievsky (2005)

Oddball Solution Bloaters Between Duplication
Indecent Exposure Couplers Within Data

R. Martin (2008)
Flag Argument Ch. Preventers Within Cond. Logic
Inappropriate Static O-O Abusers Between Interfaces
BC Depends on Subclass O-O Abusers Between Interfaces
Obscured Intent Obfuscators Between Unn. Complex.
Vertical Separation Obfuscators Within Measured Smells

S. Smith (2013)
Conditional Complexity O-O Abusers Within Cond. Logic
Req. Setup/Teardown Bloaters Between Responsibility
Tramp Data Data Dealers Between Data
Hidden Dependencies Data Dealers Between Data

M. Fowler (2018)
Global Data Data Dealers Between Data
Mutable Data Func. Abusers Between Data
Loops** Func. Abusers Within Unn. Complex.

M. Jerzyk (2022)
Imperative Loops Func. Abusers Within Unn. Complex.
Side Effects Func. Abusers Within Responsibility
Fate over Action Couplers Between Responsibility
Afraid to Fail Couplers Within Responsibility
Bin. Operator in Name Dispensables Within Names
Boolean Blindness Lexic. Abusers Within Names
Fallacious Comment Lexic. Abusers Within Names
Fallacious Method Name Lexic. Abusers Within Names
Comp. Regex Exp. Obfuscators Within Names
Inconsistent Style Obfuscators Between Unn. Complex.
Status Variable Obfuscators Within Unn. Complex.
Clever Code Obfuscators Within Unn. Complex.
”What” Comments Dispensables Within Unn. Complex..
Imperative Loops Func. Abusers Within Unn. Complex.
Callback Hell Ch. Preventers Within Cond. Logic
Dubious Abstraction O-O Abusers Within Responsibility

Table 3 Proposed Taxonomy as of 2022 (part 2/2)

in Figure 2. The taxonomy data mentioned in the previous section (obstruction, oc-
currence, and expanse groupings) are included in the catalog. In addition to that,
we have included all potentially synonymous names for a given smell (known as).
We have also added empirical information on the relationships between Smells,
whether another smell causes a given smell or what the smell causes (ex.: Fate over
Action causes Feature Envy). The antagonistic smells that can, in turn, remove the
particular smell at hand (ex.: Message Chain and Middle Man), as well as the po-
tential smells that could coexist with the smell (in other words, are at both ends of
the causation relation, e.g., Type Embedded in Name and Primitive Obsession) or
other smells that are conceptually closely linked (e.g., Uncommunicative Name and
Magic Number).

18 Marcel Jerzyk and Lech Madeyski

Not extensively and exhaustively, but we also added a section of problems that
a given smell can create, broken down into general issues (e.g., Hard to Test, Cou-
pling) and violations of principles (e.g., Law of Demeter, Open-Closed) or patterns.
In addition, we have also included a list of potential refactoring methods, the po-
tential Bad Smell Hierarchies that the smell might be included in, and a historical
overview of when a given Code Smell was defined.

Fig. 2 Code Smell Catalog Website (https://luzkan.github.io/smells/)

https://luzkan.github.io/smells/

6. CODE SMELL LIST 19

6 Code Smell List

We have reached and characterized 56 Code Smells in total, of which 16 are new
original propositions. These smells are listed in the tables mentioned in Section 4
on Code Smell Taxonomies (see Table 2 and Table 3). They are listed in the order
of their appearance in the literature, including the author and year. Some of the
names in the table may be different from those already well known in the literature.
These name changes are due to the introduction of the most updated version, such
as Lazy Element or Insider Trading, which were previously named Lazy Class and
Inappropriate Intimacy, but were updated in the latest book by Fowler. The content
describing the issue has also been updated; in this case, it is a generalization of the
concept to any element, not only a class (e.g., module). However, please refer to the
attached catalog for a more detailed description of each of these 56 elements. There
you will find detailed information on the description of the issue, along with an
example and its solution. There are also three items in italics and an asterisk in the
table - these are controversial items with titles — more about them in Section 6.2.
Section 6.1 contains information about 15 newly identified Code Smells proposals,
which are a set of conclusions that we have reached based on industry experience
and research, both in the literature not strictly related to the term Code Smells and
the gray one.

6.1 New Code Smell Contributions

We have identified and named 15 new Code Smells. Some of them are entirely new
ideas: Afraid to Fail, Binary Operator in Name, Clever Code, Inconsistent Style,
and Status Variable. Some have been identified in the literature but have never been
discussed in the context of code smells, such as Boolean Blindness, or are popu-
lar topics outside of the literature, such as Callback Hell. Three of them are new
alternatives to existing Code Smells that are being questioned (”What” Comment
for Comments, Fate over Action for Data Class, and Imperative Loops for Loops).
Some generalize other problematic concepts raised in the literature: Complicated
Regex Expression, Dubious Abstraction, Fallacious Comment, Fallacious Method
Name. Lastly, technically known (especially in the field of functional programmers),
but for some reason not yet taken into account, Side Effects.

6.1.1 Afraid to Fail

The Afraid To Fail is a Code Smell name inspired by the common fear (at least
among students [51]) of failure, which is professionally called Atychiphobia [52] -
being scared of failure.

We are referencing it here because the fear of admitting failure (that something
went wrong) is quite a relatable psychological trait, and facing that fear would ben-

20 Marcel Jerzyk and Lech Madeyski

efit everyone. It is not a good idea to hope that someone will get away with it.
Undoubtedly, maybe even more often than not, that would be the case, but the more
things stack up on that lack of honesty, the harder it will eventually hit if it ever gets
discovered.

In programming, that behavior will clutter the code because after a method or
function call, additional code is required to check whether some kind of status code
is valid, whether a Boolean flag is marked, or a returned value is not None - and all
of that outside of the method scope.

If a method is expected to fail, then it should fail, either by throwing an
Exception or, if not, it should return a particular case None/Null type object
of the desired class (following Null Object Pattern), not null itself. For example, if
an expected object cannot be received or created. Instead, some status indicator is
sent back (which has to be checked after the method is completed), and the smells
it generates would be Afraid to Fail and Teardown Code. Instead, the code should
throw an error following the Fail Fast Principle.

6.1.2 Binary Operator in Name

This is straightforward: method or function names that have binary bitwise operators
like AND and OR are apparent candidates for undisguised violators of the Single
Responsibility Principle out there in the open. If the method name has and in its
name and then does two different things, then one might ask why it is not split in
half to do these two different things separately? Moreover, if the method name has
or, then it not only does two different things but also, and most likely, has a stinky
Flag Argument, which is yet another code smell.

This might happen not only in the method names, even though it is the place to
look for in the vast majority of this kind of smell, but also in variables.

6.1.3 Boolean Blindness

In the Haskell community, there is a well-(un)known question about the filter
function - does the filter predicate means to TAKE or to DROP (see Listing 1)?
Boolean Blindness smell occurs in a situation where a function or method that op-
erates on bool-s destroys the information about what boolean represents. It would
be much better to have an expressive equivalent of type boolean with appropriate
names in these situations. For the filter function, it could be of type Keep defined
as Keep = Drop | Take.

This Smell is in the same family as Uncommunicative Names and Magic Num-
bers.

6. CODE SMELL LIST 21

data Bool = False | True
filter :: (a -> Bool) -> [a] -> [a]

--

data Keep = Drop | Take
filter :: (a -> Keep) -> [a] -> [a]

Listing 1: Boolean Ambiguity

6.1.4 Callback Hell

The smell is similar to Conditional Complexity, where tabs are intended deeply,
and curly closing brackets can cascade like a Niagara Waterfall. The callback is a
function that is passed into another function as an argument that is meant to be exe-
cuted later on. One of the most popular callbacks could be addEventListener
in JavaScript.

Alone in separation, they are not causing or indicating any problems. Rather, the
long list of grouped callbacks is something to watch out for. This could be called
more eloquently Hierarchy of Callbacks, but (fortunately), it has already received a
more interesting and recognizable name. There are many solutions to this problem,
namely: Promises, async functions, or splitting the big function into separate
methods.

6.1.5 Clever Code

We are creating a conscious distinction between the Obscured Intent and Clever
Code. Although Obscured Intent addresses the ambiguity of implementation, em-
phasizing the incomprehensibility of a code fragment, on the other hand, Clever
Code can be confusing, even though it is understandable.

Things that fall into this smell are codes that do something strange. This can be
classified by using the accidental complexity of a given language or its obscure prop-
erties, and vice versa, using its methods and mechanisms when ready-made/built-in
solutions are available. Examples of both can be found in the first example pro-
vided (see Listing 2) - the code is reinventing the wheel of calculating the length
of a string, which is one case of the ”Clever Code” code smell. Furthermore, using
length -=- 1 to increase the length of the counter is yet another example of
ironically clever code. However, it is rare to find such a double-in-one example in
the real world, as the causation of the first one might happen because a developer
had to write something in Python while on a day-to-day basis, he is a C language
developer and did not know about len(). At the same time, the other case might

22 Marcel Jerzyk and Lech Madeyski

message = 'Hello World!'

def get_length_of_string(message: str) -> int:
length = 0
for letter in message:

length -=- 1
return length

message_length = get_length_of_string(message)
print(message_length) # 12

Solution

message_length = len(message)
print(message_length) # 12

Listing 2: Clever Code Code Smell: Reimplementation of Built-In

appear when a Python developer just read an article about funny corner-side things
one can do in his language.

The most frequent situation could be related to any reimplementation code (for
example, caused by Incomplete Library Class). We give a second example in which
a pseudo-implementation of a dictionary with a default type is self-designed in-
stead of using the defaultdict available in the built-in collections library
(see Listing 3). This re-implantation might cause problems if the execution is not
correct, or even if it is, there can be a performance hit compared to using the stan-
dard built-in option. This also creates an unnecessary burden and compels others to
read and understand the mechanism of a new class instead of using something that
has a high percent chance of being recognized by others.

Lastly, there are things like if not game.match.isNotFinished()
(double negation) that unnecessarily strains the cognitive load required to process
it. It could be classified as Clever Code (also emphasizing the ironic side of this
saying), but it fits more closely with the definition of the Complicated Boolean Ex-
pression and Binary Operator In Name.

6.1.6 Complicated Regex Expression

Two bad things can be done that we would refer to as Complicated Regex Expres-
sion. First and foremost, we should avoid the unnecessary use of Regular Expres-
sions for simple tasks. Regex falls into the same pitfall as Complicated Boolean

6. CODE SMELL LIST 23

class DefaultDict(dict):
default_value: type

def __getitem__(self, key):
if key in self:

return super().__getitem__(key)
self.__setitem__(key, self.default_value())
return super().__getitem__(key)

def __setitem__(self, key, value):
super().__setitem__(key, value)

Solution

from collections import defaultdict

Listing 3: Clever Code Code Smell: Reimplementation of the Standard Library

Expressions, with the only difference that the human population it affects is much
larger - more people will quickly catch the meaning behind Boolean logic, but far
fewer can read through a Regex as if it were a book. If it is not necessary, or in
”measurable words”, if the set of code that can validate a string will take more time
to be understood by others than its equivalent made with regular expressions, then
it should be avoided.

The second thing is that we would like to have explainable things possibly at all
levels of abstraction. This means that it is preferable to have an adequately named
class with appropriately named methods, and thus also long strings interpolated with
appropriately named variables. The regular expression should not be an exception to
the rule. This slight change comes with increased understandability, although poten-
tially sacrificing the possibility of copy-pasting the regex into one of the online tools
for regex decompositions. Developers can mitigate this by adding the ”compiled”
regex output in a comment or docstring (but then it has to be kept updated along
with the method, which is smelly). Some works go into this topic in-depth and test
the comprehension of regular expressions [53].

We also have to consider that there are significant, lengthy regular expressions
that can be found and copy-pasted from the Internet after a quick search. When it
comes down to this one most upvoted answer that has nothing but the regex itself
presented by a mystical yet classy username Stack Overflow account without much
comment on it. This was, of course, a joke, but there are common, predefined, and
work-tested regex for various things like emails that, even though obscure, should
work just fine as they are. Getting a standardized and verified regular expression is
okay, but if one has the urge to create his own for his particular needs, then care

24 Marcel Jerzyk and Lech Madeyski

should be taken to break it down nicely, so any other developer does not need to
debug a collection of squeezed characters.

6.1.7 Dubious Abstraction

The smaller and more cohesive class interfaces are the better because they tend
to degrade over time. They should provide a constant abstraction level. Function
interfaces should be one level of abstraction below the operation defined in their
name. Martin defines the above sentences as three separate code smells: Functions
Should Descend Only One Level of Abstraction, Code at Wrong Level of Abstrac-
tion, Choose Names at the Appropriate Level of Abstraction [29]. He observed that
people have trouble with it and often mix levels of abstraction. Steve Smith, in his
course, uses the term ”Inconsistent Abstraction Levels”.

We like the smells in the granularized form presented by Martin, as they address
the issue directly and specifically. The name Inconsistent Abstraction Levels still
holds the idea. However, it might be misinterpreted by just recalling the meaning
through its title, and we suspect that it might create a situation where somewhere
out there, in at least one codebase, someone might win an argument with a non-
inquisitive individual, thus leaving the abstraction levels consistent... but consis-
tently off. We wish no one ever heard, ”that is how it always has been, so it must
continue to be done that way”.

This is why we decided to rename it to Dubious Abstraction, directly addressing
the potential causation of the smell, to think about the code that someone just wrote.
Fowler says that ”there is no way out of a misplaced abstraction, and it is one of the
hardest things that software developers can do, and there is no quick fix when you
get it wrong”. Dubious Abstraction is supposed to provoke the question as soon as
possible - ”Is it dubious?” taking a second to think about the code at hand and then
move on or immediately refactor if something seems fishy: Is Instrument really
querying this message? Or is a connection device doing it?

6.1.8 Fallacious Comment

Comments differ from most other syntaxes available in programming languages; it
is not executed. This might lead to situations where, after code rework, the com-
ments around it were left intact and no longer true to what they described. First
and foremost, this situation should not even happen, as good comments from the
”why” Comment family are not susceptible to this situation. If the comment ex-
plained ”what” was happening, then it will be relevant as long as the code it ex-
plains is intact. Of course, ”What” Comments are a Code Smell themselves, and so
is Duplicated Code.

This duplicated code might generally occur within docstrings in real-life scenar-
ios, usually found in methods exposed to other users.

6. CODE SMELL LIST 25

6.1.9 Fallacious Method Name

When we started to think of Code Smells from the comprehensibility perspective
(of its lack of) as one of the critical factors, we were pretty intrigued that it was not
yet thoroughly researched, or at least not when researching with a focus on ”Code
Smell” as a keyword. There is a grounded idea about code that is obfuscated from
the point of Obscured Intentions or code without any explanation (Magic Number,
Uncommunicative Name). We felt like there was a missing hole in the code that
was intentionally too clever (Clever Code) or the code that contradicts itself. For-
tunately, we have found a fantastic article supporting our thoughts and addressing
some of what we had in mind under the name Linguistic Antipatterns [30]. We have
included their subset of antipatterns under one code smell because listing them one
by one would be too granular from a code perspective. The idea behind them can be
summarized by one name: Fallacious Method Name.

This smell is caused by creating conflicting methods or functions regarding their
functionality and naming. Over the years, programmers have developed connec-
tions between certain words and functionality that programmers should tie together.
Going against logical expectations by, for example, creating a getSomething
function that does not return is confusing and wrong.

6.1.10 Fate over Action

This Code Smell is a replacement for the Data Class Code Smell, see Section 6.2.

6.1.11 Imperative Loops

Fowler has the feeling that loops are an outdated concept. He already mentioned
them as an issue in his first edition of ”Refactoring: Improving the design of existing
code” book, although, at that time, there were no better alternatives [11]. Nowadays,
languages provide an alternative, pipelines. Fowler, in the 2018 edition of his book,
suggests that anachronistic loops should be replaced by pipeline operations such as
filter, map, or reduce [22].

Indeed, loops can sometimes be hard to read and error-prone. This might be
unconfirmed, but we doubt the existence of a programmer who has never had an
IndexError at least once before. The recommended approach would be to avoid
explicit iterator loops and use the forEach or for-in/for-of-like loop that
take care of the indexing or Stream pipes. Still, one should consider whether he is
not about to write Clever Code and check if there is a built-in function that will take
care of the desired operation.

We would abstain from specifying all the loops as a code smell. Loops were
always and probably will still be a fundamental part of programming. Modern lan-
guages offer very tidy approaches to loops and even things like List Comprehension

26 Marcel Jerzyk and Lech Madeyski

in Haskell4 or Python5. It is the indexation part that is the main problem of concern.
Of course, so are long loops or loops with side effects, but these are just a part of
Long Method or Side Effects code smells.

However, it is worth taking what is good from the functional languages (like the
streams or immutability of the data) and implementing those as broad as possible
and convenient to increase the reliability of the application.

6.1.12 Inconsistent Style

The same thing as in Inconsistent Names applies to the general formatting and code
style used in the project. Browsing through the code should feel similar to reading a
good article or a book, consistent and elegant. In the project, the code layout should
not be changed preferentially or randomly but should be uniform to not disturb the
expected form of code in the following lines (see Listing 5).

Reading a novel where on each page, the reader is surprised by the new font
ranging from Times New Roman through Comic Sans up to Consolas is distracting
and could break out of the flow state.

Another example of an Inconsistent Style smell could be Sequence Inconsistency,
in the order of parameters within classes or methods. Once defined, the order should
remain in the group of all abstractions on that particular subject. If the order is not
preserved, it leads to the unpleasant feeling of dissatisfaction after (if ever!) the mind
realizes that it was again surprised wrong (see Listing 4). Depending on the specific
case, it would still be only half the problem if the flipped parameters were different
types (such as string and int). If the type was the same (e.g., int), this could
unnoticeably lead to a significant hidden bug.

6.1.13 Side Effects

The first or second most essential functional programming principle (interchange-
ably, depending on how big we want to set the statement’s tone) is that there be
no side effects. Object-Oriented programming can apply this rule, too, with great
benefits.

In a perfect scenario, when looking at a higher abstraction set of method calls,
even an inexperienced bystander could tell what is happening more or less. The
code example (ref. Listing 6) appears to receive a player object identified by Marcel
Jerzyk, sets its gold to zero, and manageable health status. That is great because
one can make reasonable assumptions about the code... unless one cannot due to
the side effects, which make these methods impure. By taking a closer look at the
set gold(amount) function, it turns out that, for some reason, this method trig-

4 Haskell List Comprehension
https://wiki.haskell.org/List_comprehension
5 Python List Comprehension
https://docs.python.org/3/tutorial/datastructures.html

https://wiki.haskell.org/List_comprehension
https://docs.python.org/3/tutorial/datastructures.html

6. CODE SMELL LIST 27

class Character:
DAMAGE_BONUS: float

def rangeAttack(
self, enemy: Character, damage: int, extra_damage: int):
total_damage = damage + extra_damage*self.DAMAGE_BONUS
...

def meleeAttack(
self, enemy: Character, extra_damage: int, damage: int):
total_damage = damage + extra_damage*self.DAMAGE_BONUS
...

witcher.rangeAttack(skeleton, 300, 200)
witcher.meleeAttack(skeleton, 300, 200) # hidden error

Listing 4: Inconsistent Style Code Smell: Sequence Inconsistency

my_first_function(
arg1=1,
arg2=2,
arg3=3

)
my_second_function(arg1=1,

arg2=2,
arg3=3)

my_third_function(
arg1=1, arg2=2, arg3=3

)

Listing 5: Inconsistent Style Code Smell: Different Parameters Linebreaks

gers a dancing animation and resets the payday timer... of course, if one did not lose
his trust yet, that the method names are representative of what they do.

The method and function names should tell what they do and do only what
is anticipated to maximize code comprehension. We want to note that developers
should fix this by removing the side effects to separate methods and triggering
them individually, not violating the Single Responsibility Principle. Changing the
name to set gold and reset payday(amount), would create Binary Oper-
ator In Name Code Smell and another possible bad solution, set gold(amount:
int, is payday: bool), would cause Flag Arguments Code Smell.

28 Marcel Jerzyk and Lech Madeyski

@dataclass
class Player:

gold: int
job: Job

def set_gold(self, amount: int):
self.gold = amount
self.trigger_animation(Animation.Dancing)
self.job.reset_payday_timer()

marcel: Player = game.find_player(Marcel, Jerzyk)
marcel.set_gold(0)
marcel.set_health(Health.Decent)

Listing 6: Side Effects Code Smell

6.1.14 Status Variable

Status Variables are mutable primitives that are initialized before an operation to
store some information based on the operation and are later used as a switch for
some action.

The Status Variables can be identified as a distinct code smell, although they are
just a signal for five other code smells:

1. Clever Code
2. Imperative Loops
3. Afraid To Fail
4. Mutable Data
5. Special Case

They come in different types and forms, but common examples are the success:
bool = False-s before performing an operation block or i: int = 0 before
a loop statement. The code that has them increases in complexity by a lot and usu-
ally for no particular reason because there is most likely a proper solution using
first-class functions. Sometimes, they clutter the code, demanding other methods or
classes to perform additional checks (Special Case) before execution, resulting in
the Required Setup/Teardown Code.

6.1.15 ”What” Comment

This Code Smell is a replacement for the Comment Code Smell, see Section 6.2.

6. CODE SMELL LIST 29

Recognizing all comments as Code Smells is controversial and raises several
different opinions. For this reason, we define a concrete subcategory of comments
named ”What” Comments that clearly defines only these comments, which in the
vast majority will hint at something smells. The rule is simple: If a comment de-
scribes what is happening in a particular code section, it is probably trying to mask
some other Code Smell.

This definition leaves room for the ”Why” Comments that were already defined
by Wake in 2004 and were considered helpful. Wake also notes that comments that
cite non-obvious algorithms are also acceptable [49]. We wanted to mention that
comments may have their places in a few more cases, such as extreme optimiza-
tions, note discussion conclusions for future reference after a code review, or some
additional explanations in domain-specific knowledge.

As we have mentioned, the problem is that Comments are generally smelly. This
is because they are a deodorant for other smells [11]. They may also quickly degrade
with time and become another category of comments, Fallacious Comments, which
are a rotten, misleading subcategory of ”What” Comments.

6.2 Controversial Code Smells Replacements

Two particular Code Smells, which exist in the current literature and are the most
controversial, have been replaced by two new ones.

First, the Comments Code Smell, whose legitimacy must be clarified, as not all
comments are smelly [54]. As early as 2004, Wake rightly noticed this and sep-
arated from Comments those comments that answer the question ”why” [49]. So
analogously, ”what” comments would be a good name for the concept addressing
the vast majority of the reasons why the comments should be treated as a Code
Smell. In this way, comments that try to classify, tag, group, or label something are
caught by the concept title, and comments explaining why something was done in a
specific way have their place.

The second Code Smell - Data Class - addresses the underlying problem with the
Object-Oriented Programming principle, which says that data should stay close to
the logic that operates on it. This is absolutely reasonable. Some practitioners doubt
whether it should be considered a Code Smell [19]. We notice that the controversy
may be due to the significant increase in the popularity of non-monolithic architec-
ture, or more precisely, the domination of web applications. Services have to com-
municate somehow, and so-called DTOs (Data Transfer Objects) are used for this. It
would be much better to serialize the DTO to a data class at the input/output as soon
as possible. Such a class could already serve as a validator of the expected response
(in the minimal case, expected fields or types), which would enforce the Fail Fast
principle. This serialization also effectively deals with the alternative, which is po-
tentially a long dictionary object, which in this case would constitute the Primitive
Obsession Code Smell.

30 Marcel Jerzyk and Lech Madeyski

There are also cases of highly long configuration files. The lack of appropriate
serialization into the expected data class makes it difficult to verify errors, which
may arise only somewhere in the later processing stage of an application. We al-
ready have GraphQL, which, i.a., arose addressing this problem with the current
form of communication over Rest API, or JSON Schema, to validate how the dic-
tionary should be constructed. Developers should not be afraid of the data class
itself, as nowadays, these data classes usually bring additional helpful verification.
It can also be mentioned that data classes are a quick and direct tool for packing
specific data into a petite abstraction to combat Data Clump Code Smell (some-
times programming languages offer for this purpose, e.g., Interface). However, we
must not forget to keep the functionality close to the data, which the Data Class
Code Smell currently indicates. We propose a Fate over Action Code Smell that
preserves the current idea, which would signify that the problem is not with the data
classes themselves but, instead, with situations where external classes or functions
primarily manipulate the fields of an object.

7 Conclusions and Future Work

The code smells catalog (available as a self-building website (https://luzkan.
github.io/smells/) on top of an open-source data repository (https://
github.com/luzkan/smells/) is a foundation for future research that solves
the problem of unity and standardization. The simultaneous possibility of interactive
information browsing may contribute to greater awareness of the topic discussed.
However, we also point out that there are some limitations at work. We believe
that despite our best efforts, from a statistical point of view, since the field is so
substantial, we might be wrong in a few places. We have a specific capacity limit
as a unit and cannot provide a perfectly completed tool. We hope that this very
simplified form of adding and correcting information will mitigate this problem
in the final settlement of this contribution. The data that is already included there
should be discussed and analyzed in order to verify their correctness. It is possible
to supplement the information with new data and metrics from the literature (e.g.,
predictors).

Sincerely, we hope that despite this, our work will prove to be an helpful little
brick in this field of research. Consequently, any additional work on the Catalog,
like finding and adding missing attributes, would be precious.

There should be discussions about whether we have done the right thing by ad-
dressing the controversial Code Smells and proposing their replacements (especially
the Data Class, which is one of the two most extensively researched Code Smells in
the current literature). It is also worth considering what the granularization of Smells
should be. For example, we collapsed all the Large Class related smells into one
(Blob, Brain Class, Complex Class, God Class, God Object, Schizophrenic Class,
Ice Berg Class), wanting to minimize the number of concepts that are very close to
each other, but perhaps maybe some of them are distinct enough to be an individual

https://luzkan.github.io/smells/
https://luzkan.github.io/smells/
https://github.com/luzkan/smells/
https://github.com/luzkan/smells/

References 31

Bad Smell? Maybe the solution would be to list some of them as sub smells whose
parent is Large Class? Maybe the fragmentation should only occur when viewed
at the right angle (from the perspective of a specific hierarchy); e.g., when ”sniff-
ing” the smells from the Code Smell perspective, regarding abstraction problems,
we would have just one smell, but from the Design Smell perspective there could be
more specific smells?

In addition to the catalog itself, we hope this work will broaden all readers’
awareness of the different Bad Smells hierarchies and allow more precise use of
their specific terms, including Bad Smell and Antipattern. Hopefully, this facilitated
access to all data will shed more light on those Code Smells that were overlooked in
the research, either because they have not appeared in the literature yet, or because
they have not appeared with the right keywords to be taken into account.

Software is all around us, what Martin reminds us of with his famous phrase
”check how many computers you have on you right now”. This work may con-
tribute to the fact that the code that surrounds us universally will be written with
greater awareness of quality regardless of the programming language. Even if the
impact is calculated as a tiny percentage, it will still be significant for every software
technology beneficiary - everybody.

References

1. G. Lacerda, F. Petrillo, M. Pimenta, Y. G. Guéhéneuc, Code Smells and Refactoring: A Ter-
tiary Systematic Review of Challenges and Observations, Journal of Systems and Software
167 (2020) 110610. doi:10.48550/arXiv.2004.10777.

2. B. Cartaxo, G. Pinto, S. Soares, Rapid Reviews in Software Engineering, Springer Interna-
tional Publishing, Cham, 2020, pp. 357–384.

3. M. Mantyla, J. Vanhanen, C. Lassenius, A Taxonomy and an Initial Empirical Study of Bad
Smells in Code, in: International Conference on Software Maintenance, 2003. ICSM 2003.
Proceedings., IEEE, 2003, pp. 381–384. doi:10.1109/ICSM.2003.1235447.

4. M. V. Mäntylä, C. Lassenius, A Taxonomy for ”Bad Code Smells” (2006).
URL https://web.archive.org/web/20120111101436/http://www.
soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm

5. M. S. Haque, J. Carver, T. Atkison, Causes, Impacts, and Detection Approaches of Code
Smell: A Survey, in: Proceedings of the ACMSE 2018 Conference, ACMSE ’18, Association
for Computing Machinery, New York, NY, USA, 2018, pp. 1–8. doi:10.1145/3190645.
3190697.
URL https://doi.org/10.1145/3190645.3190697

6. A. Al-Shaaby, H. Aljamaan, M. Alshayeb, Bad Smell Detection Using Machine Learning
Techniques: A Systematic Literature Review, Arabian Journal for Science and Engineering
45 (4) (2020) 2341–2369. doi:10.1007/s13369-019-04311-w.

7. A. Kaur, A Systematic Literature Review on Empirical Analysis of the Relationship Between
Code Smells and Software Quality Attributes, Archives of Computational Methods in Engi-
neering 27 (4) (2020) 1267–1296. doi:10.1007/s11831-019-09348-6.

8. A. Kaur, S. Jain, S. Goel, G. Dhiman, Prioritization of code smells in object-oriented software:
A review, Materials Today: Proceedings (2021). doi:10.1016/j.matpr.2020.11.
218.

https://doi.org/10.48550/arXiv.2004.10777
https://doi.org/10.1109/ICSM.2003.1235447
https://web.archive.org/web/20120111101436/http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm
https://web.archive.org/web/20120111101436/http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm
https://web.archive.org/web/20120111101436/http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm
https://doi.org/10.1145/3190645.3190697
https://doi.org/10.1145/3190645.3190697
https://doi.org/10.1145/3190645.3190697
https://doi.org/10.1145/3190645.3190697
https://doi.org/10.1145/3190645.3190697
https://doi.org/10.1007/s13369-019-04311-w
https://doi.org/10.1007/s11831-019-09348-6
https://doi.org/10.1016/j.matpr.2020.11.218
https://doi.org/10.1016/j.matpr.2020.11.218

32 Marcel Jerzyk and Lech Madeyski

9. S. Singh, S. Kaur, A systematic literature review: Refactoring for disclosing code smells in
object oriented software, Ain Shams Engineering Journal 9 (4) (2018) 2129–2151. doi:
10.1016/j.asej.2017.03.002.

10. F. Sabir, F. Palma, G. Rasool, Y.-G. Guéhéneuc, N. Moha, A systematic literature review on
the detection of smells and their evolution in object-oriented and service-oriented systems,
Software: Practice and Experience 49 (1) (2019) 3–39. doi:10.1002/spe.2639.

11. K. B. Martin Fowler, ”Bad smells in code.” Refactoring: Improving the Design of Existing
Code, The Addison-Wesley Object Technology Series) Hit the shelves in mid-June of, 1999.

12. K. Alkharabsheh, Y. Crespo, E. Manso, J. A. Taboada, Software Design Smell Detection: a
systematic mapping study, Software Quality Journal 27 (3) (2019) 1069–1148. doi:10.
1007/s11219-018-9424-8.

13. M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, JDeodorant: Identification and Removal of Fea-
ture Envy Bad Smells, in: 2007 ieee international conference on software maintenance, IEEE,
2007, pp. 519–520. doi:10.1109/ICSM.2007.4362679.

14. T. Lewowski, L. Madeyski, How far are we from reproducible research on code smell
detection? A systematic literature review, Information and Software Technology 144 (2022)
106783. doi:10.1016/j.infsof.2021.106783.
URL https://www.sciencedirect.com/science/article/pii/
S095058492100224X

15. N. Moha, Y.-G. Gueheneuc, L. Duchien, A.-F. Le Meur, DECOR: A Method for the Specifi-
cation and Detection of Code and Design Smells, IEEE Transactions on Software Engineering
36 (1) (2010) 20–36. doi:10.1109/TSE.2009.50.

16. J. A. M. Santos, J. B. Rocha-Junior, L. C. L. Prates, R. S. do Nascimento, M. F. Freitas, M. G.
de Mendonça, A systematic review on the code smell effect, Journal of Systems and Software
144 (2018) 450–477. doi:10.1016/j.jss.2018.07.035.

17. F. A. Fontana, V. Ferme, A. Marino, B. Walter, P. Martenka, Investigating the Impact of Code
Smells on System’s Quality: An Empirical Study on Systems of Different Application Do-
mains, in: 2013 IEEE International Conference on Software Maintenance, IEEE, 2013, pp.
260–269. doi:10.1109/ICSM.2013.37.

18. R. Marticorena, C. López, Y. Crespo, Extending a Taxonomy of Bad Code Smells with
Metrics, in: Proceedings of 7th International Workshop on Object-Oriented Reengineering
(WOOR), Citeseer, 2006, p. 6.

19. A. Singjai, G. Simhandl, U. Zdun, On the practitioners’ understanding of coupling smells —
A grey literature based Grounded-Theory study, Information and Software Technology 134
(2021) 106539. doi:10.1016/j.infsof.2021.106539.

20. M. Zhang, N. Baddoo, P. Wernick, T. Hall, Improving the Precision of Fowler’s Definitions
of Bad Smells, in: 2008 32nd Annual IEEE Software Engineering Workshop, IEEE, 2008, pp.
161–166. doi:10.1109/SEW.2008.26.

21. J. Kerievsky, Refactoring to patterns, Pearson Deutschland GmbH, 2005.
22. M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley Profes-

sional, 2018.
23. S. McConnell, Code Complete, Pearson Education, 2004.
24. S. Smith, Refactoring Fundamentals, (accessed: 11.11.2021)) (2013).

URL https://www.pluralsight.com/courses/
refactoring-fundamentals

25. J. Garcia, D. Popescu, G. Edwards, N. Medvidovic, Toward a Catalogue of Architectural Bad
Smells, in: International conference on the quality of software architectures, Springer, 2009,
pp. 146–162. doi:10.1007/978-3-642-02351-4_10.

26. G. Suryanarayana, G. Samarthyam, T. Sharma, Refactoring for Software Design Smells: Man-
aging Technical Debt, Morgan Kaufmann, 2014.

27. T. Sharma, M. Fragkoulis, D. Spinellis, House of Cards: Code Smells in Open-Source C#
Repositories, in: 2017 ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement (ESEM), IEEE, 2017, pp. 424–429.

https://doi.org/10.1016/j.asej.2017.03.002
https://doi.org/10.1016/j.asej.2017.03.002
https://doi.org/10.1002/spe.2639
https://doi.org/10.1007/s11219-018-9424-8
https://doi.org/10.1007/s11219-018-9424-8
https://doi.org/10.1109/ICSM.2007.4362679
https://www.sciencedirect.com/science/article/pii/S095058492100224X
https://www.sciencedirect.com/science/article/pii/S095058492100224X
https://doi.org/10.1016/j.infsof.2021.106783
https://www.sciencedirect.com/science/article/pii/S095058492100224X
https://www.sciencedirect.com/science/article/pii/S095058492100224X
https://doi.org/10.1109/TSE.2009.50
https://doi.org/10.1016/j.jss.2018.07.035
https://doi.org/10.1109/ICSM.2013.37
https://doi.org/10.1016/j.infsof.2021.106539
https://doi.org/10.1109/SEW.2008.26
https://www.pluralsight.com/courses/refactoring-fundamentals
https://www.pluralsight.com/courses/refactoring-fundamentals
https://www.pluralsight.com/courses/refactoring-fundamentals
https://doi.org/10.1007/978-3-642-02351-4_10

References 33

28. E. Jabrayilzade, O. Gürkan, E. Tüzün, Towards a taxonomy of inline code comment smells,
in: 2021 IEEE 21st International Working Conference on Source Code Analysis and Manipu-
lation (SCAM), 2021, pp. 131–135. doi:10.1109/SCAM52516.2021.00024.

29. R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship, Pearson Education,
2008.

30. V. Arnaoudova, M. Di Penta, G. Antoniol, Y.-G. Guéhéneuc, A New Family of Software Anti-
patterns: Linguistic Anti-patterns, in: 2013 17th European Conference on Software Mainte-
nance and Reengineering, IEEE, 2013, pp. 187–196. doi:10.1109/CSMR.2013.28.

31. A. Vetro, L. Ardito, M. Morisio, Definition, implementation and validation of energy code
smells: an exploratory study on an embedded system, None (2013).

32. C. U. Smith, L. G. Williams, New Software Performance AntiPatterns: More Ways to Shoot
Yourself in the Foot., in: Int. CMG Conference, Citeseer, 2002, pp. 667–674.

33. C. U. Smith, L. G. Williams, More New Software Antipatterns: Even More Ways to Shoot
Yourself in the Foot., in: Computer Measurement Group Conference, Citeseer, 2003, pp. 717–
725.

34. M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, D. Poshy-
vanyk, An empirical investigation into the nature of test smells, in: Proceedings of the 31st
IEEE/ACM international conference on automated software engineering, 2016, pp. 4–15.
doi:10.1145/2970276.2970340.

35. T. Arendt, G. Taentzer, UML Model Smells and Model Refactorings in Early Software Devel-
opment Phases, Universitat Marburg (2010). doi:10.1002/smr.2154.

36. E. Doğan, E. Tüzün, Towards a taxonomy of code review smells, Information and Software
Technology 142 (2022) 106737. doi:10.1016/j.infsof.2021.106737.

37. F. Palomba, D. A. Tamburri, A. Serebrenik, A. Zaidman, F. Arcelli Fontana, R. Oliveto, Poster:
How Do Community Smells Influence Code Smells?, in: 2018 IEEE/ACM 40th International
Conference on Software Engineering: Companion (ICSE-Companion), 2018, pp. 240–241.

38. K. Qamar, E. Sülün, E. Tüzün, Towards a Taxonomy of Bug Tracking Process Smells: A
Quantitative Analysis, in: 2021 47th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA), IEEE, 2021, pp. 138–147. doi:10.1109/SEAA53835.
2021.00026.

39. T. Sharma, M. Fragkoulis, D. Spinellis, Does Your Configuration Code Smell?, in: 2016
IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR), IEEE, 2016,
pp. 189–200.

40. T. Sharma, Presentation smells: How not to prepare your conference presentation, Tushar
Sharma Website (2016).
URL https://www.tusharma.in/presentation-smells.html

41. F. Hermans, M. Pinzger, A. Van Deursen, Detecting and visualizing inter-worksheet smells in
spreadsheets, in: 2012 34th International Conference on Software Engineering (ICSE), IEEE,
2012, pp. 441–451. doi:10.1109/ICSE.2012.6227171.

42. B. Karwin, SQL Antipatterns: Avoiding the Pitfalls of Database Programming, Pragmatic
Bookshelf, 2010.

43. D. Almeida, J. C. Campos, J. Saraiva, J. C. Silva, Towards a catalog of usability smells, in:
Proceedings of the 30th Annual ACM Symposium on Applied Computing, 2015, pp. 175–181.
doi:10.1145/2695664.2695670.

44. A. Carette, M. A. A. Younes, G. Hecht, N. Moha, R. Rouvoy, Investigating the energy impact
of Android smells, in: 2017 IEEE 24th International Conference on Software Analysis, Evo-
lution and Reengineering (SANER), IEEE, 2017, pp. 115–126. doi:10.1109/SANER.
2017.7884614.

45. M. Ghafari, P. Gadient, O. Nierstrasz, Security Smells in Android, in: 2017 IEEE 17th inter-
national working conference on source code analysis and manipulation (SCAM), IEEE, 2017,
pp. 121–130. doi:10.1109/SCAM.2017.24.

46. M. Stijlaart, V. Zaytsev, Towards a taxonomy of grammar smells, in: Proceedings of the 10th
ACM SIGPLAN International Conference on Software Language Engineering, 2017, pp. 43–
54. doi:10.1145/3136014.3136035.

https://doi.org/10.1109/SCAM52516.2021.00024
https://doi.org/10.1109/CSMR.2013.28
https://doi.org/10.1145/2970276.2970340
https://doi.org/10.1002/smr.2154
https://doi.org/10.1016/j.infsof.2021.106737
https://doi.org/10.1109/SEAA53835.2021.00026
https://doi.org/10.1109/SEAA53835.2021.00026
https://www.tusharma.in/presentation-smells.html
https://www.tusharma.in/presentation-smells.html
https://doi.org/10.1109/ICSE.2012.6227171
https://doi.org/10.1145/2695664.2695670
https://doi.org/10.1109/SANER.2017.7884614
https://doi.org/10.1109/SANER.2017.7884614
https://doi.org/10.1109/SCAM.2017.24
https://doi.org/10.1145/3136014.3136035

34 Marcel Jerzyk and Lech Madeyski

47. M. Mantyla, Bad Smells in Software - a Taxonomy and an Empirical Study, Ph.D. thesis, PhD
thesis, Helsinki University of Technology (2003).

48. J. Atwood, Code Smells, Jeff Atwood Website (2006).
URL https://blog.codinghorror.com/code-smells/

49. W. C. Wake, Refactoring Workbook 1st Edition, Addison-Wesley Professional, 2004.
50. A. Yamashita, L. Moonen, Do developers care about code smells? An exploratory survey, in:

2013 20th working conference on reverse engineering (WCRE), IEEE, 2013, pp. 242–251.
doi:10.1109/WCRE.2013.6671299.

51. K. De Castella, D. Byrne, M. Covington, Unmotivated or Motivated to Fail? A Cross-Cultural
Study of Achievement Motivation, Fear of Failure, and Student Disengagement, Journal of
educational psychology 105 (3) (2013) 861. doi:10.1037/a0032464.

52. K. Rowa, Atychiphobia (Fear of Failure), ABC-CLIO, 2015.
53. C. Chapman, P. Wang, K. T. Stolee, Exploring Regular Expression Comprehension, in: 2017

32nd IEEE/ACM International Conference on Automated Software Engineering (ASE), IEEE,
2017, pp. 405–416. doi:10.1109/ASE.2017.8115653.

54. Fishtoaster, Comments are a code smell, Software Engineering - Stack Exchange, (accessed:
06.04.2022)) (9 2010).
URL https://softwareengineering.stackexchange.com/questions/1/
comments-are-a-code-smell

https://blog.codinghorror.com/code-smells/
https://blog.codinghorror.com/code-smells/
https://doi.org/10.1109/WCRE.2013.6671299
https://doi.org/10.1037/a0032464
https://doi.org/10.1109/ASE.2017.8115653
https://softwareengineering.stackexchange.com/questions/1/comments-are-a-code-smell
https://softwareengineering.stackexchange.com/questions/1/comments-are-a-code-smell
https://softwareengineering.stackexchange.com/questions/1/comments-are-a-code-smell

	Code Smells: A Comprehensive Online Catalog and Taxonomy
	Marcel Jerzyk and Lech Madeyski
	Introduction and Motivation
	Related Work
	Formulating Research Questions
	Sources of Research
	Literature Review & General Investigation

	Smell Hierarchies and Definitions
	Code Smell Taxonomies
	Obstruction Grouping
	Expanse Grouping
	Occurrence Grouping

	Code Smells Catalog
	Code Smell List
	New Code Smell Contributions
	Controversial Code Smells Replacements

	Conclusions and Future Work
	References

