
Preprint: Marcin Kawalerowicz and Lech Madeyski, ”Continuous Build Outcome Prediction: A Small-N
Experiment in Settings of a Real Software Project” in IEA/AIE 2021. Advances and Trends in Artificial
Intelligence. From Theory to Practice (H. Fujita, A. Selamat, J. C.-W. Lin, and M. Ali, eds.), vol. 12799
of Lecture Notes in Computer Science, (Cham), pp. 412–425, Springer International Publishing, 2021.
DOI: 10.1007/978-3-030-79463-7 35

Preprint: https://madeyski.e-informatyka.pl/download/KawalerowiczMadeyski21.pdf

Continuous Build Outcome Prediction: A Small-N
Experiment in Settings of a Real Software Project

Marcin Kawalerowicz1[0000−0002−8411−0199] and Lech Madeyski2[0000−0003−3907−3357]

1 CODEFUSION Sp. z o.o. and Faculty of Electrical Engineering, Automatic Control
and Informatics, Opole University of Technology, Poland, marcin@kawalerowicz.net

2 Department of Applied Informatics,
Wroclaw University of Science and Technology, Poland. Lech.Madeyski@pwr.edu.pl

Abstract. We explain the idea of Continuous Build Outcome Prediction
(CBOP) practice that uses classification to label the possible build results
(success or failure) based on historical data and metrics (features) derived
from the software repository. Additionally, we present a preliminary empirical
evaluation of CBOP in a real live software project. In a small-n repeated-
measure with two conditions and replicates experiment, we study whether
CBOP will reduce the Failed Build Ratio (FBR). Surprisingly, the result of
the study indicates a slight increase in FBR while using the CBOP, although
the effect size is very small. A plausible explanation of the revealed phe-
nomenon may come from the authority principle, which is rarely discussed
in the software engineering context in general, and AI-supported software
development practices in particular.

Keywords: software defect prediction · agile experimentation · continuous
integration · machine learning

1 Introduction

While the raise of the complexity of software systems poses challenges that need to be
addressed by Software Engineering processes, techniques and tools, the proposed novel
approaches need to be evaluated against the earlier adopted ones. Software defect
prediction (SDP) is an existing technique used to identify error-prone software mod-
ules. It is a cost-effective [1], software engineering assisting activity used to mitigate
the problems that could arise if a software defect occurs. In our previous paper [2],
we coined the idea of a lightweight version of Continuous Defect Prediction (CDP),
named here Continuous Build Outcome Prediction (CBOP), that uses classification
to label the possible build result (success or failure) based on historical data and
metrics (features) derived from the software repository. In this paper, we build upon
this idea and describe how we instantiated the CBOP practice in a real software
project, as well as provide an empirical evaluation of the practice in real settings.

In CBOP, we use machine learning (ML) models that predict the continuous
integration (CI) build results on the basis of historical CI results (success or failure)
combined with metrics harvested from the software repository. A software developer is
equipped with a set of tools that deliver continuous feedback by overseeing his actions.

http://dx.doi.org/10.1007/978-3-030-79463-7_35
https://madeyski.e-informatyka.pl/download/KawalerowiczMadeyski21.pdf


2 M. Kawalerowicz, L. Madeyski

Metrics are calculated on the fly and sent to the prediction model that checks if the
changes developer is currently making in the source code might lead to a problem
during the integration performed on the CI server. If a possible problem is detected,
the feedback might lead the developer to be more cautious and to fix the problem
before it manifests itself as a failing build.

In this article, we discuss the current state of knowledge and technology in the
area of SDP (Section 2). We describe how the experiment aimed to evaluate the
usefulness of CBOP in real-world, industrial settings was planned (Section 3) and
executed (Section 4). We present the experiment results (Section 4.3). Discussion is
presented in Section 5. Conclusions are presented in Section 6.

2 Background

It is not easy to automatically detect a software defect. That is why using machine
learning to aid software defect prediction fascinated researchers for a long time (see,
e.g., [3], [4], [5]). The idea was refined later in [6], [7], [8] and called just-in-time
quality assurance or just-in-time defect prediction.

From one side, we build on top of a described and prototyped tool [9], [3] that
performs defect prediction directly in the Integrated Development Environment (IDE).
From the other side, we are using the unambiguous data from CI [10] server as a
source of buggy/clean information and synthesizing it with the code metrics mined
from the software repository.

Until now, the defect prediction approaches were based mainly on lexical examina-
tion of the commit message or the information from the bug tracking software [11]. We
are classifying the change as buggy or not based on the result of the build on the CI
server. We are using the build server as a definite source of information (oracle) about
the ”bug”. If the build fails, we can presume the introduced change was buggy. This
information is then fed into the model to improve it further. Finally, the effect we get is
a constantly learning model based on unambiguous data derived from the build server.

Having the model ready, we are able to give the developer continuous real-time
feedback in the form of build outcome prediction. Using this feedback, the developer
can assess if the changes, he is working on, are likely to introduce a bug into the
project or not. We are achieving this by exposing the build outcome prediction model
to the IDE the developer is working with. We have an IDE extension (add-on) that
continuously communicates with the model sending the project measurements and
receiving prediction in exchange. The prediction then is displayed in the developer
IDE. This could make him aware that the changes he is introducing to the project
might result in a build fail. Consequently, that might lead to a more careful exam-
ination of the changes and rule out the defect(s) that would lead to a failing build.
The idea of the technique we are proposing is presented in Figure 1. The discrete
process of repeatedly building the software, training the model and obtaining the
predictions is enclosed in an uninterrupted feedback loop. Deriving the analogy from
CI the continuous nomenclature was used for CDP and CBOP.



Continuous Build Outcome Prediction: A Small-N Experiment 3

Fig. 1. Continuous build outcome prediction diagram

3 Experiment plan

3.1 Scoping

We define the goal of our experiment as follows [12]: Analyze continuous build outcome
prediction (CBOP) practice for the purpose of evaluation of the practice with respect
to its effectiveness to reduce the build failure rate (BFR) from the point of view of
the researcher and project manager in the context of a small group of professional
software developers (subjects) working in an industrial-grade software project (object).

In other words, we want to conduct the experiment to get the answer whether
the new CBOP practice will reduce the rate of failing builds in a day-to-day work on
an industrial-grade software project. We will have one object (a software project) and
multiple subjects/participants (a software development team). According to the ter-
minology used by Wohlin et al. [12], we will conduct ”Multi-test within object study”.
Technically, it will be a quasi-experiment as the object, the software project, and the
subjects (i.e., the software developers) will not be chosen randomly. Nevertheless, we
will use randomization techniques in our quasi-experiment.

3.2 Context selection

The experiment will be conducted in vivo on an ongoing real business driven software
project. Technically, it is a project consisting of two subprojects. One is a Microsoft
.NET based project (ProjDotNet) in its 4th year of development, while the second
project is a web-based Angular client (ProjWeb) that uses the ProjDotNet as an
application programming interface (API). It is a software for banks and leasing
companies. It is used in some large financial organizations on the German-speaking
market. The software covers the complete loan and leasing contract lifetime from
calculation, through offer creation to contract and contract recalculation, including
after-contract object management and resell. The software was originally written in



4 M. Kawalerowicz, L. Madeyski

Clarion (fourth-generation programming language). New software features are now
added to the software using Microsoft .NET and the C# language. They contain
Windows Communication Foundation(WCF)-based Web services and interoperability
managed code calls using Component Object Model (COM). The other part of the
software is an Angular based Web client that uses the .NET services as an API layer.
Table 1 shows some data about the ProjDotNet and ProjWeb projects derived from
it at the end of June 2018. According to the classification by Wohlin et al. [12], we

Table 1. Project details

Number of distinct committers 18
Actively working in project 6-8 developers/week
The total number of commits over 10 000
Total number of files over 9 000
Total Lines of Code over 4 500 000
Average build commits per active week approx. 60

have an on-line project, involving professional developers, specific, and real problem.
The CBOP practice was not introduced to the project before the start of the

experiment. There was neither defect prediction nor build failure prediction used in
this project from its beginning. The build results recording was started on 2018-06-20
and lasted until 2018-10-02.

3.3 Hypothesis formulation

We formulate the following hypotheses:
H0 (null hypothesis): Using the CBOP practice (aka CBOPon) does not influence

the Failed Build Ratio (FBR).
H1: Using CBOP reduces FBR.

3.4 Variables selection

In the experiment we will control the time when we apply CBOP or not (independent
variable in our experimental design). We will make the predictions available to the
developers only in certain times through the toolset we provide. The idea is to turn
the prediction on (i.e., use CBOP) and off, labelled as A and B, on a workday basis
using a randomization schema. We will have days where the prediction is available
to the developer and days where it is not. The experiment will be conducted during
4 weeks of real development.

The build failure count will be used to calculate FBR. Every push to the central
repository ends with the build on the CI server. The possible results one may observe
on Jenkins CI are: SUCCESS, FAILURE, UNSTABLE, ABORTED, NOT BUILD3.

3 Jenkins CI Build results: http://javadoc.jenkins-ci.org/hudson/model/Result.html

http://javadoc.jenkins-ci.org/hudson/model/Result.html


Continuous Build Outcome Prediction: A Small-N Experiment 5

Only the results of type FAILURE are counted as failed builds. We do not count
UNSTABLE builds as failures as they are not necessarily associated with failures but,
e.g., bad smells in production code or tests. The ABORTED and NOT BUILD are not
counted as failures as well. As a result, we calculate the failed build ratio (FBR) as fol-
lows: FBR= #FAILURE

(#UNSTABLE+#ABORTED+#NOT BUILD+#SUCCESS+#FAILURE) .

3.5 Selection of subjects

The experiment will be conducted on a sample of the population of software developers.
The company we are conducting the experiment in is a subcontractor of a larger soft-
ware development company. The subcontractor leases 4 resources to its partner. One
resource is 160 hours of work in one calendar month. It amounts to 640 hours of work
(all of them not necessarily working full hours on that specific project). The work is
conducted by 5-7 people. 4 to 5 software developers, software tester and a user experi-
ence specialist. All developers involved in the project are professionals with masters or
bachelors degree in computer science with various experience levels: from 1 to 5 years of
industrial experience as a software developer. The main task of all developers described
here is the work in the subcontracted project described in detail in Section 3.2.

On the contractor side, there are 4 to 5 developers and one intern involved in
that project. The developers are working full time on that project, while the intern
is working only part time. One of the developers on the contractor is a software
architect with 5+ years of experience and the three remaining developers are juniors
with 1 to 3 years of experience.

Because we are interested in the largest possible sample of subjects, we used
a convenience sampling technique to select the subjects – we selected all available
subjects involved in the project. For the planing phase of the experiment we used the
sample size of 4 for all the calculations. We were sure that we will be able to conduct
the experiment with at least 4 developers (working in the project on the subcontractor
side). During the execution of the experiment we were able to incorporate additional
developers on the contractor side (the number of participants amounted 9).

3.6 Choosing experiment design type

In essence, we have here an experiment with one factor (the use of CBOP) and two
treatments (presence or absence of the prediction). The participation of four developers
from the contractor side in the experiment was certain. This rather small number of
participants led us to use a small-n experimental design to study the effect of CBOP.

Dugard et al. [13] provided a list of experimental designs for single-case and small-
experiments. Careful examination of the conditions for those experiments enabled us
to find a proper design for our situation: ”A small-n repeated-measures design with
two conditions and replicates”. We have at least two participants and two conditions
to compare (A - No build outcome prediction available for the developer, B - build out-
come prediction available for the developer). Each participant will receive each of the
conditions on at least two occasions and it is possible to assign the conditions randomly.



6 M. Kawalerowicz, L. Madeyski

Because we have expected at least 4 participants, we have not considered any of
the “single-case” designs provided by Dugard et al. [13]. Other designs (Small-n one-
way design, A small-n repeated-measures design, Two-way factorial small-n design)
have been considered and were rejected as we knew that we will be able to measure
the participants multiple times, but we will not have multiple levels of factors.

Because we will be able to change the condition multiple times, we have not
considered the phase AB or ABA designs. They have their limitations making them
more suitable for drug trials or medical experiments. Such trials need to have a clear
distinction between the “intervention” (B after A) or even “withdrawal” (A after AB)
and the baseline (A). Where we do have a distinction between the phases, we do not
need to be that careful about the negative outcomes of our experiment. Thus, we will
not conduct “The multiple baseline AB design” or “Multiple baseline ABA design”
although technically possible in our case but too limited. In our case, a frequent
succession of different conditions will be possible, thus an ”Alternate design” will be
a better choice according to Bulte and Onghena [14].

We will be able to apply each treatment multiple times using a randomization
schema, giving us the possibility to perform several observations (replicates) on each
condition.

Choosing the right period to alternate between the phases was not an easy task.
We have gathered some actual data from 6 weeks preceding the start of the exper-
iments on the rate of the various build results. We have come up with an average
of 54 builds per week with six failed builds per week. Having this data, we decided
that a day will be a good choice for the period to alternate between the phases in
our experiment. It should give us enough data to draw meaningful conclusions.

Next, we have proceeded to calculate the possible power of the experiment. We
expected to have a least 4 participants in our team and 4 weeks to perform the
experiment, giving us 20 observation days (assuming 5 working days per week).

4 Execution

4.1 Experimental setup

We have a working experimental CBOP setup in a commercial software project. The
CBOP deployment in the project was possible thanks to our own dedicated tool called
Jaskier [15]. Detailed information about the experiment instrumentation including
the model prediction model creation is available in an online appendix [16].

4.2 Validity evaluation

In accordance with Wohlin et al. [12], we discuss threats to validity of our research.
The threat to the internal validity that applies to our research is that a subject

may react differently as time passes (maturation). We think this threat is to a large
extent addressed by the CBOP on (aka CBOPon) / off (aka CBOPoff) randomized
assignment, see Table 2.

The threats concerning the problems to generalize the results of the research to a
wider population of software developers are threats to external validity. The threat of



Continuous Build Outcome Prediction: A Small-N Experiment 7

”interaction of selection and treatment” is addressed to some extent by the fact that
in both teams there is a wide distribution of experience and knowledge (from juniors
to seniors), good diversity in culture and educational background (two countries,
different education paths). The threat of ”interaction of setting and treatment” is
mitigated through the use of two technically different projects (.NET and Angular),
the usage of industry standard tools (Visual Studio, VSCode) and a real, not toy-like,
project. However, this threat needs to be considered because the technical differences
between other types of projects might impact the ability to generalize the results. We
conduct the experiment during the period of several days what mitigates the threat
of ”interaction of history and treatment”. The time of day should not impede the
observations. The research was conducted solely in a real-life software development
project, what makes the external validity considerations much less critical.

Another type of threats we have considered are construct validity threats. They
concern generalizing the results of the experiment to the ideas behind it. To address
”inadequate preoperational explication of constructs” we have defined, as clearly as
possible, what we are looking for - less failing builds. We hope to widen the generaliza-
tion to a broader concept of defect (not only failing build) prediction, but we decided
to start with a problem of broken builds that developers have to deal with most often.
Other threat that we think needs to be considered is the ”restricted generalizability
across constructs”. It is important to check if the approach we are proposing will not
effect the project in a negative way. For example, whether the usage of the prediction
will not give the developers false beliefs and thus result in more careless committing.
We have similar concerns regarding the social threats to the experiment. It is possible
that the behavior of the software developers will change due to the usage of our
CBOP tools. It might be that they will feel more secure while receiving positive
predictions and thus they will more boldly commit insecure changes to the repository.

The last type of threats we have considered are the threats to conclusion validity.
In our case, it is the ability to draw a correct conclusion about the influence of CBOP
on FBR in a software development project. Important threat is a potentially low
statistical power of the experiment (because of the limits in the number of participants
involved in the study). We tried to mitigate it by involving as many developers as
we could. Finally, we were able to use data from 9 individual developers.

4.3 Analysis

In the experiment, we have analyzed 310 project days worth of data coming from
a total of 9 developers. Table 2 shows the assignments for individual developers. The
experiment assignments were prepared 40 days in advance. Different developers worked
different number of days in the project under investigation (because of sick days,
vacations, different project assignments etc.). Some days the developers did not make
any commit resulting in a build. Those days were omitted from the results. Although
in those days the developers were assigned a phase. If a developer participated in the
experiment longer than 40 days, the sequence started from the beginning. If a developer
participated in less than 40 days then only the days in which she or he participated
were taken into account. The developers were working simultaneously in Visual Studio



8 M. Kawalerowicz, L. Madeyski

Table 2. CBOPoff (A) / CBOPon (B) assignments for individual developers

Developer no. Assignments plan Days
in exp.

Obs.
count

Failure build
count

Total
build count

Developer 1 AAAAAABBBBBBBBBBBBBB
BBBBAAAAABBBBBBBBBBB

44 33 16 63

Developer 2 AAAAAAABBBBBBBBBBBBB
BBBBAAAAAAAAABBBBBBB

27 20 3 32

Developer 3 AAAAAAAABBBBBBBBBBBB
BBBBAAAAAAAAABBBBBBB

37 27 1 47

Developer 4 AAAAAAAAAABBBBBBBAAA
AAAAAAAABBBBBBBBBBBB

60 84 58 227

Developer 5 AAAAAAAAAAABBBBBBBBB
BBBAAAAAABBBBBBBBBBB

43 29 1 65

Developer 6 AAAAAAAAAAAABBBBBBBB
BBAAAAAAAABBBBBBBBBB

54 61 39 134

Developer 7 AAAAABBBBBBBAAAAAAAA
AAAAABBBBBBBBBBBBBBB

35 50 27 124

Developer 8 AAAAAAAAABBBBBBBBAAA
AAAABBBBBBBBBBBBBBBB

40 55 59 239

Developer 9 AAAAABBBBBBBBBBBBBBB
BBBAAAAAAABBBBBBBBBB

46 51 26 139

on the back-end .NET services and in VSCode working on the Angular front web
client for the services. The results were aggregated for both projects separately.

Analysis of descriptive statistics In total, CBOP was turned off during 173 days
and turned on during 237 days of the experiment. FBR dependent variable, calculated
as described in the Section 3.4, is plotted in Figure 2.

Fig. 2. Failed Build Ratio (FBR)



Continuous Build Outcome Prediction: A Small-N Experiment 9

We see a slight increase in the mean of FBR when the CBOP was turned on,
from 0.137 (CBOPoff) to 0.185 (CBOPon). Figure 3 shows the box plot for the same
data. The median in both phases was 0.

Fig. 3. Failed build ratio (Y-axis) box plot

As variances are not equal (F=0.70099, df1=172, df2=236, p−value=0.01366),
we may use Welch’s t-test, but the null hypothesis can not be rejected (t=−1.5579,
df = 400.34, p−value= 0.12). Unfortunately, the data are autocorrelated in the
CBOPon phase and have a visible trend in the CBOPoff phase. In such situation,
transformation using differencing is recommended. Unfortunately, it does not remove
autocorrelation. Hence, the Welch’s t-test may not be reliable and we proceed further
analyzing a robust measure of central location and effect sizes.

Mean is not a robust measure of the central location and can be strongly influ-
enced by outliers, especially when the number of observations is small. However, the
10% trimmed mean (which is a more robust measure of the central tendency) also
increased from 0.065 (when CBOPoff) to 0.109 (when CBOPon). Standard deviation
increased in a similar manner from 0.281 (when CBOPoff) to 0.335 (when CBOPon).
We will discuss possible explanations of such behaviour in Section 5, but now we
focus on the size of the observed effect. Table 3 contains descriptive statistics for all
phases and developers.

Effect size It has become a recommended practice to assess the magnitude of a
treatment effect (CBOPon vs CBOPoff in our case) using effect size measures as it
gives a sense of practical importance [17,18,19]. To grasp the effect of CBOPon vs
CBOPoff, we report the most common effect size measures:

– ES calculated as the difference between the intervention CBOPon and base-
line CBOPoff means divided by the standard deviation of the baseline (ES=
MCBOPon−MCBOPoff

SDCBOPoff
),



10 M. Kawalerowicz, L. Madeyski

Table 3. Descriptive statistics for each developer for CBOPoff (off) / CBOPon (on)

Obs. count Mean 10% trim mean Median SD
off on off on off on off on off on

Developer 1 12 21 0.194 0.337 0.133 0.298 0.000 0.000 0.388 0.447
Developer 2 5 15 0.000 0.133 0.000 0.077 0.000 0.000 0.123 0.352
Developer 3 15 12 0.000 0.021 0.000 0.000 0.000 0.000 0.000 0.072
Developer 4 43 41 0.216 0.118 0.168 0.069 0.000 0.000 0.290 0.233
Developer 5 12 17 0.000 0.020 0.000 0.000 0.000 0.000 0.000 0.081
Developer 6 29 32 0.254 0.269 0.215 0.216 0.000 0.000 0.380 0.414
Developer 7 22 28 0.102 0.221 0.032 0.175 0.000 0.000 0.257 0.364
Developer 8 24 31 0.044 0.214 0.013 0.146 0.000 0.000 0.123 0.350
Developer 9 11 40 0.136 0.197 0.056 0.121 0.000 0.000 0.323 0.325

– d − index uses a pooled standard deviation and thus may be more appro-
priate when the variation between the phases differs (d−index=

MCBOPon−MCBOPoff

SDpool(CBOPoff,CBOPon)
).

Both values (ES=0.16923, d−index=0.15156) are below 0.87 and indicate ”small
effect size”. However, when there is a trend in any phase, then both measures are
not appropriate and we need to use more sophisticated effect size measures. In our
case, there is a visible trend in the baseline CBOPoff, see Figure 4.

Fig. 4. Visualisation of trend

Hence, we report and rely on the following effect size measures:

– PEM (the percentage of the data points in intervention phase (CBOPon) ex-
ceeding the median of the baseline phase (CBOPoff)) [20],

– PAND (the percentage of all non-overlapping data) [21].

PEM =0 (i.e., lower than 0.5) can be interpreted as “not effective” according to
Ma [20]. PAND= 0.578 (i.e., lower than 0.69) can be interpreted as “debatable
effectiveness” according to Parker et al. [21]. This indicates that CBOP is “not



Continuous Build Outcome Prediction: A Small-N Experiment 11

effective” or even its effectiveness is, contrary to the expectation, slightly in the
opposite direction, i.e., may lead to a tiny increase in FBR.

5 Discussion

The experiment results indicate that our hypothesis that by using CBOP (CBOPon)
one can positively influence the failing builds ratio was not reflected in results. By us-
ing our CBOP setup, developers were causing slightly more failing builds than without
the CBOP in place (CBOPoff). The effect size was very small, but it prompted us to
elaborate on plausible explanations. One of the possible reasons (we have considered as
a threat before the experiment) is that developers equipped with a tool that was sup-
posed to shelter them from the problems of failing builds became more careless. They
start to commit a code of lesser quality because they had positive feedback about it.

This effect could be caused by the human tendency to use judgement heuristics
while making decisions. It is generally easier for a human being to use simple strategies
while finding solutions for a complex problem. One of those judgement heuristics is an
authority principle. This principle was catalogued by Cialdini among ”Six Principles
of Influence” [22]. Authority principle says that humans tend to comply with the
people they see to be in a position of authority (like shown in [23]). The authority
principle applies also to non-human authorities like a law or legal precedent ([24]). Our
software tool Jaskier can be seen as a form of non-human authority. It is prominently
visible in IDE and gives informed predictions about the coming build result. What
if the software shows a false positive (it informs the developer that everything will
be fine, but in fact there is a problem in the code base)? It might be the case that
in such situations developers use a simple judgement heuristic and do not review the
code sufficiently but check it in.

The authority principle explanation needs a rigorous test in order to fully explain
the observed phenomena. It might also be interesting to look on the result from an-
other analysis level and analyze the developer cognitive functioning (learning, thinking,
reasoning, remembering, problem solving, decision making, and attention) [25].

6 Conclusions and future work

We have demonstrated the effect of employing the new CBOP practice (for predicting
failures on the CI server) in a real software project. Based on historical CI data (build
success vs. failure information) and metrics calculated from the software repository,
we are able to create a prediction model for a build failure. We are matching the
historical CI results with the commits that led to the CI build and based on that data
we create the classification model. This model is used to predict how dangerous the
changes the developer introduced to the project are in respect to the build outcome.

We have build a set of tools that form a practical implementation of the CBOP
idea. We used CBOP in order to evaluate it in a commercial software project.

We are working to improve the prediction models, although using random forests
we are currently reaching 95% of prediction accuracy (based on k-fold cross-validation).



12 M. Kawalerowicz, L. Madeyski

According to developers, the acceptance of the new practice and the supporting toolset
is beyond doubt if the performance of the prediction model is high.

Although we were not able to support our hypothesis that “Using CBOP reduces
FBR” by the obtained results, we plan to extend the toolset to capture brother plateau
of defects and reevaluate brother CDP practice. The social behavioral explanation
(impact of non-human authority) of the results might also to be narrowed to cognitive
functioning of a single developer in its environment. More rigorous testing of the
explanation is needed in order to fully explain the phenomenon.

The more sophisticated effect size measures had to be used because of the trend
in the CBOPoff baseline. They indicate that CBOP is “not effective” (according
to the PEM measure) or its effectiveness is “debatable” (according to the PAND
measure). Descriptive statistics also suggest that the effectiveness of CBOP is low
and slightly in the opposite direction than expected (i.e., CBOP may in fact lead
to increase in FBR) but increasing FBR in the CBOPoff baseline (see Figure 4) does
not allow to come to strong conclusions. The data obtained for this experiment is
available though a download4.

We reached a plausible explanation of the reveled phenomenon building upon the
authority principle, which is rarely discussed in the software engineering context in
general, and AI/ML-supported software development practices in particular, but we
think deserves attention and should be taken into account with accelerating use of
AI/ML techniques.

References

1. Arora, I., Tetarwal, V., Saha, A.: Open issues in software defect prediction. Procedia
Computer Science 46, 906–912 (2015). https://doi.org/10.1016/j.procs.2015.02.161

2. Madeyski, L., Kawalerowicz, M.: Continuous Defect Prediction: The Idea and
a Related Dataset. In: 14th International Conference on Mining Software
Repositories (May 20-21, 2017. Buenos Aires, Argentina)., pp. 515–518 (2017).
https://doi.org/10.1109/MSR.2017.46

3. Kim, S., Whitehead Jr., E.J., Zhang, Y.: Classifying software changes: Clean or buggy?
IEEE Trans. Softw. Eng. 34(2), 181–196 (2008)

4. Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., Bener, A.: Defect prediction
from static code features: current results, limitations, new approaches. Automated
Software Engineering 17(4), 375–407 (2010). https://doi.org/10.1007/s10515-010-0069-5

5. D’Ambros, M., Lanza, M., Robbes, R.: Evaluating defect prediction approaches: a
benchmark and an extensive comparison. Empirical Software Engineering 17(4-5),
531–577 (2012)

6. Kamei, Y., Shihab, E., Adams, B., Hassan, A.E., Mockus, A., Sinha, A., Ubayashi,
N.: A large-scale empirical study of just-in-time quality assurance. IEEE Transactions
on Software Engineering 39(6), 757–773 (2013)

7. Yang, X., Lo, D., Xia, X., Zhang, Y., Sun, J.: Deep learning for just-in-time defect
prediction. In: IEEE International Conference on Software Quality, Reliability and
Security (QRS), pp. 17–26 (2015)

8. Yang, X., Lo, D., Xia, X., Sun, J.: Tlel: A two-layer ensemble learning approach for
just-in-time defect prediction. Information and Software Technology (2017)

4 https://doi.org/10.6084/m9.figshare.14222273.v1

https://doi.org/10.1016/j.procs.2015.02.161
https://doi.org/10.1109/MSR.2017.46
https://doi.org/10.1007/s10515-010-0069-5
https://doi.org/10.6084/m9.figshare.14222273.v1


Continuous Build Outcome Prediction: A Small-N Experiment 13

9. Madhavan, J.T., Whitehead Jr., E.J.: Predicting buggy changes inside an integrated
development environment. In: Proceedings of the 2007 OOPSLA Workshop on Eclipse
Technology eXchange, eclipse ’07, pp. 36–40. ACM, New York, NY, USA (2007)

10. Finlay, J., Pears, R., Connor, A.M.: Data stream mining for predicting software build
outcomes using source code metrics. Information and Software Technology 56(2),
183–198 (2014). https://doi.org/10.1016/j.infsof.2013.09.001

11. Antoniol, G., Ayari, K., Di Penta, M., Khomh, F., Guéhéneuc, Y.G.: Is it a bug or
an enhancement?: A text-based approach to classify change requests. In: Proceedings
of the 2008 Conference of the Center for Advanced Studies on Collaborative Research:
Meeting of Minds, CASCON ’08, pp. 23:304–23:318. ACM, New York, NY, USA (2008)

12. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wessĺen, A.: Experimen-
tation in Software Engineering. Computer Science. Springer (2012)

13. Dugard, P., File, P., Todman, J.: Single-case and Small-n Experimental Designs: A
Practical Guide to Randomization Tests, 2nd edn. Routledge (2012)

14. Bulté, I., Onghena, P.: An r package for single-case randomization tests. Behavior
research methods 40, 467–478 (2008)

15. Kawalerowicz, M., Madeyski, L.: Jaskier: A Supporting Software Tool for Continuous
Defect Prediction Practice. In: Proceedings of the 34th International Conference on Indus-
trial, Engineering and Other Applications of Applied Intelligent Systems. Springer (2021)

16. Kawalerowicz, M., Madeyski, L.: Appendix to ”Continuous Build Outcome Pre-
diction: A Small-N Experiment in Settings of a Real Software Project”. https:
//madeyski.e-informatyka.pl/download/KawalerowiczMadeyski21CBOPApp.pdf

17. Ferguson, C.J.: An effect size primer: A guide for clinicians and researchers. Professional
Psychology: Research and Practice 40(5), 532–538 (2009)

18. Kitchenham, B., Madeyski, L., Budgen, D., Keung, J., Brereton, P., Charters, S., Gibbs,
S., Pohthong, A.: Robust Statistical Methods for Empirical Software Engineering.
Empirical Software Engineering 22(2), 579–630 (2017). https://doi.org/10.1007/s10664-
016-9437-5

19. Madeyski, L.: Test-Driven Development: An Empirical Evaluation of Agile Practice.
Springer, (Heidelberg, London, New York) (2010)

20. Ma, H.H.: An alternative method for quantitative synthesis of single-subject researches.
Behavior Modification 30(5), 598–617 (2006)

21. Parker, R.I., Hagan-Burke, S., Vannest, K.: Percentage of All Non-Overlapping Data
(PAND) : An Alternative to PND. The Journal of Special Education 40, 194–204 (2007)

22. Cialdini, R.: Influence: The Psychology of Persuasion. Collins Business Essentials.
HarperCollins e-books (2009)

23. Bickman, L.: The social power of a uniform. Journal of Applied Social Psychology
4, 47–61 (1974). https://doi.org/10.1111/j.1559-1816.1974.tb02807.x

24. Schneider, A., Honeyman, C., of Dispute Resolution, A.B.A.S.: The Negotiator’s
Fieldbook. American Bar Association, Section of Dispute Resolution (2006)

25. Fisher, G.G., Chacon, M., Chaffee, D.S.: Chapter 2 - theories of cognitive aging and
work. In: B.B. Baltes, C.W. Rudolph, H. Zacher (eds.) Work Across the Lifespan,
pp. 17–45. Academic Press (2019). https://doi.org/https://doi.org/10.1016/B978-0-
12-812756-8.00002-5

https://doi.org/10.1016/j.infsof.2013.09.001
https://madeyski.e-informatyka.pl/download/KawalerowiczMadeyski21CBOPApp.pdf
https://madeyski.e-informatyka.pl/download/KawalerowiczMadeyski21CBOPApp.pdf
https://doi.org/10.1007/s10664-016-9437-5
https://doi.org/10.1007/s10664-016-9437-5
https://doi.org/10.1111/j.1559-1816.1974.tb02807.x
https://doi.org/https://doi.org/10.1016/B978-0-12-812756-8.00002-5
https://doi.org/https://doi.org/10.1016/B978-0-12-812756-8.00002-5

	Continuous Build Outcome Prediction: A Small-N Experiment in Settings of a Real Software Project

