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Abstract
Context Previous studies have raised concerns about the analysis and meta-analysis of
crossover experiments and we were aware of several families of experiments that used
crossover designs and meta-analysis.

Objective To identify families of experiments that used meta-analysis, to investigate their
methods for effect size construction and aggregation, and to assess the reproducibility and
validity of their results.

Method We performed a systematic review (SR) of papers reporting families of experi-
ments in high quality software engineering journals, that attempted to apply meta-analysis.
We attempted to reproduce the reported meta-analysis results using the descriptive statistics
and also investigated the validity of the meta-analysis process.

Results Out of 13 identified primary studies, we reproduced only five. Seven studies could
not be reproduced. One study which was correctly analyzed could not be reproduced
due to rounding errors. When we were unable to reproduce results, we provide revised
meta-analysis results. To support reproducibility of analyses presented in our paper, it is
complemented by the reproducer R package.

Conclusions Meta-analysis is not well understood by software engineering researchers. To
support novice researchers, we present recommendations for reporting and meta-analyzing
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families of experiments and a detailed example of how to analyze a family of 4-group
crossover experiments.

Keywords Evidence-based software engineering · Systematic review · Meta-analysis ·
Effect size · Families of experiments · Reproducible research

1 Introduction

Vegas et al. (2016) reported that crossover designs are a popular design for software engi-
neering experiments. In their review they identified 82 papers of which 33 (i.e., 40.2%)
were crossover designs. Furthermore, those 82 papers reported 124 experiments of which
68 (i.e., 54.8%) used crossover designs. However, they reported that “crossover designs are
often not properly designed and/or analysed, limiting the validity of the results”. They also
warned against the use of meta-analysis in the context of crossover style experiments.

As a results of that study, two of us undertook a detailed study of parametric effect sizes
from AB/BA crossover studies (see Madeyski and Kitchenham 2018a, b and Kitchenham
et al. 2018). We identified the need to consider two mean difference effect sizes and reported
the small sample effect size variances and their normal approximations.

As we were undertaking this systematic review,1 we found that Santos et al. (2018) had
already performed a mapping study of families of experiments. They reported that although
the most favoured means of aggregating results was Narrative synthesis (used by 18 papers),
Aggregated Data meta-analysis (by which they mean aggregation of experiment effect sizes)
was used by 15 studies.

Using Vegas et al. (2016), Madeyski and Kitchenham (2018b) and Santos et al. (2018) as
a starting point, we decided to investigate the validity and reproducibility of effect size meta-
-analysis for families of experiments (Madeyski and Kitchenham 2017). Our goals are to;

– Identify the effect sizes used and how they were calculated and aggregated.
– Use the descriptive statistics reported in the study, attempt to reproduce the reported

results.2

– In the event that we were unable to reproduce the results, to investigate the underlying
reason for lack of reproduciblity.

We concentrated on families of experiments as our form of primary studies. We did
this (rather than looking at papers that report a meta-analysis after performing a systematic
review) because papers reporting a family of experiments are likely to have published suffi-
cient details about the individual studies and their meta-analysis process for us to attempt to
validate and reproduce their effect size calculations and meta-analysis. In addition, Santos’s
mapping study confirmed the popularity of families of experiments, and emphasized that
more families needed to aggregate their results. These two factors indicate the importance of
adopting valid meta-analysis processes in the context of families of experiments. Nonethe-
less, our reproducibility analysis method, based on aggregating descriptive statistics, is the
same as would be used to meta-analyse data from experiments found by a systematic review.

1In fact, we had already completed our own search and selection process, see Section 3.2 and the
Supplementary Material (Kitchenham et al. 2019b).
2Santos et al. (2018) reported that only 5 of the 39 papers they identified reported their raw data, so any
reproducibility study we performed would need to be based primarily on summary statistics.
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Thus, the results from this study are likely to be of value for any meta-analysis of software
engineering data.

We concentrated on high quality journals not only because such papers usually present
reasonably complete descriptions of their results and methods, but also because they attract
papers from experienced researchers, which are reviewed by other experienced researchers.
Thus, readers of papers in such journals expect the published results to be correct. Invalid
results in such papers are therefore likely to have a more serious impact than mistakes in
papers published in less prestigious journals or conferences. For example, practitioners may
base decisions on invalid outcomes, and novice researchers may adopt incorrect methods.

We present our research questions in Section 2 and our systematic review methods in
Section 3. A summary of the primary studies included in our review, a discussion of the
validity of the meta-analysis methods used in each study and our reproducibility assessment
are in Sections 4, 5 and 6, respectively. We discuss the results of our study in Section 7 and
present the contributions of this paper and our conclusions in Section 8.

We also include an Appendix that reports details of our statistical analysis and anal-
ysis results not needed to support our main arguments. The Appendix also discusses
reproducibility aspects of our study.

2 Research Questions

The research questions (RQs) relating to our systematic review are:

RQ1: Which studies that undertook families of experiment have also undertaken effect
size meta-analysis?

RQ2: What are the characteristics of these studies in terms of methods used for experi-
mental design and analysis?

RQ3: What meta-analysis methods were used and were they valid?
RQ4: If the meta-analysis methods were valid can results be successfully reproduced?

RQ1, RQ2, and the reporting aspects of RQ3 could be addressed directly from informa-
tion reported in each primary study. To address the validity aspect of RQ3 and RQ4, we
reviewed the meta-analysis processes described by each study and then attempted to repro-
duce first the effect sizes and then the meta-analysis in each primary study. Finally, we
compared our results with the reported results. We assumed that it would be possible to con-
duct a meta-analysis based on the descriptive data and the effect size chosen by the primary
study authors, since this is the normal method of performing meta-analysis.

3 Systematic ReviewMethods

We performed our systematic review (SR) according to the guidelines proposed by
Kitchenham et al. (2015). The processes we adopted are specified in the following sections.

3.1 Protocol Development

Our protocol defines the procedures we intended to use for the systematic review including
the search process, the primary study selection process, the data extraction process and the
data analysis process. It also identified the main tasks of all the co-authors. The protocol
was initially drafted by the first author and reviewed by all the authors. After trialling the
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specified processes, the final version of the protocol was agreed by all the authors and reg-
istered as report W08/2017/P-045 at Wroclaw University of Science and Technology. The
following sections are based on the processes defined in the protocol. Any divergences
report our actual processes, as opposed to the planned processes described in the protocol.
The major deviation from the protocol and the results reported in this paper is that originally
we had assumed it would be appropriate to concentrate on reproducibility, but as our inves-
tigation progressed we realized that we needed to consider the reasons for lack of repro-
ducibility, that is, consider in more detail the validity of the meta-analysis process. Further-
more, validity is the key issue, because it is not useful to reproduce an invalid result.

3.2 Search Strategy

In order to address our research questions, we needed to identify papers that reported the
use of meta-analysis to aggregate individual studies, reported the results of the individual
studies in detail, and were published in high quality journals.

To achieve our search process strategy, we decided to limit our search for families of
experiments to the following five journals:

– IEEE Transactions on Software Engineering (TSE).
– Empirical Software Engineering (EMSE).
– Journal of Systems and Software (JSS).
– Information and Software Technology (IST).
– ACM Transactions on Software Engineering Methodology (TOSEM).

We restricted ourselves to these journals because they all publish papers on empirical soft-
ware engineering, and all have relatively high impact factors (among SE journals). These
are, therefore, highly respected journals, and we should expect the quality of papers they
publish to be correspondingly high.

3.3 SR Inclusions and Exclusions

In this section we present our inclusion and exclusion criteria. Details of the search and
selection process, the validation of the search and selection process, and the data extraction
process can be found in the supplementary material (Kitchenham et al. 2019b).

Given our research questions, papers to be included in our SR were identified using the
following inclusion criteria:

1. The paper should report a family of three or more experiments. This is because it is
the criteria adopted by Santos et al. (2018) and there is more opportunity to detect
heterogeneity with three or more studies.

2. The experiments reported in the paper should relate to human-centric experiments
or quasi-experiments that compare SE methods or procedures rather than report
observational (correlation) studies with no clear comparisons.3

3. The paper should have been published by one of the five journals identified by our
search strategy, see Section 3.2.

4. The paper should use some form of meta-analysis to aggregate results from the indi-
vidual studies using standardized effect sizes, i.e., standardized mean difference or

3This criterion was amended after the protocol was completed because we identified the need to exclude
correlation studies during data collection.
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point-biserial correlation coefficient (rpb).4 These effect sizes are commonly used in
software engineering meta-analyses.

The following exclusion criteria were also defined:

1. The paper was an editorial.5

2. The paper was published before 1999, when Basili et al. (1999) first discussed families
of experiments.

3.4 Data Analysis

The results extracted from each primary study allowed us to answer questions RQ1, RQ2
and the methodology element of RQ3. To address the validity element of RQ3 and RQ4 for
each primary study, we reviewed carefully the meta-analysis methods reported by the study
authors and attempted to reproduce the effect size values and meta-analysis results using
the reported descriptive data.

Many of the studies reported multiple metrics and hypotheses tests for each experiment.
In all cases, we first attempted to reproduce the effect sizes reported by the authors and
then the meta-analysis. We analyzed only the first outcome metric, because we assumed
that if the individual effect sizes were reproduced and results of meta-analyzing the effect
sizes was reproduced, it would confirm whether or not the meta-analysis was reproducible
without checking the results for every metric. Our assumption (that in our case it is enough
to analyze the first outcome metric) was based on the fact that none of the primary studies
reported using different methods to calculate effect sizes or performing meta-analysis for
different outcome metrics. In addition, outcome tables for descriptive statistics and effect
sizes were similar for all outcome metrics. There is only one situation where there might be
a difference between outcomes for different metrics. This would happen if the authors did
not maintain the direction as well as the magnitude of the effect size. Then, if one metric
had effect sizes with different directions and one did not, we would agree with the authors
in the case where all directions were the same and disagree when the directions were not
the same. This happened in the case of Study 9 (see Section 6.11).

For each primary study, we compared the effect sizes for each experiment and the overall
meta-analysis mean effect size with the results of our calculations. However, we needed
some method of deciding whether effect sizes or meta-analysis results had been reproduced,
since we did not expect to obtain exactly the same effect size values since our values were
obtained from summary statistics whereas study authors might have derived their effect
sizes from calculations on the raw data. We chose to use a difference of 0.05 between our
calculated effect size meta-analysis mean and the equivalent reported statistics as a criterion
for deciding whether there was a reproducibility problem. Our basis for choosing 0.05 was
that:

1. A relative value would unfairly penalize small effect sizes, for example if a study
reported an effect size of 0.01 and we reported an effect size of 0.02, we would have
relative difference of 50% for a difference that could be the result of rounding applied
to reported mean values.

4In our protocol we used the term correlation coefficient, however after beginning data extraction, we realized
we needed to define the correlation coefficient effect size more correctly as the point-biserial correlation.
5Since we were restricting ourselves to five international journals (see Section 3.2), we did not need to
formally exclude extended abstracts or non-English papers.
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2. Most studies reported descriptive data on metrics, in the range 0 to 1, to two decimal
places, so we thought an absolute value of 0.05 might be sufficiently large to allow for
differences due to rounding effects caused because our reproducibility statistics were
derived from the reported means and variances.

3. Most studies did not state explicitly whether or not they applied the small sample size
adjustment to their standardized effect sizes. For example, a medium effect size of 0.5
and a sample size of 23 (the median experiment size), the effect of applying the small
sample adjustment is to reduce the standardized effect size to 0.48.

4 An Overview of the Primary Studies (RQ1 and RQ2)

In this section, we address RQ1 and RQ2 and present an overview of the primary studies
included in our systematic review.

4.1 Studies ReportingMeta-analysis of Families of Experiments (RQ1)

The 13 primary studies we included in our SR are shown in Table 1 ordered by inverse pub-
lication date.6 The table reports the number of experiments in each family and the number
of participants in each experiment. We report on the studies in this order throughout this
section.

Table 2 provides an overview of the goals of each of the studies and the specific tech-
niques they investigated. The technique in boldface (e.g., PBR in study S13) is the treatment
technique and the other technique (e.g., CBR) is the control technique. Later in this paper,
effect sizes are reported relative to the treatment technique, so positive values indicate
that the treatment technique outperforms the control technique and negative values indi-
cate that the control technique outperforms the treatment technique. There are some trends
observable in Table 2:

– Six studies investigated the impact of different UML documentation options (see rows
where the techniques are labelled DO to signify Documentation Options).

– Four studies investigated procedures in the context of maintainability.
– Four studies investigated requirements issues, three compared specification languages

and one investigated proposals for verifying non-functional requirements.

4.2 Experimental Methods Used by the Primary Studies (RQ2)

Table 3 presents some information about individual experiments discussed in each pri-
mary study. During data extraction, it became clear that many of our 13 primary studies,
included experiments with crossover designs. Vegas et al. (2016) warned that the terminol-
ogy used to describe crossover designs was not used consistently, and we found exactly
the same problem with our primary studies (Kitchenham et al. 2019a). Therefore, we used
the description of the experimental design provided by the authors to derive our own clas-
sification. Understanding the specific experimental design is important in the context of
meta-analysis, because the variance of the standardized effect size is different for different

6Although Santos et al. (2018) found 15 families that used meta-analysis, three of the papers they found were
excluded on the basis of our inclusion criteria and we found one study they did not.
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Table 1 Primary studies

ID Year Citation Exps Participants Total

per group participants

Study 11 2016 Morales et al. (2016) 3 230,25,13 69

Study 5 2016 Fernández-Sáez et al. (2016) 4 11,16,32,22 81

Study 8 2015 Gonzalez-Huerta et al. (2015) 4 28,16,36,12 92

Study 9 2015 Fernández-Sáez et al. (2015) 3 40,51,78 169

Study 2 2014 Scanniello et al. (2014) 4 24,22,22,18 86

Study 1 2013 Abrahao et al. (2013) 5 24,24,28,20,16 112

Study 4 2013 Fernandez et al. (2013) 3 12,32,20 64

Study 6 2013 Hadar et al. (2013) 3 19,31,39 79

Study 7 2012 Teruel et al. (2012) 3 30,42,9 81

Study 10 2011 Cruz-Lemus et al. (2011) 3 69,25,30 124

Study 3 2009 Cruz-Lemus et al. (2009) 5 55,178,14,13,24 284

Study 14 2004 Pfahl et al. (2004) 3 9,10,10 34

Study 13 2001 Laitenberger et al. (2001) 3 2,12,13 29

designs, see Morris and DeShon (2002) and Madeyski and Kitchenham (2018a, b). In all
cases the description was sufficient for us to identify the individual experimental designs.
Like Vegas et al., we found that the primary study authors did not adopt our terminology,
nor did they use the same terminology as other primary study authors who adopted the same
design.

The primary studies used only four basic experimental designs, which we discuss in the
Appendix A.1. To understand the notation used in the rest of the paper, it is important to note
that all crossover style designs have two different types of standardized mean difference
effect size (see Morris and DeShon 2002 and Madeyski and Kitchenham 2018b):

1. An effect size that measures the personal improvement (of an individual or team) per-
forming a task using one method compared with performing the same task7 using
another method. We refer to this as the repeated measures standardized effect size, δRM ,
with an estimate dRM .

2. An effect size that is equivalent to the standardized mean effect size obtained from a an
independent groups design (also known as a between participants design). We refer to
this independent groups effect size as δIG, with an estimate dIG.

For balanced crossovers (where each sequence group has the same number of partic-
ipants), effect sizes are calculated as follows (Morris and DeShon 2002; Madeyski and
Kitchenham 2018b):

dRM = x̄A − x̄B

se
(1)

where x̄A is the mean value of the treatment technique observations and x̄B is the mean
value of control technique, se is the within participants standard deviation.

dIG = x̄A − x̄B

sIG

(2)

7That is, the same conceptual task e.g., fault detection, or a comprehension questionnaire, but with different
materials (e.g., a different specification, design or code listing).
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Table 2 Primary study data

ID Main goal Techniques Task or activity

S11 Compare two requirements specification i* v. TRiStar Requirements

languages for teleo-reactive systems Understandability

S5 Assess level of Detail (LoD) of UML DO:LoD Low v. Maintainability

diagrams needed for maintenance LoD High

S8 Assess the QuaDAI strategy for verifying ATAM v. QuaDAI Non-Function

non-functional requirements Requirements

Achievement

S9 Compare forwarded designed with DO: UML diagrams FD Maintainability

reverse engineered UML diagrams v. RE

for maintenance

S2 Assess UML requirement diagrams for DO: Source code alone Maintainability

code maintainability v. Source code with

UML analysis model

S1 Assess UML sequence diagrams (SDs) DO: Without SDs v. Requirements

impact on understandability with SDs Understandability

S4 Assess two web usability assessment Heuristic Evaluation v. Evaluation of Web

methods Web Usability site usability

Evaluation Process

S6 Compare understandability of requirements Use Cases v. Tropos Requirements

expressed in different visual languages Understandability

S7 Compare two requirements languages i* v. CSRML Requirements

Understandability

S10 Assess if stereotypes improve UML DO: Without Maintainability

sequence diagram comprehension sterotypes v. with

stereotypes

S3 Assess if composite state diagrams DO: without CSDs v. Model

(CSDs) help maintenance with CSDs Understandability

S14 Compare two SE automated training COCOMO-based training SE knowledge test

programs v. Systems Dynamics

training

S13 Compare defect detection of CBR v. PBR Defect detection

perspective based reading with

checklist based reading

where sIG is equivalent to the pooled within groups standard deviation of an independent
groups study.

In addition, there is a relationship between the two standard deviations (Madeyski and
Kitchenham 2018b):

se = √
(1 − r)sIG (3)

where r is the Pearson correlation between the repeated measures. Thus, the effect sizes are
also related:

dRM = √
(1 − r)dIG (4)



Empirical Software Engineering

Table 3 Primary study experiment data

ID Design Tests Main hypothesis tests for Valid

used each experiment analysis

Study 1 4-group crossover NP Wilcoxon (paired analysis) Partly

Study 2 4-group crossover NP or P Unpaired t-test or No

Mann-Whitney-Wilcoxon

Study 3 AB/BA crossover P ANOVA 2 × 2 factorial No

Independent P One-way ANOVA Yes

groups (1)

Study 4 4-group crossover NP or P One tailed t-test for independent No

groups or Mann-Whitney

Study 5 4-group crossover NP Wilcoxon for paired samples Partly

Study 6 4-group crossover NP Mann-Whitney No

Study 7 AB/BA crossover P ANOVA 2 × 2 factorial No

Study 8 4-group crossover NP or P One-tailed t-test for independent No

samples or Mann Whitney

Study 9 Independent groups NP or P ANOVA or Mann-Whitney Yes

Study 10 4-group crossover NP Kruskall-Wallis No

Study 11 AB/BA crossover P ANOVA 2 × 2 factorial No

Study 13 AB/BA crossover NP and P Matched pairs t-test and Partly

Wilcoxon signed ranks test

Study 14 Pretest and NP and P One-way paired t-test and Yes

posttest control Mann-Whitney

For small sample size, Hedges and Olkin (1985) recommend applying a correction to
dRM and dIG. We refer to the small sample size corrected effect sizes as gRM and gIG

respectively. We prefer not to give these terms generic labels, such as Hedges’ g, because
as Cumming (2012) points out (see page 295) meta-analysis terminology is inconsistent.
In terms of names given to standardized effect sizes, dIG is referred to as d by Borenstein
et al. (2009) and as g by Hedges and Olkin (1985), gIG is referred to as g by Borenstein
et al. (2009) and d by Hedges and Olkin (1985). In our primary studies, most papers used
the terms Hedge’s g and one used Cohen’s d but the papers did not specify whether or not
they used the small sample size adjustment. Only Study 13, explicitly defined Hedges’ g to
be what we refer to as dIG and used the term d to be what we refer to as gRM .

In Table 3, we also report whether the data was analyzed using parametric (P) or non-
parametric methods (NP) tests for the individual experiments. Four of the studies used non-
parametric tests or parametric tests depending on the outcome of tests for normality. Study
13 and Study 14 performed both non-parametric and parametric tests, but only reported
the results of the parametric tests since the outcomes of both tests were consistent. It is
important to note that many of the crossover studies did not analyze their data correctly,
by using independent groups tests rather than repeated measures tests. We annotated three
studies as partly valid because they used tests that catered for repeated measures, but may
have been delivered slightly biased results if time period effects or material effects were
significant (see Appendix A.1.3).
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5 The Validity of Meta-analysis Procedures Used by the Primary
Studies (RQ3)

In this section, we discuss the methods used by the primary study authors. In Table 4,
we summarize issues related to meta-analysis including the effect size names used by the
authors, our assessment of the effect size the authors aggregated, which meta-analysis tools
were used and whether heterogeneity was investigated. We discuss these results in this
section. However, the main focus of this section is to assess the validity of the meta-analysis
procedures used in each primary study. This validity assessment was made from reading
the report of the meta-analysis processes and the meta-analysis results reported in each pri-
mary study. It was intended to identify incorrect or incomplete reporting of meta-analysis
process and any obvious violations of meta-analysis principles. In Section 5.1, we explain
the recommended methods for analyzing standardized mean difference effect sizes, then in
Section 5.2, we discuss the methods used by the primary study authors and highlight any
potential validity problems with their meta-analysis method.

5.1 Standard Procedures for Meta-analysis

The usual method for aggregating standardized mean effect sizes such as Hedges’ g is to
construct a weighted average using the inverse of the effect size variance: (see, for example,
Hedges and Olkin 1985; Lipsey and Wilson 2001; Borenstein et al. 2009):

ES =
∑k

i=1 wiESi
∑k

i=1 wi

(5)

where ESi is the calculated effect size of the i-th experiment, k is the number of experi-
ments, ES is the mean effect size, and wi is an appropriate weight. It is also customary to
use the inverse of the effect size variance as the weight, i.e., wi = 1/(var(ES)i), where

Table 4 Meta-analysis methods

ID Effect size Effect size Aggregation Heterogeneity

name aggregated tool tested

Study 1 Hedges’ g rpb Meta-Analysis v2 No

Study 2 Hedges’ g rpb or dIG Meta-Analysis v2 No

Study 3 Hedges’ g rpb or dIG Meta-Analysis v2 No

Study 4 Hedges’ g rpb Meta-Analysis v2 No

Study 5 Hedges’ g rpb or dIG Meta-Analysis v2 No

Study 6 Cohen’s d dIG Meta5.3 No

Study 7 Hedges’ g dIG Meta-Analysis v2 No

Study 8 rpb rpb Meta5.3 Yes

Study 9 Hedges’ g rpb or dIG Meta-Analysis v2 No

Study 10 Hedges’ g rpb or dIG Meta-Analysis v2 No

Study 11 Hedges’ g dIG Meta-Analysis v2 No

Study 13 gRM gRM None Yes

Study 13 p P None Yes

Study 14 γ γ None Yes

Study 14 p P None Yes
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the formula for (var(ES)i) depends both on the study design (Morris and DeShon 2002;
Madeyski and Kitchenham 2018b) and the specific effect size. However, Hedges and Olkin
(1985) make it clear that the use of the variance is based on large sample theory. In prac-
tice using the estimate of ESi in the equation for its variance, when sample sizes are small,
leads to a biased weights and a biased estimate of ES. They point out that a weight based
on the number of observations8 would lead to a pooled estimate that was unbiased but less
precise. Such weights are close to optimal when the population mean is close to zero and
the number of observations are large.

Equation (5) assumes a fixed effects meta-analysis but a random effects analysis is also
usually based on the effect size variance. Also, in the case of a fixed effect analysis, the
variance of ES is obtained from the equation:

var(ES) = 1
∑k

i=1 wi

=
k∑

i=1

vi (6)

Equation (5) is also used for aggregating the unstandardized effect size (UES). Although
in this case, var(UES)i is the square of the standard error of the mean difference.

There are two main meta-analysis models: a fixed effects model and a random effects
model. Equations (5) and (6) are appropriate for a fixed effects model, when we assume that
data from individual experiments arise from the same population (i.e., the data from each
experiment arise from the same population).

A random effects model assumes that data from individual experiments arise from differ-
ent populations each of which has its own population mean and variance. A random effects
analysis estimates the excess variance due to the different populations by comparing the
variance between experiment means with the within experiment variance. In practice, ran-
dom effects analysis replaces var(ES)i with a larger revised variance that includes both the
within experiment variance and the between experiment variance. In the case of a family of
experiments, we would expect a priori that the experiments were closely controlled replica-
tions and a fixed effect size would be appropriate. However, a random effects analysis will
give the same results as a fixed effects analysis in the event that the effect sizes are homo-
geneous, so we would recommend defaulting to a random effects method. Such approach
would address the common issue, also mentioned by Santos et al. (2018), of using fixed
effect models when, due to the heterogeneity of effects, random effects models would be
preferred.

5.2 Meta-analysis Methods Used by the Primary Studies

None of the primary studies aggregated the unstandardized effect size. However, twelve
studies reported effect sizes they referred to either as Hedges’ g or a related standard-
ized effect size (Cohen’s d, γ and d). Apart from Study 13, none of the papers that used
crossover-style experiments mentioned the possibility of two different effect sizes, so we
assume that they all attempted to aggregate the effect size equivalent to an independent
group study (i.e., dIG or gIG).

Study 1 and Study 4 both reported calculating Hedges’ g, but their description did not
mention applying the small sample size adjustment, so we assume they reported what we
refer to as dIG. They also reported converting to a correlation based effect size (usually

8Hedges and Olkin (1985) actually proposes a weight equal to (nA + NB)/(nA)(nB) which looking at (16)
can be recognized as the inverse or the variance of dIG if dIG = 0.
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referred to as the point bi-serial correlation, rpb Rosenthal 1991). This can easily be cal-
culated from the standardized effect size using the following formula (see Borenstein et al.
2009; Lipsey and Wilson 2001):

rpb = dIG√
d2
IG + a

(7)

where a = 4 for a balanced experiment. After constructing rpb, it is necessary to apply
Fisher’s normalising transformation Fisher (1921). The resulting transformed variable for
experiment i is referred to as zi , and the set of zi−values can be aggregated using the
following equation (which is equivalent to (5)):

Z̄ =
∑

i wizi∑
i wi

(8)

The only mistake Study 1 and Study 4 made in the description of their meta-analysis was
that the authors reported using a weight wi = 1/(N − 3), where wi is the weight for the
ith experiment. In fact, the variance of rpb, after applying the Fisher normalizing transfor-
mation, is vi = 1/(N − 3) and the weight is wi = 1/vi = (N − 3), which ensures that the
largest studies are given most weight in the aggregation process (Lipsey and Wilson 2001).
In addition, the authors of Study 4 reported using a t-test for independent groups, so they
may have used the number of observations rather than the sample size to calculate weights
(and the overall variance).

In principle, transformation to rpb is a valid analysis method, since it avoids the proba-
ble bias in calculating the variance of the dIG for small sample sizes. For this reason, we
used it as the basis of our reproducability analysis, and we report the method in detail in
Appendix A.2.

An important implication of using the normalizing transformation of rpb is that the
variance of rpb is var(ri) = 1/(ni − 3) and using (6):

var(rpb) =
k∑

i

var(ri) = 1
∑k

i (ni − 3)
(9)

This means that if researchers mistakenly believe the variance is based on the number of
observations rather than the number of participants, they will assume that the variance
of each rpb is 1/(2ni − 3) after transformation, and will substantially underestimate the
variance of the average effect size rpb.

Four studies (i.e., Study 2, Study 5, Study 9 and Study 10) reported an effect size that
they referred to as Hedges’ g. They also reported an aggregation method that, like Study 1
and Study 4, used (8), and they also made the same mistake with their description of the
weight. However, they did not explicitly confirm that they transformed their effect size to a
correlation, so we cannot be sure whether these studies aggregated the standardized effect
sizes directly but mistakenly assumed that the variance of each effect size was 1/(ni −3), or
omitted to mention that they used the rpb transformation. Of these four studies, only Study
2 used an analysis that considered repeated values, so the other studies might have used a
variance based on 1/(2ni − 3).

Study 3, Study 7 and Study 11 all made a mistake with their basic meta-analysis. They
all used an AB/BA crossover design (although Study 3 also used an independent groups
design for one of its 5 experiments). In each crossover study they estimated a standardized
effect size for each time period separately. So for each AB/BA experiment they calculated
two different estimates of dIG, one for time period 1 and the other for time period 2. It is
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incorrect to aggregate such effect sizes because the same participants contributed to each
estimate of dIG, and, hence, the two effect sizes from the same experiment were not inde-
pendent. This violates one of the basic assumptions of meta-analysis that each effect size
comes from an independent experiment. The effect of this error is to increase the degrees of
freedom attributed to tests of significance associated with the average effect size.

Study 6 reported using Cohen’s d and aggregating their values using a weighted mean
and the META 5.3 tool. They referenced Hedges and Olkin (1985), which did not report
methods for meta-analysing crossover designs, so we assume that the authors aggregated
dIG but do not know how they calculated their weights.

Study 8 reported and aggregated rpb but used a different method to that used by Study 1
and Study 4. We describe the method they used in the Appendix A.3. From the viewpoint
of validity a critical issue is that they derived rpb from the one-sided p−value of their
statistical tests. For each experiment in the family and for each metric, they used either
the Mann-Whitney-Wilcoxon (MMW) test or the t−test depending on the outcome of a
normality test. However, Study 8 used statistical tests appropriate for independent groups
studies, although the family used 4-group crossover experiments, so the resulting p−values
are likely to be invalid. However, the study authors were attempting to use a meta-analysis
process that would allow them to aggregate their parametric and non-parametric results. The
authors reported the heterogeneity of their experiments, but as pointed out in Appendix A.3,
the heterogeneity was probably over-estimated.

Study 13 reported a standardized effect size based on team improvement, which we refer
to as gRM . The authors also reported dIG for each experiment, which they referred to as
Hedges’ g, but they did not aggregate it. They estimated the variance of dRM but do not
cite the origin of the formula they used. They used Hedges’ Q statistic (see (19)) to test for
heterogeneity. The test failed to reject the null hypothesis (i.e., their p−value was greater
than 0.05), and they reported what appears to be the unweighted mean of the effect sizes.

Study 14 referred to their effect size as γ for 4 separate hypotheses. However, the hypoth-
esis we believe to be most relevant to investigating the difference between the techniques
was based on the difference between the personal improvement observed among partici-
pants in one treatment group and the personal improvement among participants in the other
group. This is a difference of differences analysis for which it is correct to use the indepen-
dent groups t−test. However, γ cannot be easily equated to either dRM or dIG. For purposes
of analysis, the difference data can be analysed as an independent groups study, but for
purposes of interpretation, the mean difference measures the average individual improve-
ment after the effect of skill differences are removed. They report both the weighted and
unweighted overall mean. As explained in Appendix A.1.1, the weight was based on the
inverse of the variance of γ and was calculated using the formula for the moderate sample-
size approximation of the variance of gIG. They also tested for heterogeneity using the Q

statistic proposed by by Hedges and Olkin (1985) which depends on the effect size variance.
Both Study 13 and Study 14 also aggregated one-sided p−values, as described in

Appendix A.4, in order to test the null hypothesis of no significant difference between
techniques.

The majority of primary study authors used the Meta-Analysis v2 BioStat (2006)
for aggregation, although Meta-Analysis v2 does not support aggregation results from
crossover design studies.

As mentioned by Santos et al. (2018), although many researchers used non-parametric
methods for at least some of their individual experiments (see Table 3), they subsequently
used parametric effect sizes. This is somewhat inconsistent but not necessarily invalid. It
would certainly be inappropriate for studies that used both parametric and non-parametric
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methods to aggregate non-parametric effect sizes and parametric effect sizes in the same
meta-analysis, so some consistent effect size metric is necessary.

The advantage of using the standardized mean difference is that the central limit theorem
confirms that mean differences are normal irrespective of the underlying distribution of the
data. The problem with standardized effect sizes is that the estimate of the variance of the
data within each experiment, which is used to calculate the standardized effect size, may
be biased for small sample sizes. However, the variance of the mean effect sizes for each
experiment calculated as part of any random effects meta-analysis puts an upper limit on the
variance of the overall mean effect size. In addition, currently, aggregating non-parametric
effect sizes is not feasible. There are no well-defined guidelines identifying which non-
parametric effect sizes to use, nor how they might be aggregated.

Only three of the primary studies considered heterogeneity. Study 8 and Study 13
reported non-significant heterogeneity. Study 14 reported significant heterogeneity and
reported both a weighted and an unweighted mean. Only Study 2 explicitly mentioned using
a fixed effects meta-analysis. Since the other studies made no mention of heterogeneity
or using any specific meta-analysis model, we assume that the they also undertook fixed
effects meta-analysis.

6 The Reproducibility and Validity of the Primary StudyMeta-analyses
(RQ4)

This section reports our reproducibility assessment and incorporates it with the validity
analysis reported in Section 5, since it makes little sense to investigate the reproducibility of
invalid meta-analyses. In turn, our reproducibility assessment allowed us to investigate fur-
ther the validity of the meta-analysis processes adopted in each paper, from the viewpoint
of whether processes that were valid in principle, were also applied correctly, in practice.
In Section 6.1, we describe the method we used for our reproducibility assessment. In
Section 6.2, we report the overall results of the reproducibility assessment, and in the fol-
lowing sections, we discuss the reproducibility results for each study in the context of the
validity assessment reported in Section 5.2.

6.1 Reproducibility Assessment Process

For reproducibility, as far as possible, we used the same method for each study. To construct
the effect size, we used the following process:

1. From the descriptive statistics reported in the study, we used (2) to calculate the stan-
dardized effect size appropriate for independent groups dIG. Our estimate of s2

IG was
usually based on the pooled within-technique variance. However, in the case of Study 3,
Study 7 and Study 11, s2

IG was based on the pooled within-cell variance, where a cell is
defined as a set of observations that were obtained under exactly the same experimental
conditions (see Appendix A.1.2).

2. We applied the exact small sample size adjustment J (see (14)) to calculate the effect
size gIG.

This is the standard starting point for any meta-analysis when raw data is not available. To
aggregate the effect sizes:
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1. We transformed the gIG values to rpb and applied Fisher’s normalizing transforma-
tion Fisher (1921).

2. We used the R metafor tool Viechtbauer (2010) to fit a random effects model using
its default method which is the Restricted maximum-likelihood estimation (RMLE)
method.

3. We back-transformed our meta-analysis results to the standardized mean difference.

This approach is described in more detail in the Appendix A.2. It was the same as that
undertaken by Abrahão et al. (2011), which has the advantage of being appropriate for all
experimental designs used in our primary studies and does not rely on information such as
the variances of standardized effect sizes which was not well-known to SE researchers.

The three main deviations from this method were:

1. For Study 8, we reported our results in terms of the point bi-serial correlation (i.e., rpb)
because Study 8 reported and aggregated rpb.

2. For Study 13, descriptive statistics were not reported explicitly and we estimated the
mean difference and standard deviations from the reported graphics. In addition, Study
13 explicitly reported the statistics we refer to as gRM and dIG, so we reported both
effect sizes and, like the study authors, aggregated the gRM values.

3. In Study 14, the authors reported the personal improvement results for each participant,
which is equivalent to dRM . So, to report comparable effect sizes, we calculated the
descriptive statistics from the reported descriptive difference data (i.e., the post-training
results minus the pre-training results).

Assuming the descriptive data was reported correctly, our meta-analyses should provide
more trustworthy results for studies that used an invalid meta-analysis process (in particular,
Study 3, Study 7 and Study 11). However, as explained in Appendix A.1.2, if materials, or
time period effects are significant our estimates of s2

IG will be inflated which would lead to
underestimates of dIG. Also if there were significant interactions between either time period
or materials, and technique such effects would also inflate s2

IG.
We defined results to be reproducible if the difference between the individual experiment

effect sizes and the overall effect size reported in the primary study and those we calculated
from the descriptive statistics was less than 0.05, as discussed in Section 3.4. We also com-
pared the probability levels for the overall effect sizes. We expected primary studies that did
not appreciate the impact of repeated measures would report smaller p−values than us. As
discussed in Section 3.4, we only analyzed one measure per primary study.

6.2 Reproducibility Assessment Results

Table 5 displays the calculated effect sizes and reported effect sizes for each experiment and
each effect size reported in each study. The variable Type refers to the effect size reported
in the row. None of the studies apart from Study 7, Study 11 and Study 13 mentioned
the small sample adjustment factor, so we assume that the standardized mean difference
effect size reported by the authors is dRM . Study 13 reported both dIG and gRM , but aggre-
gated gRM and the one-sided p−value. Study 7 and Study 11 reported two values that they
called Hedges’ g. The value in their main tables was the small sample size adjusted stan-
dardized mean difference effect size, but they aggregated the non-adjusted effect size. The
final column labelled RR (i.e., Results Reproduced) reports the number of times the abso-
lute difference between the reported and calculated effect sizes was less than than 0.05
for all relevant entries. The studies for which all standardized effect sizes were reproduced
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Table 5 Calculated and reported effect sizes

are highlighted. We were only able to reproduce all standardized effect sizes for Study 2,
Study 5 and Study 6, although for Study 14, we also reproduced the authors’ aggregation of
p−values.

Table 6 displays the calculated and reported overall mean values for the effect sizes plus
(if available) the p−value of the mean, the upper and lower confidence interval bounds (UB
and LB), QE which is the heterogeneity test statistic and QEp which the the p−value of
the heterogeneity statistic. The column RR identifies whether the difference between the
calculated overall mean and the reported overall mean was greater than 0.05 (the studies
for which this is the case are highlighted). The mean of the standardized effect sizes was
reproduced for seven studies: Study 2, Study 5, Study 6, Study 8, Study 10, Study 11, and
Study 13. However, Study 8 and Study 11 must be discounted because of validity problems.
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Table 6 Overall mean values of effect sizes reported and calculated

The reproducibility results are collated with the validity assessment for each study,
and are discussed in the following sections. In each section, the validity problems identi-
fied in Section 5 are identified in the paragraphs labelled “Meta-Analysis Validity Issue”.
Critical issues that invalidate the aggregation performed by the authors are identified. If
the reproducibility failed or was otherwise deemed invalid, we include a “Cause of Prob-
lem” paragraph. Validity issues identified as a result of our reproducibility assessment
are identified as meta-analysis process implementation errors in the “Cause of Problem”
paragraph.



Empirical Software Engineering

6.3 Study 1 Validity and Reproducibility

Meta-Analysis Method Validity Issues: None.
Author’s Aggregation Method: Weighted mean of dRM based on transforming to and

from rpb.
Our Aggregation Method: Weighted mean of gIG based on transforming to and from rpb

as described in Appendix A.2.
Individual Effect Size Reproducibility: Failed.
Mean Effect Size Reproducibility: Failed.
Cause of Problem: Meta-analysis process implementation error - Incorrect use of meta-

analysis tool.

Comments: Although we could not detect any validity problems with Study 1, and we based
our meta-analysis on rpb derived from gIG, we could not reproduce the effect sizes nor the
meta-analysis results. The study reported substantially smaller effect sizes, both for indi-
vidual experiments and overall, than the ones we calculated. We contacted Prof. Abrahão
who was the first author of this paper. She very kindly provided us with the raw data used in
Study 1. Using Prof. Abrahão’s raw data, we recalculated gIG for each study and aggregated
the data after transforming to rpb and following the process described in the Appendix A.5.
Prof. Abrahão agreed with our analysis of her raw data. She also confirmed that she was
attempting to calculate the matched pairs effect size (i.e., gRM ).

The low values she obtained were due to several different factors. The most significant
issue was that she used the Meta-Analysis-V2 tool BioStat (2006) that does not support
crossover designs, although it does support matched pairs studies. The tool attempts to
calculate gIG not gRM .9

6.4 Study 2 Validity and Reproducibility

Meta-Analysis Method Validity Issue 1: It is unclear whether the paper aggregated the
standardized effect size dIG directly or used the transformation to rpb.

Meta-Analysis Method Validity Issue 2: The weights and variances may have been based
on the number of observations rather than the number of participants.

Author’s Aggregation Method: Unclear. Either the weighted mean of dIG based on
transforming to and from rpb or the weighted mean of dIG with weight = N-3.

Our Aggregation Method: As for Study 1.
Individual Effect Size Reproducibility: Succeeded.
Mean Effect Size Reproducibility: Succeeded.

Comments: According to our criteria, Study 2 was fully reproduced with respect to the indi-
vidual effect sizes and the weighted mean of the effect sizes. However, there is difference
with respect to the p−values for the overall mean that is consistent with using the number
of observations rather than the number of participants when calculating the variance of the
effect size.

9The tool is intended to help researchers aggregate experiments that use different design methods, and the
between groups design is the most commonly used design method.
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6.5 Study 3 Validity and Reproducibility

Meta-Analysis Method Validity Issue 1: Critical validity issue - Incorrect meta-analysis
of non-independent effect sizes.

Meta-Analysis Method Validity Issue 2: Unclear whether the authors aggregated dIG or
rpb.

Meta-Analysis Method Validity Issue 3: The weights and variances may have been based
on the number of observations rather than the number of participants for AB/BA
crossover experiments.

Author’s Aggregation Method: Unclear. Either the weighted mean of dIG based on
transforming to and from rpb or the weighted mean of dIG with weight = N-3.

Our Aggregation Method: As for Study 1.
Individual Effect Size Reproducibility: Failed (4), Succeeded (1).
Mean Effect Size Reproducibility: Failed.
Cause of Problem: Critical validity issue.

Comments: Study 3 used different experiment designs. Four experiments were AB/BA
crossover experiments, the fifth experiment was an independent groups study. We were able
to reproduce the effect size for the fifth experiment.

It is important to note that even though Study 3 used two different experimental designs,
once comparable effect sizes are constructed, in this case gIG, results from all experiments
can be aggregated. Thus, we provide corrected effect sizes and an overall meta-analysis,
using the reported descriptive statistics to calculate gIG for each experiment, followed by
aggregation of normalized rpb values.

6.6 Study 4 Validity and Reproducibility

Meta-Analysis Method Validity Issues: The study might have based weights and vari-
ances on the number of observations rather than the number of participants.

Author’s Aggregation Method: Weighted mean of dIG based on transforming to and from
rpb.

Our Aggregation Method: As for Study 1.
Individual Effect Size Reproducibility: Failed.
Mean Effect Size Reproducibility: Failed.
Cause of Problem: Meta-analysis process implementation error - Incorrect use of meta-

analysis tool

Comments: Like Study 1, Study 4 reported transforming its standardized effect size to rpb

but could not be reproduced. Like Study 1, it reported significantly smaller effect sizes, both
for individual experiments and overall, than the ones we calculated. Prof. Abrahão was a
co-author of this paper, but she informed us that the raw data for Study 4 were no longer
available. However, since the pattern of results was similar to Study 1 (i.e., the experiment
effect sizes were smaller than the one we calculated), it is likely that the analysis suffered
from the same problems.

6.7 Study 5 Validity and Reproducibility

Meta-Analysis Method Validity Issue 1: The study might have based weights and vari-
ances on the number of observations rather than the number of participants.
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Meta-Analysis Method Validity Issue 2: Unclear whether the authors aggregated dIG or
rpb.

Author’s Aggregation Method: Unclear. Either the Weighted mean of dIG based on
transforming to and from rpb or the weighted mean of dIG with weight=N-3.

Our Aggregation Method: As for Study 1.
Individual Effect Size Reproducibility: Succeeded.
Mean Effect Size Reproducibility: Succeeded.

Comments: Despite uncertainty about which effect size was aggregated, Study 5 was suc-
cessfully reproduced both at the individual experiment level and at the overall meta-analysis
level. The largest discrepancy occurred for the first experiment results. This was due to a
probable rounding error. The mean values of Ueffec for the first experiment (E-UL) in Table
7 of Fernández-Sáez et al. (2016) are 0.76 for Low LoD and 0.76 for High LoD, so we
calculated the mean difference (and the effect size) to be zero. In fact, Study 5 reports a
standardized effect size of −0.046 (see Fernández-Sáez et al. 2016, Fig. 4).

Study 5 did not explicitly report the confidence intervals on mean standardized effect
size, but visual inspection of their forest plot (Fernández-Sáez et al. 2016, Fig. 4) suggests
an interval of approximately [−0.25, 0.4] which is smaller than the interval we calculated
[−0.343,0.612]. So, Study 5 might have underestimated the standard error of the mean
standardized effect size.

6.8 Study 6 Validity and Reproducibility

Meta-Analysis Method Validity Issue: The study might have based weights and variances
on the number of observations rather than the number of participants.

Aggregation Method: Based on dIG but not specified in detail.
Our Aggregation Method: As for Study 1.
Individual Effect Size Reproducibility: Succeeded.
Mean Effect Size Reproducibility: Succeeded.

Study 6 was successfully reproduced both for individual effect sizes and for the overall
mean effect sizes. All discrepancies appear to have occurred because we calculated the small
sample size adjusted values. The non-adjusted values for the three experiments are Exp1 =
0.579, Exp2 = 0.3517 and Exp3 = 0.5793, which are very close to the reported values.

6.9 Study 7 Validity and Reproducibility

Meta-Analysis Method Validity Issue: Critical validity issue - Incorrect meta-analysis of
non-independent effect sizes.

Author’s Aggregation Method: Weighted mean of dIG for each time period.
Our Aggregation Method: As for Study 1.
Individual Effect Size Reproducibility: Failed
Mean Effect Size Reproducibility: Failed.
Cause of Problem: Critical validity issue.

Comments: Like Study 3, Study 7 calculated standard effect sizes separately for each study.
Since the meta-analysis aggregation was invalid, we report our estimates of the effect sizes
for each experiment and their overall mean.

We note, however, that the first time period analysis the authors performed is a valid
independent groups analysis (see Senn 2002, Section 3.1.2), so a meta-analysis, based on



Empirical Software Engineering

all participants provides valid estimate of dIG and its variance. Compared with an analysis
of data from both time periods, the analysis is based on one set of materials rather than two
and the estimate of dIG may be biased if the randomization to groups was not sufficient to
balance out skill differences. However, it is not affected by any technique by time period or
technique by order interactions.

6.10 Study 8 Validity and Reproducibility

Meta-Analysis Method Validity Issue 1: Wrongly used p−values from independent
groups tests to calculate rpb

Meta-Analysis Method Validity Issue 2: Used the number of observations in their hetero-
geneity assessment instead of the number of participants.

Author’s Aggregation Method: Weighted mean of rpb based on the Hunter-Schmidt
method (Hunter and Schmidt 1990).

Our Aggregation Method: Aggregation of rpb derived from gIG.
Individual Effect Size Reproducibility: Failed.
Mean Effect Size Reproducibility: Succeeded due to accidental correctness.
Cause of Problem: Meta-analysis process implementation error - Inconsistency between

reported p−values and calculated effect sizes.

Comments: Study 8 was reproduced for three of the four effect sizes and the overall mean.
The largest discrepancy was found for the first experiment.

We based our estimate of rpb on the gIG, whereas the authors used (33), so discrepan-
cies might have been due to the different methods of calculating rpb. Table 7 summarises
our attempt to reproduce the effect size calculations used by the authors from the initial
p−values. The p−values reported by the authors are shown in the first row with their equiv-
alent Z−values in row 2. The first issue is that the p−value for the first experiment is large
while the other p−values are small which leads to both positive and negative Z−values.
The published box plots all had medians for the control that were smaller than the medians
for the technique treatment, so we would expect all the studies to have small p−values for
tests (assuming the authors calculated the probability that the control group exhibited larger
values than the treatment group). Thus, it appears that value for p(Exp1) is anomalous and
could be a typographical error. Furthermore, applying their procedure to the p−values, we
did not obtain values of rpb any closer to their reported values than the values we obtained
starting from our estimates of gIG, whether we used the number of observations (see row 4,
rpb(NO)) or the number of participants (see row 5, rpb(NP )) in Table 7.

Thus, although the overall mean rpb value we obtained is very close to the overall mean
reported by the authors, the process used to derive the individual effect sizes could not be
reproduced.

Table 7 Calculating rPB effect
size from probabilities Statistic Exp1 Exp2 Exp3 Exp4

p 0.906 0.036 0.003 0.008

Z 1.317 −1.799 −2.748 −2.409

rpb(NP ) 0.249 −0.450 −0.458 −0.695

rpb(NO) 0.176 −0.318 −0.324 −0.492
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6.11 Study 9 Validity and Reproducibility

Meta-Analysis Method Validity Issue 1: Unclear whether the authors aggregated dIG or
rpb

Meta-Analysis Method Validity Issue 2: The study might have based weights and vari-
ances on the number of observations rather than the number of participants.

Author’s Aggregation Method: Unclear. Either the weighted mean of dIG based on
transforming to and from rpb or the weighted mean of dIG with weight = N-3.

Our Aggregation Method: As for Study 1.
Individual Effect Size Reproducibility: Failed.
Mean Effect Size Reproducibility: Failed.
Cause of Problem: Meta-analysis process implementation error - Authors ignored effect

size direction.

Comments: Study 9 was not reproduced either in terms of individual effect sizes or in terms
of the overall mean. Looking at the effect sizes, it is clear that the authors of Study 9 aggre-
gated the absolute mean effect sizes for each experiment, and so overestimated the overall
effect size.

This is the only case in which it is possible for the results of a meta-analysis process
using one metric to differ, with respect to reproducibility, from the the results obtained using
another metric. If all effect sizes of the other metric were in the same direction, using the
absolute effect size would not cause a reproducibility problem. This is in fact the case for
the other metric used in this study.

6.12 Study 10 Validity and Reproducibility

Meta-Analysis Method Validity Issue 1: Unclear whether the authors aggregated dIG or
rpb

Meta-Analysis Method Validity Issue 2: The study might have based weights and vari-
ances on the number of observations rather than the number of participants.

Author’s Aggregation Method: Unclear. Either the weighted mean of dIG based on
transforming to and from rpb or the weighted mean of dIG with weight = N-3.

Our Aggregation Method: As for Study 1.
Individual Effect Size Reproducibility: Not reported.
Mean Effect Size Reproducibility: Succeeded.

Comments: Study 10 did not report individual experiment effect sizes, nor any p−values
for the meta-analysis, but, did report an overall effect size very close to our calculation.

6.13 Study 11 Validity and Reproducibility

Meta-Analysis Method Validity Issue: Critical validity issue - Incorrect meta-analysis of
non-independent effect sizes.

Author’s Aggregation Method: Weighted mean of dIG for each time period.
Our Aggregation Method: As for Study 1.
Individual Effect Size Reproducibility: Not reported.
Mean Effect Size Reproducibility: Succeeded due to accidental correctness.
Cause of Problem: Critical validity issue.
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Comments: Like Study 3 and Study 7, Study 11 calculated standard effect sizes separately
for each study. In this case, however, we found an example of accidental correctness. The
Study 11 mean effect size was reproduced because the analysis effects were extremely close
for both time periods so constructing an average effect size for each experiment gave very
similar results to treating the results of each time periods as separate experiments. What is
noticeable is that the reported p−value was considerably lower than the one we calculated.
This was because the authors believed they had six effect sizes in their meta-analysis rather
than three.

Like Study 7, the first time period meta-analysis reported by Study 11 provides a valid
estimate of dIG and its variance.

6.14 Study 13 Validity and Reproducibility

Meta-Analysis Method Validity Issue: None
Author’s Aggregation Method: Unweighted mean of gRM and sum of the natural loga-

rithm of the one-sided p−values.
Our Aggregation Method: Weighted mean of gRM based on transformation to and from

rpb and sum of the natural logarithm of the one-sided p-values.
Individual Effect Size Reproducibility: Failed due to extracting basic data from graphics.
Mean Effect Size Reproducibility: Succeeded.

Comments: Study 13 did not report the mean and standard deviation of the technique groups.
Instead, the authors presented the descriptive statistics in graphical form. However, in con-
trast to the other studies, Study 13 reported both the dIG (which they referred to as Hedges’
g) and gRM (which they referred to as d) using a valid formula to estimate its standard
deviation.

Since the value we used to reproduce the effect sizes were estimated from a diagram,
we expected the difference between our results and the reported results to be slightly larger
than our 0.05 level, in fact all the differences were less than 0.08

Study 13 aggregated both the one-sided p-values and the individual gRM effect sizes.
The overall mean gRM was validated by our difference criterion. The reported aggregated
probability, P, was close to the value we calculated,10 and overall we conclude that Study
13 has been successfully reproduced.

6.15 Study 14 Validity and Reproducibility

Meta-Analysis Method Validity Issue: None
Author’s Aggregation Method: Weighted and unweighted mean of gRM and sum of the

natural logarithm of the one-sided p−values.
Our Aggregation Method: Weighted mean of gRM based on transformation to and from

rpb and sum of the natural logarithm of the one-sided p-values.
Individual Effect Size Reproducibility: For gIG failed due to rounding errors, for p

succeeded.
Mean Effect Size Reproducibility: Failed due to rounding errors.

Comments: Study 14 used an interesting design that avoids some of the problems associated
with replicated measures by analyzing the differences in differences (see Appendix A.1.4).

10In the case of aggregated probability value there is no a priori value of P, so we can only make a subjective
assessment of whether the calculated and reported values are close.
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Study 14 actually performed four statistical tests for each of four different variables, includ-
ing comparing the pretest results for each group, comparing the posttest results for each
group, comparing the post-test with the pretest values for each group, as well comparing the
mean difference of the difference between pretest and posttest results for each group (which
they call the performance improvement). However, for the purpose of comparing the two
treatments, the relative performance improvement is the most appropriate measure to test:

ProcessImprovement =
∑

Ai(xAi2 − xAi1)

nA

−
∑

Bi(xBi2 − xBi1)

nB

(10)

where xAi2 is the posttest value of metric x for participant i in Group A and xAi1 is the
pretest value of metric x for subject i. xBi2 and xBi1 are equivalent values for participants
in group B. nA and nB are the number of participants in each group. Like an independent
groups analysis, the variance of the difference values is the pooled within group variance
(see (12)).

We were able to reproduce only one of the standardized mean effect sizes for individual
experiments. In addition, we could not reproduce the overall mean effect size. All the data
is reported to two significant digits, and it appears that because the raw data values are
quite small, this has led to potentially large rounding errors11 However, we obtained t-test
p−values that were similar to the reported values, and our aggregated p−values were also
close.

7 Discussion

This section discusses issues arising from our systematic review and validity and repro-
ducibility studies.

7.1 Summary of Results

We found 13 primary studies that conformed with our inclusion criteria in the sources we
searched. All primary studies reported their experimental designs in sufficient detail for
us to classify their individual experiments into four distinct design types: 4-group AB/BA
crossover design,duplicated AB/BA crossover design, independent groups design, and a
pretest posttest control design.

All 13 primary studies also provided sufficient information for us to reproduce their
meta-analysis results, but, in most cases, only for effects sizes comparable to independent
groups designs (i.e., dIG and gIG). Of the crossover designs, only Study 13 reported the
improvement effect sizes (gRM ). The other crossover design studies did not provide the
summary information needed to calculate the personal improvement effect size.

We identified four primary studies that exhibited validity problems sufficient to call into
question the reported meta-analysis results, and another six studies where we were unsure
about the validity of the meta-analysis. In those six cases, we expected the effect sizes to be

11For example, for the metric Y.1 (Interest), the pretest score for group B was 0.81 and the posttest was 0.79
but the difference score was reported as −0.03 (not −0.02). This seems a minor issue, but since the difference
score for group A was .1 and the pooled within group standard deviation of the difference score was 0.09. A
difference score of −0.03 for group B leads to an effect size of 1.444 while a difference score of −0.02 leads
to an effect size of 1.333 which after adjusting for the small sample size (nA = 5 and nB = 4) become 1.279
and 1.181 respectively.
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slightly biased and effect size variances to be underestimated, see Appendix A.5 for a more
detailed explanation.

Of the 12 studies that reported individual experiment effect sizes, we were able to fully
reproduce five primary studies. In addition, we also reproduced six of the 12 reported overall
effect sizes. In the case of Study 10, which did not report individual experiment effect sizes,
we were able to reproduce its overall effect size.

7.2 Experimental Designs Used by Primary Studies

Six studies used the 4-group duplicated AB/BA crossover design and four studies used the
AB/BA crossover design. Study 3 used two different designs, with 4 experiments using
a 4-group duplicated AB/BA crossover and one experiment using an independent groups
design. The two remaining studies used an independent groups design and a pretest posttest
control design. Thus, 12 of the 13 primary studies used repeated measures methods.

Only one family used an independent groups design for all its experiments, although out-
comes of this design are the most straightforward to analyse and meta-analyse. However,
using more complex designs makes the analysis of individual experiments and their sub-
sequent meta-analysis more difficult. Only 4 of those 12 repeated measures studies used
analysis methods appropriate for repeated measures data. Using analysis methods appropri-
ate for independent groups studies has knock-on effects for any subsequent meta-analysis
that can lead to invalid effect sizes or invalid effect size variances.

The main reason for using repeated measures designs is to be able to account for the
individual skill differences among participants. However, the crossover design is not the
only way to do this. In particular, the pretest posttest control group experimental design
(see Appendix A.1.4) has some desirable properties. It allows the effect of individual dif-
ferences are catered for by the analysis, but avoids the problem of technique by period
interaction which is a potential risk when using a crossover design. For example, there were
many studies evaluating the perspective-based code reading (PBR) methods (see Ciolkowski
2009), some of which used the undefined current method as a control while others used the
checklist-based reading (CBR) method as a control. Using a pretest posttest control group,
the current method would be used to establish a pretest baseline and then groups could be
randomly assigned to training in CBR or PBR and the posttest differences used to assess
whether PBR or CBR most enhanced defect detection.

7.3 Meta-analysis Reporting

Primary study authors did not always describe their meta-analysis processes fully and
consistently. Few studies reported any information related to the standard error of the aver-
age effect size or its confidence intervals. The p−values for the overall effect sizes were
reported nine times. In only three cases were the reported and calculated p−values of the
same order of magnitude. Two papers reported confidence interval bounds, but these were
Study 7 and Study 11 and we disagreed with their aggregation process.12

We also noticed some more general reporting issues:

– Studies often reported a name such as Hedges’ g for their standardised mean effect
sizes, but did not usually specify how this was calculated. For reproducibility it is

12Some papers reported forest plots with confidence bounds visible but it is not possible to extract accurate
assessments of the values from such diagrams.
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important to know both the formula for the standard deviation used to standardise
the mean difference and whether or not the small sample size adjustment factor was
applied.

– Many studies used metrics that corresponded to the fraction of correct responses and
which they reported on a [0, 1] scale. This can lead to rounding errors when repro-
ducing results, if descriptive statistics are only reported to two decimal places. It is
preferable to represent such numbers as a percentage rather than a fractions. Report-
ing percentages to two decimal places is appropriate both for means and standard
deviations.

– Authors using a repeated measures design sometimes failed to report the number of par-
ticipants in each sequence group. However, this is important for meta-analysis purposes
if the individual experiments are unbalanced in any way.

We collate our observations and formulate guidelines about reporting and conduct of meta-
analysis in Appendix A.6.

7.4 Meta-analysis Tools

11 of the 13 studies mentioned using a meta-analysis tool. Of those 11 studies, seven exhib-
ited reproducibility problems. It is difficult for researchers to assess whether they have
used tools correctly unless there is some way of validating the tool outcomes. This study
has shown that attempting to reproduce the results from descriptive data is a useful means
of checking the output from tools. Comparing the results of analyzing the raw data as
opposed to the descriptive statistics (as reported in Appendix A.5) shows that results based
on descriptive statistics may be biased, but they should still provide results of the same order
of magnitude, providing a sanity check on the tool outputs.

7.5 Meta-analysis Methods

In this section we discuss the implications of our study on the use of meta-analysis methods
to aggregate data from families of experiments.

7.5.1 Testing for Heterogeneity

Only three primary studies (Studies 8, 13 and 14) reported the results of testing for hetero-
geneity among experiments in a family. It might be expected that a family of experiments
was by definition homogeneous. However, some studies such as Study 1 and Study 3
reported families that had considerable differences between the individual experiments (see
the supplementary material (Kitchenham et al. 2019b)). It is certainly worth checking for
heterogeneity in such cases. In the case of Study 1, our meta-analysis found a heterogeneity
value of 4.01 which had an associated p−value of 0.45 suggesting that heterogeneity was
limited and the fixed effect analysis undertaken by the authors was appropriate. In the case
of Study 3, the heterogeneity value was 8.46 with p = 0.0761. Since heterogeneity tests are
not very powerful (see Higgins and Thompson 2002), we suggest that a value less than 0.1
should be accepted as an indication that a random effects analysis might be preferable to a
fixed effects analysis.
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Table 8 AB/BA crossover design
Group Period 1 Period 2

A Technique 1 Technique 2

Materials 1 Materials 2

B Technique 2 Technique 1

Materials 1 Materials 2

7.5.2 Meta-analysis Choices

One of the major problems with meta-analysis is that there are many different effect sizes
and methods that can be used to aggregate results. The meta-analysis methods used in the
primary studies were not always clearly reported, but most studies reported standardized
mean effect sizes for individual effect sizes and for the overall mean effect size. Study
8 reported the point bi-serial correlation coefficient. In addition, Study 13 and 14 used
the method of combining p-values, which is now known to have severe limitations, see
Appendix A.4.

Many text books recommend aggregating standardised mean difference effect sizes, see
for example, Borenstein et al. (2009) or Lipsey and Wilson (2001), but it depends on
obtaining the correct effect size variance.13 This is fairly straightforward if the individual
experiments have medium to large sample sizes, but is more complicated if experiments
have very small sample size (Hedges and Olkin 1985), and also depends on the specific
experimental design, as can be seen in Madeyski and Kitchenham (2018b) and Morris and
DeShon (2002).

It would seem to be easier to convert to rpb for aggregation, as we did in our reproducibil-
ity assessment. This procedure avoids the need to obtain estimates of the standardized effect
size variance. However, it must be recognised that the problem with the standardised effect
size and its variance is that, for small sample sizes, the estimate of the variance which is
used to calculate the standardised effect size is likely to be inaccurate. Converting to rpb

does not overcome this problem since the point bi-serial correlation is itself calculated as
the ratio of two variance estimates.

In practice, as proposed by Santos et al. (2018), an option for homogeneous families (i.e.,
families that use the same material and the same output measures) would be to analyze the
data from the family as one large experiment, using what they call an Independent Partici-
pant Data (IDP) stratified method. This analyzes the data from all the individual experiments
together as a single data set, and uses the individual experiment identifier as a blocking
factor. This would lead to an estimate of overall mean difference and the residual variance
based on all the participants. An estimate of the effect size of the family and its standard
error would then be more likely to be reliable.

It is also possible that using non-parametric effect sizes would avoid some of the prob-
lems inherent in using parametric effect sizes. However, although it is possible to calculate
a number of different non-parametric effect sizes, it is not clear which non-parametric effect
sizes should be used, nor how to aggregate results from individual experiments into an
overall effect size.

13The standardised effect size variance is not the same as the sample variance. It is based on a formula
including the number of participants in each different experimental condition and the standardised effect size
itself.
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Table 9 Duplicated AB/BA
crossover design Group Period 1 Period 2

A Technique 1 Technique 2

Materials 1 Materials 2

B Technique 2 Technique 1

Materials 1 Materials 2

C Technique 1 Technique 2

Materials 2 Materials 1

D Technique 2 Technique 1

Materials 2 Materials 1

7.6 Limitations

It should be noted that all primary studies using crossover designs (except Study 7 and
Study 11), based their analysis on the pooled within treatment standard deviation, rather
then the pooled within cell standard deviation. Both variances are calculated using a formula
similar to that shown in (12) but the pooled within treatment variation is calculated based
on pooling the variances of the observations in each of the two different treatment groups.
In contrast, the pooled within cell standard deviation is based on pooling the variances
calculated from the observations found in each of the experimental conditions shown in
Table 8 for AB/BA crossover designs and Table 9 for 4-group crossover designs. This means
the standard deviation will be biased (in fact the standard deviation will be larger than it
should be), unless the system and period effects are negligible. Furthermore any bias in the
standard deviation will impact the estimation of standardized effect size, making it smaller
than it should be.

We claimed to have found a reproducibility problem if the difference between the effect
size estimates reported by the authors and the ones we calculated was greater than 0.05. The
choice of 0.05 was based on convenience and can be criticized. In practice, the value we
chose seemed to work reasonably well as a means of drawing our attention to possible repro-
ducibility problems. However, it incorrectly highlighted some differences that we believed
to be due rounding errors, and we also observed two examples of accidental correctness. So,
it was critical to review the actual meta-analysis process reported by the authors, as well as
the difference between reported and calculated effect sizes to confirm whether there were
validity or reproducibility problems.

8 Conclusions and Contributions

Our systematic review identified 13 primary studies from five high quality journals. In seven
cases we identified validity or reproducibility problems. Even in cases where we reproduced
the average standardized effect size, in four cases, we are not sure as to the accuracy of
statistical tests of significance and p−values. We conclude that meta-analysis is not well
understood by software engineering researchers.

Our systematic review process reported in Section 3 has ensured that the problems we
identified were found in papers published in high quality software engineering journals
with stringent peer review processes. It is, therefore, important to report such problems
and provide guidelines and procedures to help to avoid them in the future. Answers to



Empirical Software Engineering

RQ1 and RQ2 reported in Section 4, provide traceability to the individual primary studies
and contextual details of the experimental methods used to analyse each experiment. This
confirms that we have not been biased in our selection of primary studies. Answers to RQ3
and RQ4 provide traceability to the individual meta-analysis problems and confirmation
that most problems are found in more than one primary study, so are more than just one-off
mistakes.

The major contributions of our study arise from our efforts to address the meta-analysis
problems found by validity and reproduciblity assessment reported in Sections 5 and 6.
They are:

1. To provide evidence that meta-analysis methods are not well-understood by software
engineering researchers (see Sections 5 and 6)

2. To identify specific meta-analysis validity and reproducibility errors (see Sections 5
and 6).

3. To provide guidelines for reporting and undertaking meta-analysis that could help to
avoid meta-analysis errors (see Appendix A.6).

4. To describe the model underlying the 4-group crossover experimental design (see
Appendix A.1.3), since although the design is popular in software engineering research,
it has not previously been specified in any detail.

5. To provide a worked example of analyzing and meta-analyzing results from a family of
studies that used a 4-group crossover design (see Appendix A.5).

Although we have provided meta-analysis reporting and conduct guidelines, it must be
recognized that we lack the simulation studies needed to address questions such as:

– Whether there is an optimum (or minimum viable) number of experiments in a family.
– Whether the conversion to rpb is preferably to aggregating gIG directly, given the small

sample sizes and numbers of independent experiments in SE families.
– Whether we should use non-parametric methods for analysis and meta-analysis.

We are currently undertaking research addressing these issues.
Finally, whenever possible, we would ask researchers to make their data sets publicly

available. Such data sets allow reviewers to check the validity of results before publication,
provide a valuable resource for novice researchers, and allow data to be re-analyzed if new
analysis methods become available.
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A.1 Experimental Designs Used in the Primary Studies

In this section we describe the four different experimental designs used by our primary
studies.

A.1.1 Independent Groups Design

The independent groups design, also referred to as a between-participants design, is the
classic experimental design, where participants are randomly allocated to two groups. Par-
ticipants in one group (group A) use one technique (with associated materials) to perform a
task, and participants in the other group (group B) use the other technique (with the same
materials) to perform the same task.

The standardized mean effect size (δIG, where IG stands for independent groups) is
estimated by dividing the difference between the mean outcome for participants in group
A and the mean outcome for participants in group B by the pooled within group standard
deviation (see Lipsey and Wilson 2001; Borenstein et al. 2009, Hedges and Olkin 1985),14

i.e.

dIG = MA − MB

s
(11)

where dIG is an estimate of δIG, MA is the mean value for participants in group A, MB

is the mean value for participants in group B, and s is the pooled within group standard
deviation, which is the square root of the pooled within group variance shown in (12).

s2 = (nA − 1)varA + (nB − 1)varB

(nA + nB − 2)
(12)

where nA and nB refer to the number of observations in groups A and B respectively and
varA and varB to the variance of the observations in groups A and B. If nA = nB , the
pooled within group variance is simply the mean of varA and varB.

Equation (11) makes it clear that effect sizes have direction as well as magnitude.
Researchers aggregating results from a family of experiments must ensure that all effect
sizes adopt the same direction for the difference. This is straightforward if there is a
well-defined control method, otherwise the decision is arbitrary but must be consistent.

Equation (11) is a valid estimate of the standardized difference between Technique A
and Technique B. However, for small sample sizes, the estimate is biased and should be
corrected, as recommended by Hedges and Olkin (1985), to give an improved estimate:15

gIG = J (df ) × dIG (13)

J (df ) is calculated from the formula:16

J (df ) =
√

2

df

⎡

⎣
�

(
df
2

)

�
(

df −1
2

)

⎤

⎦ (14)

14Some researchers recommend using the standard deviation of the control group or the population standard
deviation if it is known. See Lakens (2013) for a discussion of various different options for the choice of the
standard deviation.
15Please be aware that Hedges and Olkin called the unadjusted estimate of the standardized mean effect size
g and the adjusted estimate d. Therefore, it is best to confirm explicitly whether or not the standardized mean
effect size has been adjusted for small samples, rather that rely on using a possibly ambiguous label.
16The following R code calculates J for numerical value x: sqrt(2/x)*gamma(x/2)/gamma((x-1)/2),
and is easy to convert to a function.
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where � is the Gamma distribution and the degrees of freedom (df ) is the number of par-
ticipants minus 2 (because of the two groups). J tends to 1 as the sample size increases, so
rather than apply some arbitrary cutoff point to stop applying the correction, it is sensible to
always apply it whatever the sample size. J (df ) is often approximated by c(df ) for sample
sizes greater than 10 using the formula:17

c(df ) = 1 − 3

4 × df − 1
(15)

Most meta-analyst researchers recommend aggregating the standardized effect sizes
using a weighted average, where the weights are based on the inverse of the variance of the
standardized effect size (see Borenstein et al. 2009 or Lipsey and Wilson 2001).18 The nor-
mal approximation to the exact formula for the estimate of a standardized effect variance of
δIG is reported in Borenstein et al. (2009):

V ar(dIG) = nA + nB

nAnB

+ d2
IG

2 × (nA + nB)
(16)

here nA is the number of participants in group A and nB is the number of participants
in group B. It should be noted that this equation is inaccurate for very small sample
sizes (Morris 2000).

In order to find the variance of gIG, multiply the right-hand side of (16) by [J (df )]2 and
let [J (df )]2d2

IG = g2
IG:

V ar(gIG) = [J (df )]2 × nA + nB

nAnB

+ g2
IG

2 × (nA + nB)
(17)

If nA = nB = n and we let 2n = N :

V ar(dIG) = 4

N
+ d2

IG

2N
= 8 + d2

IG

4N
(18)

This is the same formula used by Pfahl et al. (2004) to find the variance of their standardized
effect size (see Appendix B in (Pfahl et al. 2004)) which they used both to perform homo-
geneity tests and to calculate the overall weighted average. To test for homogeneity, Pfahl
et al. (2004) used Q as proposed by Hedges and Olkin (1985):

Q =
k∑

i=1

d2
i

σ̂ 2(di)
−

(
∑k

i=1
d2
i

σ̂ 2(di )

)2

∑k
i=1

1
σ̂ 2(di )

(19)

where V ar(dIG) = σ̂ (di)
2.

Although the above discussion might appear quite complex, the independent groups
design is the most straightforward experimental design to meta-analyze using a mean
difference effect size.

A.1.2 AB/BA Crossover Design

The AB/BA Crossover design (see Senn 2002; Vegas et al. 2016; and Madeyski and
Kitchenham 2018a, b) is a repeated measures design which was used by four families. In
an AB/BA crossover, participants are spilt into two groups and each group uses one of the

17In our reproducibility calculations we always used J (df ).
18This variance is not the same as the variance used to standardize the mean difference.
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competing techniques with one set of materials. Subsequently, they perform the same task
with a second set of materials, with each group using the other technique. The design is
illustrated in Table 8.

The details of this analysis for the standard AB/BA crossover design can be found
in Madeyski and Kitchenham (2018b). As discussed in Section 4, all crossover designs
have two different types of standardized mean difference effect size, δRM estimated by dRM

using (1) and δIG estimated by dIG using (2).
Equation (1) is a valid estimate of the standardized difference between Technique A and

Technique B assuming that there is no significant technique by period interaction. For small
sample sizes, the estimate is biased and should be multiplied by J (df ) to give an improved
estimate (Hedges and Olkin 1985):

gRM = J (df ) × dRM (20)

where the degrees of freedom (df ) is the number of participants minus 2 (because of the two
sequence groups). It is extremely important to note that the degrees of freedom relate to the
number participants not the number of observations. We explain the reason for this below.

Because gRM is an unbiased estimate of the unstandardized mean difference divided by
its variance, the equation for the t−test value related to δRM is:

t = gRM√(
1

nA
+ 1

nB

) (21)

where nA and nB are the number of observations in group A and group B respectively.
As pointed out by Madeyski and Kitchenham (2018b), because the exact variance of a
t−variable is known (Johnson and Welch 1940), the variance of gRM can be calculated by
multiplying the formula for the variance of a t−variable by ( 1

nA
+ 1

nB
).

gIG can be calculated from the relationship between gRM and gIG, see (4). It can also
be calculated directly from the raw data. dIG is based on the standardized mean difference,
using sIG as the standardizer. We can estimate sIG by pooling the within cell variance for
each of the four cells in Table 8 (although this assumes that the variance of each cell is
estimating the same population variance). This is because with any cell, the conditions (i.e.,
technique, time period, material used) are the same for all participants whose results are
in that cell. As pointed out by Madeyski and Kitchenham (2018b), if we assume that each
condition is represented as a numerical effect, then each participant in a cell is modelled by
the formula:

yi = μi + Tj + Pk + Ml + ei (22)

where yi is the ith participant in the cell, μi is the mean for subject yi , Tj , Pk and Ml are the
effects for technique j , time period k and materials l, respectively, and ei is an error term
assumed to be normally distributed with zero mean and variance s2

IG. Standard statistical
theory says that var(x) = var(x + A) where A is any constant. So if μi , Tj , Pk and Ml

are assumed to be constants, the variance of the yi-values is an unbiased estimate of s2
IG.

Assuming a single population variance, pooling the data from all four cell should provide a
more precise estimate of s2

IG than would be obtained by pooling only the cells in the first
time period.

However, if we mix up the data from two cells, for example, in the context of an AB/BA
crossover, if we put the observations that used technique T1 together, we have some subjects
with the model:

yi = μi + T1 + P1 + M1 + ei (23)



Empirical Software Engineering

and others with the model:

xh = μh + T1 + P2 + M2 + eh (24)

Then, unless, P1 + M1 = P2 + M2, calculating the variance of the data from the two
combined cells will not result in an unbiased estimate of s2

IG. The differences between the
time period and material effects will inflate the estimate of the variance. This is, of course,
the theory underlying fixed effects analysis of variance.

Furthermore, although, the repeated measures allow us to calculate s2
IG with increased

precision, if we have only N participants, our estimates are based on the variation among
those N participants. No matter how many times we take repeated measures on those N
participants, the degrees of freedom relating to the variance remain the same, because our
estimate of the population variance is still based on the same N participants.

A.1.3 4-Group AB/BA Crossover Design

The 4-group AB/BA cross over design is a variant of the AB/BA crossover, where the basic
design is duplicated with the materials used in period one and the materials used in period
two exchanged. The design is illustrated in Table 9. The design appears to be unique to
software engineering studies19 and was used by seven families.

Like the standard AB/BA crossover, this design permits researchers to calculate both a
repeated measures effect size and an effect size equivalent to an independent groups effect
size. Comparing Tables 8 and 9, it is clear that the 4-group crossover is based on two bal-
anced AB/BA crossovers that differ only in the order in which the materials are used. Groups
A and B correspond to the one AB/BA crossover while Groups C and D correspond to the
other.

The design can be understood by considering the impact on a participant in each of the
four groups and in each time period. We developed a model of the 4-group crossover that is
shown in Table 10. The terms identify the conditions and outcome value for each participant
in each cell:

1. yg,h,i identifies the outcome measure for for participant i in time period h = 1, 2 using
technique g = 1, 2.

2. μi is the average outcome measure for participant j

3. τg is the effect for technique g

4. Mf where f = 1, 2 is the effect of performing the required task using one of the
two different software applications (as represented by each application’s specifications,
code, documents etc.)

5. π is any systematic effect resulting from doing the same task a second time.
6. COx where x = 1, 2 identifies which of the two duplicated crossovers a participant

belongs to.
7. λq where q = 1, 2 is the effect of performing the task for a second time using one tech-

nique, after first performing the task using the other technique. The value of q specifies
which technique was used first. Following the advice of Senn (2002) for simple AB/BA
crossovers, we assume that λq = 0, and all other possible interactions are likewise zero.

Analysis of the 4 group crossover can be understood by subtracting the outcome from
time period P1 from the outcome from time period P2. This assumes that the outcome is a

19The design is not mentioned either in Senn (2002) or Chow and Liu (1992) which are the main statistical
texts discussing crossover designs.
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Table 10 Expected outcome for participants in 4-group AB/BA crossover

Group ID Time period P1 Time period P2

A j y1,1,j = μj + τ1 + M1 y2,2,j = μj + π + τ2 + M2 + λ1 + CO1

(technique T1) (technique T2)

B k y2,1,k = μk + τ2 + M1 y1,2,k = μk + τ1 + π + M2 + λ2 + CO1

(technique T2) (technique T1)

C l y1,1,l = μl + τ1 + M2 y2,2,j = μj + π + τ2 + M1 + λ1 + CO2

(technique T1) (technique T2)

D m y2,1,m = μm + τ2 + M2 y1,2,m = μm + τ1 + π + M1 + λ2 + CO2

(technique T2) (technique T1)

suitable measure, such as a measure of the time to complete a task. For measures related
to understandability, the number of correct answers is acceptable unless the values are very
restricted (i.e., the number of correct out of 10 is acceptable, the number correct out of two
is not). The effect of calculating the time period difference is shown in Table 11. The impact
of calculating the difference is to remove the effect due to the individual participant.

If we take the average of the difference values in group (i.e., calculate DI where I =
1, ..., 4), it is easy to see that, in terms of expected values, we have:

D1 − D2 + D3 − D4 = 4(τ2 − τ1) (25)

where τ2−τ1 is the unstandardized effect size. In fact, the unstandardized effect size can also
be calculated by subtracting the mean value of all observations derived from participants
using technique T1 from the mean value of all observations derived from participants using
technique T2. However, the formal model underlying each cell makes it clear that in order to
estimate the between participants variance s2

IG, it is necessary to construct the pooled within
cell variance. Using the pooled variance of all observations derived from participants using
the same technique would inflate the variance because subsets of the data points would be
affected by different factors.

We provide a brief tutorial on analyzing and meta-analysizing data from 4-group
crossover designs in Appendix A.5.

A.1.4 Pretest Posttest Control Group Design

The pretest posttest control group design is a repeated measures design, but rather different
from a crossover style design. In this design, participants are randomly allocated to two
groups. Then, both groups undertake the same test (or perform the same SE activity) using
their current technique. The groups are then split and participants in one group receive one
type of training and participants in the other group are given a competing form of training.

Table 11 Difference values for
the 4 group crossover design Group Difference

A D1j = π + τ2 − τ1 + M2 − M1 + CO1

B D2k = π + τ1 − τ2 + M2 − M1 + CO1

C D3l = π + τ2 − τ1 + M1 − M2 + CO2

D D4m = π + τ1 − τ2 + M1 − M2 + CO2
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Table 12 PreTest PostTest
control group design Group PreTest Training PostTest

A Test/Task Technique 1 Test/Task

Using Technique 1 Using Technique 1

B Test/Task Technique 2 Test/Task

Using Technique 1 Using Technique 2

They are then asked to undertake another test. This design is illustrated in Table 12. It
was used only in Study 14. It is not necessary for the pretest and posttest tasks to be the
same. However, in Study 14, the authors asked participants to undertake a test on their SE
knowledge and repeated the same test after their training.

Although, this is a repeated measures design it has rather different properties to a
crossover style design. In fact, if analysts work solely with the difference scores, the data can
be analysed as if the difference data were the outcome of an independent groups study. This
form of analysis is called a difference of differences analysis and the standardised effect
size measures the relative difference in the average individual improvement of participants
in group A compared with participants in group B.

This design includes one of the main advantages of a crossover design that is, the effect
of individual differences are catered for by the analysis, but avoids the problem of tech-
nique by period interaction which is a potential risk when using a crossover design. For
example, there were many studies evaluating the perspective-based code reading (PBR)
methods (Ciolkowski 2009), some of which used the undefined current method as a control
while others used the checklist-based reading (CBR) method as a control. Using a pretest
posttest control group, the current method would be used to establish a pretest baseline
and then groups could be randomly assigned to training in CBR or PBR and the posttest
differences used to assess whether PBR or CBR most enhanced defect detection.

A model of the experimental design for each cell and for the difference data is shown in
Table 13.

The model assumes a situation such as we discussed above for code reading methods,
when there are three treatment conditions, one control that is used before training and then
half the participants receive training in one alternative treatment and the other half receive
training in the other. The effect of subtracting the mean difference values of group A from
the mean difference values of group B is to obtain an estimate of τ1 −τ2 which is the unstan-
dardized effect size. The basic design can easily be revised to cater for only two conditions
(i.e., control and treatment conditions) by letting all subjects use the control conditions in
time period 1 and in time period 2 to let participants in Group A use the treatment and par-
ticipants in Group B to use the control. The difference between the difference values then
equates to τ1 − τc. Effect size construction and the effect size variance formulas for this
design are discussed in Morris and DeShon (2002).

Table 13 Model underlying pretest posttest control design

Group Time period 1 Time period 2 Time period

difference

A y11i = μi + τc + M1 y12i = μi + π + τ1 + M2 τ1 − τc + M2 − M1

B y21j = μj + τc + M1 y22j = μj + π + τ2 + M2 τ2 − τc + M2 − M1
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This design can also be used if the pretest does not involve performing the same tasks that
is done in the posstest. This method allows for situations where participant skill is measured
by some other means (e.g., the results of a completely different software engineering task,
or, for students, their previous year grades). In this version of the design the pretest values
for each participants are used as a covariate in an ANCOVA analysis.

A.2 Meta-analysis Based on the Relationship Between the StandardizedMean
Difference and the Point Bi-serial Correlation

Like any correlation, rpb is the correlation between two values x and y. However, for rpb,
y is the value of the outcome metric and x is a categorical variable taking the value zero
if y was obtained from a participant in the control group and one if y was obtained from a
participant in the treatment group. Clearly, rpb is not a valid Pearson correlation coefficient
because it is not the correlation between two normally distributed variables, and it is often
referred to as a pseudo-correlation. In practice, rpb is often calculated as the square root
of the multiple correlation coefficient, R2, which in the context of a one-way ANOVA is
calculated as the percentage reduction in the total variation due to removing the between
group variation. The danger with calculating rpb from R2 is that the direction of the effect
is lost.

The process to convert from a standardized mean effect size, derived from descriptive
statistics, to a point bi-serial correlation effect size is as follows:

1. For each individual experiment in a family, estimate dIG from the difference between
the mean values for each technique group and pooled within technique group standard
deviation. Then apply the small sample size adjustment factor based on the number of
participants to calculate gIG.

2. Converte gIG to the point bi-serial correlation rpb using the formula:

rpb = gIG√
g2

IG + a

(26)

where a = (nA + nB)2/(nAnB) and a = 4 if nA = nB (see Borenstein et al. 2009).
For AB/BA crossover designs (both standard crossover and the 4-group crossover), nA

is the number of participants that used technique A in period 1 and nB is the number of
participants that used technique B in period 1.

3. Apply the Fisher normalisation formula (Fisher 1921) to the rpb values for each
experiment:

Zr = 0.5
ln(1 + rpb)

ln(1 − rpb)
(27)

and the variance of each Zr is:

var(Zr) = 1

(nA + nB − 3)
(28)

4. Use the R metafor library to perform meta-analysis on Zr . Assuming a fixed effects
model, the aggregate value of Zri for a family of experiments is calculated from the
formula:

Zr =
∑

i wiZri∑
i wi

(29)
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where wi = 1/var(Zri) = nA + nB − 3 and i is the ith experiment in the family. The
variance of Zr is calculated from the formula:

var(Zr) = 1
∑

i wi

(30)

Although such formulas can easily be applied manually, metafor is useful for calcu-
lating confidence intervals and producing forest plots. It also allows meta-analysts to
perform a random effects analysis. A priori, a fixed effects analysis should be reason-
able for families of experiments, when the different experiments in a family all test the
same hypotheses, and use both the same experimental designs and the same materials.
Table 1 in the supplementary material (Kitchenham et al. 2019b) reports the differences
among experiments in each family. From that table, it appears that a random effects
model might be preferable only for Study 1 and Study 3. However, applying a random
effects analysis when there is no significant heterogeneity among studies gives results
very similar to a fixed effects analysis.20 Thus, we recommend using a random effects
for all analyses in order to check whether there is a substantial level of heterogeneity.

5. Results in the transformed Zr scale need to be back transformed first to rpb and then to
gIG. For example to convert back to the weighted mean of the gIG values, the following
two transformations are needed:

rpb = e2Zr − 1

e2Zr + 1
(31)

and

gIG = rpb

√
a

(1 − rpb
2)

(32)

where a = (nA + nB)2/(nAnB) and a = 4 if nA = nB .

A.3 Meta-analysis Using the Point Bi-serial Correlation and the Hunter Schmidt
Method

Study 8 reported rpb and used it in their meta-analysis. However, they did not derive rpb

from a standardized effect size, but from the one-sided probabilities of significance from the
hypothesis tests for each experiment, i.e., the p-values. For each experiment in the family
and for each metric, they used the p − value obtained either the Mann-Whitney-Wilcoxon
(MMW) test or the t−test depending on the outcome of a normality test.

The p−values must come from one-sided tests in order to preserve the direction of the
effect size. For example, if we are testing whether method A is more efficient that method B,
a large one-sided probability (e.g., 0.96) would give a z-value of 1.751 and would indicate
that method A was more efficient that method B. A small one-sided probability (e.g., 0.04)
would give a z-value of −1.751 and indicate method B was more efficient than method A.

The authors of Study 8 report using the equation:

rpb =
√

z2

n
(33)

This is not ideal because it does not make it clear that rpb can potentially be negative.

20Heterogeneity is measured as an additional variance τ , which is added to the initial variance. The inverse
of the revised variance is then used as the weight in the random effects meta-analysis. If τ is small, the effect
on the meta-analysis results will be small.
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The study authors used the Hunter-Schmidt method to aggregate their correlations:

r̄ =
∑k

i rini
∑k

i ni

(34)

Then, the variance of r̄ is given by the equation:

var(r̄) =
∑k

i ni(ri − r̄)2

∑k
i ni

(35)

They, also, appear to have used the number of observations as the basis for ni rather than
the number of participants. This is because the authors report that their family included 92
participants, but report N = 184 for their overall mean r̄ . However, in this case using 2ni

rather than ni in (34) to calculate the variance of r̄ has no effect on the value, because two
is a multiplicative constant in both the top and bottom of the fraction and cancels out. The
only equation that is affected by using the wrong sample size is the formula for χ2 that is
used to test heterogeneity:

χ2 = var(r̄)

∑k
i n

2
i

(1 − r̄2)
(36)

The effect of using 2ni rather than ni in (36) is to quadruple the value of χ2 and increase
the likelihood of incorrectly assuming that the effect sizes were heterogeneous.

A.4 Aggregating p−values

Both Study 13 and Study 14 aggregated one-sided p−values in order to test the null hypoth-
esis of no significant difference between techniques. They tested whether the p−values
were heterogeneous using the equation:

Q =
k∑

i=1

(zi − z̄) (37)

where, under homogeneity, Q is χ2 with k − 1 degrees of freedom, and zi is the standard
normal deviate corresponding to the one-tailed p−values.

Then, they aggregated the p−values using the formula:

P = −2
k∑

i=1

ln(pi) (38)

They tested whether P was significant using the χ2 distribution with 2k degrees of
freedom. This approach, which is sometimes called Fisher’s method, has a number of
important limitations, particularly if the p−values exhibit heterogeneity, and is no longer
recommended (Rosenthal 1991).

A.5 Parametric Analysis andMeta-analysis of Crossover Design Experiments

In this section, we provide guidelines for analyzing and meta-analyzing crossover style
experiments. In particular, we provide an example of analyzing the 4-group using the data
provided by Prof. Abrahão.21

21Researchers wanting access to the data should contact Prof. Abrahão.
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We use the R linear mixed model package lme4 to analyze data from individual experi-
ments. In the case of a conventional two group AB/BA crossover, for each experiment, we
use a model including fixed effects:

– Time Period with values P 1 and P 2.
– Technique with values T 1 and T 2.

The personal identifier for each person is treated as a random effects factor. An example
of this analysis, explaining how to obtain the estimates of dIG and dRM can be be found
in Madeyski and Kitchenham (2018b). The data is held in what is referred to as the long
format, that is there are two entries for each participant that define the conditions under
which each outcome observation was obtained.

To analyze a 4-group AB/BA crossover We used a model that included fixed effects
factors specifying:

– Time Period with values P 1 and P 2.
– Technique being compared with values T 1 and T 2.
– The Objects (i.e., software materials) being used with values determined by the names

given to the software object being investigated.
– The crossover duplicate pair to which the participant belonged which had values COD1

which refers to a participant in Group A or Group B and COD2 which refers to a
participant in Group C or Group D. The crossover pair factor identifies the groups that
used materials in the same order.

Participant identifier (“ID”) was used as the random effects factor. Using this model with
Prof. Abrahão’s data from her I taly1 experiment, we obtained the analysis shown in Fig. 1.
Assuming the data are held in a data frame called Italy1 (in a format corresponding to the
hypothetical data shown in Table 14 which reports the data for four participants), the R
instructions to perform this analysis are presented in Output 1:

The assumptions underlying this analysis are:

1. All observations are normally distributed.
2. Variances calculated from each cell are all estimating the same underlying population

variance.

There are several things to note:

1. The analysis constructs a name for fixed effect sizes based on the name of the cate-
gorical variable and the label(s) given to categorical values. The label name used is
the second in alphabetical order. So since labels for the Method variable are NODM

and DM , the package calculates the effect size as NODM − DM . This is why the
value of the Method effect size is negative. Since we consider the DM condition to
be the treatment condition and the NODM condition to be the control, we define the
unstandardized treatment effect to be −NoDM = .02125.

2. The estimate of the within participant variance is given by the Random Effects residual
term.
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Linear mixed model fit by REML ['lmerMod']
Formula: Comprehension ~ TimePeriod + Technique + 
Materials + CO + (1 |  

ID)
Data: Italy1

REML criterion at convergence: -27.3

Scaled residuals: 
Min       1Q   Median       3Q      Max 

-1.56142 -0.49641 -0.02191  0.46003  1.38365 

Random effects:
Groups   Name        Variance Std.Dev.
ID       (Intercept) 0.01863  0.1365  
Residual             0.01029  0.1014  
Number of obs: 48, groups: ID, 24

Fixed effects:
Estimate Std. Error t value

(Intercept)     0.59313    0.05123  11.578
TimePeriodP2   -0.00875    0.02928  -0.299
TechniqueNODM  -0.02125    0.02928  -0.726
MaterialsEPlat -0.03875    0.02928  -1.323
COCO2           0.12792    0.06295   2.032

Correlation of Fixed Effects:
(Intr) TmPrP2 TcNODM MtrlEP

TimePeridP2 -0.286                     
TechniqNODM -0.286  0.000              
MaterlsEPlt -0.286  0.000  0.000       
COCO2       -0.614  0.000  0.000  0.000

Fig. 1 Linear mixed model analysis of the I taly1 data

3. COD2 corresponds to the fixed effect size of the difference between results for the A
and B crossover and the results for the C and D crossover. Since the difference between
the groups is the order in which they used the Objects (i.e., the application specifica-
tions), they indicate that documents related to EPlat were more difficult to understand
than documents related to the other specification (ECP).

4. The variance associated with the random effects ID terms is the estimate of the between
participants variance.

5. The standard error of the COD2 fixed effect size is larger than the other fixed effect
sizes. This is because it is based on the between participants variance.

The estimate of the variance of an individual participant observation is the sum of the
between subjects and within subjects variance i.e., s2

IG. In the case of the I taly1 data set
we have the estimate of s2

IG taking the value 0.01863 + 0.01029 = 0.02892.
Then, from the linear mixed model analysis

– The estimate of dRM is 0.02125/
√

0.01029 = 0.2095.
– The estimate of dIG is 0.02125/

√
0.02892 = 0.125.
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Table 14 Format of the Italy1 data frame showing some hypothetical data

IDa TimePeriod Materials Technique Group CO Comprehensionb

P1 P1 ECP DM A CO1 �.��
P1 P2 EPlat NODM A CO1 �.��
P2 P1 ECP NODM B CO1 �.��
P2 P2 EPlat DM B CO1 �.��
P3 P1 EPlat DM C CO2 �.��
P3 P2 ECP NODM C CO2 �.��
P4 P1 EPlat NODM D CO2 �.��
P4 P2 ECP DM D CO2 �.��

aWe were allowed only to analyze real data, but not to share them, hence we presented hypothetical IDs
(P1...P4), not the real ones, in this column
bWe were allowed only to analyze real data, but not to share them, hence we presented ‘�’, not the real
Comprehension values, in this column. Researchers wanting access to the data should contact Prof. Abrahão

– The estimate of r , the correlation between repeated measures is r =
0.01863/(0.01863 + 0.01029) = 0.6442

Using this method, we obtained standardized effect sizes and the correlation between par-
ticipants for each of the five experiments undertaken by Prof. Abrahão’s and her colleagues.
These results are shown in Table 15.

We applied the exact small sample size adjustment to dIG and dRM . We used (26) to
calculate equivalent point bi-serial correlation effect sizes and applied Fisher’s normalis-
ing transformation to obtain the zRM and zIG values. The variances for the zRM and zIG

values are calculated as v(z) = 1/(ni − 3) (which is the same for both variables from
the same experiment). These results are shown in Table 16. The results for gIG obtained
for each experiment are quite close to, but slightly larger than, the ones we obtained using
the published descriptive statistics reported in Table 5. This is because we have fitted a
more complex model to the data that accounts for all the built-in blocking factors in the
experimental design and, so, provides us with a more accurate estimate of the between
participant variance. When blocking factors have a significant effect on the experiment
outcomes, we would expect variance estimates from the full model to be smaller than
those from the descriptive statistics, so the effect size estimates should be larger. The
gRM values are larger than the gIG values because of the correlation between the repeated
measures.

Table 15 Linear mixed model estimates of the mean difference effect sizes

Experiment UES t dRM dIG r

Italy1 0.02125 0.7256 0.2095 0.125 0.6442

Italy2 0.1467 8.8796 2.563 1.484 0.6646

Spain1 0.06746 2.3260 0.6217 0.6057 0.05066

Spain2 0.1091 3.3058 1.045 0.8188 0.3865

Spain3 0.09659 2.3698 0.8378 0.7745 0.1456
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Table 16 Adjusted standardized effect sizes and their equivalent point bi-serial correlations

Experiment gRM rRMpb zRM gIG rIGpb zIG v(z)

Italy1 0.2019 0.1004 0.1008 0.1204 0.06011 0.0602 0.0476

Italy2 2.47 1.0383 0.777 1.431 0.5818 0.6652 0.0476

Spain1 0.6028 0.2886 0.2970 0.5873 0.2818 0.2896 0.0400

Spain2 0.9985 0.4467 0.4805 0.7821 0.3642 0.3817 0.05882

Spain3 0.7884 0.3667 0.3846 0.7287 0.3424 0.3568 0.0769

We used the metafor package to analyze the zIG and zRM data. For example, to analyse
the zIG data we used the R instructions in Output 2:

This produced the meta-analysis results summarized in Fig. 2. These results are still
in the transformed data scale. Figure 3 shows a forest plot of the meta-analysis results
transformed back to the gIG scale.

Assuming the meta-analysis results from the rma function call are saved into a R data
structure labelled AbrahaoResults, the R instructions needed to report the contents of
Fig. 3 as a pdf file are:

The parameter transformZrtoHgappro identifies a function we created in order for
the forest function to transform from the normalized point bi-serial correlation back to
the corresponding standardized mean difference effect size. The function is only permitted
to have one parameter (a value corresponding to a transformed point bi-serial correlation),
which means that we must assume a balanced experiment because we cannot include dif-
ferent group sizes as parameters, i.e. the function assumes that there are the same number
of participants in groups A and B as there are in groups C and D. If this is not the case the
forest plot values will be slightly biased. The instruction text is used to annotate the forest
plot. In our experience the actual values required to put the annotations in the correct places
need to be determined by trial and error.

The meta-analysis results for gIG and gRM are summarized in Table 17. These have
been transformed to the standardized mean different effect size using functions that allow
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Fig. 2 Meta-analysis of the zIG data

for unbalanced experiments. The functions we use to transform between the effect sizes are
available in our Reproducer package (see Appendix A.7).

The p−value for gIG is less than the p−value for gRM because there is significant
heterogeneity among the gRM effect sizes (QEp = 0.033). This means that the standard
error of the mean is increased for gRM . The confidence interval bounds on the overall mean
gRM are wider than the confidence limits bounds on gIG for the same reason.

A.6 Guidelines for Meta-analysis Reporting and Practice

After analysing the reporting and conduct of our primary studies, we recommend the
following reporting guidelines:

– Use sufficient precision to report descriptive statistics, in terms of the number of
decimal points used to report data.

– Report the values of descriptive statistics not only figures such as box plots. It is
preferable to include both the actual values and the graphical displays.

– For repeated measures designs, report the correlation between the repeated measures.
– Specify the particular version of the standardized mean difference effect size using a

formula rather than a name.
– Confirm whether or not the small sample size adjustment has been applied to any

reported standardized mean difference effect sizes.
– Specify the model used to aggregate the experiment effect sizes, i.e., fixed, random or

mixed.
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Random Effects Model

−1 0 1 2 3

Observed Outcome

Spain 3

Spain 2

Spain 1

Italy 2

Italy 1

0.73 [−0.38, 2.05]

0.78 [−0.19, 1.93]

0.59 [−0.21, 1.47]

1.43 [ 0.48, 2.65]

0.12 [−0.75, 1.01]

0.71 [ 0.28, 1.16]

Study Name Hedges' gIG   [95% CI]

Analysis of Results from Abrahao et al. 2013

Fig. 3 Forest plot of the gIG meta-analysis data

– Report the results of the aggregation process including the overall effect size, its
p−value, and confidence limit bounds, the heterogeneity test statistic (Q) and its
p−value. In the case of relatively large heterogeneity, it is also worth reporting the
estimate of the heterogeneity statistic.

With respect to performing meta-analysis, our results suggest researchers:

– Should understand the implication of the design of each experiment on effect sizes and
their variances.

Table 17 Meta-analysis results

Type Mean pvalue se UB LB QE QEp

gIG 0.7074 0.001005 0.2112 1.164 0.2811 4 0.410

gRM 0.9544 0.005104 0.3304 1.731 0.2774 10 0.033
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– Should ensure that effect sizes obtained from experiments that used different designs
are equivalent.

– Should be careful to maintain the direction as well as the magnitude of effect sizes.
When meta-analyzing effect sizes, all the effect sizes must be based on investigating
whether the effect of one specific technique is greater than the effect of the other tech-
nique, and must allow the effect size to be positive or negative. This includes occasions
where the effect sizes are derived from the one-sided p−values.

– Should undertake sanity checks of the outcomes from meta-analysis tools based on their
descriptive statistics.

– Should use a random effects model for aggregating effect sizes, unless there is a very
strong argument for using a fixed effects model.

– Should be careful about using general purpose meta-analysis tools. General purpose
tools are designed to handle a variety of different experimental designs by converting
the results from complex designs to the simplest design (i.e., an independent groups
analysis). However, to support multiple experimental designs, they may have complex
interfaces. In addition, they may not support newly developed experimental designs.

A.7 Reproducibility of this Paper

To support the reproducibility of this paper, it is complemented by the reproducer R
package (Madeyski and Kitchenham 2019) (available from CRAN—the official repository
of R packages). The reproducer package includes both the collected data sets from
the analyzed studies and the computational procedures developed by the first two authors
(e.g., calculateSmallSampleSizeAdjustment, constructEffectSizes,
transformRtoZr, transformZrtoR, transformHgtoR, calculateHg,
transformRtoHg, transformZrtoHgapprox, transformZrtoHg) that are used
to reproduce the results (e.g., Tables 5, 6, and 7 were automatically generated on a basis
of the collected data sets and functions included in reproducer). Our aim is to promote
reproducibility of research in empirical software engineering (Madeyski and Kitchenham
2017) by supporting our research papers by the related R package (see Madeyski and
Kitchenham 2018b; Kitchenham et al. 2017; Jureczko and Madeyski 2015; Madeyski and
Jureczko 2015).

In Madeyski and Kitchenham (2017) we emphasized that reproducible research (RR)
refers to the idea that the ultimate product of research is the paper plus its computational
environment. Therefore, our RR document that incorporates the textual body of the paper
and calls to the reproducer R functions including analysis steps (e.g., functions to cal-
culate and transform different effect sizes) used to process the data, as well as calls to the
xtable R package (Dahl et al. 2018) that helps us to automatically present results in a tab-
ular form will be available upon request from the corresponding author for reviewers and
researchers interested in building on the outcomes presented in the paper. This RR document
along with reproducer available in R environment can be used to compile all pieces of
information into the resulting document in the pdf format.

An important part of documenting the research process with R is recording the R session
info, which makes it easier for future researchers to recreate what was done in the past and
which versions of the R packages were used. The information from the session we used to
create this paper is shown in Output 4:
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