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1 INTRODUCTION

IN this document, we report statistical methods and ap-
proaches that support the results reported in [1].
In Section 2, we discuss the origin of nonparametric

effect sizes and provide a detailed discussion of the two non-
parametric effect sizes we evaluate in [1]: i.e., the probability
of superiority p̂ and Cliff’s d. We explain how these effect
sizes and their variances are estimated. We also explain how
the problems that occur if the effect size variance is zero1 are
addressed.

In Section 3 we discuss how to calculate p̂ and Cliff’s
d and their variances for different statistical designs. In
particular, we discuss randomized block designs and three
variants of repeated measures designs, i.e., the pre/post-test
control design, the AB/BA crossover, and the four-group
crossover design. An important issue is that the method
for analyzing randomized blocks is the basis both for the
analysis of all designs more complex than a simple between-
groups design and for the method used to aggregate non-
parametric effect sizes from different experiments.

In Section 4, we discuss the functional forms of the four
distributions we use in our simulations: the normal (or
more formally, the Gaussian) distribution, the log-normal
distribution, the gamma distribution, and the Laplace dis-
tribution. We discuss the relationship between the param-
eters of each distribution and the mean and variance of
samples from each distribution. We define the values of
the parameters needed to produce values of (0.2, 0.5, 0.8)
for the parametric standardized mean difference effect size
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1. Zero variances happen if observations in one treatment group are
all larger than the observations in the other treatment group.

of the generated data sets. We also report the expected
effect sizes of Cliff’s d and p̂ for various values of the
distribution parameters. The normal distribution is the stan-
dard distribution against which all our simulation results
are assessed. The other distributions have various different
non-normal properties that allow us to assess the value
of the nonparametric effect sizes when we cannot assume
normality.

In Section 5 we present the tables of results for our
simulations of four-group randomized block experiments
and for our meta-analysis of families of experiments. The
procedures used to generate the tables are discussed in our
related main text [1].

An initially unanticipated problem associated with eval-
uating the use of Cliff’s d and p̂ because it was not obvious
how to provide a fair parametric analysis as a basis for com-
parisons with the nonparametric effect size analyses. The
problem arose because there are many different methods for
calculating the variance of a standardized mean difference
effect size and aggregating results from a set of compara-
ble experiments (such as a family of experiments [2]). To
illustrate the extent of the problem, we identified a range of
methods for aggregating StdMD, which in turn relied on
identifying the methods used to estimate the variance of the
different StdMD estimates.

In Section 6, we discuss options available to estimate
the variance of different estimates of StdMD. The formulas
depend on the experimental design, whether or not the stan-
dard mean difference was adjusted for a small sample size,
and whether or not the formula is the exact variance or the
approximate normal variance. Readers should note that to
emphasize the difference between the two parametric effect
sizes in the main text [1], we refer to the standardized mean
difference as StdMD, and the small sample size adjusted
standardized mean difference as StdMDAdj. However, to
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make the equations presented in Section 6 easier to read,
we use the symbol d to refer to StdMD and the symbol δ̂ to
refer to StdMDAdj.

In Section 7, we discuss the various ways in which the
standardized mean difference estimates can be aggregated
and the related overall variance calculated.

Finally, we discuss various issues related to simulation
studies, including :

• Unexpected failures when generating and analysing
very small samples.

• The method adopted for tests of significance when
using one-sided and two-sided tests.

• How the simulation functions we developed were
used to construct the tables in the main text [1].

. Researchers wishing to use the simulation functions
should ensure that they have installed the latest ver-
sion of reproducer [3]. Any old version of repro-
ducer should be uninstalled using the R command:
remove.packages("reproducer"). The latest version
of reproducer can then be installed and used.

2 ROBUST EFFECT SIZES AND NONPARAMETRIC
ANALYSIS METHODS

In this section, we provide a detailed discussion of Cliff’s d
and the probability of superiority p̂.

2.1 Underlying Principles

Both Cliff’s d and p̂ can be defined in terms of three
probabilities:

1) p1, which is the probability that a random observation
from a participant in group G1 is greater than a random
observation from a participant in group G2.

2) p2, which is the probability that a random observation
from a participant in group G1 is equal to a random
observation from a participant in group G2

3) p3, which is the probability that a random observation
from a participant in group G1 is less than a random
observation from a participant in group G2.

Since these three probabilities comprise all possibilities for
the relationship between observations in the two groups:

p1 + p2 + p3 = 1 (1)

Robust effect sizes have an implied direction as well
as magnitude, and the direction depends on whether we
are testing whether observations from G1 are greater than
observations from G2 or vice versa. Thus, when aggregating
such effect sizes, it is important that they are based on effect
sizes that all make the same comparison. To avoid overload-
ing numerical indexes, we will assume that values from G1
correspond to the alternative software engineering technique
and are referred to as the a-values, and values from G2
correspond to the control or baseline software engineering
technique and are referred to as c-values. If we subscript an
effect size with ac, we identify an effect size that specifies
the extent to which the alternative technique outperforms
the control, while a subscript of ca means we are looking at

the extent to which the control technique outperforms the
alternative technique2.

To introduce the methods for calculating nonparametric
effect sizes based on pi and test their significance, we use
the data shown in Table 1. These are hypothetical data from
two independent groups where group G1 corresponds to
the treatment (i.e., alternative) condition, and group G2
corresponds to the control condition. The example is a
subset of data from a real experiment that we adapted
to have one pair of duplicate observations. The response
variable data are in column G1 Data and G2 Data. The G1
Rank and G2 Rank variables are the rank values for the
combined G1 and G2 data set. The purpose of this example
is to demonstrate how to calculate p̂ and Cliff’s d, and to
explain the relationship between the effect sizes. We do not
recommend such small samples for real experiments!

TABLE 1
Example Data

Group G1 Data G1 Rank Group G2 Data G2 Rank

G1 0.24 12 G2 -0.02 4
G1 0.06 9 G2 -0.24 3
G1 0.03 6.5 G2 0.03 6.5
G1 -0.33 1 G2 0.15 11
G1 -0.26 2 G2 0.09 10
G1 0 5 G2 0.04 8

2.2 The Probability of Superiority
McGraw and Wong [4] proposed an effect size based on
p1, which they called the common language effect size.
Subsequent researchers criticized this effect size because
it was based on the assumption that there were no tied
values [5]. Hence, the probability of superiority p̂ac is now
defined as:

p̂ac = p1 +
p2
2

(2)

In addition:
p̂ca = p3 +

p2
2

= 1− p̂ac (3)

and
p̂ca + p̂ac = 1 (4)

These equations provide a means of coping with duplicate
values and confirm that p̂ca and p̂ac are probabilities that
vary from 0 to 1. If p̂ca ≈ p̂ac ≈ 0.5, we conclude that there
is no difference between the observations in the two groups.
We consider later how this conclusion can be formally
tested.

To calculate the pi values, we need to count the total
number of times each value in G1 was less than, equal to, or
greater than a value in G2. For example, the value −0.33 in
G1 is less than all six Data values in group G2 (see Table 1).

The counting process can be understood using a su-
periority matrix such as that shown in the top section of
Table 23, where the top row shows the participants’ values
in G2 and the first column shows the participants’ values in
G1. The internal superiority matrix displays a “1” if the G1

2. We omit the subscript if there is no ambiguity in our equation.
3. Wilcox’s R functions for calculating both p̂ and Cliff’s d and their

variances are based on constructing the superiority matrix [6].
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TABLE 2
Superiority Matrix

G2: −0.02 −0.24 0.03 0.15 0.09 0.04 Positivej Equalj Negativej Sumj Meanj

G1:
0.24 1 1 1 1 1 1 6 0 0 6 1
0.06 1 1 1 −1 −1 1 4 0 2 2 0.3336
0.03 1 1 0 −1 −1 −1 2 1 3 −1 −0.1667

−0.33 −1 −1 −1 −1 −1 −1 0 0 6 −6 −1
−0.26 −1 −1 −1 −1 −1 −1 0 0 6 −6 −1
0 1 1 −1 −1 −1 −1 2 0 4 −2 −0.3333

Positivei 4 4 2 1 1 2
Equali 0 0 1 0 0 0

Negativei 2 2 3 5 5 4

Sumi 2 2 −1 −4 −4 −2
Meani 0.3333 0.3333 −0.1667 −0.6667 −0.6667 −0.3333

participant value is greater than a G2 participant value, “0”
if the two values are equal, and “−1” if the G1 value is less
than the G2 value. The values in this matrix are referred to
as dij where i refers to the row and j refers to the column.
For each column and each row of the superiority matrix, we
show the number of positive, negative, and equal values,
and the Sum and Mean values. The sample estimates of pi
values are obtained by dividing the total number of positive
(for p1), equal (for p2), and negative values (for p3) by the
total number of elements in the matrix. Thus:

p1 =
14

36
= 0.3889 (5)

p2 =
1

36
= 0.02778 (6)

p3 =
21

36
= 0.5833 (7)

Then we have:

p̂ac = 0.3889 + 0.02778/2 = 0.4028

p̂ca = 0.5833 + 0.02778/2 = 0.5972

and
p̂ac + p̂ca = 0.4028 + 0.5972 = 1

For the example data, p̂ac < 0.5, the calculated effect
size suggests that the control method has outperformed the
alternative method. We discuss later in this section how
to assess whether or not the performance improvement is
statistically significant.

Although p̂ can be easily calculated from pi, it can also be
calculated by ranking the data. This is because the ranking
information measures the number of values that a random
value exceeds. For example, across all the Data values in Ta-
ble 1, the value −0.33 is the smallest and, as shown in the
table, is given a rank 1 of 12, while the value 0.24 is the
largest and is given a rank of 12. If there are duplicated
values, they are given the appropriate midrank. For example,
we have two 0.03 values that should be assigned ranks 6 and
7, so both numbers are assigned the mid-rank 6.5, and the
rank values 6 and 7 are considered to be used.

The value of p̂ can then be calculated from the difference
between the average ranks:

p̂ac =
R̂1 − R̂2

N
+ 0.5 (8)

if ranks are assigned across the values in both groups, R̂1

is the average rank of the observations in G1, and R̂2 is the
average rank of the observations in G2, and N is the total
number of observations. For our example data, R̂1 = 5.9167
and R̂2 = 7.0833, so:

p̂ac =
5.9167− 7.0833

12
+ 0.5 = −0.09722 + 0.5 = 0.4028

(9)
It is important to note that under the null hypothesis p̂ =
0.5, so it is usual to base tests of the significance of p̂ on
p̂− 0.5, which Rahlfs et al. [7] refer to as the Mann-Whitney
centred statistic or the Average Risk Difference.

As we noted in a previous paper [8], the commonly
used Mann-Whitney-Wilcoxon rank test for two indepen-
dent groups and the Kruskal-Wallis rank test for differences
among more than two groups are not robust unless based
on exact permutation statistics. Treating ranks as if they are
random variables for the purpose of constructing signifi-
cance tests is inadvisable because, if the null hypothesis is
false, the variance of the rank averages in each group will
be significantly different. Brunner and Munzel [9] proposed
a method that explicitly allows for the heterogeneity caused
by differences between the variances for each group. It is
based on Welch’s test [10] and provides a significance test
that p̂ is significantly different from 0.5 and assumes that
the variance of R̂1 and the variance of R̂2 are not equal.
Wilcox provides an implementation of the Brunner and
Munzel method (i.e., the bmp function) that calculates the
standard error and confidence interval upper and lower
bounds for p̂. The formulas to construct the variance of p̂
and its confidence interval can be found in Section 2.4.

The first row of Table 3 shows the estimate of p̂ together
with its standard error and its 95% upper and lower con-
fidence interval bounds (CIB). Since the confidence interval
of p̂ spans 0.5, we cannot reject the null hypothesis of no
difference between the groups.

TABLE 3
Analysis of Example Data

Metric Estimate Standard Upper Lower
Error 95% CIB 95% CIB

p̂ 0.4028 0.1836 0.8259 0
Cliff’s d -0.1944 0.3730 0.4652 -0.7152
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2.3 Cliff’s d

Given the definitions of p1, p2, and p3, Cliff’s d is defined
as:

dac = p1 − p3 = p̂ac − p̂ca (10)

or:
dca = p3 − p1 = −dac (11)

Also, given Equation (4):

dac = 2p̂ac − 1 = 1− 2p̂ca (12)

Since 0 ≤ p̂ac ≤ 1, we have −1 ≤ d ≤ 1. If d ≈ 0,
then we conclude that there is no difference between the
two groups. It should be noted that in the literature, d
is seldom sub-scripted; however, it has a direction that
needs to be specified to make sure that the results are not
misinterpreted.

Moreover, if the elements of the superiority matrix are
defined to be dij , Cliff’s d can be estimated directly as:

dac =

∑
i

∑
j(dij)

n1n2
(13)

With the values in Table 2, d = (14− 21)/36 = −0.1944444.
Also, from Equation (10), dac is estimated to be p̂ac − p̂ca =
0.4027778 − 0.5972222 = −0.1944444. The negative value
for dac indicates that, in this case, the control technique has
outperformed the alternative technique. In addition, d can
be calculated from the mean of the row means (in Table 2)
or the mean of column means. The formula needed to
construct the variance of Cliff’s d can be found in Section 2.4
together with the non-standard formula Cliff recommends
for constructing confidence intervals around d.

The second row of Table 3 shows the estimate of Cliff’s
d for the data in Table 1. Since the confidence interval spans
zero, we cannot reject the null hypothesis that there is no
difference between the groups.

In this section, we have explained that Cliff’s d is func-
tionally related to p̂. However, the variances of the two effect
sizes do not use the same method of constructing confidence
intervals, so it is possible for the significance tests for each
effect size to deliver different results.

2.4 Nonparametric Effect Size Variances

This section specifies the formulas for constructing the vari-
ances of nonparametric effect sizes and the methods used to
construct confidence intervals.

2.4.1 The Variance of p̂
Wilcox [6] reports how to calculate the variance of p̂ starting
from ranks of the pooled data and the mean rank for each
group, i.e.:

Rj =
1

nj

nj∑
i=1

Rij (14)

where j is the group identifier i.e., 1 or 2 for a simple
between-groups experiment, nj is the number of partici-
pants in the group j and N =

∑2
i=1 ni.

The ranks for each group, ignoring the other groups, also
need to be calculated and are referred to as Vij , where i

refers to the rank of an individual observation in the group
j. Then, for two-group experiments, the variance of p̂ is

varp =

(
s21
n1

+
s22
n2

)
(15)

where

s2j =
S2
j

(N − nj)2
(16)

S2
j =

1

nj − 1

nj∑
i=1

(
Rij − Vij −Rj +

nj + 1

2

)2

(17)

The test statistic is:

W =
R2 −R1√

varp
(18)

and the degrees of freedom for the t−test are v̂ = U1

U2
, where

U1 =

(
S2
1

n2
+

S2
2

n1

)2

(19)

and

U2 =
1

n1 − 1

(
S2
1

n2

)2

+
1

n2 − 1

(
S2
2

n1

)2

(20)

The approximate (1 − α) interval for p̂ is p̂ ± t × √
varp,

where t is the 1 − α/2 quartile of a Student’s t distribution
with degrees of freedom v̂.

2.4.2 The Variance of Cliff’s d

The variance of d is calculated using the superiority row
means and column means:

d.j =
1

n1

(
n1∑
i=1

dij

)
(21)

and

di. =
1

n2

 n2∑
j=1

dij

 (22)

Then we need to calculate three variance components, re-
ferred to as s21, s22, and σ̃2.

s21 =
1

n2 − 1

n2∑
j=1

(d.j − d)2 (23)

s22 =
1

n1 − 1

n1∑
i=1

(di. − d)2 (24)

σ̃2 =
1

n1n2

∑
i

∑
j

(dij − d)2 (25)

Then, σ̂2 (i.e., the variance of d) is

σ̂2 =
(n2 − 1)s21 + (n1 − 1)s22 + σ̃2

n1n2
(26)

Instead of the more usual confidence limits, Cliff recom-
mends using the following equation for the lower bound of
the confidence interval:

CIlb =
d− d3 + zσ̂

√
(1− d2)2 + z2σ̂2

1− d2 + z2σ̂2
(27)
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where z is the lower quantile of the normal distribution for
the appropriate significance level. The following equation
specifies the upper bound:

CIub =
d− d3 − zσ̂

√
(1− d2)2 + z2σ̂2

1− d2 + z2σ̂2
(28)

2.4.3 A Limitation of Cliff’s d and the Probability of Superi-
ority p̂

As mentioned by Neuhäuser et al. [11], there is a problem
estimating the variance of Cliff’s d and p̂ for small sample
sizes. When all the results from the treatment group are
greater than all the results from the control group, all the
values in the superiority matrix will be 1 and d = 1 and
p̂ = 1. While such an outcome might be called a perfect
result by an experimenter, it is a problem for statistical
analysis because the estimated variance of Cliff’s d will be
0. In addition, although the variance of p̂ = 1 is calculated
slightly differently, the estimated variance of p̂ is always
zero if p̂ = 0 or p̂ = 1.

This is a problem because in Section 3 we demonstrate
how to apply nonparametric effect sizes to statistical designs
more complex than simple between-groups studies, but
our method depends on having a valid variance for the
nonparametric effect size in each subset of the data. Our
method of addressing this problem is explained below and
is illustrated with a real software engineering data set.

An example of the issue is shown in the software data
set shown in Table 4. This example arose in a pilot study
of distributed and face-to-face software architect evaluation
meetings [12], which used an AB/BA crossover design
(see [13], Section 4.2.2). Looking at the time period difference
(see the column labelled TP Diff), a significant difference
between the results for crossover groups A and group B
with a positive effect size would confirm that when teams
met in distributed meetings, the results of their evaluation
were better than when they met in face-to-face meetings.

TABLE 4
Data Set with maximum Cliff’s d

CO Group Team Treatment TP1 TP2 TP Diff Rank
ID used first score score

A G2 F2F 47 87 40 7
A G5 F2F 88 96 8 5
A G6 F2F 59 73 14 6
B G1 Dist 67 27 -40 1
B G3 Dist 85 70 -15 2
B G4 Dist 79 74 -5 4
B G7 Dist 65 59 -6 3

In this situation, Wilcox’s algorithm calculates the upper
and lower confidence for Cliff’s d based on the binomial
distribution and uses the relationship between d and p̂ to
calculate the upper and lower bounds for p̂. Unfortunately,
the binomial distribution method leads to large confidence
intervals for small sample sizes, which can cause inconsis-
tent results. For example, using the example shown in Ta-
ble 4, Wilcox’s cid algorithm reported that Cliff’s=1, with
a standard error of zero and confidence interval [-0.054,1].
Because the confidence interval spans zero, the binomial
test suggests that the null hypothesis cannot be rejected.
However, suppose the TP Diff value for team G4 had been

8 rather than -5, this would correspond to the minimum
possible overlap between values, which in terms of rank
would mean that teams G4 and G5 would both be allocated
a rank of 4.5. From the point of view of the experimenter,
this would be a nearly perfect result. In this case, Wilcox’s
algorithm reports Cliff’s d=0.92, with a standard error of
0.0168 and a confidence interval [0.313,0.993]. Because the
interval does not span 0, this would imply that the null
hypothesis can be rejected. Thus, the levels of significance
in the two cases are contradictory because when there is
no overlap between the groups, the algorithm implies that
the result is not significant, but when there is some overlap,
and the value of Cliff’s d is lower, the algorithm implies
that the difference is significant. In addition, the length
of the confidence interval for the nearly perfect case is
0.993 − 0.313 = 0.68, while the length of the confidence
interval for the perfect case is 1.054. Although for perfect
experimental outcomes, we only get contradictions with
respect to significance for sample sizes of 8 observations
or less, the length of the confidence interval remains much
larger than the equivalent confidence interval for nearly
perfect experiments.

In Section 3, we demonstrate how to apply nonpara-
metric analysis methods to statistical designs more com-
plex than simple between-groups studies, but our method
depends on having a valid variance for d in each subset
of the data. In order to cope with the problem of perfect
experiments, we decided to use the variance of the equiv-
alent nearly perfect experimental outcome. So in the case
of the perfect outcome discussed above, we would assume
that d = 1, with confidence limits [0.313,1] (i.e., we extend
the upper bound of the confidence interval to include the
value of d, but the lower bound of the confidence interval
remains greater than 0) and we assume that the standard
error d is approximately 0.0168. This means that our esti-
mate of the standard error of d is conservative for perfect
experiments, but it is not zero, and our decisions regarding
the significance of perfect and nearly perfect experiments
are consistent.

3 CALCULATING NONPARAMETRIC EFFECT SIZES
FOR DIFFERENT EXPERIMENTAL DESIGNS

A nonparametric analysis is usually applied to k-group be-
tween groups randomized experiments, where the only dif-
ference between the k groups of experimental units (which,
in the case of SE experiments, would often be human
participants) is the experimental technique that participants
in each group used. The experimental design discussed
in Section 2 has k = 2. However, if nonparametric effect
sizes are to be useful, they must be applicable to more
complex experimental designs too.

Vegas et al. [14] reviewed experimental papers from six
top-ranked software engineering sources and identified 82
papers that reported 124 SE experiments with human par-
ticipants in the years 2012 to 2014 inclusive. 38 experiments
were classified as independent measures (i.e., between-
groups experiments), 68 were crossover designs, 16 were
defined as repeated measures4 and two were matched pairs.

4. Formally, crossovers are a specific type of repeated measures
design.
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This study revealed the importance of the crossover design
in software engineering and, thus, the need for methods
of how to apply nonparametric effect sizes to this form of
design.

In this section, we explain how to analyze data from
randomized blocks (which are a form of a between-group
experiment) and repeated measures designs, including
crossover designs. We are particularly interested in repeated
measures designs because one of the motivations for this
paper was to investigate the use of nonparametric effect
sizes in the context of families of experiments, and families
of experiments often use repeated measures designs. The
importance of randomized block experiments is that they
are the building blocks we need to develop procedures for
handling four-group duplicated crossover design experi-
ments.

3.1 Analysing Randomized Blocks Experiments

Randomized block experiments are experiments in which
a blocking factor is used either to extend the generality
of the experiment or to reduce extraneous variation. For
example, if we want to extend the generality of a code
reading experiment, we might use two different programs
and two different code reading techniques and assign each
participant to one of the four different conditions (i.e.,
program 1 with technique 1, program 1 with technique 2,
program 2 with technique 1, program 2 with technique 2).
If we are concerned with reducing extraneous variation, we
might assign participants to two blocks on the basis of skill
and then randomize the assignment of participants in each
block to each of the two different techniques.

One way to analyze such a design using a nonparametric
approach is to use a within-block analysis. This means
finding the value of an NP (i.e., nonparametric) effect size
for the two treatment groups in each block and taking the
average of the two values, i.e.,

NPES =
NPES1 +NPES2

2
(29)

NPES1 is the estimate of a specific nonparametric effect
size for block 1, and NPES2 is the estimate of the nonpara-
metric effect size for block 2. Based on the following two
standard statistical results for independent variables x and
y and a constant c:

var(x+ y) = var(x) + var(y)

var(cx) = c2var(x)

we can use the variance of the NPES for each treatment in
each block to estimate the pooled variance of NPES:

var(NPES) =
var(NPES1) + var(NPES2)

4
(30)

If the NP effect size is Cliff’s d, we calculate the variance
of each group using Equation (26). If the NP effect size is
p̂, then calculate the variance of each group using Equa-
tion (15). The pooled variance can then be used to construct
the confidence intervals on NPES. For Cliff’s d, we propose
using the equations for confidence limits reported in Equa-
tion (27) and Equation (28). For p̂, we propose using the sum

of the degrees of freedom from each block to construct the
usual t−distribution-based confidence intervals.

We have provided a function Calc4GroupNPStats in
our reproducer R package [3] to analyze such experi-
ments, assuming two treatment conditions and two blocking
conditions.

3.2 Repeated Measures Experiments
In a review of the meta-analysis methods used in families
of experiments [15], we found that the majority of families
used repeated measures designs for individual experiments
in a family. In particular, they used AB/BA crossover
designs, 4-group AB/BA crossover designs, and one pre-
test/post-test control design. Although many authors used
nonparametric tests for some or all of their individual exper-
iments, they did not discuss the implications of their basic
design.

In this section, we show that if difference measures
are used, both the AB/BA crossover design and the pre-
test/post-test control design can be analyzed as simple
between-group experiments, while the 4-group AB/BA de-
sign can be analyzed as a randomized block experiment.
This means they can be analysed using the non-parametric
methods that we propose.

3.2.1 Pre-test/Post-test Control Design
For a pre-test/post-test control design, participants are ran-
domly allocated to two groups. In the first phase of the
experiment, referred to as TP1, participants perform one or
more software engineering tasks using the standard/control
technique and the same software engineering materials, M1
(e.g., a computer program or a software design document),
and a response value is measured (e.g., the time to complete
the tasks, the number of correct answers to a comprehension
questionnaire, or the number of defects detected). After a
training period, in a second experimental session, referred
to as TP2, participants in group G1 use the new technique
to perform equivalent tasks on the second set of software
engineering materials (M2) and participants in group G2
use the same technique they used in the first session with
materials M2, and the same response variable is measured.
Table 5 reports the expected response outcome values for
a participant yj in group G1 and participant yk in group
G2, for session TP1 and TP2 . We make the standard linear
assumptions that the response values for each participant
will:

• Reflect the specific skill of each participant, which is
modelled as the term µj for participant j.

• Include an adjustment related to the specific session,
which is considered to be zero for the first session
and to be a constant P in the second session and is
the same for participants in each group.

• Include a term that specifies the effect of using tech-
nique A or technique B. Participants in group G1 use
technique A in session 1 and technique B in session
2. Participants in group G2 use technique A in both
sessions.

• Include an adjustment related to the specific software
engineering materials, i.e., M1 in session 1 and M2 in
session 2.
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If we consider the difference (D) between the expected
values for each participant (i.e., the outcome value in session
2 minus the outcome value in session 1), for G1 we have:

D1j = τB − τA + P +M2−M1 (31)

while for G2 we have:

D2k = τA − τA + P +M2−M1 = P +M2−M1 (32)

Therefore, if we conduct a nonparametric analysis of the
difference values in the two groups, we can test whether
the term τb − τa is different from zero. If the confidence
interval includes zero, we cannot reject the hypothesis that
there is no difference between the techniques. Otherwise, if
the lower confidence interval bound is greater than zero,
technique B outperforms technique A, and if the upper
confidence interval bound is less than zero, technique A
outperforms technique B. This is simply a nonparametric
between-group analysis.

3.2.2 AB/BA Crossover Design
The basic design for an AB/BA crossover is similar to that of
the pre-test/post-test control, but instead of using the same
technique as group 1 participants in session 1, participants
in group G2 use technique B and swap to technique A in
session 2 (see Table 6). In addition, a term λA may be added
to the participant effect in G1 to model any interaction effect
due to using method A before using method B, and a term
λB may be added to the participant effect in group G2 to
model the equivalent effect when method B is used first. In
practice, we assume that the interaction terms are zero. Senn
points out that the design is inappropriate if the interaction
terms are nonzero [16]. The expected values for this design
are shown in Table 6. Statistical tests of significance (both
parametric and nonparametric) are based on analyzing the
difference of the differences, which corresponds to testing
whether or not τB − τA = 0

Both the pre-test/post-test control design and the
AB/BA crossover design are more powerful than designs
without repeated measures because the variability due to
different participants is removed. However, an important
difference between the AB/BA crossover design and the
pre-test/post-test control design is that the difference for
AB/BA crossover design is τB−τA−(τA−τB) = 2(τB−τA).
Thus, the crossover is more powerful than the pre-test post-
test design. However, the pre-test post-test design avoids the
issue of spurious interactions between method and order.

For non-parametric analysis of crossover designs, Senn
recommended using a Mann-Whitney between-groups rank
test on the difference data [16]. However, Cliff’s d or p̂ are a
more robust basis for statistical tests [6]. Again, constructing
the confidence intervals for the NP effect sizes allows us to
assess whether there is a significant difference between the
techniques and, if the confidence interval does not include
zero, whether technique A outperforms technique B or vice
versa.

3.2.3 Four-Group Crossover Design
As discussed in [15], the 4-group crossover is currently
popular among SE researchers. The design is basically a
duplicated AB/BA crossover, with the difference between

the two individual AB/BA crossovers being the order in
which the software engineering materials are used. We show
the design in Table 7 along with the expected difference
values (assuming no interaction effects).

The difference values show that Groups 1 and 2 consti-
tute one AB/BA crossover, and Groups 3 and 4 constitute
another. In each pair, the only difference between the ex-
pected values in each group is that one includes the term
τA − τB and the other includes the term τB − τA. Thus,
the difference values in Groups 1 and 2 represent one block
in a randomized block design, and the difference values in
Groups 3 and 4 can represent the other block in a two-way
randomized block design.

Then, if we calculate the specific NP effect size for G1
and G2, and the equivalent effect size for G3 and G4,
and their respective variances, we can use Equation (29)
to calculate the mean value of the NP effect size for the
experiment and Equation (30) to calculate its variance.

3.2.4 The Meaning of Repeated Measures Effect Sizes
When analyzing repeated measures data sets, it is important
to recall that there are two different types of standardized
effect size (see [17] and [13]):

1) The standardized mean difference effect size of the
average personal improvement which is calculated from
difference values.

2) The standardized mean difference effect size of the
difference between treatments, either based on the first
time period data only or based on the average effect
for both time periods).

We have concentrated on the analysis of difference val-
ues in order to confirm that the nonparametric effect sizes
can be used for these more complex designs. However, it is
important to recognize that when effect sizes are aggregated,
you must always aggregate the same type of effect size.
Furthermore, assuming that there is a positive correlation
between repeated measures, you should expect the mag-
nitude of the nonparametric effect sizes based on a per-
sonal improvement to be larger than the magnitude of the
nonparametric effect sizes based on the difference between
treatments. This is the same as the effect for parametric
effect sizes and arises for the same reason. When there is a
positive correlation between repeated measures, taking the
difference removes some of the variability due to differences
between participants. This makes systematic differences due
to differences between treatments easier to detect.

4 THE DISTRIBUTIONS USED IN THE SIMULATION
STUDIES

Our simulation studies reported in [1] were based on four
different distributions: the normal distribution, log-normal
distribution, the gamma distribution, and the Laplace dis-
tribution. We discuss the distributions in more detail in the
following sections

Examples of the four distributions discussed in this
section are shown in Figure 1. For the normal, log-normal
and Laplace distributions, we used µ = 0 and a spread
parameter of 1, for the gamma distribution, we used a shape
parameter equal to 3 and a rate parameter equal to 1. We
show sample sizes of 40 and 1000 for each distribution.
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TABLE 5
Expected Outcome for Participants in a Pre-test/Post-test Control Design

Sequence Participant Session TP1 Session TP2 Difference
Group ID

G1 j y1,1,j = µj + τA + M1 y2,2,j = µj + P + τB + M2 P + τB − τA + M2 − M1
(technique A) (technique B)

G2 k y2,1,k = µk + τA + M1 y1,2,k = µk + τA + P + M2 P + M2 − M1
(technique A) (technique A)

TABLE 6
Expected Outcome for Participants in an AB/BA Crossover Design

Sequence Participant Session TP1 Session TP2 Difference
Group ID (Assuming λA = λB = 0)

G1 j y1,1,j = µj + τA + M1 y2,2,j = µj + P + τB + M2 + λA P + τB − τA + M2 − M1
(technique A) (technique B)

G2 k y2,1,k = µk + τB + M1 y1,2,k = µk + τA + P + M2 + λB P + τA − τB + M2 − M1
(technique B) (technique A)

TABLE 7
Expected Outcome for Participants in an 4-Group Crossover Design

Sequence Participant Session TP1 Session TP2 Difference
Group ID

G1 j y1,1,j = µj + τA + M1 y2,2,j = µj + P + τB + M2 P + τB − τA + M2 − M1
(technique A) (technique B)

G2 k y2,1,k = µk + τB + M1 y1,2,k = µk + τA + P + M2 P + τA − τB + M2 − M1
(technique B) (technique A)

G3 l y1,1,l = µl + τA + M2 y2,2,l = µl + P + τB + M1 P + τB − τA + M1 − M2
(technique A) (technique B)

G4 m y2,1,m = µm + τB + M2 y1,2,m = µm + τA + P + M1 P + τA − τB + M1 − M2
(technique B) (technique A)

We report the sample statistics in Table 8. Skewness is a
measure of lack of symmetry. It is formally defined to be the
third moment about the mean. Kurtosis is formally defined
as the fourth moment about the mean. It was originally
defined in terms of the peakedness and extent of outliers.
Nowadays, it is defined in terms only of the preponderance
of outliers.

Although we used similar parameter values for normal,
log-normal and Laplace distibutions, they exhibited very
different mean and variance estimates on the raw data scale.
This motivated us to to chose parameters for the non-normal
distribution simulations in [1] that delivered mean values
and variance that were, for large samples, equal to the
expected mean and variance of the normal simulations.

It is clear from these results that small sample frequency
plots and parameter estimates can differ widely from those
of large samples.

4.1 The Normal Distribution

Most standard statistical analyses and tests (e.g., t−tests and
analysis of variance and co-variance) assume the underlying
distribution of a data sample is normal. The normal distribu-
tion (also called the Gaussian) is defined by the mean µ and
variance σ2. The mean and variance of a random sample

from a normal population are unbiased estimates of µ and
σ2. The standardized normal distribution has µ = 0 and
σ2 = 1.

The functional form of the normal distribution is:

f(x) =
1√
2πσ2

e
−(x−µ)2

2σ2 (33)

where e is Euler’s constant and π is the constant of the same
name. The standardised normal distribution has µ = 0 and
σ2 = 1 and has the functional form:

f(x) =
1√
2π

e
−x2

2 (34)

Important properties of the normal distribution are:

• If we have a sample from a normal distribution, the
mean and variance of the sample are estimates of the
parameters µ and σ2.

• The parameters µ and σ2 are independent, i.e.,
changing one of the parameter values does not cause
a change in the other parameter.

• Any sample of data from a normal distribution can
be standardized by subtracting the population mean
from each value and dividing by the population
standard deviation (σ). In practice, we subtract the
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TABLE 8
Sample Statics for Simulated Data from Four Distributions

Run ID Mean Median Variance Skewness Kurtosis Outliers

Normal40 -0.128 0.028 0.957 0.356 2.394 0
Normal1000 -0.033 -0.020 0.963 0.093 2.949 6
LogNormal40 1.477 1.061 2.304 -2.316 9.027 3
LogNormal1000 1.606 1.077 3.355 -3.621 23.985 78
Gamma40 3.535 3.367 3.001 -0.931 3.550 1
Gamma1000 3.063 2.692 3.350 -1.153 4.734 27
Laplace40 -0.745 -0.206 2.242 1.312 4.410 3
Laplace1000 0.010 -0.026 2.142 -0.107 4.486 62
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Fig. 1. Histograms and Kernel Density Plots for Simulated Data from Four Distributions

sample mean and divide it by the sample standard
deviation.

• The normal distribution is symmetric about its cen-
tral value, so the mean and median of the distri-
bution are equal. Skewness is a measure of lack of

symmetry, so the theoretical skewness of the normal
distribution is zero. Skewness is formally defined to
be the third moment about the mean, and sample
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skewness is calculated as:
n∑
i

(x− x̄)3

n
(35)

• The theoretical kurtosis of the normal distribution is
3. Kurtosis is formally defined as the fourth moment
about the mean, and sample kurtosis is calculated as:

n∑
i

(x− x̄)4

n
(36)

For our simulation studies, we considered normal popu-
lations from two-group randomized experiments and four-
group randomized block experiments. As is customary for
statistical simulation studies, we simulated samples from
standardized normal distributions with mean values of 0,
0.2, 0.5, and 0.8 to investigate the Type 1 error rate and the
power of the effect sizes. These values are based on Cohen’s
observations of the standardized mean differences found in
psychological studies, where 0.2 is considered a small effect
size, 0.5 is a moderate effect size, and 0.8 is a large effect
size.

For a standard normal distribution, it is simple to calcu-
late the theoretical standardized mean difference effect size
(StdMD = µd

σ ). In the case of a two-group randomized
experiment which has one treatment group and one control
group, the variance is not affected by the treatment if both
groups have mean zero, the StdMD = 0. For any other dif-
ference between two groups, because σ2 = 1, the theoretical
StdMD value equals that difference. In the cases of a four-
group experiment, where each block comprises two groups,
one representing the control condition and the other the
treatment condition, and the variance is unaffected by the
block or the treatment, the mean difference (µd is unaffected
by the block because:

µd =
µt − µc + µt + b− (µc + b)

2
(37)

However, it is not impossible for the variance to be
affected by the treatment. For example, a new software
engineering method could exacerbate the difference be-
tween skilled and less skilled individuals, which would
increase the variance among participants. Alternatively, it
could increase the performance of less skilled individuals
while not affecting the performance of skilled individuals,
which would decrease the variance between participants. In
either case, the variance of one group will be changed, as
will the theoretical variance of the mean difference. Again
we can calculate the theoretical StdMD, for example, for a
two-group randomized block design:

σ2 =
(σ2

t + σ2
c )

2
(38)

and the StdMD will be calculated as:

StdMD =
µt − µc

σ
(39)

We summarize the results of randomized experiments
(i.e., two-group experiments) in Table 9, which show that
increasing the variance of the treatment condition decreases
the theoretical value of StdMD. We summarize the results

of the randomized block (i.e., four-group experiments) in Ta-
ble 10. We show that a blocking effect alone has no impact
on the theoretical value of StdMD. Again, if the treatment
condition leads to a change in the variance, the theoretical
StdMD will be decreased.

TABLE 9
Theoretical Effect Sizes for a Normal Distribution Two-Group

Experiment

µc σc µt σt µd σ2 StdMD

0 1 0 1 0 1 0
0 1 0.20 1 0.2 1 0.2
0 1 0.5 1 0.5 1 0.5
0 1 0.8 1 0.8 1 0.8
0 1 0 1.5 0 1.620 00
0 1 0.2 1.5 0.2 1.620 0.157
0 1 0.5 1.5 0.5 1.620 0.392
0 1 0.8 1.5 0.8 1.620 0.628

TABLE 10
Theoretical Effect Sizes for Normal Distribution Four-Group

Experiments

µc σc µt σt BE µd σ2 StdMD

0 1 0.0 1.0 0.0 0.000 1.000 0.000
0 1 0.2 1.0 0.0 0.200 1.000 0.200
0 1 0.5 1.0 0.0 0.500 1.000 0.500
0 1 0.8 1.0 0.0 0.800 1.000 0.800
0 1 0.0 1.5 0.0 0.000 1.620 0.000
0 1 0.2 1.5 0.0 0.200 1.620 0.157
0 1 0.5 1.5 0.0 0.500 1.620 0.392
0 1 0.8 1.5 0.0 0.800 1.620 0.628
0 1 0.0 1.0 0.5 0.000 1.000 0.000
0 1 0.2 1.0 0.5 0.200 1.000 0.200
0 1 0.5 1.0 0.5 0.500 1.000 0.500
0 1 0.8 1.0 0.5 0.800 1.000 0.800
0 1 0.0 1.5 0.5 0.000 1.620 0.000
0 1 0.2 1.5 0.5 0.200 1.620 0.157
0 1 0.5 1.5 0.5 0.500 1.620 0.392
0 1 0.8 1.5 0.5 0.800 1.620 0.628

Thus, if we know the distribution a sample arises from,
we can observe how close the estimates of parameters and
effect sizes are to their theoretical values. This means that
simulation studies based on a specific experimental design
and a specific distribution can be used to investigate the
accuracy of effect size estimates for different sample sizes.
In addition, since we can simulate multiple samples from
the same distribution and experimental design, we can also
investigate:

• the power of statistical tests to detect non-zero effect
sizes for different sample sizes,

• the rate of Type 1 errors for zero effect sizes which
should estimate the α level of the test irrespective of
sample size.

To compare the effectiveness of standardized effect size
for the two-group randomized experiment with the effec-
tiveness of Cliff’d d and p̂, we need to know the theoretical
value of the non-parametric effect sizes for specific distri-
butions and experimental designs. However, there is no
defined relationship between the parameters of a theoretical
distribution and nonparametric effect sizes constructed from
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random samples. Instead, we calculated large sample values
of the effect sizes.

Since effect sizes get closer to their theoretical value as
sample size increases, we used extremely large samples to
obtain estimates of the large sample nonparametric effect
sizes. To do this:

1) We generated a data set comprising two groups of
independent normally distributed data with ten million
observations per group.

2) We calculated the unstandardized mean difference ef-
fect size (MD), the combined variance (Var), the stan-
dardized mean difference (StdMD), Cliff’s d, and p̂ for
the data set.

3) We did this for each combination of µc, σc, µt, σt shown
in Table 9.

This process generated the results shown in Table 11. The
values correspond to the conditions shown in Table 9. The
estimates of StdMD from the large sample are close to
the theoretical StdMD values; this means that the sample
size is large enough to approximate the theoretical value to
within three decimal places. So, we assume that the large
sample size values of p̂ and Cliff’s d will also be close to the
population values of the nonparametric effect sizes.

Like StdMD, p̂ and Cliff’s d are reduced if the variance
of the treatment condition is increased. This makes sense
because the nonparametric effect sizes are inversely pro-
portional to the extent to which the control and treatment
values overlap5 and increasing the variance of the treatment
group will increase the likelihood of the observations from
the different groups overlapping.

TABLE 11
Large Sample Estimates of Effect Sizes for Normally Distributed

Two-Group Randomised Experiments

Additional p̂ Cliff’s d MD Var StdMD
Variance

No 0.500 0.000 0.001 1.00 0.001
No 0.556 0.113 0.200 1.000 0.200
No 0.638 0.276 0.500 1.000 0.500
No 0.714 0.428 0.800 1.000 0.800
Yes 0.500 -0.000 -0.001 1.625 -0.001
Yes 0.544 0.088 0.200 1.625 0.157
Yes 0.609 0.219 0.501 1.626 0.393
Yes 0.671 0.343 0.801 1.625 0.628

We used a similar process to simulate a four-group ran-
domized block experiment based on four-group data sets.
However, we also investigated the impact of introducing
a non-zero blocking effect which was added to the mean
values of the control and treatment means in one of the
blocks. The results of this analysis are shown in Table 12.
The values for all the effect sizes reported in Table 11 are ex-
tremely close to the equivalent values reported in Table 12,
whether or not the simulation introduced a blocking effect.
This confirms that blocking has no significant impact on
effect sizes obtained using normal data.

5. That is, the more the observations overlap, the closer the effect
sizes are to the null hypothesis condition.

TABLE 12
Large Sample Estimates of Effect Size for Normally Distributed

Four-Group Randomised Experiments

Additional Block p̂ Cliff’s d Md Var StdMD
Variance Effect

No No 0.500 -0.000 -0.000 1.000 -0.000
No No 0.556 0.113 0.200 1.000 0.200
No No 0.638 0.276 0.499 1.000 0.499
No No 0.714 0.428 0.800 1.000 0.800
No Yes 0.500 -0.000 -0.000 1.000 -0.000
No Yes 0.556 0.112 0.200 1.000 0.200
No Yes 0.638 0.276 0.500 1.000 0.500
No Yes 0.714 0.429 0.800 1.000 0.800
Yes No 0.500 -0.000 -0.001 1.625 -0.001
Yes No 0.544 0.088 0.200 1.626 0.157
Yes No 0.609 0.218 0.500 1.625 0.392
Yes No 0.671 0.343 0.800 1.625 0.628
Yes Yes 0.500 0.000 0.000 1.625 0.000
Yes Yes 0.544 0.089 0.200 1.625 0.157
Yes Yes 0.609 0.219 0.501 1.625 0.393
Yes Yes 0.671 0.343 0.800 1.626 0.628

4.2 The Log-Normal Distribution
The log-normal distribution defines a function that is nor-
mally distributed after a logarithmic transformation. The
log-normal distribution is often used in software cost esti-
mation studies to normalize effort and size data and enable
the relationship between effort and size to be represented by
a linear equation.

The functional form of the log-normal distribution is:

f(x) =
1

xσ
√
2π

e
−(ln(x)−µ)2

2σ2 (40)

where µ and σ are the mean and variance of the related
normal distribution, e is Euler’s constant and π is the
constant of the same name, and ln is the logarithm with
base e.

The R system generates log-normal data by specifying
the mean and standard deviation of the log-transformed
data. If we generate log-normal data with mean=µ and
variance=σ2, the mean and variance of the raw data will
be:

mean(X) = eµ+
σ2

2 (41)

variance(X) = (eσ
2

− 1)× e2µ+σ2

(42)

Equations (41) and (42) show the most important property of
the log-normal distribution, that is a functional relationship
between the mean and the variance of data samples from
that distribution.

This means that if we increase the value of µ, we will
increase both the mean of the raw data and the variance
of the raw data. Similarly, increasing σ2, also increases both
the mean and variance of the raw data. Thus, any significant
mean difference effect size will cause variance heterogeneity,
and a fixed block effect will increase the variance of the
data in the affected block. In addition, if we apply the same
values we used for the normal simulations to simulate the
log-normal data, we do not obtain the same effect size on
the raw data scale.

In order to make our simulation results more comparable
for different distributions, we set the parameters for the
log-normal simulations to values that would generate effect
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sizes of (0, 0.2, 0.5, and 0.8) on the raw data scale. This
is shown in rows 1 to 4 of Table 13, which shows the
theoretical effect of comparing two groups, with parameters
µc and σc being the mean and standard deviation of the
normal distribution used to generate the control group data
and µt and σt being the mean and standard deviation of
normal distribution used to generate the treatment group
data. The column µd reports the theoretical mean difference
that should be found on the raw data scale, the column σ2

reports the average variance of the control and treatment
data, StdMD reports the standardized mean difference
effect size. The table shows that if we use µt = 0.2665, the
theoretical standardized effect size should be 0.26.

Rows 1 to 4 in Table 13 show that increasing the mean
difference between the treatment and control means sub-
stantially increases the variance on the raw data scale. Rows
5 to 8 in the table show that if we use the same values of
µt but increase the value of σt from 1 to 1.5, we increase
both the mean difference and variance on the raw data scale,
which results in an increase in the standardized mean dif-
ference effect size. In fact, even if µc = µt = 0, the expected
value standardized mean difference will be approximately
0.219. This result confirms that analyzing log-normal data
using standard parametric methods without applying the
appropriate transformation will deliver invalid results.

TABLE 13
Theoretical Parametric Effect Sizes for Two-Group Log-Normal Data

µc σc µt σt µd σ2 StdMD

0 1 0.00000 1.00 0.000 4.67 0.000
0 1 0.26600 1.00 0.502 6.31 0.200
0 1 0.72375 1.00 1.750 12.30 0.500
0 1 1.43633 1.00 5.280 43.60 0.800
0 1 0.00000 1.50 1.430 42.60 0.219
0 1 0.26600 1.50 2.370 70.90 0.282
0 1 0.72375 1.50 4.700 174.00 0.357
0 1 1.43633 1.50 11.300 714.00 0.423

Table 14 shows the theoretical effect of comparing four
groups in a randomized block design. For each block, we use
the same values for µc and σc and µt and σt. The difference
between the blocks is modelled by the term BE, which is
added to the mean values in the second block. The columns
MD, Var, and StdMD report, respectively, the theoretical
mean difference, the variance, and the standardized mean
difference on the raw data scale. Rows 1 to 8 in the table
report the outcomes when the block effect is set to zero,
while rows 9 to 16 show the theoretical effect sizes when
there is a block effect. Rows 1 to 8 are exactly the same
as Table 13. This confirms that if there is no block effect,
there should be no significant difference between the results
of analyzing the 2-group data and the results of analyzing
the 4-group data.

Rows 9 to 16 in Table 14 show the effect of introducing a
positive blocking effect. Rows 9 to 12 use the same variance
for the control and treatment conditions, while rows 13 to 14
increase the variance for the treatment condition. The results
suggest that block effects have a substantial impact on µ and

6. This value and the other values used to achieve standardized effect
sizes of 0.5 and 0.8 on the raw data were found by manual iteration (i.e.,
trial and error).

σ2 and a relatively small impact on StdMD. These results
are not consistent with the results we would expect if the
data were analyzed after a normal transformation.

TABLE 14
Theoretical Parametric Effect Sizes for Four-Group Log-Normal Data

µc σc µt σt BE µd σ2 StdMD

0 1 0.00000 1.0 0.0 0.000 4.67 0.000
0 1 0.26600 1.0 0.0 0.502 6.31 0.200
0 1 0.72375 1.0 0.0 1.750 12.30 0.500
0 1 1.43633 1.0 0.0 5.280 43.60 0.800
0 1 0.00000 1.5 0.0 1.430 42.60 0.219
0 1 0.26600 1.5 0.0 2.370 70.90 0.282
0 1 0.72375 1.5 0.0 4.700 174.00 0.357
0 1 1.43633 1.5 0.0 11.300 714.00 0.423
0 1 0.00000 1.0 0.5 0.000 8.68 0.000
0 1 0.26600 1.0 0.5 0.665 11.70 0.194
0 1 0.72375 1.0 0.5 2.320 22.80 0.486
0 1 1.43633 1.0 0.5 7.000 81.10 0.777
0 1 0.00000 1.5 0.5 1.900 79.20 0.213
0 1 0.26600 1.5 0.5 3.140 132.00 0.273
0 1 0.72375 1.5 0.5 6.230 323.00 0.347
0 1 1.43633 1.5 0.5 15.000 1330.00 0.411

We simulated the large sample estimates of p̂, Cliff’s
d and StdMD using the same process described in Sec-
tion 4.1, using log-normal data with µt values of (0, 0.266,
0.72375, 1.43633). This process generated the results shown
in Table 15. The values correspond to the conditions shown
in Table 13. The large sample StdMD estimates are close
to the theoretical StdMD values, however, p̂ and Cliff’s d
behave differently. Table 13 rows 5 to 8 show:

• In the case when there is additional variation but
there is no difference between the values of µc and
µt, the StdMD value is significantly different from 0.
In fact, it is larger than the value we would usually
call a small effect size. In contrast, p̂ and Cliff’s d
have values very close to their null values of 0.5 and
0, respectively.

• In the case where there is additional variation and
µc ̸= µt, StdMD values increase at a much slower
rate than when there is no increase in the variance,
for example, for the largest treatment difference, the
value of StdMD is equivalent to a medium effect.
The values of p̂ and Cliff’s d are lower than they were
when there was no additional variance, but the effect
size increase remains consistent with interpretations
of small, medium, and large effects.

This is an example of strong disagreement between the
parametric effect size and the nonparametric effect sizes.
Furthermore, since applying an appropriate normalizing
transformation to the raw data would reproduce the values
that generated the data, it confirms that analyzing the raw
data with parametric methods would give a misleading
assessment of the efficacy of a method or technique, while
the nonparametric effect sizes would not.

The large sample effect sizes for the four-group ran-
domized blocks experimental design are shown in Table 16.
It is noticeable that the nonparametric effect sizes are not
affected by the blocking factor.
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TABLE 15
Large Sample Effect Sizes for Two-Group Log-Normal Experiments

Additional p̂ Cliff’s d MD Var StdMD
Variance

No 0.500 -0.000 -0.002 4.673 -0.001
No 0.574 0.148 0.499 6.303 0.199
No 0.695 0.391 1.752 12.273 0.500
No 0.845 0.690 5.279 43.384 0.801
Yes 0.500 -0.000 1.430 41.784 0.221
Yes 0.559 0.117 2.369 69.973 0.283
Yes 0.656 0.312 4.708 174.973 0.356
Yes 0.787 0.574 11.286 706.874 0.424

TABLE 16
Large Sample Estimates of Effect Size for Log-Normally Distributed

Four-Group Randomised Experiments

Additional Block p̂ Cliff’s d MD Var StdMD
Variance Effect

No No 0.500 0.000 0.001 4.669 0.000
No No 0.575 0.149 0.502 6.307 0.200
No No 0.696 0.391 1.750 12.249 0.500
No No 0.845 0.690 5.286 43.622 0.800
No Yes 0.500 0.000 0.000 8.690 0.000
No Yes 0.575 0.149 0.667 11.755 0.195
No Yes 0.696 0.391 2.316 22.786 0.485
No Yes 0.845 0.690 6.997 80.842 0.778
Yes No 0.500 0.000 1.434 41.630 0.222
Yes No 0.559 0.117 2.370 70.486 0.282
Yes No 0.656 0.312 4.704 174.34 0.356
Yes No 0.787 0.574 11.308 729.93 0.419
Yes Yes 0.500 -0.000 1.895 78.71 0.214
Yes Yes 0.559 0.117 3.129 128.27 0.276
Yes Yes 0.656 0.312 6.231 327.77 0.344
Yes Yes 0.787 0.574 14.974 1388.1 0.402

4.3 The Gamma Distribution

The gamma distribution has two parameters referred to as
the rate (β) and shape (α) parameters. The gamma distribu-
tion is defined as:

x =
βα

Γ(α)
xα−1e−βx (43)

In software engineering, the shape might be used to
represent the amount of work to be done, and the rate
parameter would then represent the effort per unit of work.
This is the basic idea behind the Putnam model [18]. The
mean of a gamma distribution is:

mean =
α

β
(44)

where β > 0 and α > 0. So, for example, if your overall
workload (α) is 200 function points and your work rate
(β) is 2 function points per day, simple arithmetic would
indicate the workload would take 100 days to complete,
corresponding to the mean of the gamma distribution with
rate=2 and shape=200. The variance of a gamma distribution
is:

variance =
α

β2
(45)

with an equivalent formula being:

variance =
mean

β
(46)

Thus, like the log-normal distribution, changes to the rate
or the shape of the gamma distribution not only change the
mean of a simulated data set but also change the variance.

In the context of software engineering experiments, the
gamma distribution is relevant to experiments that investi-
gate whether a technique increases the efficiency or produc-
tivity of a specific task. This would correspond to investigat-
ing whether a technique increases in the rate parameter of a
gamma distribution, which in turn would decrease the mean
of the raw data sample. In contrast to the way we modelled
block effects for normal data, we assume that differences in
the complexity of tasks or software development artefacts
used in experiments investigating efficiency will change the
shape parameter (i.e., the measure of the amount of work
to be done) not the rate parameter (i.e., a measure of the
efficiency with which the work is performed).

For other distributions, we assumed that the treatment
was expected to increase the mean of the raw data, so we
calculated the mean difference as:

MD = MDT −MDC (47)

For positive effect sizes, this lead to positive values for
StdMD and Cliff’s d values and values of p̂ > 0.5. In con-
trast, for the gamma distribution, if the treatment increases
the rate parameter, the outcome of using Equation (47) is
to reduce the MDT value compared with the MDC value.
Thus, for a positive increase in the rate values, using Equa-
tion (47) leads to negative values of StdMD and Cliff’s d,
and values of p̂ < 0.5.

For all our gamma distribution simulations, we set our
control conditions for both two-group and four-group ex-
periments to rate = 1 and shape = 3. We found, by
manual iteration, that for zero and negative standardized
mean differences of 0, −0.2, −0.5, and −0.8, the appropriate
values of the mean difference are (0, 0.1225, 0.3415, 0.6224).
However, for zero and positive standardized mean differ-
ence effects of 0, 0.2, 0.5, and 0.8, appropriate values of the
mean difference are (0, -0.1095, -0.2545, -0.3838).

For the gamma distribution, we did not consider the
impact of variance heterogeneity other than the impact of
introducing a block effect in four-group experiments. The re-
lationship between the shape and rate parameter makes the
concept of heterogeneity difficult to understand and model.
Furthermore, it is unnecessary to consider this issue (other
than via changes to the block parameter) to investigate
the accuracy and power of nonparametric effect sizes for
individual experiments. For the meta-analysis, we applied
a small random change to the rate parameter in order to
model the differences between individual experiments in a
family.

The theoretical standardized effect size, variance, and
standardized effect size for a two-group randomized ex-
perimental design are shown in Table 17. The first four
rows show the expected raw data parameter values when
the rate parameter is zero or positive. The last four rows
show the expected raw data parameter values when the rate
parameter is zero or negative.

Table 18 shows the theoretical parameter values and
effect sizes for the gamma distribution based on a four-
group randomized block design. For negative and positive
effect sizes, we report the impact of both a zero block effect
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TABLE 17
Theoretical Effect Sizes for a Two-Group Randomised Experiments

based Gamma Data

Ratec Shapec Ratet Shapet µd σ2 StdMD

1 3 1.0000 3.0 0.000 3.00 0
1 3 1.1225 3.0 -0.327 2.69 -0.2
1 3 1.3415 3.0 -0.764 2.33 -0.5
1 3 1.6224 3.0 -1.150 2.07 -0.8

1 3 1.0000 3.0 0.000 3 0
1 3 0.8905 3.0 0.369 3.39 0.2
1 3 0.7455 3.0 1.020 4.20 0.5
1 3 0.6162 3.0 1.870 5.48 0.8

TABLE 18
Theoretical Effect Sizes for a Four-Group Randomised Block

Experiments based on Gamma Data

Ratec Shc Ratet Sht BE µd σ2 StdMD
1 3 1 3 0 0 3.000 0
1 3 1.123 3 0 -0.327 2.690 -0.200
1 3 1.341 3 0 -0.764 2.330 -0.500
1 3 1.622 3 0 -1.150 2.070 -0.800
1 3 1 3 0.5 0 3.250 0
1 3 1.123 3 0.5 -0.355 2.910 -0.208
1 3 1.341 3 0.5 -0.827 2.530 -0.520
1 3 1.622 3 0.5 -1.250 2.240 -0.833

1 3 1 3 0 0 3 0
1 3 0.8905 3 0 0.369 3.39 0.2
1 3 0.7455 3 0 1.02 4.20 0.5
1 3 0.6162 3 0 1.87 5.45 0.8
1 3 1 3 0.5 0 3 0
1 3 0.8905 3 0.5 0.4 3.67 0.208
1 3 0.7455 3 0.5 1.11 4.55 0.520
1 3 0.6162 3 0.5 2.02 5.90 0.833

and a non-zero block effect of 0.5 applied to the shape
parameter. The table confirms that the block effect increases
both the mean difference and the variance of the raw data
and leads to a small increase in the standardized mean
difference that increases as the mean difference increases.

TABLE 19
Large Sample Size Effect Sizes for a Two-Group Randomised

Experiments based on Gamma Data

p̂ Cliff’s d MD Var StdMD

0.500 0.000 0.001 2.999 0.000
0.446 -0.108 -0.327 2.689 -0.199
0.365 -0.270 -0.764 2.333 -0.500
0.286 -0.429 -1.151 2.070 -0.800

0.500 0.000 0.001 3.000 0.000
0.554 0.108 0.369 3.390 0.200
0.635 0.269 1.023 4.200 0.499
0.715 0.429 1.870 5.449 0.801

The large sample size nonparametric effect sizes for two-
group randomized experimental designs is shown in Ta-
ble 19. For gamma data, the nonparametric effect sizes p̂ and
Cliff’s d change in a manner consistent with the changes to
the theoretical StdMD values when the shape parameter is
increased. I.e., when there is no difference between the rates
in the control and treatment group but the shape parameter
is increased, the values of p̂, Cliff’s d, and StdMD are all

TABLE 20
Large Sample Size Effect Sizes for a Four-Group Randomised Block

Experiments based on Gamma Data

Block p̂ Cliff’s d MD Var StdMD
Effect

No 0.500 0.000 0.001 2.998 0.000
No 0.446 -0.108 -0.327 2.691 -0.200
No 0.365 -0.269 -0.763 2.333 -0.499
No 0.286 -0.428 -1.151 2.071 -0.800
Yes 0.500 0.000 0.000 3.250 0.000
Yes 0.444 -0.113 -0.355 2.914 -0.208
Yes 0.359 -0.281 -0.829 2.528 -0.521
Yes 0.277 -0.445 -1.247 2.242 -0.833

No 0.500 0.000 0.000 3.001 0.000
No 0.554 0.108 0.369 3.391 0.201
No 0.635 0.270 1.024 4.198 0.500
No 0.714 0.429 1.869 5.454 0.800
Yes 0.500 0.000 0.000 3.250 0.000
Yes 0.556 0.113 0.399 3.673 0.208
Yes 0.640 0.281 1.111 4.549 0.521
Yes 0.723 0.445 2.024 5.901 0.833

consistent with a small increase in the magnitude of the
effect size.

The large sample effect sizes for four-group randomized
experiments are shown in Table 20.

4.4 Laplace Distribution Simulations
The Laplace distribution is a symmetrical distribution with
a relatively large number of outliers. It has two parameters,
a location parameter µ and a scale parameter b. It has
not been used in software engineering research but does
provide a useful contrast to normally distributed data with
respect to its excessive number of outliers, but, in contrast
to the skewed log-normal and gamma distributions, it is a
symmetric distribution.

It is not generated by the R package, so we generated
Laplace data by obtaining random variables from the uni-
form distribution in the interval (-1/2,1/2), then

X = µ− b× sgn(U)× ln(1− 2|U |) (48)

where X is a random variable from the Laplace distribution,
U is a random variable from a uniform distribution, sgn(U)
denotes a function that identifies the sign of U and ln
denotes the natural logarithm.

Given parameters µ and b, the expected mean value of a
Laplace data set is:

mean = µ (49)

and its variance is:

variance = 2× b2 (50)

Like the normal distribution, the mean and the variance
of the Laplace distribution are functionally independent. We
set the control condition to have µ = 0 and b = 1 and
found by manual iteration values for the treatment mean
that would lead to a standardized mean differences effect
size of (0, 0.2,0.5, 0,8). The two-group theoretical effect sizes
are shown in Table 21, and the four-group theoretical effect
sizes are shown in Table 22. These tables show that data sets
from the Laplace distribution behave in a similar manner to
normal data sets:
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• The effect sizes for the two-group and four-group
experimental designs are almost identical.

• Block effects that apply to mean values do not change
effect sizes.

• Increasing the value of b increases the variance of
the treatment group and decreases the standardized
effect size.

TABLE 21
Theoretical Effect Sizes for a Two-Group Randomised Experiments

based on Laplace Data

µc bc µt bt µd σ2 StdMD

0 1 0.000000 1.0 0.000 2.00 0.000
0 1 0.283000 1.0 0.283 2.00 0.200
0 1 0.707104 1.0 0.707 2.00 0.500
0 1 1.131374 1.0 1.131 2.00 0.800
0 1 0.000000 1.5 0.000 3.25 0.000
0 1 0.283000 1.5 0.283 3.25 0.157
0 1 0.707104 1.5 0.707 3.25 0.392
0 1 1.131374 1.5 1.131 3.25 0.628

TABLE 22
Theoretical Effect Sizes for a Four-Group Randomised Block

Experiments based on Laplace Data

µc bc µt bt BE µd σ2 StdMD

0 1 0.00000 1.0 0.0 0.000 2.00 0.000
0 1 0.28300 1.0 0.0 0.283 2.00 0.200
0 1 0.70710 1.0 0.0 0.707 2.00 0.500
0 1 1.13137 1.0 0.0 1.130 2.00 0.800
0 1 0.00000 1.5 0.0 0.000 3.25 0.000
0 1 0.28300 1.5 0.0 0.283 3.25 0.157
0 1 0.70710 1.5 0.0 0.707 3.25 0.392
0 1 1.13137 1.5 0.0 1.130 3.25 0.628
0 1 0.00000 1.0 0.5 0.000 2.00 0.000
0 1 0.28300 1.0 0.5 0.283 2.00 0.200
0 1 0.70710 1.0 0.5 0.707 2.00 0.500
0 1 1.13137 1.0 0.5 1.130 2.00 0.800
0 1 0.00000 1.5 0.5 0.000 3.25 0.000
0 1 0.28300 1.5 0.5 0.283 3.25 0.157
0 1 0.70710 1.5 0.5 0.707 3.25 0.392
0 1 1.13137 1.5 0.5 1.130 3.25 0.628

Large sample size nonparametric effect size values for
two-group experiments are shown in Table 23 and for four-
group experiments are shown in Table 24. The results are
similar to the results for the Normal distribution. Blocking
has a negligible impact on the effect sizes but they are
reduced in the presence of heterogeneity.

5 SIMULATIONS OF FOUR-GROUP RANDOMIZED
BLOCKS EXPERIMENTS

In this section, we report simulation studies results of
four-group randomized block experiments and simulation
studies of meta-analysis of two-group and four-group. The
simulation details and graphical summaries of the results
can be found in [1].

Table 25 includes the results for the simulations of
four-group single experiments. The information in the Data
Type column identifies the data distributions, which is N
for Normal, Lap for Laplace, L for Lognormal and G for

TABLE 23
Large Sample Size Effect Sizes for Two-Group Randomised

Experiments based on Laplace Data

Additional p̂ Cliff’s d MD Var StdMD
Variance

No 0.500 0.001 0.002 2.001 0.001
No 0.570 0.140 0.283 2.002 0.200
No 0.666 0.333 0.707 2.000 0.500
No 0.747 0.495 1.131 1.998 0.800
Yes 0.500 -0.000 -0.001 3.251 -0.000
Yes 0.556 0.112 0.282 3.248 0.156
Yes 0.636 0.272 0.709 3.249 0.393
Yes 0.706 0.411 1.131 3.253 0.627

TABLE 24
Large Sample Size Effect Sizes for Four-Group Randomised Block

Experiments based on Laplace Data

Additional Block p̂ Cliff’s d MD Var StdMD
Variance Effect

No No 0.500 0.000 0.000 2.000 0.000
No No 0.570 0.140 0.283 1.999 0.200
No No 0.666 0.333 0.707 1.999 0.500
No No 0.747 0.495 1.131 1.999 0.800
No Yes 0.500 0.000 0.000 2.000 0.000
No Yes 0.570 0.140 0.284 2.000 0.201
No Yes 0.666 0.332 0.707 2.000 0.500
No Yes 0.747 0.495 1.131 2.000 0.800
Yes No 0.500 -0.000 -0.000 3.249 -0.000
Yes No 0.556 0.112 0.283 3.251 0.157
Yes No 0.636 0.271 0.707 3.250 0.392
Yes No 0.706 0.411 1.131 3.249 0.627
Yes Yes 0.500 0.000 0.001 3.250 0.000
Yes Yes 0.556 0.112 0.284 3.250 0.157
Yes Yes 0.635 0.271 0.707 3.249 0.392
Yes Yes 0.706 0.411 1.130 3.251 0.627

Gamma. The symbol “-H” is used to identify whether the
simulations in a specific row were simulated with additional
variance heterogeneity for one block. The Mean Diff column
specifies that the difference between the control group mean
and treatment group mean corresponded to a Small (S)
difference (i.e., an intended 0.2 standardized mean differ-
ence on the raw data scale), Medium (M) difference (i.e.,
an intended 0.5 standardized mean difference on the raw
data scale) or a Large (L) difference (i.e., an intended 0.8
standardized mean difference on the raw data scale). The
column labelled Block Included indicates whether the group
design included a fixed block effect. The Power Difference,
Bias and MdMRE values were all multiplied by 100 to
improve readability. Other tables include similarly labelled
information.
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TABLE 25: Four-Group Experiment Simulation Results

Data Block Group Mean NP StdMD NP StdMD PHat Cliffd StdMD PHat Cliffd StdMD CliffPower PHatPower
Type Included Size Diff Bias Bias PMdMRE PMdMRE Observed Observed Observed Power Power Power Difference Difference

1 N Yes 5 S 1.35 4.81 171.43 154.13 0.557 0.114 0.210 0.102 0.089 0.106 -1.670 -0.410
2 N Yes 5 M 0.30 4.96 59.42 62.36 0.638 0.277 0.525 0.250 0.225 0.270 -4.470 -1.940
3 N Yes 5 L 0.30 4.99 40.19 39.71 0.715 0.429 0.840 0.482 0.441 0.513 -7.240 -3.080
4 N Yes 10 S 1.99 3.61 114.29 109.68 0.557 0.114 0.207 0.146 0.132 0.158 -2.650 -1.180
5 N Yes 10 M 0.94 2.84 44.93 44.27 0.639 0.279 0.514 0.437 0.416 0.460 -4.340 -2.280
6 N Yes 10 L 0.58 2.64 26.17 28.32 0.715 0.430 0.821 0.768 0.748 0.797 -4.910 -2.850
7 N Yes 15 S 3.64 4.09 90.48 87.25 0.558 0.116 0.208 0.184 0.173 0.193 -2.020 -0.940
8 N Yes 15 M 1.18 2.45 35.27 35.06 0.640 0.279 0.512 0.585 0.569 0.616 -4.750 -3.080
9 N Yes 15 L 0.72 2.04 21.08 22.38 0.716 0.431 0.816 0.907 0.899 0.923 -2.440 -1.590

10 N Yes 20 S 1.25 1.61 78.57 75.46 0.557 0.113 0.203 0.216 0.205 0.225 -2.060 -0.970
11 N Yes 20 M 0.41 1.25 30.43 30.64 0.639 0.277 0.506 0.693 0.679 0.719 -3.990 -2.610
12 N Yes 20 L 0.25 1.16 17.99 19.62 0.715 0.429 0.809 0.961 0.958 0.969 -1.120 -0.890
13 N Yes 40 S 1.53 1.46 55.69 53.50 0.557 0.114 0.203 0.344 0.337 0.358 -2.140 -1.440
14 N Yes 40 M 0.52 0.86 21.65 21.88 0.639 0.277 0.504 0.919 0.917 0.931 -1.430 -1.230
15 N Yes 40 L 0.29 0.71 12.97 13.98 0.715 0.429 0.806 1.000 1.000 1.000 -0.040 -0.040

16 N-H Yes 5 S -1.43 2.36 218.18 200.64 0.543 0.087 0.161 0.086 0.075 0.088 -1.270 -0.160
17 N-H Yes 5 M -0.68 4.40 83.49 80.80 0.608 0.217 0.409 0.189 0.169 0.198 -2.940 -0.950
18 N-H Yes 5 L -0.16 4.75 52.05 51.14 0.671 0.341 0.658 0.333 0.304 0.361 -5.730 -2.790
19 N-H Yes 10 S -2.01 0.03 145.45 136.69 0.543 0.086 0.157 0.111 0.100 0.118 -1.840 -0.710
20 N-H Yes 10 M -0.54 1.55 55.96 55.44 0.608 0.217 0.398 0.302 0.282 0.325 -4.350 -2.280
21 N-H Yes 10 L -0.22 1.77 34.50 34.92 0.671 0.341 0.639 0.576 0.552 0.616 -6.450 -4.040
22 N-H Yes 15 S -1.42 -0.91 115.15 110.18 0.543 0.087 0.156 0.134 0.127 0.142 -1.580 -0.900
23 N-H Yes 15 M -0.29 0.69 44.95 44.32 0.609 0.217 0.395 0.409 0.393 0.436 -4.240 -2.660
24 N-H Yes 15 L -0.13 0.93 28.53 28.29 0.671 0.342 0.634 0.732 0.719 0.772 -5.320 -4.030
25 N-H Yes 20 S 0.08 1.03 101.70 97.68 0.544 0.088 0.159 0.163 0.157 0.172 -1.540 -0.900
26 N-H Yes 20 M 0.17 1.24 40.37 39.78 0.609 0.218 0.397 0.504 0.491 0.535 -4.400 -3.110
27 N-H Yes 20 L 0.22 1.13 24.71 24.96 0.671 0.343 0.635 0.839 0.831 0.867 -3.590 -2.760
28 N-H Yes 40 S 0.03 -0.13 71.59 69.21 0.544 0.088 0.157 0.241 0.235 0.255 -1.950 -1.370
29 N-H Yes 40 M 0.05 0.35 28.15 27.69 0.609 0.218 0.393 0.761 0.755 0.789 -3.420 -2.820
30 N-H Yes 40 L 0.11 0.31 17.03 17.58 0.671 0.342 0.630 0.981 0.981 0.989 -0.820 -0.750

31 Lap Yes 5 S 0.87 11.53 128.57 157.25 0.571 0.141 0.223 0.119 0.104 0.107 -0.310 1.180
32 Lap Yes 5 M 0.78 10.57 51.81 64.99 0.667 0.335 0.553 0.324 0.293 0.289 0.440 3.520
33 Lap Yes 5 L 0.66 10.35 29.55 42.55 0.749 0.497 0.883 0.581 0.540 0.539 0.070 4.200
34 Lap Yes 10 S -0.85 4.16 92.86 109.75 0.569 0.139 0.208 0.179 0.162 0.155 0.700 2.410
35 Lap Yes 10 M -0.22 4.47 35.54 45.31 0.666 0.331 0.522 0.550 0.521 0.475 4.570 7.460
36 Lap Yes 10 L -0.08 4.57 23.08 30.00 0.747 0.494 0.837 0.865 0.851 0.796 5.440 6.840
37 Lap Yes 15 S -1.20 1.84 71.43 88.21 0.569 0.138 0.204 0.224 0.211 0.187 2.400 3.650
38 Lap Yes 15 M -0.28 2.50 29.05 35.84 0.666 0.331 0.512 0.711 0.695 0.613 8.220 9.760
39 Lap Yes 15 L -0.14 2.68 17.86 23.56 0.747 0.493 0.821 0.963 0.960 0.915 4.460 4.790
40 Lap Yes 20 S 0.44 3.64 60.71 77.13 0.570 0.141 0.207 0.277 0.266 0.234 3.110 4.270
41 Lap Yes 20 M 0.55 2.97 24.70 31.45 0.667 0.334 0.515 0.829 0.820 0.726 9.440 10.340
42 Lap Yes 20 L 0.38 2.82 14.98 20.64 0.748 0.496 0.823 0.990 0.989 0.967 2.210 2.260
43 Lap Yes 40 S -0.09 1.71 44.20 54.31 0.570 0.140 0.203 0.450 0.443 0.357 8.610 9.380
44 Lap Yes 40 M 0.17 1.29 17.73 22.58 0.666 0.333 0.506 0.980 0.979 0.938 4.140 4.200
45 Lap Yes 40 L 0.17 1.20 10.93 14.94 0.747 0.495 0.810 1.000 1.000 1.000 0.020 0.020

46 Lap-H Yes 5 S -0.40 10.22 171.43 201.19 0.556 0.112 0.173 0.097 0.086 0.089 -0.310 0.820
47 Lap-H Yes 5 M 0.30 11.18 62.36 82.52 0.636 0.272 0.436 0.240 0.217 0.213 0.370 2.730
48 Lap-H Yes 5 L 0.06 11.26 41.75 53.44 0.706 0.412 0.699 0.442 0.408 0.398 1.050 4.460
49 Lap-H Yes 10 S -0.31 4.66 117.86 140.84 0.556 0.112 0.164 0.146 0.133 0.130 0.380 1.610
50 Lap-H Yes 10 M -0.18 5.19 47.60 58.44 0.635 0.271 0.412 0.411 0.389 0.350 3.870 6.100
51 Lap-H Yes 10 L 0.00 5.17 28.64 37.82 0.706 0.412 0.660 0.712 0.690 0.622 6.890 8.990
52 Lap-H Yes 15 S 0.13 2.97 91.27 111.62 0.556 0.112 0.162 0.175 0.163 0.146 1.670 2.880
53 Lap-H Yes 15 M -0.05 3.50 36.12 46.33 0.635 0.271 0.406 0.548 0.530 0.452 7.820 9.650
54 Lap-H Yes 15 L -0.19 3.49 22.98 30.00 0.706 0.411 0.650 0.866 0.856 0.776 8.020 9.010
55 Lap-H Yes 20 S -0.18 2.17 78.57 98.94 0.556 0.112 0.160 0.208 0.199 0.175 2.340 3.220
56 Lap-H Yes 20 M -0.26 2.50 31.92 40.39 0.635 0.270 0.402 0.661 0.645 0.541 10.410 11.920
57 Lap-H Yes 20 L -0.31 2.44 19.90 26.27 0.705 0.411 0.643 0.939 0.936 0.869 6.700 7.010
58 Lap-H Yes 40 S 0.51 2.23 56.25 69.29 0.556 0.113 0.161 0.331 0.325 0.265 5.960 6.570
59 Lap-H Yes 40 M 0.05 1.71 22.28 28.14 0.636 0.271 0.399 0.903 0.900 0.796 10.390 10.690
60 Lap-H Yes 40 L -0.11 1.43 14.08 18.29 0.706 0.412 0.637 0.999 0.999 0.990 0.930 0.950

61 L No 5 S -3.38 15.47 126.67 167.24 0.572 0.145 0.231 0.123 0.107 0.084 2.350 3.950
62 L No 5 M -1.08 22.75 42.86 59.58 0.694 0.388 0.614 0.411 0.378 0.288 9.030 12.310
63 L No 5 L -0.41 34.56 18.84 36.59 0.844 0.687 1.077 0.887 0.838 0.697 14.080 18.970
64 L No 10 S -1.39 12.57 86.67 114.48 0.574 0.148 0.225 0.196 0.180 0.157 2.300 3.860
65 L No 10 M -0.34 16.74 28.57 40.78 0.695 0.391 0.584 0.688 0.666 0.569 9.740 11.900
66 L No 10 L -0.01 24.16 11.59 27.58 0.845 0.690 0.993 0.995 0.993 0.951 4.280 4.400
67 L No 15 S -2.17 9.36 67.41 89.75 0.573 0.147 0.219 0.245 0.232 0.196 3.640 4.960
68 L No 15 M -0.80 13.04 23.58 31.95 0.694 0.389 0.565 0.844 0.833 0.724 10.880 11.960
69 L No 15 L -0.17 18.90 10.14 22.83 0.844 0.689 0.951 1.000 1.000 0.990 1.000 1.010
70 L No 20 S 0.32 10.18 56.67 78.21 0.575 0.150 0.220 0.306 0.294 0.248 4.560 5.800
71 L No 20 M 0.07 12.07 20.28 27.72 0.696 0.392 0.560 0.931 0.926 0.831 9.480 10.020
72 L No 20 L 0.23 16.75 8.33 20.50 0.846 0.692 0.934 1.000 1.000 0.998 0.250 0.250
73 L No 40 S -0.33 6.23 41.25 53.28 0.575 0.150 0.212 0.494 0.486 0.389 9.720 10.470
74 L No 40 M -0.15 7.76 14.32 19.75 0.696 0.391 0.539 0.998 0.998 0.971 2.690 2.700
75 L No 40 L 0.04 10.77 5.89 15.82 0.845 0.690 0.886 1.000 1.000 1.000 0.010 0.010

76 L Yes 5 S -3.38 19.04 126.67 172.90 0.572 0.145 0.231 0.123 0.107 0.084 2.350 3.950
77 L Yes 5 M -1.08 26.29 42.86 62.34 0.694 0.388 0.614 0.411 0.378 0.288 9.030 12.310
78 L Yes 5 L -0.41 38.55 18.84 39.52 0.844 0.687 1.077 0.887 0.838 0.697 14.080 18.970

Continued on next page



17

TABLE 25 – continued from previous page

Data Block Group Mean NP StdMD NP StdMD PHat Cliffd StdMD PHat Cliffd StdMD CliffPower PHatPower
Type Included Size Diff Bias Bias PMdMRE PMdMRE Observed Observed Observed Power Power Power Difference Difference

79 L Yes 10 S -1.39 16.05 86.67 118.24 0.574 0.148 0.225 0.196 0.180 0.157 2.300 3.860
80 L Yes 10 M -0.34 20.11 28.57 42.73 0.695 0.391 0.584 0.688 0.666 0.569 9.740 11.900
81 L Yes 10 L -0.01 27.84 11.59 29.83 0.845 0.690 0.993 0.995 0.993 0.951 4.280 4.400
82 L Yes 15 S -2.17 12.74 67.41 92.55 0.573 0.147 0.219 0.245 0.232 0.196 3.640 4.960
83 L Yes 15 M -0.80 16.29 23.58 33.59 0.694 0.389 0.565 0.844 0.833 0.724 10.880 11.960
84 L Yes 15 L -0.17 22.42 10.14 25.20 0.844 0.689 0.951 1.000 1.000 0.990 1.000 1.010
85 L Yes 20 S 0.32 13.59 56.67 80.96 0.575 0.150 0.220 0.306 0.294 0.248 4.560 5.800
86 L Yes 20 M 0.07 15.30 20.28 29.50 0.696 0.392 0.560 0.931 0.926 0.831 9.480 10.020
87 L Yes 20 L 0.23 20.21 8.33 22.77 0.846 0.692 0.934 1.000 1.000 0.998 0.250 0.250
88 L Yes 40 S -0.33 9.51 41.25 55.22 0.575 0.150 0.212 0.494 0.486 0.389 9.720 10.470
89 L Yes 40 M -0.15 10.86 14.32 21.02 0.696 0.391 0.539 0.998 0.998 0.971 2.690 2.700
90 L Yes 40 L 0.04 14.04 5.89 18.00 0.845 0.690 0.886 1.000 1.000 1.000 0.010 0.010

91 G No 5 S 3.77 7.98 174.07 153.97 0.444 -0.112 -0.216 0.104 0.091 0.104 -1.300 0.040
92 G No 5 M 1.19 5.88 62.96 60.13 0.363 -0.273 -0.529 0.247 0.220 0.257 -3.690 -1.070
93 G No 5 L 0.90 5.96 40.19 37.09 0.284 -0.432 -0.848 0.483 0.445 0.519 -7.430 -3.610
94 G No 10 S -1.99 -0.67 118.52 108.02 0.447 -0.106 -0.199 0.136 0.121 0.144 -2.360 -0.860
95 G No 10 M -0.73 0.97 44.44 42.73 0.366 -0.268 -0.505 0.418 0.394 0.456 -6.130 -3.750
96 G No 10 L -0.20 1.71 26.17 26.02 0.286 -0.427 -0.814 0.760 0.741 0.815 -7.340 -5.420
97 G No 15 S -0.43 -0.48 93.42 86.63 0.446 -0.108 -0.199 0.169 0.158 0.178 -2.010 -0.930
98 G No 15 M -0.44 0.66 36.63 33.58 0.366 -0.269 -0.503 0.559 0.543 0.611 -6.790 -5.180
99 G No 15 L 0.01 1.18 21.08 20.36 0.286 -0.428 -0.809 0.903 0.895 0.940 -4.470 -3.690

100 G No 20 S -1.14 0.11 81.48 76.09 0.447 -0.107 -0.200 0.199 0.192 0.223 -3.130 -2.420
101 G No 20 M -0.64 0.61 31.48 29.64 0.366 -0.268 -0.503 0.661 0.649 0.720 -7.090 -5.920
102 G No 20 L -0.08 0.87 18.22 17.94 0.286 -0.428 -0.807 0.961 0.959 0.979 -1.980 -1.830
103 G No 40 S 0.30 0.34 57.99 53.40 0.446 -0.108 -0.201 0.319 0.313 0.350 -3.680 -3.110
104 G No 40 M -0.03 0.47 21.99 20.96 0.365 -0.270 -0.502 0.909 0.907 0.940 -3.350 -3.110
105 G No 40 L 0.23 0.56 12.88 12.58 0.286 -0.429 -0.804 1.000 1.000 1.000 -0.020 -0.020

106 G Yes 5 S 0.07 3.83 171.43 147.97 0.444 -0.112 -0.216 0.104 0.091 0.104 -1.300 0.040
107 G Yes 5 M -3.11 1.81 57.45 57.93 0.363 -0.273 -0.529 0.247 0.220 0.257 -3.690 -1.070
108 G Yes 5 L -3.17 1.76 37.22 35.68 0.284 -0.432 -0.848 0.483 0.445 0.519 -7.430 -3.610
109 G Yes 10 S -5.49 -4.49 114.29 103.87 0.447 -0.106 -0.199 0.136 0.121 0.144 -2.360 -0.860
110 G Yes 10 M -4.95 -2.92 43.26 40.82 0.366 -0.268 -0.505 0.418 0.394 0.456 -6.130 -3.750
111 G Yes 10 L -4.23 -2.32 25.56 24.95 0.286 -0.427 -0.814 0.760 0.741 0.815 -7.340 -5.420
112 G Yes 15 S -3.98 -4.30 90.48 82.80 0.446 -0.108 -0.199 0.169 0.158 0.178 -2.010 -0.930
113 G Yes 15 M -4.68 -3.21 35.38 32.14 0.366 -0.269 -0.503 0.559 0.543 0.611 -6.790 -5.180
114 G Yes 15 L -4.02 -2.83 20.28 19.76 0.286 -0.428 -0.809 0.903 0.895 0.940 -4.470 -3.690
115 G Yes 20 S -4.67 -3.74 78.57 73.35 0.447 -0.107 -0.200 0.199 0.192 0.223 -3.130 -2.420
116 G Yes 20 M -4.87 -3.26 29.96 28.64 0.366 -0.268 -0.503 0.661 0.649 0.720 -7.090 -5.920
117 G Yes 20 L -4.11 -3.13 17.60 17.52 0.286 -0.428 -0.807 0.961 0.959 0.979 -1.980 -1.830
118 G Yes 40 S -3.28 -3.52 55.69 51.27 0.446 -0.108 -0.201 0.319 0.313 0.350 -3.680 -3.110
119 G Yes 40 M -4.28 -3.40 21.32 20.15 0.365 -0.270 -0.502 0.909 0.907 0.940 -3.350 -3.110
120 G Yes 40 L -3.82 -3.42 12.42 12.33 0.286 -0.429 -0.804 1.000 1.000 1.000 -0.020 -0.020
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Table 26 includes the Type 1 error rates for the four-group single experiment simulations.

TABLE 26
Four-Group Single Experiment Type 1 Error Rates

Data Group Block PHat Cliffd StdMD PHat Type1 Cliffd Type1 StdMD Type1
Type Size Included Observed Observed Observed Error Rate Error Rate Error Rate

1 N 5 Yes 0.501 0.002 0.006 0.050 0.035 0.043
2 N 10 Yes 0.500 0.001 0.004 0.049 0.040 0.048
3 N 15 Yes 0.500 0.000 -0.001 0.054 0.046 0.051
4 N 20 Yes 0.500 0.001 0.001 0.049 0.044 0.048
5 N 40 Yes 0.501 0.002 0.003 0.048 0.044 0.048
6 N-H 5 Yes 0.499 -0.002 -0.004 0.052 0.037 0.044
7 N-H 10 Yes 0.500 -0.001 -0.002 0.048 0.037 0.047
8 N-H 15 Yes 0.502 0.004 0.006 0.048 0.040 0.047
9 N-H 20 Yes 0.501 0.002 0.005 0.050 0.044 0.051

10 N-H 40 Yes 0.500 0.000 0.001 0.051 0.047 0.050
11 Lap 5 Yes 0.499 -0.002 -0.002 0.049 0.033 0.041
12 Lap 10 Yes 0.499 -0.001 -0.002 0.050 0.041 0.047
13 Lap 15 Yes 0.499 -0.002 -0.003 0.050 0.044 0.054
14 Lap 20 Yes 0.499 -0.001 -0.003 0.052 0.045 0.051
15 Lap 40 Yes 0.500 0.001 -0.001 0.053 0.051 0.052
16 Lap-H 5 Yes 0.497 -0.006 -0.009 0.053 0.037 0.040
17 Lap-H 10 Yes 0.500 0.000 -0.000 0.048 0.038 0.045
18 Lap-H 15 Yes 0.499 -0.002 -0.003 0.049 0.041 0.044
19 Lap-H 20 Yes 0.500 -0.001 -0.000 0.052 0.046 0.050
20 Lap-H 40 Yes 0.500 0.001 0.001 0.048 0.045 0.050
21 L 5 No 0.499 -0.002 0.000 0.052 0.036 0.022
22 L 10 No 0.501 0.002 0.003 0.051 0.039 0.030
23 L 15 No 0.501 0.002 0.005 0.056 0.048 0.042
24 L 20 No 0.500 0.001 0.000 0.049 0.044 0.040
25 L 40 No 0.500 -0.001 0.001 0.050 0.047 0.043
26 L 5 Yes 0.499 -0.002 -0.002 0.051 0.035 0.021
27 L 10 Yes 0.501 0.003 0.001 0.049 0.038 0.033
28 L 15 Yes 0.499 -0.003 -0.002 0.049 0.041 0.035
29 L 20 Yes 0.500 -0.000 -0.001 0.046 0.041 0.036
30 L 40 Yes 0.500 -0.001 0.001 0.049 0.046 0.044
31 G 5 No 0.501 0.003 0.004 0.047 0.031 0.037
32 G 10 No 0.500 -0.001 -0.001 0.048 0.038 0.045
33 G 15 No 0.500 -0.001 -0.002 0.052 0.046 0.051
34 G 20 No 0.500 -0.000 -0.001 0.049 0.043 0.049
35 G 40 No 0.500 0.000 0.000 0.047 0.044 0.048
36 G 5 Yes 0.501 0.002 0.002 0.050 0.034 0.041
37 G 10 Yes 0.500 -0.001 0.000 0.048 0.037 0.046
38 G 15 Yes 0.500 0.001 0.001 0.053 0.047 0.053
39 G 20 Yes 0.500 0.001 0.002 0.049 0.043 0.049
40 G 40 Yes 0.501 0.001 0.002 0.047 0.044 0.048
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Table 27 includes the results of simulating meta-analyses of families of five two-group experiments.

TABLE 27: Two-Group Meta-Analysis Simulation Results

Data Group Mean NP StdMD NP StdMD PHat Cliffd StdMD PHat Cliffd StdMD CliffdPower PHatPower
Type Size Diff Bias Bias PMdMRE PMdMRE Observed Observed Observed Power Power Power Difference Difference

1 N 5 S 1.09 3.58 107.14 97.92 0.557 0.113 0.207 0.148 0.138 0.165 -2.770 -1.670
2 N 5 M 0.36 2.54 39.13 39.71 0.639 0.277 0.513 0.470 0.450 0.524 -7.440 -5.470
3 N 5 L 0.22 2.28 25.23 25.62 0.714 0.429 0.818 0.816 0.803 0.862 -5.970 -4.680
4 N 10 S -1.05 -0.27 71.43 68.66 0.555 0.111 0.199 0.232 0.221 0.254 -3.300 -2.160
5 N 10 M -0.48 0.36 27.54 27.78 0.637 0.275 0.502 0.753 0.740 0.787 -4.710 -3.420
6 N 10 L -0.30 0.52 16.82 17.76 0.713 0.427 0.804 0.982 0.980 0.989 -0.900 -0.650
7 N 15 S 0.71 0.96 57.94 55.49 0.556 0.113 0.202 0.312 0.300 0.334 -3.360 -2.110
8 N 15 M 0.18 0.69 22.38 22.67 0.638 0.276 0.503 0.900 0.895 0.919 -2.440 -1.980
9 N 15 L 0.18 0.62 13.40 14.56 0.714 0.429 0.805 0.998 0.998 0.999 -0.110 -0.100

10 N 20 S 0.72 0.72 49.11 47.29 0.556 0.113 0.201 0.385 0.376 0.406 -3.090 -2.180
11 N 20 M 0.19 0.50 19.20 19.28 0.638 0.277 0.503 0.959 0.957 0.970 -1.290 -1.070
12 N 20 L 0.13 0.45 11.68 12.45 0.714 0.429 0.804 1.000 1.000 1.000 0.000 0.010
13 N-H 5 S 2.93 4.55 127.27 124.74 0.545 0.091 0.164 0.119 0.110 0.128 -1.780 -0.920
14 N-H 5 M 0.80 3.20 52.29 50.39 0.610 0.220 0.405 0.337 0.319 0.380 -6.090 -4.300
15 N-H 5 L 0.59 2.70 32.16 32.03 0.672 0.344 0.645 0.628 0.609 0.687 -7.790 -5.920
16 N-H 10 S -1.97 -0.95 90.91 87.77 0.543 0.086 0.156 0.169 0.160 0.184 -2.420 -1.570
17 N-H 10 M -0.83 0.29 35.78 35.40 0.608 0.216 0.393 0.568 0.554 0.610 -5.570 -4.240
18 N-H 10 L -0.38 0.44 21.64 22.46 0.670 0.341 0.631 0.892 0.885 0.922 -3.730 -3.050
19 N-H 15 S 0.68 0.88 74.75 70.28 0.544 0.089 0.158 0.227 0.218 0.241 -2.320 -1.420
20 N-H 15 M 0.25 0.78 29.46 28.33 0.609 0.219 0.395 0.727 0.718 0.770 -5.200 -4.360
21 N-H 15 L 0.28 0.59 18.13 18.04 0.671 0.343 0.632 0.976 0.975 0.985 -1.040 -0.930
22 N-H 20 S 0.49 0.32 63.64 60.35 0.544 0.088 0.158 0.270 0.263 0.294 -3.090 -2.410
23 N-H 20 M 0.20 0.47 25.23 24.43 0.609 0.218 0.394 0.835 0.831 0.862 -3.110 -2.690
24 N-H 20 L 0.21 0.35 15.20 15.65 0.671 0.343 0.630 0.995 0.995 0.997 -0.220 -0.190
25 Lap 5 S -0.14 4.96 82.86 98.68 0.570 0.140 0.210 0.180 0.170 0.168 0.130 1.220
26 Lap 5 M 0.23 4.25 32.53 40.78 0.666 0.333 0.521 0.603 0.583 0.531 5.220 7.220
27 Lap 5 L 0.02 4.09 20.97 26.56 0.748 0.496 0.833 0.906 0.898 0.862 3.590 4.400
28 Lap 10 S -0.37 1.88 54.29 68.32 0.570 0.139 0.204 0.304 0.290 0.259 3.120 4.530
29 Lap 10 M -0.10 1.85 22.89 28.13 0.666 0.332 0.509 0.885 0.876 0.796 8.020 8.880
30 Lap 10 L -0.38 1.85 13.71 18.43 0.747 0.494 0.815 0.997 0.997 0.987 0.920 0.950
31 Lap 15 S 0.97 2.43 46.03 56.13 0.571 0.141 0.205 0.426 0.415 0.345 7.060 8.090
32 Lap 15 M 0.44 1.70 18.34 23.18 0.667 0.333 0.509 0.970 0.968 0.918 5.010 5.190
33 Lap 15 L -0.06 1.53 11.29 15.18 0.748 0.496 0.812 1.000 1.000 0.999 0.090 0.090
34 Lap 20 S -0.83 0.74 40.00 48.91 0.569 0.139 0.201 0.502 0.493 0.408 8.530 9.440
35 Lap 20 M -0.17 0.85 15.96 20.26 0.666 0.331 0.504 0.993 0.993 0.966 2.650 2.670
36 Lap 20 L -0.37 0.89 9.88 13.32 0.747 0.494 0.807 1.000 1.000 1.000 0.030 0.030
37 Lap-H 5 S 0.27 5.50 107.14 124.68 0.556 0.112 0.166 0.143 0.132 0.131 0.110 1.140
38 Lap-H 5 M -0.22 4.82 38.75 50.94 0.635 0.270 0.411 0.456 0.435 0.383 5.180 7.270
39 Lap-H 5 L -0.08 4.49 26.21 32.84 0.706 0.412 0.656 0.772 0.759 0.696 6.370 7.610
40 Lap-H 10 S 0.73 2.14 71.43 86.76 0.556 0.113 0.160 0.228 0.216 0.194 2.120 3.310
41 Lap-H 10 M -0.21 2.25 28.41 35.67 0.635 0.270 0.401 0.734 0.721 0.618 10.250 11.570
42 Lap-H 10 L -0.17 2.13 17.48 23.14 0.706 0.411 0.641 0.971 0.968 0.922 4.610 4.880
43 Lap-H 15 S 1.32 2.24 57.94 71.31 0.557 0.113 0.161 0.310 0.301 0.249 5.130 6.110
44 Lap-H 15 M 0.28 1.83 23.58 29.35 0.636 0.272 0.399 0.878 0.873 0.773 9.980 10.500
45 Lap-H 15 L 0.03 1.58 14.35 18.91 0.706 0.412 0.638 0.997 0.997 0.983 1.390 1.400
46 Lap-H 20 S -0.80 0.46 50.00 62.03 0.556 0.111 0.158 0.369 0.361 0.295 6.540 7.380
47 Lap-H 20 M -0.47 0.94 20.30 25.48 0.635 0.270 0.396 0.946 0.944 0.863 8.070 8.320
48 Lap-H 20 L -0.43 0.92 12.38 16.62 0.705 0.410 0.634 1.000 1.000 0.997 0.250 0.250
49 L 5 S 0.93 8.41 76.00 100.95 0.576 0.151 0.217 0.207 0.192 0.166 2.610 4.140
50 L 5 M 0.25 11.15 28.57 35.78 0.696 0.393 0.556 0.748 0.731 0.611 11.950 13.640
51 L 5 L 0.24 17.89 12.46 23.65 0.846 0.692 0.943 0.999 0.998 0.963 3.540 3.590
52 L 10 S -1.27 0.83 52.00 69.95 0.574 0.148 0.202 0.342 0.329 0.260 6.870 8.220
53 L 10 M -0.48 4.25 18.37 24.93 0.695 0.390 0.521 0.957 0.954 0.846 10.750 11.110
54 L 10 L -0.10 9.20 7.83 17.72 0.845 0.689 0.874 1.000 1.000 0.998 0.200 0.200
55 L 15 S -0.17 1.32 42.52 56.69 0.575 0.150 0.203 0.463 0.451 0.346 10.490 11.710
56 L 15 M -0.07 2.50 14.97 20.45 0.696 0.392 0.512 0.995 0.995 0.942 5.220 5.270
57 L 15 L 0.07 5.80 6.28 15.23 0.845 0.690 0.846 1.000 1.000 1.000 0.050 0.050
58 L 20 S -0.78 -1.72 36.67 48.36 0.574 0.149 0.197 0.557 0.549 0.409 14.010 14.790
59 L 20 M -0.34 0.30 12.76 18.38 0.695 0.391 0.501 1.000 0.999 0.973 2.620 2.640
60 L 20 L -0.03 3.49 5.36 13.27 0.845 0.690 0.828 1.000 1.000 1.000 0.010 0.010
61 G 5 S 31.38 63.54 114.81 113.80 0.429 -0.142 -0.327 0.199 0.186 0.289 -10.330 -9.030
62 G 5 M 16.52 36.01 45.19 48.60 0.343 -0.315 -0.680 0.569 0.553 0.688 -13.430 -11.890
63 G 5 L 8.31 22.30 27.44 29.33 0.267 -0.466 -0.978 0.859 0.849 0.929 -8.060 -7.020
64 G 10 S 31.51 58.08 81.48 85.06 0.429 -0.142 -0.316 0.327 0.315 0.428 -11.380 -10.190
65 G 10 M 16.59 31.74 34.81 38.81 0.343 -0.315 -0.659 0.818 0.808 0.888 -8.010 -6.990
66 G 10 L 8.40 18.16 20.93 23.50 0.267 -0.466 -0.945 0.982 0.980 0.993 -1.270 -1.110
67 G 15 S 32.97 59.03 69.55 74.53 0.428 -0.144 -0.318 0.436 0.426 0.542 -11.600 -10.580
68 G 15 M 17.34 31.56 30.70 36.04 0.342 -0.317 -0.658 0.916 0.913 0.955 -4.120 -3.860
69 G 15 L 8.94 17.58 18.45 21.69 0.266 -0.468 -0.941 0.998 0.997 0.999 -0.220 -0.190
70 G 20 S 30.93 55.42 60.19 65.32 0.429 -0.141 -0.311 0.504 0.495 0.599 -10.350 -9.450
71 G 20 M 16.19 29.30 27.41 32.05 0.343 -0.314 -0.647 0.958 0.957 0.981 -2.460 -2.310
72 G 20 L 8.29 15.90 16.74 19.65 0.267 -0.466 -0.927 0.999 0.999 1.000 -0.070 -0.060
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Table 28 includes the Type 1 error rates from the simulations of meta-analysis of families of five two-group experiments.

TABLE 28
Two-Group Meta-Analysis Type 1 Error Rates

Data Type Group Size PHat Cliffd StdMD PHat Type1 Cliffd Type1 StdMD Type1
Observed Observed Observed Error Rate Error Rate Error Rate

1 N 5 0.501 0.002 0.003 0.044 0.037 0.042
2 N 10 0.499 -0.002 -0.002 0.050 0.044 0.048
3 N 15 0.500 0.000 0.001 0.049 0.044 0.050
4 N 20 0.500 0.000 0.000 0.049 0.046 0.047
5 N-H 5 0.501 0.003 0.004 0.046 0.038 0.042
6 N-H 10 0.499 -0.002 -0.003 0.048 0.043 0.046
7 N-H 15 0.500 0.000 0.001 0.048 0.045 0.050
8 N-H 20 0.500 0.000 0.000 0.049 0.046 0.046
9 Lap 5 0.500 0.000 0.002 0.042 0.036 0.039

10 Lap 10 0.500 0.001 0.000 0.045 0.040 0.044
11 Lap 15 0.501 0.002 0.002 0.050 0.045 0.047
12 Lap 20 0.499 -0.001 -0.001 0.051 0.046 0.049
13 Lap-H 5 0.500 0.001 0.003 0.043 0.036 0.040
14 Lap-H 10 0.500 0.000 0.000 0.046 0.040 0.046
15 Lap-H 15 0.501 0.002 0.002 0.047 0.044 0.046
16 Lap-H 20 0.499 -0.001 -0.001 0.051 0.047 0.047
17 L 5 0.501 0.002 0.003 0.044 0.036 0.029
18 L 10 0.499 -0.001 -0.004 0.050 0.044 0.039
19 L 15 0.500 0.000 0.003 0.049 0.044 0.042
20 L 20 0.500 0.000 0.001 0.050 0.047 0.044
21 G 5 0.500 -0.000 -0.001 0.045 0.038 0.051
22 G 10 0.500 0.000 0.001 0.049 0.043 0.049
23 G 15 0.499 -0.002 -0.002 0.049 0.044 0.053
24 G 20 0.500 0.000 0.003 0.048 0.044 0.052

Table 29 includes the results of simulating meta-analyses of families of five four-group experiments.

TABLE 29: Four-Group Meta-Analysis Simulation Results

Data Block Group Mean NP StdMD NP StdMD PHat Cliffd StdMD PHat Cliffd StdMD Cliffd Power PHat Power
Type Included Size Diff Bias Bias PMdMRE PMdMRE Observed Observed Observed Power Power Power Difference Difference

1 N Yes 5 S 0.33 1.28 71.43 66.62 0.556 0.112 0.203 0.211 0.202 0.247 -4.460 -3.540
2 N Yes 5 M 0.08 1.01 27.54 27.24 0.638 0.276 0.505 0.734 0.722 0.793 -7.100 -5.910
3 N Yes 5 L 0.11 0.95 15.89 17.47 0.714 0.428 0.808 0.976 0.974 0.990 -1.600 -1.340
4 N Yes 10 S 0.50 0.56 50.00 47.16 0.556 0.113 0.201 0.368 0.356 0.405 -4.850 -3.650
5 N Yes 10 M 0.14 0.46 19.57 19.31 0.638 0.276 0.502 0.956 0.953 0.972 -1.940 -1.600
6 N Yes 10 L 0.08 0.43 11.68 12.48 0.714 0.428 0.803 1.000 1.000 1.000 0.000 0.000
7 N Yes 15 S 0.13 -0.06 40.48 38.65 0.556 0.112 0.200 0.496 0.487 0.529 -4.280 -3.330
8 N Yes 15 M -0.01 0.11 15.62 15.64 0.638 0.276 0.501 0.993 0.993 0.997 -0.380 -0.320
9 N Yes 15 L 0.01 0.15 9.45 10.03 0.714 0.428 0.801 1.000 1.000 1.000 0.000 0.000

10 N Yes 20 S -0.03 -0.19 35.27 33.37 0.556 0.112 0.200 0.599 0.591 0.631 -3.930 -3.150
11 N Yes 20 M -0.03 0.03 13.95 13.65 0.638 0.276 0.500 1.000 1.000 1.000 -0.040 -0.040
12 N Yes 20 L -0.01 0.09 8.29 8.76 0.714 0.428 0.801 1.000 1.000 1.000 0.000 0.000
13 N-H Yes 5 S -0.69 0.07 90.91 86.31 0.544 0.087 0.157 0.156 0.149 0.183 -3.370 -2.700
14 N-H Yes 5 M -0.32 0.72 37.61 35.10 0.609 0.217 0.395 0.536 0.524 0.610 -8.570 -7.350
15 N-H Yes 5 L -0.13 0.72 21.64 22.34 0.671 0.342 0.633 0.878 0.873 0.924 -5.100 -4.560
16 N-H Yes 10 S 0.50 0.24 65.91 60.59 0.544 0.088 0.157 0.265 0.257 0.288 -3.060 -2.280
17 N-H Yes 10 M 0.25 0.48 25.69 24.66 0.609 0.219 0.394 0.822 0.815 0.866 -5.130 -4.380
18 N-H Yes 10 L 0.24 0.37 15.79 15.58 0.671 0.343 0.630 0.994 0.994 0.997 -0.340 -0.290
19 N-H Yes 15 S -0.06 -0.25 51.52 48.93 0.544 0.088 0.157 0.351 0.344 0.382 -3.800 -3.050
20 N-H Yes 15 M 0.03 0.13 20.49 19.77 0.609 0.218 0.393 0.937 0.935 0.959 -2.370 -2.130
21 N-H Yes 15 L 0.10 0.07 12.54 12.62 0.671 0.342 0.628 1.000 1.000 1.000 -0.050 -0.050
22 N-H Yes 20 S -0.44 -0.85 45.45 43.30 0.544 0.088 0.156 0.430 0.423 0.461 -3.880 -3.140
23 N-H Yes 20 M -0.15 -0.12 18.12 17.54 0.609 0.218 0.392 0.981 0.980 0.988 -0.840 -0.760
24 N-H Yes 20 L 0.00 -0.10 10.96 11.11 0.671 0.342 0.627 1.000 1.000 1.000 0.000 0.000
25 Lap Yes 5 S -1.35 1.15 60.00 67.98 0.569 0.138 0.202 0.281 0.269 0.245 2.400 3.560
26 Lap Yes 5 M -0.40 1.64 22.89 27.79 0.665 0.331 0.508 0.858 0.851 0.788 6.280 7.060
27 Lap Yes 5 L -0.09 1.78 14.17 18.43 0.747 0.494 0.814 0.996 0.995 0.989 0.670 0.700
28 Lap Yes 10 S -1.15 0.61 40.00 48.23 0.569 0.138 0.201 0.489 0.476 0.400 7.610 8.920
29 Lap Yes 10 M -0.30 0.82 15.66 20.06 0.665 0.331 0.504 0.991 0.990 0.970 1.950 2.030
30 Lap Yes 10 L -0.02 0.88 9.72 13.10 0.747 0.494 0.807 1.000 1.000 1.000 0.000 0.000
31 Lap Yes 15 S 0.45 0.94 32.06 39.87 0.570 0.141 0.202 0.663 0.653 0.538 11.520 12.540
32 Lap Yes 15 M 0.26 0.73 12.99 16.41 0.666 0.333 0.504 1.000 1.000 0.996 0.400 0.400
33 Lap Yes 15 L 0.22 0.69 8.05 10.74 0.748 0.495 0.806 1.000 1.000 1.000 0.000 0.000
34 Lap Yes 20 S -0.18 0.43 28.21 34.29 0.570 0.140 0.201 0.767 0.759 0.637 12.250 12.970
35 Lap Yes 20 M 0.06 0.43 11.45 14.24 0.666 0.332 0.502 1.000 1.000 1.000 0.040 0.040
36 Lap Yes 20 L 0.12 0.45 7.09 9.40 0.747 0.495 0.804 1.000 1.000 1.000 0.000 0.000
37 Lap-H Yes 5 S -0.94 1.47 71.43 87.16 0.555 0.111 0.159 0.205 0.197 0.185 1.200 1.950
38 Lap-H Yes 5 M -0.61 2.03 29.15 35.56 0.635 0.269 0.400 0.694 0.684 0.609 7.480 8.460
39 Lap-H Yes 5 L -0.47 2.03 18.45 23.02 0.705 0.410 0.641 0.964 0.961 0.923 3.810 4.100
40 Lap-H Yes 10 S -1.35 -0.04 51.79 61.22 0.555 0.110 0.157 0.358 0.347 0.292 5.500 6.570

Continued on next page
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TABLE 29 – continued from previous page

Data Block Group Mean NP StdMD NP StdMD PHat Cliffd StdMD PHat Power Cliffd Power StdMD Power Cliffd Power PHat Power
Type Included Size Diff Bias Bias PMdMRE PMdMRE ObsPHat Observed Observed Power Power Power Difference Difference

41 Lap-H Yes 10 M 0.76 0.75 20.60 25.15 0.635 0.269 0.395 0.939 0.935 0.862 7.310 7.700
42 Lap-H Yes 10 L -0.51 0.80 12.62 16.39 0.705 0.410 0.633 1.000 1.000 0.997 0.260 0.280
43 Lap-H Yes 15 S 0.67 0.56 41.27 50.72 0.556 0.113 0.158 0.499 0.491 0.392 9.940 10.730
44 Lap-H Yes 15 M 1.49 0.69 16.77 20.66 0.635 0.271 0.395 0.990 0.990 0.956 3.340 3.400
45 Lap-H Yes 15 L -0.17 0.57 10.25 13.43 0.706 0.411 0.632 1.000 1.000 1.000 0.010 0.010
46 Lap-H Yes 20 S 0.06 0.18 35.71 43.68 0.556 0.112 0.157 0.595 0.587 0.471 11.650 12.430
47 Lap-H Yes 20 M 1.36 0.47 14.61 17.78 0.635 0.271 0.394 0.999 0.999 0.987 1.150 1.170
48 Lap-H Yes 20 L -0.24 0.40 8.86 11.49 0.706 0.411 0.630 1.000 1.000 1.000 0.000 0.000
49 L No 5 S -1.09 1.55 52.00 68.06 0.574 0.148 0.203 0.312 0.299 0.249 4.950 6.220
50 L No 5 M -0.39 4.60 18.37 24.65 0.695 0.390 0.523 0.946 0.942 0.840 10.120 10.570
51 L No 5 L 0.06 9.33 7.83 17.83 0.845 0.690 0.875 1.000 1.000 0.998 0.250 0.250
52 L No 10 S -0.63 -1.43 37.33 47.99 0.575 0.149 0.197 0.540 0.525 0.402 12.320 13.850
53 L No 10 M -0.24 0.42 12.76 17.95 0.696 0.391 0.502 1.000 0.999 0.975 2.430 2.440
54 L No 10 L -0.03 3.49 5.51 13.91 0.845 0.690 0.828 1.000 1.000 1.000 0.010 0.010
55 L No 15 S -0.50 -2.28 30.07 39.05 0.575 0.149 0.195 0.710 0.702 0.525 17.620 18.490
56 L No 15 M -0.19 -1.07 10.43 14.70 0.696 0.391 0.495 1.000 1.000 0.996 0.400 0.400
57 L No 15 L -0.01 1.21 4.41 11.67 0.845 0.690 0.810 1.000 1.000 1.000 0.010 0.010
58 L No 20 S -1.40 -4.04 26.00 33.89 0.574 0.148 0.192 0.811 0.806 0.614 19.200 19.740
59 L No 20 M -0.50 -2.49 9.18 13.33 0.695 0.390 0.488 1.000 1.000 0.998 0.170 0.170
60 L No 20 L -0.08 -0.44 3.84 10.28 0.845 0.689 0.796 1.000 1.000 1.000 0.000 0.000
61 L Yes 5 S -1.16 2.78 52.00 70.23 0.574 0.148 0.199 0.312 0.299 0.238 6.060 7.390
62 L Yes 5 M -0.41 5.69 18.37 25.64 0.695 0.390 0.514 0.946 0.942 0.827 11.470 11.890
63 L Yes 5 L 0.02 10.67 7.83 18.76 0.845 0.690 0.860 1.000 1.000 0.997 0.330 0.330
64 L Yes 10 S -0.25 0.07 37.33 49.76 0.575 0.150 0.194 0.542 0.527 0.395 13.240 14.730
65 L Yes 10 M -0.11 1.43 12.76 18.70 0.696 0.392 0.493 1.000 0.999 0.971 2.830 2.840
66 L Yes 10 L 0.00 4.62 5.51 14.59 0.845 0.690 0.813 1.000 1.000 1.000 0.000 0.000
67 L Yes 15 S -0.59 -1.89 30.07 39.97 0.575 0.149 0.190 0.708 0.700 0.503 19.630 20.490
68 L Yes 15 M -0.22 -0.53 10.43 15.43 0.696 0.391 0.483 1.000 1.000 0.993 0.660 0.660
69 L Yes 15 L -0.02 2.11 4.41 12.32 0.845 0.690 0.793 1.000 1.000 1.000 0.000 0.000
70 L Yes 20 S -1.38 -3.46 26.00 35.02 0.574 0.148 0.187 0.812 0.806 0.598 20.780 21.340
71 L Yes 20 M -0.48 -1.97 9.18 13.80 0.695 0.390 0.476 1.000 1.000 0.998 0.240 0.240
72 L Yes 20 L -0.08 0.33 3.84 11.04 0.845 0.689 0.780 1.000 1.000 1.000 0.000 0.000
73 G No 5 S 30.97 59.35 85.19 84.32 0.429 -0.141 -0.319 0.309 0.297 0.430 -13.280 -12.060
74 G No 5 M 16.35 32.57 36.30 39.16 0.343 -0.314 -0.663 0.790 0.781 0.885 -10.440 -9.530
75 G No 5 L 9.01 18.89 21.50 24.05 0.267 -0.467 -0.951 0.978 0.976 0.993 -1.740 -1.530
76 G No 10 S 31.33 56.95 62.96 66.10 0.429 -0.142 -0.314 0.495 0.485 0.613 -12.840 -11.820
77 G No 10 M 16.36 29.85 28.15 32.64 0.343 -0.314 -0.649 0.956 0.953 0.981 -2.850 -2.480
78 G No 10 L 8.86 16.16 17.29 20.12 0.267 -0.466 -0.929 1.000 1.000 1.000 -0.030 -0.030
79 G No 15 S 31.17 55.22 53.91 57.32 0.429 -0.142 -0.310 0.616 0.607 0.719 -11.190 -10.310
80 G No 15 M 16.53 29.21 24.77 29.57 0.343 -0.315 -0.646 0.990 0.989 0.997 -0.760 -0.660
81 G No 15 L 9.14 15.76 15.89 18.66 0.266 -0.467 -0.926 1.000 1.000 1.000 0.000 0.000
82 G No 20 S 31.01 55.10 47.69 52.72 0.429 -0.141 -0.310 0.712 0.707 0.795 -8.850 -8.320
83 G No 20 M 16.27 28.75 23.52 28.18 0.343 -0.314 -0.644 0.998 0.998 0.999 -0.110 -0.110
84 G No 20 L 8.86 15.19 14.95 18.00 0.267 -0.466 -0.921 1.000 1.000 1.000 0.000 0.000
85 G Yes 5 S 32.88 59.47 85.71 83.16 0.426 -0.149 -0.332 0.334 0.320 0.450 -13.010 -11.650
86 G Yes 5 M 15.95 32.46 33.33 38.56 0.337 -0.327 -0.689 0.817 0.808 0.901 -9.300 -8.420
87 G Yes 5 L 8.32 18.73 20.18 23.77 0.258 -0.483 -0.989 0.981 0.980 0.995 -1.500 -1.360
88 G Yes 10 S 31.38 56.82 60.71 64.48 0.426 -0.147 -0.326 0.516 0.506 0.633 -12.740 -11.670
89 G Yes 10 M 15.47 30.02 26.95 32.36 0.337 -0.326 -0.676 0.963 0.961 0.984 -2.330 -2.120
90 G Yes 10 L 7.99 16.22 16.59 19.89 0.259 -0.482 -0.968 1.000 1.000 1.000 0.000 0.000
91 G Yes 15 S 31.20 55.83 52.38 56.69 0.427 -0.147 -0.324 0.643 0.635 0.739 -10.400 -9.580
92 G Yes 15 M 15.46 29.31 24.19 29.51 0.337 -0.326 -0.672 0.991 0.991 0.997 -0.580 -0.570
93 G Yes 15 L 7.98 15.56 15.20 18.57 0.259 -0.482 -0.963 1.000 1.000 1.000 0.000 0.000
94 G Yes 20 S 31.38 55.45 47.77 52.15 0.426 -0.147 -0.323 0.733 0.728 0.816 -8.790 -8.280
95 G Yes 20 M 15.39 28.86 22.52 27.89 0.337 -0.325 -0.670 0.998 0.998 0.999 -0.110 -0.090
96 G Yes 20 L 7.95 15.19 14.24 17.97 0.259 -0.481 -0.960 1.000 1.000 1.000 0.000 0.000
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Table 30 included the Type 1 error rates from simultions of families of five four-group experiments.

TABLE 30
Four-Group Meta-Analysis Type 1 Error Rates

Data Block Group PHat Cliffd StdMD PHat Type1 Cliffd Type1 StdMD Type1
Type Included Size Observed Observed Observed Error Rate Error Rate Error Rate

1 N Yes 5 0.500 -0.001 -0.000 0.040 0.036 0.045
2 N Yes 10 0.500 0.000 0.000 0.046 0.041 0.048
3 N Yes 15 0.500 -0.000 -0.000 0.045 0.042 0.046
4 N Yes 20 0.500 -0.000 -0.001 0.051 0.049 0.051
5 N-H Yes 5 0.500 -0.001 -0.001 0.043 0.038 0.046
6 N-H Yes 10 0.500 0.000 0.000 0.047 0.043 0.046
7 N-H Yes 15 0.500 -0.000 -0.001 0.044 0.042 0.046
8 N-H Yes 20 0.500 -0.000 -0.001 0.050 0.048 0.050
9 Lap Yes 5 0.499 -0.002 -0.002 0.040 0.035 0.041

10 Lap Yes 10 0.499 -0.001 -0.001 0.043 0.039 0.044
11 Lap Yes 15 0.500 0.001 0.000 0.049 0.045 0.047
12 Lap Yes 20 0.500 -0.000 -0.001 0.045 0.042 0.048
13 Lap-H Yes 5 0.500 -0.000 -0.002 0.039 0.034 0.039
14 Lap-H Yes 10 0.499 -0.001 -0.001 0.046 0.041 0.044
15 Lap-H Yes 15 0.500 0.001 0.000 0.050 0.046 0.048
16 Lap-H Yes 20 0.500 -0.000 -0.001 0.045 0.042 0.050
17 L No 5 0.499 -0.001 -0.001 0.040 0.036 0.035
18 L No 10 0.500 0.000 -0.001 0.045 0.040 0.042
19 L No 15 0.500 -0.000 0.001 0.045 0.042 0.042
20 L No 20 0.500 -0.001 -0.001 0.052 0.050 0.047
21 L Yes 5 0.499 -0.001 -0.001 0.040 0.036 0.033
22 L Yes 10 0.500 0.000 0.000 0.045 0.040 0.041
23 L Yes 15 0.500 0.000 0.000 0.045 0.041 0.045
24 L Yes 20 0.499 -0.001 -0.001 0.052 0.050 0.048
25 G No 5 0.500 -0.001 -0.001 0.041 0.036 0.049
26 G No 10 0.500 -0.000 -0.001 0.047 0.042 0.050
27 G No 15 0.500 -0.001 -0.001 0.048 0.046 0.052
28 G No 20 0.500 -0.000 -0.000 0.048 0.044 0.051
29 G Yes 5 0.499 -0.001 0.000 0.043 0.039 0.048
30 G Yes 10 0.500 -0.000 0.000 0.048 0.044 0.051
31 G Yes 15 0.501 0.001 0.001 0.048 0.045 0.052
32 G Yes 20 0.500 -0.000 -0.001 0.047 0.045 0.050
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6 ESTIMATING THE VARIANCE OF STANDARDIZED
MEAN DIFFERENCE EFFECT SIZES

In this section, we discuss how we estimated the variance
of the standardized mean difference values calculated in
our simulation studies. For this reason, we consider only
situations where experiments are completely balanced.

In the case of between-groups experiments with only
two groups, the population standardized mean difference is
defined to be

δ =
µy − µx

σ
(51)

where µy is the population mean one group, µx is the
population mean of the other group and σ is the population
standard deviation. For other statistical designs, the formula
varies, but it is always based on dividing an estimate of the
mean difference by the population standard deviation7.

6.1 The Exact Variance of Estimates of δ

Given the form of Equation (51) we might assume that δ can
be estimated from the sample statistics as:

d =
m1 −m2

s
(52)

where m1 is the mean value of group 1, m2 is the mean
value of group 2, s is the pooled within-group standard
deviation. However, d is a biased estimator of δ. For small
sample sizes, the best estimate of δ is obtained from the
formula:

δ̂ = J(df)× d (53)

where:

J(df) =

√
2

df

(
Γ(df2 )

Γ(df−1
2 )

)
(54)

and Γ is the gamma distribution and df is the number of
degrees of freedom. In standard textbooks (e.g. , [19]), J(df)
is replaced by an approximation:

c(df) ≈ 1− 3

4df − 1
(55)

However, since we are dealing with very small sample sizes,
we used J(df) in all our simulations.

Assuming a balanced experiment with n independent
observations in each group, given that d is related to
t−statistic:

t =
m1 −m2

s
√

2
n

= d×
√

n

2
(56)

and the variance of a t-variable is:

σ2
t =

(
df

df − 2

)
(1 + ϕ2)− ϕ2

[J(df)]2
(57)

where ϕ = δ
√
n/2, The variance of d is, then, obtained by

multiplying σ2
t by 2

n :

s2d =
2df

n(df − 2)

(
1 +

n

2
δ2
)
− δ2

[J(df)]2

7. In the main text, we used StdMD and StdMDAdj, while in this
document, we use d = StdMD, and δ̂ = StdMDAdj to simplify the
equations.

=
df

(df − 2)

(
2

n
+ δ2

)
− δ2

[J(df)]2

which, since J [df ]d is an unbiased estimates δ, gives:

s2d =
df

(df − 2)

(
2

n
+ [J(df)]2d2

)
− d2 (58)

and the variance of δ̂ is obtained by multiplying s2d by
[J(df)]2:

s2
δ̂
=

[J(df)]2df

(df − 2)

(
2

n
+ δ̂2

)
− δ̂2 (59)

For large values of df (where, (df)/(df − 2) ≈ 1) and
J(df) ≈ 1) and δ = 0, both d ≈ 0 and δ̂ ≈ 0, so if n = 10,
σ2
δ̂
= σ2

d ≈ 2
10 = 0.2.

For balanced randomized block designs with two blocks
and two treatment conditions, the equivalent equations are

s2d =
df

(df − 2)

(
1

n
+ [J(df)]2d2

)
− d2 (60)

and

s2
δ̂
=

[J(df)]2df

(df − 2)

(
1

n
+ δ̂2

)
− δ̂2 (61)

where it is critical to understand that n is the number
of observations in each of the four conditions (i.e., each
combination of block and treatment). Thus, if we have 5
observations in each of the 4 conditions, with large values
of df and δ = 0, σ2

δ̂
= σ2

d ≈ 1
5 = 0.2, i.e., exactly the same

variance estimates as the two-group variances.
The more general form of the variances for balanced

randomized designs with more blocks (but still assuming
equal size groups and no repeated measures in experimental
units) is based on the number of observations in each
treatment condition, so if N = NA = NB where NA is a
number of observations arising from treatment A and NB

is the number of observations arising from treatment B, the
equations are:

s2d =
df

(df − 2)

(
2

N
+ [J(df)]2d2

)
− d2 (62)

and

s2
δ̂
=

[J(df)]2df

(df − 2)

(
2

N
+ δ̂2

)
− δ̂2 (63)

This means that if we have a family of k experiments, and
N is the same for each experiment and we have estimates
of δ̂ and d obtained from combining the results of the
experiments, the equations are:

s2d =
df

(df − 2)

(
2

Nk
+ [J(df)]2d2

)
− d2 (64)

and

s2
δ̂
=

[J(df)]2df

(df − 2)

(
2

Nk
+ δ̂2

)
− δ̂2 (65)
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6.2 The Approximate Normal Variance of Estimates of
δ

For “large” samples8, there is also a normal approximation,
based on the large sample variance of a t−variable [21]:

σ2
ϕ ≈

(
1 +

ϕ2

2df

)
(66)

Using the same arguments as before:

s2δ ≈ 2

n
+

δ2

2df
(67)

and

s2d ≈ 2

n
+

[J(df)]2d2

2df
(68)

and

s2
δ̂
≈ [J(df)]2

(
2

n
+

δ̂2

2df

)
(69)

For four-group randomized block experiments, the equa-
tions are:

s2d ≈ 1

n
+ [J(df)]2

d2

2df
(70)

and

s2
δ̂
≈ [J(df)]2

(
1

n
+

δ̂2

2df

)
(71)

where n is the number of observations in each block and
treatment combination. It should be noted that, for large
values of df , the two equations deliver similar results. We
note that there are disagreements about the formula for
the approximate normal variance in the literature [22], but
for our simulations, we used the equations reported in this
section.

For a family of k experiments all of the same size, the
variance estimates are obtained by replacing n by nk.

6.3 The Degrees of Freedom
All the variance formulas reported above depend on the
degrees of freedom of the experiment. With fully balanced
experiments, no multiple measures on the same experimen-
tal unit, and assuming that the population variance for
each treatment and block conditions are equal, the degree
of freedom is equal to N − m where m is the number
of experimental conditions, and N is the total number
of observations. Thus, the degrees of freedom for a two-
group experiment would be N − 2 and for a four-group
experiment, it would be N − 4.

However, the basic R t−test and the algorithms Wilcox
developed to calculate the variance of p̂ and variance of
estimates of the mean difference in randomized blocks ex-
periments follow Welch’s approach ( [23] and [24]) which
does not assume variance equality. The impact of using
Welch’s method is that the values of degrees of freedom
are decreased if the variances are not equal. This leads to
the question of whether the degrees of freedom used in the
standardized effect size should be based on the degrees of

8. We have not seen a specification of “large”, but Hedges and
Olkin [20] present an example of aggregating small sample-size two-
group experiments which is based on experiments with group size
n ≤ 10.

freedom from the test algorithms or the experimental design
structure. We have not found any statistical literature that
discusses this issue. In most of the standard statistical texts,
the degrees of freedom is specified as N − 2; in addition,
when the large sample approximate variance formula is
used, the degrees of freedom is usually replaced by N . This
is justified on the grounds that for large samples df ≈ N .

However, we are concerned with small samples, where
the effect of different choices for the degrees of freedom
parameter will have a greater impact on the variance esti-
mate [22]. This would make our simulation results slightly
more conservative than studies that use the theoretical de-
grees of freedom but would affect the standardized effect
size and p̂ equally. Thus, we decided to use the Welch-
based degrees of freedom in our simulations. Furthermore,
our simulations investigating the Type 1 error rates suggest
that the use of the Welch-based degrees of freedom is, in
most cases, close to the theoretical value (i.e., 0.05), which
suggests that our decision has not introduced a systematic
bias. For families of experiments, we used the sum of the
degrees of freedom from each experiment.

7 AGGREGATING STANDARDIZED MEAN DIFFER-
ENCES

The standard meta-analysis of parametric effect sizes is
based on using a weighted average of the effect size, where
weights are based on the effect size variance. We used the R
package metafor to aggregate d and δ̂ with using a fixed-
effects model for our specific example and a randomized-
effects model using PM method for our more extensive
simulations (see [25] for a discussion of metafor).

However, there are several other methods of aggregating
standardized effect sizes for families of experiments, and
Lin [26] has reported bias using weighted methods for small
sample sizes. So, in order to undertake a fair comparison
between meta-analysis of nonparametric and parametric,
we investigated four other means of aggregating results:

1) The MDUnweighted method which is based on calcu-
lating the average mean difference across the family of
experiments.

2) The StdMDUnweighted method which is based on the
average of the d values obtained from each experiment.

3) The StdMDAdjUnweighted method which is based on
the average of the δ̂ values obtained from each experi-
ment.

4) The HedgesSmallSample method which Hedges and
Olkin [20] recommend for two-group experiments with
10 or fewer observations per group.

These methods are explained below.

7.1 The MDUnweighted Method

For each family, we calculated the average mean difference
and the variance using the R t−test for two-group exper-
iments and Wilcox’s algorithm for testing linear combina-
tions for four-group experiments. Then, we calculated the
average mean difference across the k experiments using the
formula:

MDave =
Σ(MDj)

k
(72)
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where MDj is the mean difference for experiment j. We
calculated the estimate of the data variance as:

save =
Σ(sj)

k
(73)

where sj is the variance of experiment j. Then, we calcu-
lated the aggregated estimated of d as:

d =
MDave

save
(74)

We calculated the approximate normal variance of d as:

s2d =
2

Nk
+

[J(df)]2d2

2df
(75)

where df = Σk
i=1(dfj) where dfj is the Welch-based de-

grees of freedom from experiment j, k is the number of
experiments in the family, J(df) is the exact small sample
size adjustment, and N is the number of observations in the
treatment and control condition in each experiment.

The MDUnweighted method is an example of an In-
dividual Participant Data (IDP) stratified method which is
one of the methods recommended by [27]. We selected this
method for our main meta-analysis simulations because:

• It allows us to perform an independent paramet-
ric analysis for each experiment without making
any assumptions about variance homogeneity either
within the individual experiment or across the set of
experiments.

• It leaves the construction of the standardized effect
size until we have enough degrees of freedom to feel
confident that we can omit the small sample adjust-
ment, and we can use the Normal approximation to
calculate the effect size variance.

7.2 The StdMDUnweighted Method

For each family, we calculated the average mean difference
and the variance using the R t−test for two-group exper-
iments and Wilcox’s algorithm for testing linear combina-
tions for four-group experiments. Then, we calculated the
standardized mean difference dj for each experiment as:

dj =
MDj

sj
(76)

Then we used the unweighted mean of the dj values as our
overall estimate of d.

We calculated the approximate normal variance of d as:

s2d =
2

Nk
+

[J(df)]2d2

2df
(77)

where df = Σk
i=1(dfj) where dfj is the Welch-based de-

grees of freedom from experiment j, k is the number of
experiments in the family, J(df) is the exact small sample
size adjustment, and N is the number of observations in the
treatment and control condition in each experiment.

7.3 The StdMDAdjUnweighted Method

The StdMDAdjUnweighted method is very similar to the Std-
MDAdjUnweighted method but aims to estimate δ̂. For each
family, we calculated the average mean difference and the
variance using the R t−test for two-group experiments and
Wilcox’s algorithm for testing linear combinations for four-
group experiments. Then, we calculated the standardized
mean difference δ̂j for each experiment as:

δ̂j = J(df)
MDj

sj
(78)

Then we used the unweighted mean of the δ̂j values as our
overall estimate of δ̂.

We calculated the approximate normal variance of δ̂ as:

s2
δ̂
= [J(df)]2

(
2

Nk
+

δ̂2

2df

)
(79)

where df = Σk
i=1(dfj) where dfj is the Welch-based de-

grees of freedom from experiment j, k is the number of
experiments in the family, J(df) is the exact small sample
size adjustment, and N is the number of observations in the
treatment and control condition in each experiment.

7.4 The HedgesSmallSample Method

The HedgesSmallSample method is a weighted aggregation
method applied to the δ̂j values (see [20], pp 129-131). The
weights are based on the variance of each δ̂j value, but the
variance of each δ̂j is calculated using the unweighted mean
of δ̂j as the estimate of δ in the exact variance equation
for the appropriate statistical design. In the case of our
simulations, all the experiments in a specific family were
of the same size and the same design, so the only factor
that influenced the values of the weights was differences
between the Welch-based degrees of freedom among the
members of the same family.

To summarize, the small sample methods require calcu-
lating the unweighted average d̄:

d̄ =
Σ̂δj
k

(80)

and recalculating the variance (vj) of each experiment using
d̄ in Equation (59). Then, the estimate of the aggregated
effect size is:

δ̂ = Σ
δj
vi

(81)

with variance:

s2
δ̂
=

[
Σ

(
1

vj

)]−1

(82)

We calculated the estimates of δ̂ and its variance can be
calculated by using Equation (81) and Equation (82). How-
ever, they can also be calculated using the R metafor
function rma with the parameter method set to FE.

8 SIMULATION FUNCTIONS AND METHODS

In this section, we discuss a number of issues related to the
reproducibility of our simulation results.
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8.1 Simulation Problems

We found some problems when undertaking our simula-
tions. We have already mentioned issues with zero non-
parametric effect size variances (see Section 2.4.3) and the
degrees of freedom that should be used when calculating
the standardized effect size variance(see Section 6.3).

There were also two minor issues that might affect
anyone trying to reproduce our results:

1) The metafor package rma function sometimes failed
to converge for random effects meta-analysis.

2) Attempts to generate gamma distribution samples
sometimes failed.

Both these issues appeared to be a side-effect of using
very small sample sizes in four-group meta-analysis simu-
lations. We provided a workaround for both by putting calls
to rma and calls to our function for generating experiment
data into while loops that detected failures and performed
another data extraction with a new seed to obtain a new
set of data while maintaining the total required number of
repetitions.

8.2 Significance Tests

In the main text [1], we argued that we should use one-
sided tests for simulation studies. The rationale for this was
that when we ourselves have set the difference between
the control and treatment condition in one direction, we
should not consider a statistically significant effect size in
the wrong direction as correctly rejecting the null hypothesis.
Furthermore, such an occurrence (whether for parametric or
nonparametric effect size) should not increase the count of
statistically significant effect sizes used to estimate power.

However, a problem with using one-sided tests is that
only the R t.test function correctly implemented one-
sided tests. For analysis functions that did not support one-
sided tests, we used a method based on confidence intervals
to implement one-sided tests depending on the information
provided by the statistical analysis function we were using.
We explain the methods we used by reference to an example
using the R language t.test functions.

Figure 2 shows a R listing of a two-sided test and a
one-sided test based on the same generated data sets. In
both cases, the t − value is the same (as are the two-
group mean values). Furthermore, since the t values are the
same, the standard error of the mean difference MD, the
pooled variance of the data (s2), the standard error of the
mean se and the standardized mean difference (StdMD)
are unaffected by choice of the significance level. In fact, for
this example, we have:

MD = 0.4487428− (−0.0583762) = 0.507119

StdMD = t

√
2

n
= 1.7737

√
2

20
= 0.5608932

se = MD/t = 0.507119/1.7737 = 0.2859102

s2 = se2 × n

2
= 0.28591022 = 0.8174464

All these statistics can be obtained from the output
from the R function t.test, if the output is saved
into a new variable. For example, using the R statement

	
set.seed(123) 
a=stats::rnorm(20,0,1)-0.2 
b=stats::rnorm(20,0.5,1) 
#Two-sided test  
#Confidence interval defaulted to 95%  
stats::t.test(b,a) 
 
 Welch Two Sample t-test 
 
data:  b and a 
t = 1.7737, df = 37.082, p-value = 
0.08432 
alternative hypothesis: true difference  
in means is not equal to 0 
95 percent confidence interval: 
 -0.07214401  1.08638208 
sample estimates: 
 mean of x  mean of y  
 0.4487428 -0.0583762  
 
#One-sided test  
#Confidence interval 95% one-sided  
 
 
stats::t.test(b,a,"greater") 
 
 Welch Two Sample t-test 
 
data:  b and a 
t = 1.7737, df = 37.082, p-value = 
0.04216 
alternative hypothesis: true difference  
in means is greater than 0 
95 percent confidence interval: 
 0.02479152        Inf 
sample estimates: 
 mean of x  mean of y  
 0.4487428 -0.0583762  
	

Fig. 2. Example of two-sided and one-sided tests

output=t.test(b, a, "greater"), the standard er-
ror can be obtained by subsequently using the statement
output$stderr.

In this example, the p − value for the two-sided test is
p = 0.08432, which means that we cannot reject the assump-
tion that the data sets come from the same population. In
contrast, the p− value for the one-sided test is p = 0.04216,
indicating that the difference between the two-group means
is significant at the 0.05 level.

Another important difference between the two t−test
analysis results is that the confidence interval for the mean
difference for the two-sided t.test has defined upper and
lower limits, but the confidence interval for the one-sided
t.test only has a defined lower limit. In the two-sided test,
the upper and lower intervals are determined from the
0.025 and the 0.0975 quantiles of the t distribution. Since
the confidence limit includes zero, we cannot reject the hy-
pothesis that the data sets come from the same distribution.
However, the one-sided test is based on the 0.05 quantile
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of the t-distribution. Since the lower bound is greater than
zero, we can reject the hypothesis that the mean difference
is zero at the 0.05 level.

There are several different ways to assess the significance
of a t−test:

• Compare the t-value with its critical value.
• Check whether the p−value is less than the required

alpha level.
• Check whether the confidence interval excludes zero

(or any other value consistent with the null hypothe-
sis).

All these methods depend on whether a one-sided or two-
sided test is required, and as the example shows, it is possi-
ble to have an experiment where a two-sided test would not
reject the null hypothesis, but a one-sided test would reject
the null hypothesis.

In our simulation studies of individual experiments, for
all tests, except those using the R language t.test function,
we used the confidence interval method to assess signifi-
cance. For Cliff’s d, we used a confidence interval based
on the normal distribution as recommended in [28]. For p̂,
we used confidence intervals based on the t-distribution as
recommended by Brunner and Munzel [9].

For two-sided tests, we constructed the α/2 confidence
intervals and checked whether the confidence interval in-
cluded the null hypothesis value (i.e. 0 for parametric effect
sizes and Cliff’s d and 0.5 for p̂).

For one-sided tests, we constructed the α confidence
interval. Then, for positive effect sizes, we identified the
effect size as significantly greater than zero if the lower con-
fidence interval limit was greater than the null hypothesis
value, which is 0 for Cliff’s d andStdMD, and 0.5 for p̂.
For negative effect sizes, we identified the effect size as
significantly less than zero if the upper confidence interval
limit was less than the null hypothesis value.

For simulations of meta-analysis of families of experi-
ments, we used the same process for confidence interval
construction and significance testing, with the exception
of testing the significance of stdMD and StdMDAdj ob-
tained formal meta-analysis. In this situation, we used con-
fidence intervals based on the normal distribution rather
than confidence intervals based on the t−distribution. This
method would be used in situations where details of the
heterogeneity-adjusted degrees of freedom were not avail-
able. For small sample sizes, it leads to slightly wider con-
fidence intervals than would be expected from confidence
intervals based on the t−distribution.

8.3 Reproducing the Simulations

In this section, we explain how to reproduce our simu-
lation results using functions available in our R language
reproducer package.

To make sure you use the correct version of
reproducer remove any existing version and re-install
using the following commands:
utils::remove.packages("reproducer")
utils::install.packages("reproducer")

8.3.1 Analysis of Existing Software Datasets
In Section 2 of the main text, we reported the analysis of
existing software engineering data sets. To obtain the first
row in Table 1, use the commands:
File = reproducer::KitchenhamEtAl.

CorrelationsAmongParticipants.Scanniello15EMSE↪→

reproducer::crossoverResidualAnalysis(File,
StudyID="S1", ExperimentNames=c("USB2"),
Type=c("4G"), Metrics=c("Correctness", "Time",
"Efficiency"))

↪→

↪→

↪→

This will deliver a table with 3 rows9, and the row
with Metrics=”Time” is the first row in Table 1. To obtain
information about the other data sets see [29].

8.3.2 The Laplace Distribution Data
The R language does not provide a function to generate
Laplace-distributed data. To generate Laplace data, use the
function LaplaceDist.

If you want to reproduce the Laplace distribution graph
shown on the right-hand-side of Figure 1, use the command:
z = reproducer::LaplaceDist(1000, 0, 1)
hist(z, freq = F, xlab = "Laplace Distribution 1000

Observations", main = "Histogram and Kernel
Density Plot", ylim = c(0, 0.5))

↪→

↪→

Then, to obtain the distribution statistics, use the command:
reproducer::AnalyseResiduals(z,"Laplace1000")

8.3.3 Calculating Nonparametric Effect Sizes
The R package algorithms PHat.test and Cliffd.test
will calculate the vaues of the non-parametrric effect sizes
and their variances for data obtained from a two-group
experiment. The algorithms also calculates the confidence
interval for the effect sizes and performs one-siderd or two-
sided statistical tests.

With data from two data vectors x and y, to test whether
y > x. based on p̂, use the function:
reproducer::PHat.test(x, y, alternative="greater")

To test whether y > x using Cliff’s d use the function:
reproducer::Cliffd.test(y, x, alternative="greater")

Warning: The change in the order of the x and y variables
in the two algorithms is intentional. This is to remain con-
sistent with the interface of the functions defined by Wilcox.

If you want to perform a one-sided test that y <
x, change the value of the parameter alternative to
"less". For a two-sided test, either default the parameter
alternative, or set it to "two.sided".

The α-level of the test and confidence interval width
depends on the parameter alpha, which defaults to 0.05. It
returns the 100(1−α), the default being the 95% confidence
interval.

For a randomized blocks experiment with two treat-
ments and two blocks, assuming we have four vectors with
x1 corresponding to treatment 1 in block 1, y1 corresponding
to treatment 2 in block 1, x2 corresponding to treatment 1 in
block 2, and y2 corresponding to treatment 2 in block 2, the
following function will test whether treatment 1 data values
are less than treatment 2 data values:
reproducer::Calc4GroupNPStats(x1, y1, x2, y2,

alpha=0.05, alternative="less")↪→

9. Copy and paste from pdf is error-prone. If you cut and paste the
commands, please make sure you remove any spurious spaces.



28

This function returns estimates of p̂, Cliff’s d a together
with their variances and confidence intervals. It also returns
the point bi-serial Kendall’s tau.

8.3.4 Identifying Theoretical Parametric Effect Sizes
In Section 4, we presented the theoretical parametric effect
sizes for normal, log-normal, gamma, and Laplace dis-
tributed data based on the parameter values we used in our
simulation studies. To reproduce the σ2 and StdMD values
reported in row 5 of Table 13 use the command:
reproducer::RandomizedDesignEffectSizes(m1=0,

std1=1, m2=0, std2=1.5, type = "l")↪→

To obtain the values found in other rows, change the val-
ues of the parameters m2 and std2 appropriately. Change
the type parameter to obtain the results for other distribu-
tions. Set the parameter type to ”n” for normal data, ”g”
for gamma data, and ”lap” for Laplace data.

For four-group experiments, use the
RandomizedBlockDesignEffectSizes command.
For example, to reproduce the σ2 and StdMD entries in
row 10 in Table 14, use the command:
reproducer::RandomizedBlockDesignEffectSizes(m1=0,

std1=1, m2=0.266, std2=1, m3=0, std3=1,
m4=0.266, std4=1, BE=0.5, type="l")

↪→

↪→

In all cases except the gamma distribution, variance
instability is modelled by increasing the parameters std2
and std4 by 0.5, and non-zero block effects are modelled
by setting the BE parameter to 0.5. In the case of the Gamma
distribution, we model only the block effect, as an increase
to the value of the shape parameter, because the gamma
distribution does not have a parameter equivalent to a
variance parameter. A non-zero BE parameter increases the
treatment mean values (i.e., m2 and m4).

8.3.5 Large Sample Size Nonparametric Effect Sizes
In Section 4, we presented the large sample size effect sizes
for Normal, log-normal, gamma, and Laplace distributed
data based on the parameter values we used in our simula-
tion studies. This was mainly to show the large sample size
nonparametric effect sizes for the different distributions. For
example, for two-group gamma distributions, the following
command will produce the large sample size nonparametric
effect sizes corresponding to a mean difference of -0.2 on the
raw data scale:
reproducer::

calculateLargeSampleRandomizedDesignEffectSizes(
meanC=1, sdC=3, diff=0.1223, N=10000000,
type="g", StdAdj = 0)

↪→

↪→

↪→

The equivalent command for four-group experimental
designs, including a non-zero block effect, is:
reproducer::

calculateLargeSampleRandomizedBlockDesignEffectSizes(
meanC=1, sdC=3, diff=0.1223, N=10000000,
type="g", Blockmean=0.5, StdAdj=0)

↪→

↪→

↪→

Note. Even with ultra-large samples, there may be some
very small disagreements of the order of 0.001, unless you
use the same seed. However, for our purposes, this level of
disagreement is irrelevant.

8.3.6 Analysis of Individual Experiments
To generate the results reported in rows 1-3 of Table 6 in the
main text, use the command:

reproducer::calculate2GBias( mean=0,
sd=1,diff=c(0.2,0.5,0.8),
Expected.StdMD=c(0.2,0.5,0.8),
Expected.PHat=c(0.556,0.638,0.714),
N=5,reps=10000, type="n", seed=123, StdAdj =0)

↪→

↪→

↪→

↪→

calculate2GBias requires the user to identify the theoret-
ical standardized mean difference effect size for each mean
difference being simulated and the large sample size values
of p̂. These values are reported in [1] and Section 4, and
the functions in reproducer that will provide the required
values are described in Section 8.3.4 and Section 8.3.5.

In addition, to fully reproduce the results tables, the bias
and MdMRE values must be multiplied by 100, and the
non-parametric effect size power difference (PD) must be
calculated as follows:

CliffdPD = (CliffdPower − StdESPower)100 (83)

and

PHatPD = (PHatPower − StdESPower)100 (84)

To obtain the results for other sample sizes, change the
parameter N (which defines the group size) and the seed
parameter.

To obtain the results for other distributions, you need to
change the type parameter (which defines the distribution
type), the diff parameter (which defines the values of
the treatment parameter), and the seed parameter and the
Expected.StdMD and Expected PHat parameters.

Warning: Undertaking 10000 simulations per condition
takes a long time. On a Macbook with a 2 GHz Intel Core I7
Processor, the above command took 6 minutes 46 seconds to
execute. The command constructed 3 table entries; however,
the full table has 105 entries.

To generate the results of the four-group design individ-
ual experiment simulations shown in rows 1-3 of Table 25,
use the command:
reproducer::calculate4GBias(mean=0,sd=1,
diff=c(0.2,0.5,0.8), Expected.StdMD=c(0.2,0.5,0.8),
Expected.PHat=c(0.556,0.638,0.714),
N=5, reps=10000, type="n", seed=17+123, StdAdj =0,
Blockmean=0.5)

To generate the other entries in the table, change
the parameters, N, type, diff, Expected.StdMD, and
Expected.PHat appropriately.

You should change the seed value for each simulation
function call, although it will not make much difference to
the results if you do not use the same seeds as we have used.

To calculate the Type 1 error rates for two-group experi-
mental design simulations use the following command:
reproducer::calculate2GType1Error(mean=0,

sd=1,N=5,reps=10000,type="n",seed=156,StdAdj =
0)

↪→

↪→

This will generate the results reported in the first row of
Table 7 in the main text. The values reported in other rows
can be obtained by changing the values of the type, seed,
and N parameters.

To calculate the Type 1 error rates for the four-group
experimental design use the command:
reproducer::calculate4GType1Error(mean=0,sd=1,N=5,
reps=10000,type="n",seed=17+156,StdAdj = 0,
Blockmean=0.5)

This will reproduce the values in the first row of Table 26.
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8.3.7 Meta-Analysis Example

To generate the example data shown in Table 12 of the main
text [1], use the command:
reproducer::NP2GMetaAnalysisSimulation(mean=0, sd=1,

diff=0.8, GroupSize=5, Exp=5, type="n",
StdAdj=0, alpha=0.05, seed=457, StdExp=0,
MAMethod="FE", returnES=TRUE)

↪→

↪→

↪→

To generate the results of the meta-analysis of the ex-
ample data shown in Table 13 of the main text, use the
command:
reproducer::NP2GMetaAnalysisSimulation(mean=0, sd=1,

diff=0.8, GroupSize=5, Exp=5, type="n",
StdAdj=0, alpha=0.05, seed=457, StdExp=0,
MAMethod="FE", returnES=FALSE)

↪→

↪→

↪→

Note, however, that the information is not in the same
format as the table.

We provide two functions to meta-analyse the non-
parametric effect sizes. To try these out you can use the p̂
and Cliff’s d data shown in Table 12.

The following comands will meta-analyse the p̂ values:
PHatMean <- c(0.92,0.60,0.48,0.72,0.88)
PHatMeanVar <- c(0.01,0.04,0.05,0.04,0.01)
PHatDF <- c(6.63,6.63,5.08,5.61,8)
reproducer::metaanalyse.PHat(PHat=PHatMean,

PHatvar=PHatMeanVar, DFUnknown=FALSE, df=PHatDF)↪→

The aggregate estimate of p̂ and its variance reported by
the function will correspond to those associated with the
Average method in Table 13 of the main text.
Cliffd <- c(0.84,0.2,-0.04,0.44,0.76)
Cliffdvar <- c(0.04,0.18,0.21,0.15,0.06)

The following commands with meta-analyse Cliff’s d val-
ues:
reproducer::metaanalyse.Cliffd (Cliffd=Cliffd,

Cliffdvar=Cliffdvar, df=0,
alternative="greater")

↪→

↪→

The aggregate estimate of Cliff’s d and its variance reported
by the function will correspond to those associated with the
Average method in Table 13 of the main text.

8.3.8 Meta-Analysis Simulations

To generate lines 49-51 of the meta-analysis results table
for two-group experiments reported in Table 27, use the
command:
reproducer::calculateMABias(mean=0, sd=1, N=5,

diff=c(0.266,0.72375,1.43633), Experiments=5,
reps=10000, Expected.StdMD=c(0.2,0.5,0.8),
Expected.PHat=c(0.575,0.696,0.845), type="l",
FourG=F,seed= 13 + 1665, StdAdj = 0,
Blockmean=0, StdExp=0.5)

↪→

↪→

↪→

↪→

↪→

Warning. The simulation of families of experiments takes
longer than the simualtion of individual experiments. The
above command generates 4 rows in Table 27, which com-
prises 72 rows, and took 1 hour 32 minutes and 10 seconds to
execute, on a Macbook with a 2 GHz Intel Core I7 Processor.

The final four rows in the Type 1 error rates table for the
two-group experiment meta-analysis simulations (see Ta-
ble 28) are obtained using the command:
reproducer::calculateMAType1Error(mean=1, sd=3,

N=c(5,10,15,20), reps=10000, type="g",
Experiments=5, FourG=F, StdAdj=0, Blockmean=0.5,
seed= 13+1013, StdExp=0.5)

↪→

↪→

↪→

To generate lines 46-48 of the meta-analysis results table
for four-group experiments reported in Table 29, use the
command:

reproducer::calculateMABias(mean=0, sd=1, N=20,
diff=c(0.283,0.707104,1.131374), Experiments=5,
reps=10000, Expected.StdMD=c(0.157,0.392,0.628),
Expected.PHat=c(0.556,0.636,0.705), type="lap",
FourG=T,seed = 1565, StdAdj = 0.5,
Blockmean=0.5, StdExp=0.5)

↪→

↪→

↪→

↪→

↪→

The first four rows in Type 1 error rates table for the
four-group design meta-analysis simulations (see Table 30)
are obtained using the command:
reproducer::calculateMAType1Error(mean=0, sd=1,

N=c(5,10,15,20), reps=10000, type="n",
Experiments=5, FourG=T, StdAdj=0, Blockmean=0.5,
seed=313, StdExp=0.5)

↪→

↪→

↪→
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