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Abstract—Context: In empirical software engineering, crossover designs are popular for experiments comparing software engineering
techniques that must be undertaken by human participants. However, their value depends on the correlation (r) between the outcome
measures on the same participants. Software engineering theory emphasizes the importance of individual skill differences, so we
would expect the values of r to be relatively high. However, few researchers have reported the values of r.
Goal: To investigate the values of r found in software engineering experiments.
Method: We undertook simulation studies to investigate the theoretical and empirical properties of r. Then we investigated the values
of r observed in 35 software engineering crossover experiments.
Results: The level of r obtained by analysing our 35 crossover experiments was small. Estimates based on means, medians, and
random effect analysis disagreed but were all between 0.2 and 0.3. As expected, our analyses found large variability among the
individual r estimates for small sample sizes, but no indication that r estimates were larger for the experiments with larger sample sizes
that exhibited smaller variability.
Conclusions: Low observed r values cast doubts on the validity of crossover designs for software engineering experiments. However, if
the cause of low r values relates to training limitations or toy tasks, this affects all Software Engineering (SE) experiments involving
human participants. For all human-intensive SE experiments, we recommend more intensive training and then tracking the
improvement of participants as they practice using specific techniques, before formally testing the effectiveness of the techniques.

Index Terms—empirical software engineering, experiments, crossover experiments, crossover design, repeated measures correlation.
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1 INTRODUCTION

C ROSSOVER designs are frequently used in software en-
gineering (SE) experiments aiming to compare different

methods, techniques and procedures proposed for human-
based SE tasks [1].

The correlation between two measures made on the same
participant in a repeated measures study is exactly the same
as the correlation between two different variables measured
on the same experimental unit in a regression analysis.
I.e., it is the Pearson correlation coefficient and can be
calculated using the standard correlation formula. However,
in repeated measures experiments, the measures take place
at different points in time, and r is calculated somewhat
differently to allow for the structure imposed by the experi-
mental design. r plays a critical role in constructing a valid
t−test for repeated measures designs and the construction
of effect sizes and their variances [2]. It is, also, useful to
have some a priori knowledge of r because it permits pre-
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experiment power analysis to identify appropriate sample
sizes for crossover experiments. These issues are discussed
in more detail in Section 2

However, in 12 papers reporting repeated measures
studies that we reviewed [3], the value of r was reported
only once (see Laitenberger et al. [4]). The 12 r estimates
Laitenberger et al. reported came from three experiments
and four outcome metrics, and varied between 0 and 0.78,
with an average of 0.38. This average is quite low compared
with the value of 0.7 that Dunlap et al. reported to be
found in test-retest studies [5]. We also found r estimates
varying between 0.66 and 0.05 (with a mean of 0.47) when
we re-analysed raw data from one family of crossover
experiments [6].

Low values of r might imply that there is little per-
formance consistency among participants, i.e., participants
who performed well using one technique would not nec-
essarily perform well using another technique. This seems
to contradict standard assumptions in software engineer-
ing management that there are large and persistent skill
differences among software practitioners. For example, the
personnel and team capability are the most important cost
factor in COCOMO II, with a range of 3.5:1 [7]. Thus, if
r values are genuinely low in SE experiments, it suggests
either that our assumptions about skilled performance in
SE are false or that there is some inherent problem with
the use of crossover design in SE. Furthermore, any prob-
lem related to skilled performance is a potential problem
for any experimental design involving human participants
performing intellectual tasks.

The motivation for this paper is concern about the valid-
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ity of human-centric experiments in SE. Our goal is to inves-
tigate the distribution of r values observed in human-based
SE crossover experiments and to discuss the implications of
our findings with respect to the design of all human-based
SE experiments.

In Section 2, we explain (as mentioned before) why r
is so important in crossover designs in terms of analysing
crossover data, calculating effect sizes and their variances,
and underpinning the power advantage of crossover de-
signs compared with between-groups experiments. In Sec-
tion 3, we identify the main properties of the Pearson corre-
lation coefficient with the help of simulation, and we explain
how to calculate r in crossover experiments. In Section 4,
we report an empirical study of r values based on 35
experiments reported in 15 studies. We discuss our results in
Section 5 and present our conclusions and recommendations
in Section 6.

2 THE ROLE OF r IN CROSSOVER STUDIES

In this section, we explain the role of r in the analysis of
crossover experiments, including the construction of effect
sizes and their variances, and its impact on the crossover-
experiment power. In the section, we present the basic
analysis formulas. The analysis of crossover data is based on
the fact that because of the structure of the AB/BA crossover
and the four-group crossover, the t−test for a crossover is
based on the difference values for each participant. In the
Supplementary Material [8], we explain in more detail how
the formula for the t− tests arises from the structure of a
crossover design.

2.1 Tests of Significance
In the context of an AB/BA crossover design, the formula
for a t−test is:

t =
2ES√

2s2(1− r)(1/n1 + 1/n2)
(1)

where ES is the difference between the mean outcome for a
participant using one treatment and the mean outcome for
participants using the other treatment, 2ES is the difference
between the mean of the difference data in each sequence
group, r is the correlation between the measures on each
participant taken in each time period, n1 is the number
of participants in sequence group 1, n2 is the number of
participants in sequence group 2, and s2 is the variance of
the response measured on an individual participant,1 and
2s2(1 − r) is the difference data variance. If n1 = n2 = n,
the above equation simplifies to:

t =
ES

s
√
(1− r)/n

(2)

It must be emphasised that although we have two measures
from each participant, i.e., 4n observations, we still have
only 2n − 2 degrees of freedom. The extra measures have
increased the precision of our sample statistics and provided
information about the proportion of total variance related

1. This assumes that the variance is unaffected by time period or
treatment, which is the standard assumption for the analyses of com-
plex statistical designs whether or not repeated measures are used.

to within-participant variance and between-participant vari-
ance, but they have not increased the accuracy of our esti-
mates of the population statistics.

2.2 The Power of Crossover Experiment

If we had 2n participants and undertook a standard between
groups experiment with n participants assigned to each
group, the t− test would be:

t =
ES

s
√
2/n

(3)

again we have 2n− 2 degrees of freedom.
Comparing Equation 2 and Equation 3, it is clear that

with the same number of participants, and the same es-
timates of ES and s, the crossover design would deliver
a t−value larger than the t−value for the between-groups
design, because unless r = −1, (1 − r) < 2. Furthermore,
even if r ≤ 0, we would obtain a larger t−value. This means
that, for the same number of participants, the power2 of the
crossover design is greater than the power of a between-
groups experiment.

Cohen [9] reported that for a medium standardized effect
size (i.e., 0.5) and an alpha level of 0.05, a between-groups
experiment would need 64 participants per group to have
a power of 0.8. However, from Equation 2 and Equation 3,
if r = 0, everything else being equal, a crossover design
would require only 32 participants per sequence group.
Senn [10] points out crossovers require more time and
effort on the part of both experimenters and participants.
He provides a more realistic discussion of the comparison
between crossovers and between groups designs that still
strongly favours crossover designs (see [10], Section 9.2).
However, he also points out that there are other things to
consider when deciding to use a crossover design than just
improved power, such as drop-outs, carry-over, inconve-
nience to participants, and analysis difficulty.

2.3 Crossover Effect Sizes and Their Variances

The calculation of effect sizes and their variances for
crossover designs are discussed in detail in [2]. In this
section, we summarise the role of r in such calculations.

There are two different standardized mean difference
effect sizes of interest in any repeated measures experiment.
Firstly, there is δRM , which is referred to as the repeated
measures effect size and measures the average improvement
for individual participants. δRM is estimated as:

dRM =
ES

s
√
(1− r)

(4)

Secondly, there is δIG, which is referred to as the equiva-
lent independent groups effect size and measure the differ-
ence between the two methods:

dIG =
ES

s
(5)

It is intended to provide an effect size that is comparable to
that obtained from a standard between groups experiment.

2. I.e., the likelihood of detecting a significant effect when the alter-
native hypothesis is true.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3070480, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH ZZZZ 3

Although we can calculate the value of dIG without know-
ing the value of r, we need to estimate r to calculate the
variance of dIG.

The variance of a standardized mean difference effect
size is based on the relationship between the estimate
and a valid t−variable. Since dRM is directly related to a
t−variable (see Equation 2), but dIG is not, the variance of
dIG can only be estimated by considering the relationship
between dRM and dIG. From Equation 4 and Equation 5,
we can see that:

dIG = dRM

√
(1− r) (6)

Thus, the variance of dIG is obtained by multiplying the
variance of dRM by (1− r). If the number of participants in
each sequence group is the same (i.e., n) and n is not small,
the normal approximation of the variance of dRM is:

vardRM =
1

n
+
d2RM

2× f
(7)

where f is the number of degrees of freedom which will be
2(n−1) for a crossover design, but, assuming n is relatively
large, is often replaced by the term f = 2n. Then, the
variance of dIG is:

vardIG =
(1− r)

n
+
d2IG
4n

(8)

Thus, as well as being essential for statistical tests, r also
plays a critical role in defining crossover effect sizes and
their variances.

3 THE BETWEEN PARTICIPANT CORRELATION
AND ITS PROPERTIES

In this section, we explain how to calculate r for individual
sequence groups, and we demonstrate the basic properties
of r with the help of a simulation study.

3.1 Estimating the Value of r
As mentioned previously, r is the Pearson correlation coef-
ficient, so for the pair of values from each participant in a
specific sequence group, we could use the equation:

r =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2 ×
∑n

i=1(yi − y)2
(9)

where xi is the measure obtained in time period 1 for
participant i in a specific sequence group and yi is the
measure obtained in time period 2 for participant i, and
there are n participants in the sequence group.

Equation 9 confirms that r is unaffected by differences
in the mean values of x and y. In the context of a crossover,
when we measure the same attribute (e.g., response time to
complete a SE task or the correctness of the task outcome),
r is unaffected by whether or not x and y are significantly
different. Also, if we measure the same response attribute,
we expect the variance of x and the variance of y to be
estimating the same underlying variance, i.e., σ2. The best
estimate of the σ2 is the average of the variance of x values
(s2x) and the variance of the y values (s2y), i.e., s2 = (s2x +
s2y)/2, so Equation 9 becomes:

r =

∑n
i=1(xi − x)(yi − y)

(n− 1)s2
(10)

However, in the context of crossover experiments r is usu-
ally calculated somewhat differently using the relationship
between the variance of the xi values, the variance of the
yi values and the variance of the difference values s2diff ,
which gives the following equation for the exact correlation
estimate (re)

re =
(s2x + s2y − s2diff )

2sxsy
(11)

Again, if we assume s2x = s2y = s2, we can calculate r based
on the average variance, i.e., the pooled correlation estimate
(rp), and we have:

rp =
(2s2 − s2diff )

2s2
(12)

This form of the equation is useful when repeated measures
analysis tools are used, because they usually report the
best estimates of s2 and the within-participant variance,
i.e., s2e = s2diff/2 for the full data set. Also, rp and re can
sometimes be calculated from reported descriptive statistics,
even when the raw data are not available. We present a
worked example of estimating re, rp and rexp (which is the
estimate of r for all the participants in a single experiment)
in the Supplementary Material [8].

3.2 The Basic Properties of the Correlation Coefficient
In this section, we recap some of the basic properties of
the Pearson correlation coefficient as a parameter of the
bivariate normal distribution. We illustrate these properties
using simulation studies, all of which were obtained using
the rSimulations function available in our R package
reproducer [11].

We simulated bivariate normal distributions with the
means of the two variables specified by µ1 and µ2, the
variances being specified by σ2

1 and σ2
1 and the correlation

between specified by ρ. For each sample sizeN , we obtained
10000 samples where each set of simulations was initiated
with a different seed value. We calculated the value of r for
each sample. Then, for each set of r values, we calculated
the mean, median, and variance of the r estimates. We also
calculated variables related to the accuracy and stability of
the variance estimates. The variance proportion (VP) metric
measures the extent of variance stability:

V P =
s21

s21 + s22
(13)

where s21 is the estimate σ2
1 and s22 is the estimate σ2

2 . If
σ2
1 = σ2

2 and V P ≈ 0.5, this indicates variance homogeneity,
if V P < 0.25 or V P > 0.75, then there is a 3 : 1 difference
between the variances and we considered this to be an
indicator of substantial variance instability. We classify VP
values outside the range as anomalies.

The results reported in Table 1 show the r statistics
and the V P statistics for difference sample sizes and are
supported by graphical representation of the distribution of
r estimates shown in Figure 1 which are based on sample
sizes of 1000.3 The left panes of Figure 1 show a scatter plot

3. We have reduced the number of simulations for plotting, because
too many observations can make it difficult to assess the distribution
of scatter plots. In contrast, a large number of simulations are required
to provide confidence in the results of investigating mean and median
bias in r estimates.
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of the r estimates plotted against the VP values for samples
of size 30. The right panes show box plots of the r estimates
for sizes 10, 20, 30 and 60. The top, middle, and bottom
panes show the effect of different mean values and different
variances.

Equation 12 shows that r is functionally related to the
participant variance and difference data variance, so we also
investigated the impact of the accuracy of these variances.
The V arAcc metric measures the accuracy of the participant
variance estimates:

V arAcc =
s21 + s22
σ2
1 + σ2

2

(14)

If V arAcc ≈ 1 this is an indication that estimates of the
variance are accurate. If σ2

1 = σ2
2 but V arAcc < 0.5 or

V arAcc > 1.5, we considered this to be an indicator of
substantial variance inaccuracy. We classify accuracy values
outside this range as anomalies. V arAcc has some inbuilt
bias because its lower values are bounded but its upper
values are not. In addition, it is not symmetric about 1
in terms of the standard deviations (s1 and s2). However,
we consider it a reasonable heuristic for the purpose of
comparing the extent of instability across different sample
sizes.

The DiffV arAcc measures the accuracy of difference
values variance estimates:

DiffV arAcc =
s2diff

(σ2
1 + σ2

2)− 2ρ(σ1 × σ2)
(15)

It has similar properties to V arAcc and is assessed in the
same way.

V arAcc and DiffV arAcc statistics are reported in Ta-
ble 2. Figure 2 displays box plots that show the relationship
between sample size and r, V P , V arAcc and DiffV arAcc.
These box plots are based on 1000 replications of simulated
data sets of size N=10, 20, 30, 60, 120, and 250 with ρ = 0.25,
µ1 = µ2 = 0 and σ2

1 = σ2
2 = 1.

From these tables and graphics, we can summarise the
basic properties of r:

1) r values are slightly biased for small sample size.
The first row in Table 1 shows the results of simu-
lation with N=5, with ρ = 0.25, µ1 = µ2 = 0 and
σ2
1 = σ2

2 = 1. The average of r estimate for the
10,000 simulations was 0.22, and the median r was
0.285. The next three rows of Table 1 confirm that as
N increases, the bias decreases.

2) The variance of r is large for small sample sizes.
The first four rows of Table 1 show the average
variance for different sample sizes. As the sample
size increases, the variance of r decreases, see also
the right panes of Figure 1).

3) For small sample sizes and relatively small ρ, nega-
tive estimates of r are not unusual, see Figure 1

4) For small sample sizes and relatively small ρ, es-
timates of the sample variance are likely to be
unstable. 30% of estimates of the variance of indi-
vidual participants, obtained when the underlying
variance was the same and sample size was 5, were
different by order of 3 : 1. See also the upper two
left panes of Figure 1.

5) r is unaffected by the mean values of each variable.
Row 4 in Table 1 shows the summary statistics for
simulations with N = 30 and µ1 = µ2 = 0, row 5
shows a set of simulations with N = 30 µ1 = 0 and
µ2 = 1. Although there is a difference between the
means for row 5, there is only an insignificant dif-
ference between the average, median and variance
of the r estimates in row 4 and row 5. This confirms
that ρ is independent of the values of µ1 and µ2,
which also implies that r is unaffected by whether
or not µ1 is significantly different from µ2, see also
the middle panes of Figure 1.

6) r is unaffected by variance heterogeneity. Row four
of Table 1 shows a set of simulations with σ2

1 =
σ2
2 = 1. Row six shows a set of simulations with
σ2
1 = 1 and σ2

2 = 3, which gives an expected
VP=0.25. Although there is a difference between the
variances in the rows that is reflected in the different
values for the mean of the variance proportion,
there is only an insignificant difference between the
average, median and variance of the r estimates.
This confirms that ρ is independent of the values
of σ2

1 and σ2
2 . Figure 1 confirms that the distribution

of r estimates is not affected by variance instability,
whether it is due to small sample sizes or actually
variance heterogeneity.

7) Row eight shows the impact of a sample size of
60. There is little difference between the mean and
median of the r estimates for sample size 30 and
60. Furthermore, the average variance of the r
estimates has halved and percentage of negative
values and percentage of variance anomalies have
both substantially decreased. Nonetheless, Figure 1
confirms that we can still expect a wide variation in
r estimates from a single sample.

8) Table 2 and Figure 2 confirm that estimates of par-
ticipant variance and the difference variance can
be very inaccurate for small sample sizes but, like
estimates of r and V P , become more accurate as
sample sizes increase.

4 AN EMPIRICAL STUDY OF WITHIN PARTICIPANT
CORRELATION IN SE EXPERIMENTS

This section reports an analysis of data from 35 crossover
design experiments reported in 15 different papers shown
in Table 3.

4.1 The Goals of Our Study

Our study is an investigatory study. We have used the data
generated by previously undertaken experiments and did
not collect any new data, so we do not have any formal
hypotheses to test. We do, however, have issues that we
want to investigate, in particular:

• G1: The magnitude and distribution of r over a
relatively large data set, and the relationship be-
tween r and sample size. It is important to discover
whether the values of r are low and, if so, whether
low values are found for all sample sizes. Larger
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TABLE 1
Basic Correlation Properties

ρ N µ1 µ2 σ2
1 σ2

2 Mean Median Variance % Negative Mean Variance % VP
r r r r VP VP Anomalies

0.25 5 0 0 1 1 0.220 0.285 0.233 31.800 0.496 0.048 29.950
0.25 10 0 0 1 1 0.232 0.256 0.100 23.630 0.499 0.023 10.660
0.25 20 0 0 1 1 0.248 0.261 0.046 12.980 0.498 0.012 1.670
0.25 30 0 0 1 1 0.246 0.252 0.031 9.030 0.500 0.008 0.290
0.25 30 0 1 1 1 0.245 0.252 0.030 8.780 0.500 0.008 0.410
0.25 30 0 0 1 3 0.245 0.255 0.030 8.420 0.256 0.005 6.530
0.25 60 0 0 1 1 0.247 0.251 0.015 2.690 0.500 0.004 0.000

TABLE 2
Variance Accuracy Statistics

ρ N µ1 µ2 σ2
1 σ2

2 Mean Var Variance % Var Accuracy Mean Diff Variance Diff % Diff Var Accuracy
Accuracy Var Accuracy Anomalies Var Accuracy Var Accuracy Anomalies

0.25 5 0 0 1 1 1.003 0.268 30.520 1.006 0.506 47.150
0.25 10 0 0 1 1 0.996 0.118 12.390 1.002 0.222 26.790
0.25 20 0 0 1 1 0.999 0.056 3.440 0.994 0.103 11.060
0.25 30 0 0 1 1 1.001 0.037 1.090 1.001 0.070 5.380
0.25 30 0 1 1 1 0.997 0.037 1.100 1.000 0.070 5.160
0.25 30 0 0 1 3 1.000 0.045 1.890 1.046 0.074 6.890
0.25 60 0 0 1 1 1.000 0.018 0.060 1.002 0.034 0.800
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Fig. 1. The Impact of Variance Stability and Mean Difference Values on
r

sample sizes should exhibit more stable r values and
if the r values for large sample size experiments
are larger than those for small sample size exper-
iments, then we do not have any special problem
with SE crossover experiments. If, however, we see
a relationship similar to that shown in the upper left
pane of Figure 2, then we have a situation where r
values are consistently small even for experiments
with relatively large sample sizes, which is contrary
to SE theory and requires further investigation.
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Fig. 2. The Impact of Sample Size on r and Variance Stability and
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• G2: The extent of variance instability and its relation-
ship with r and whether there are systematic trends
instability. If we have low r values across different
sample sizes, we would like to know whether this
can be explained by other properties of our set of
experiments, for example, is there any evidence that
data from the larger projects is unusually variable.
If we see the variance instability decreasing as the
size of experiments increases, as in the upper right
pane of Figure 2, we can reject the hypothesis that



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3070480, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH ZZZZ 6

low values of r for larger experiments are due to
unusually large variance instability.

• G3: Whether negative r−values are likely to be due
to small sample sizes or require some other explana-
tion. Negative r estimates are an extreme example of
a situation that contradicts SE theory. They indicate
a situation where a participant with a high score on
one method has a low score on the other method and
vice versa. This strongly contradicts the view of con-
sistent skill differences between software engineers.
If we can confirm that the likelihood of negative r
values decreases as sample sizes increase, as shown
in Table 1, we can be sure that the main cause of
negative values is small sample sizes. In addition,
if the average r values remain fairly consistent as
sample sizes increase, we can have confidence that
our estimates of the overall average r value are
reasonably accurate. We can then conclude that the
disagreement with SE theory is one of the magnitude
of the expected effect, not the existence of the effect.

4.2 Study Materials and Methods

This section reports the origin of the data sets used in this
study and the basic analysis methods used.

4.2.1 Data Sets

To investigate the distribution of r estimates found in SE
crossover experiments in more detail, we calculated r esti-
mates from our own published crossover experiments plus
three other papers [4], [12] and [13]. Together, these studies
provided data from a total of 930 individual participants, al-
though two papers reported team-based outcome measures
which reduces the number of observational units for those
papers: Scanniello et al. [14] used 9 four-person teams4 and
Laitenberger et al. [4] used 29 two-person teams in three ex-
periments. We present general summary information about
the studies in Table 3, more details can be found in Section
6 of the Supplementary Material [8]. The experimental data
for all the studies, except S14 [13] and S15 [4], are available
in our reproducer package [11], as explained in Section 6
of the Supplementary Material. This will provide a resource
for novice researchers wanting to try out various statistical
techniques both for analysis of crossover experiments and
for meta-analysis of multiple experiment studies.

When multiple experiments were reported in a paper,
each experiment addressed the same hypotheses, used the
same experimental data, and measured the same outcome
variables (metrics). Different experiments reported in a spe-
cific paper always involved different participants, and, in
most cases, different experimenters. The majority of the
experiments used four-sequence group crossover design,
and only seven of the experiments used a standard two-
group AB/BA crossover design.

We assume that the r values obtained from different
metrics are comparable because all are related to the per-
formance of a human-intensive software engineering task.

4. This study also replicated the first experiment a second time
using the same participants. We have averaged r-values for the same
participants.

TABLE 3
Summary of the Studies in the Data Set

Study Study Num Num 4G 2G Partic-
ref ID Exps Mets Exps Exps ipants

[15] S1 1 3 1 0 24
[16] S2 4 2 4 0 86
[17] S3 5 1 5 0 112
[18] S4 3 1 2 1 107
[14] S5 1 2 0 1 36 (9 teams)
[19] S6 2 2 2 0 87
[20] S7 2 2 2 0 32
[21] S8 3 3 3 0 88
[22] S9 2 2 2 0 39
[23] S10 1 2 0 1 22
[12] S11 2 2 2 0 33
[24] S12 4 3 4 0 100
[25] S13 1 2 0 1 55
[13] S14 2 2 2 0 51
[4] S15 3 4 0 3 58 (29 teams)

4.2.2 Analysis Variables
We calculated the r estimates at two levels of granularity:
the sequence group level (i.e., re and rp estimates) and the
experiment level (we refer to r estimates at this level as
rexp estimates). The sequence group level is important in
crossover experiments because each sequence group defines
a cohort of participants whose performance is measured
under the same experimental conditions defined by the time
period, treatment and software materials.

The re and rp estimates were generated from the raw
data from each experiment. The r-values for each sequence
group in each experiment and for each metric are shown
in Table 38 in the Supplementary Material [8]. The raw
data from the Laitenberger study was not available, so no
correlations from that study are included in the sequence
level data set.

The experiment level data is shown in Table 39 in the
Supplementary Materials [8]. It includes the correlations
reported in [4]. However, [4] did not report sequence group
variances, nor difference data variances.

From the variances used to calculate rp, for all studies
except [4], we calculated rexp estimates by pooling the
sequence group variances for each sequence group for each
metric, in each experiment.

At the sequence level and the experiment level, we cal-
culated the variance proportion measure (VP) to investigate
variance stability. At the sequence level, we calculated:

V P =
V ar1

V ar1 + V ar2
(16)

where V ar1 is the variance obtained from a specific se-
quence group and metric in time period 1 and V ar2 is the
variance for the same group and metric in time period 2. At
the experiment level, we calculated:

V P =
V arPooled1

V arPooled1 + V arPooled2
(17)

where V arPooled1 is the pooled variance of the sequence
variances in time period 1, and V arPooled2 is the pooled
variance of the sequence variances from time period 2. These
metrics are exactly the same as the V P variable used in our
simulations.
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4.2.3 Data Analysis
We analysed both the sequence level r values and the
experiment level r values, to obtain:

• The basic descriptive statistics of the re, rp and rexp
values (i.e., mean, median, variance and standard
error) and their distribution based on box plots and
histograms.

• The relationship between re and rexp values and
sequence group size using scatter plots and tabula-
tion. For tabulation, we identified a set of group size
categories and calculated the descriptive statistics
(mean, median, variance, standard deviation and
standard error of the mean) for the r estimates in
each category.

The sequence level data and the experiment level data
both have analysis limitations, the sequence level has more
r values, but they are based on small sample sizes. The
experiment level has fewer r values, but they are based on
larger sample sizes. We have more confidence in results that
are consistent at the two different levels.

4.2.4 Variance Heterogeneity
We used the variance proportion metric at the sequence and
experiment level to investigate whether r-estimates were
more stable when variances were homogeneous.

4.2.5 Sensitivity Analysis
Our analysis method treated each estimate of r as an in-
dependent variable although in each experiment, many of
the estimates came from the same group of participants, but
were based on different metrics. We performed a sensitivity
analysis to assess whether this had introduced bias into
our results. The sensitivity analysis used a random effects
analysis (REA) which treated r estimates from the same
participants, but calculated on different metrics, as repeated
values. The full REA results are reported in the Supplemen-
tary Material [8]. Specific REA outcomes are reported as part
of the main analyses.

4.3 Analysis Results
In this section, we report the results of our analyses. To
avoid possible experimenter or analyst bias, the analyses
presented in this paper were all performed by the first
author who was not involved in the data collection, nor in
the experimental analyses reported in the published studies.

4.3.1 Estimates of the Correlations
The descriptive statistics for the re, rp and rexp estimates are
shown in Table 4. For re and rp, the mean is less than the me-
dian for the sequence level data, which is consistent with the
simulation results for small sample sizes. For rexp the mean
is greater than the median, suggesting that some unusually
large values are inflating the mean. The results obtained
from the random effects analysis (REA) of the different r
estimates are also shown the Table 4. For each estimate,
the REA results are very close to the simple descriptive
statistics. However, the REA estimates of the standard error
of the mean are slightly larger than the descriptive statistics.
The variance of the raw data is less than it should be because

the repeated measures r values are slightly correlated, and
so are less dispersed than completely independent r values
would be. The variance bias is larger for the rexp values
than for the re or rp values. Therefore, graphs displaying
the distribution of r values will slightly under represent
the dispersion of the values. However, the graphs should
be accurate enough to highlight any major trends and for
assessing the extent to which our results are consistent with
the assumptions of the simulations.

The distribution of the re and the rexp estimates are
shown in Figure 3. As expected, the re values are extremely
variable confirming that with small samples the values of
estimates are very unreliable. The rexp estimates are based
on larger samples and have fewer extreme values. We report
the distribution of the rp estimates in [8]. It is similar to the
distribution of the re.

TABLE 4
Descriptive Statistics of r Estimates

Source Type N Mean Median Variance SE

All data r.e 249 0.2185 0.3015 0.268 0.0328
REAnalysis r.e 249 0.2192 0.03502
All data r.p 249 0.2068 0.2588 0.1964 0.02808
REAnalysis r.p 249 0.2077 0.02999
All data r.exp 80 0.2745 0.2464 0.07556 0.03073
REAnalysis r.exp 80 0.272 0.03522
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Fig. 3. Distributions of re and rexp estimates

4.3.2 The Relationship Between Sample Size and r Esti-
mates
Figure 4 shows the relationship between r estimates and
sample size. The upper two panes show the distribution
of re estimates. The scatter plot shows the re estimates
plotted against sequence group size, while the box plots are
constructed from the seven sequence group size categories
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specified in the first column of Table 5. The lower two panes
show the distribution of rexp estimates. The rexp estimates
are plotted against experiment size in the scatter plot. The
box plot is based on experiment size categories specified in
the first column of Table 6. Figure 4 confirms that small sam-
ple sizes are associated with large variation in the observed
r estimates both at the sequence group and the experiment
level and the variation decreases as size categories increase.
In addition, the variation associated with rexp values is less
than the variation among re values. There does not appear
to be any clear increasing or decreasing trend between
median r values and the size categories.

A more detailed break down of the re and rexp esti-
mates descriptive statistics associated with specific sequence
group categories are shown in Table 5 and Table 6, re-
spectively. In addition, we include the mean values from
random-effects analysis. The mean r values are all below
0.4, with the re means generally lower than the rexp means.
Both re and rexp analyses suggest a decrease in variance
with increasing sample size. Results of the analysis of the rp
values are shown in our Supplementary Materials and are
similar to the results for the analysis of re.

4.3.3 The Incidence of Variance Instability

Our simulation studies revealed a high incidence of variance
instability for small sample sizes, but no evidence that
variance instability impacted r values. In this section, we
review the stability of variances in our data sets.

Table 7 reports the variance proportion statistics for the
sequence group and experiment level data. We also report
the percentage of the variance proportion values less than
0.25 and greater than 0.75. Such values indicate a difference
of 3:1 in the values of the two variances. For the sequence
group data set, over a third of the variance ratios were 3:1 or
larger. As would be expected from our simulation study, at
the experiment level data, because sample sizes were larger,
only 4.4% of values were anomalous. The V P data is based
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Fig. 5. The Relationship between r estimates, sample size and Variance
Instability

on only 68 correlations because the V P data could not be
calculated for Study 15.

In Figure 5, the two left-hand panes show scatter plots
of variance proportion against re and rexp respectively. It
seems that there is no strong relationship between the two
variables. In particular, there is no evidence that re or rexp
estimates associated with homogeneous variances were:

1) Larger than estimates associated with heteroge-
neous variances.

2) Less variable than estimates associated with hetero-
geneous variances.

The two right-hand panes of Figure 5 show the relationship
between variance stability and size. As would be expected,
variance stability (shown by variance proportion values
close to 0.5), increases as sample sizes increase. All these
results are completely consistent with the results of our
simulations.

4.3.4 Limitations
A major limitation of this study is that the data sets we
analysed were not obtained from either a random sample
of experiments nor from a full set of all crossover studies in
software engineering. With the only exception of S11 [12],
S14 [13] and S15 [4], the experiments considered in this
study were all published by authors of the paper. The reason
for this is the problem of finding published data sets. Wider
adoption of reproducible research would be beneficial for
empirical software engineering research [26]. Unfortunately,
it is still the case that a few researchers publish their data
sets and published data sets are not always maintained.
For example, in a mapping study of families of experiment,
Santos et al. [27] identified 39 papers, but reported that only
six papers provided access to raw data, all of which are
included in our analysis. Four were authored by Scanniello
and/or Gravino, the other two papers are S11 [12] and
S14 [13].
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TABLE 5
Descriptive Statistics of re Estimates for Different Group Sizes

Seq Group Num re Mean Median Variance StDev SE REA
Size estimates Mean

3 13 0.081 0.124 0.393 0.626 0.174 0.075
4 63 0.183 0.301 0.395 0.628 0.079 0.184
5 41 0.238 0.340 0.236 0.485 0.076 0.235
6 60 0.186 0.211 0.291 0.539 0.070 0.200
7 9 0.062 0.050 0.222 0.471 0.157 0.038
8 32 0.337 0.496 0.158 0.398 0.070 0.340
>8 31 0.309 0.310 0.089 0.298 0.054 0.305

TABLE 6
Descriptive Statistics of rexp Estimates for Different Group Sizes

Experiment Num rexp Mean Median Variance StDev SE REA
Size estimates Mean

<=10 16 0.370 0.375 0.108 0.328 0.082 0.367
11-15 5 0.374 0.550 0.154 0.392 0.175 0.400
16-20 21 0.216 0.191 0.066 0.257 0.056 0.206
21-25 19 0.210 0.214 0.069 0.262 0.060 0.229
26-40 11 0.265 0.298 0.070 0.265 0.080 0.255
41+ 8 0.342 0.349 0.014 0.119 0.042 0.334

TABLE 7
Variance Proportion Descriptive Statistics

Source N Mean Median Variance SE LowerBound UpperBound PercentUnstable

Seq Group 249 0.52 0.50 0.06 0.02 0.48 0.55 39.36
Experiment 68 0.52 0.52 0.02 0.02 0.48 0.55 4.41

Another important limitation is that the number of stud-
ies with larger sample sizes is small, which casts some
doubts on the robustness of our empirical evidence concern-
ing the relationship between r and sample size. However,
our simulation studies provide additional support for our
empirical results.

A final limitation is that we used the raw data to in-
vestigate the distribution of r values although some of the r
values were repeated values based on different metrics mea-
sures on the same participants. Our random-effects analysis
results confirm that the impact on mean values was small,
but variance estimates on the raw data are biased towards
underestimates. The raw data is essential for visualising the
r values distribution, but it slightly underestimate the true
variability of the data.

5 DISCUSSION

Our data sets exhibited extremely varied estimates of r and
considerable variance heterogeneity at the sequence group
level that appeared to be due to the small sample sizes.
At the experiment level, r estimates were less variable,
but it seemed that estimates of r were affected by sample
size with r estimates being inflated for relatively small
sample experiments. However, both our analyses and our
simulation results provide broadly consistent evidence that
the underlying value of r across our set of 35 experiments is
between 0.2 and 0.3.

As Senn [10] pointed out, small (or even negative) values
of r do not undermine the theoretical power advantage of

crossover experiments, so crossover studies are still useful
in the context of medical studies. An additional analysis
complication with negative r estimates (which was not
mentioned by Senn) is that standard analysis tools may
behave differently. We provide an example of this problem
in the Supplementary Material [8].

However, we believe that small or negative r estimates
cast some doubt on the validity of crossover experiments in
the context of software engineering studies. The impact of
skill differences is built into software engineering manage-
ment theory and conforms with the industry experience and
expectations. So we must ask why the impact of skill seems
to be small in our software engineering experiments. Small
values of r have a number of possible explanations:

1) Skill may not be an issue for using the control or
the treatment method. This is unlikely, since it is
contrary to existing research emphasizing the im-
portance of individual skills. However, in the special
case of SE experiments, participants’ sample may
have been too homogeneous for skill differences to
be discernible. This may be possible with student
participants that have all had the same training,
particularly if participation is voluntary. Voluntary
participants are likely to be the most skilled and
motivated students [28]. Another issue that could
reduce skill differences is that tasks suitable for a
laboratory experiment could be too simple for skill
to have a major impact on observed performance.
However, the possibility of no significant skill dif-
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ferences is not supported by the experiments we
investigated. Five studies reported the presence of
effects due to skill difference among participants
although these observations usually related to par-
ticipant types (e.g., undergraduates, postgraduates,
or practitioners) rather than individual participants
(see [16], [17], [18], [20], [22]).

2) The treatment method interacts with the skill of
the participants. Correlations would be lowered if
the alternative method improves the performance
of less skilled participants but reduces skilled par-
ticipants’ performance. However, the five studies
reporting skill differences mentioned above, all re-
ported that the alternative method increased the
performance of more skilled participants with a
possibly negative impact on the less skilled par-
ticipants. Although it appears that interactions are
possible, it is not clear how much an effect they
would have on the correlations. If highly skilled
participants scored well using both the control and
alternative method and less skilled participants per-
formed poorly in both conditions, the performance
of specific participants should still be relatively con-
sistent, leading to a reasonably large r value.

3) The treatment method interacts with the system be-
ing used. The basic crossover design is intended to
cater for systematic differences due to using differ-
ent software application materials when performing
SE tasks. The 4-group design is intended to cater for
systematic differences due to using a specific set of
materials in the first time period. In fact, Section 6
in the Supplementary Materials confirms that the
software applications used in each of the studies,
with the exception of Study 15 [4] which used mate-
rials from the host company, were straightforward
IT applications that would be unlikely to exhibit
major differences in complexity. It should also be
noted that our simulations confirmed large variance
instability for small sample sizes. Thus, we would
expect to see a fairly high proportion spurious in-
teractions as a result of small sample sizes.

4) The training provided was insufficient for skill dif-
ferences among participants to affect the outcomes.
To fit into time restraints, training available to ex-
periment participants is certain to be limited. It
may be that participants were simply not given
enough time to practice the new methods before
their performance was assessed.

5) Training participants in two different methods could
introduce an interaction between method and time
period. In medical crossover studies, an interaction
between method and time period is a physiological
factor caused by two different drugs both being in
a patient’s body at the same time. Hence, the medi-
cal statisticians recommend a wash-out period5 both
prior to the experiment, and between the first and
second phases of the crossover to minimise any po-

5. A washout period is time period in which the patients do not use
any drug. This means that the effects of any drug they used previously
are removed, and the patients return to their baseline condition.

tential interactions between drug and time period.
In SE experiments, interactions between method
and time period are likely to be a psychological
factor, that is, whether learning one method of per-
forming a task helps or hinders learning another
method, or whether the teaching process adopted
for one method is more effective than the teaching
process adopted for the other. Furthermore, if we
have taught a method well, we do not expect it to
be quickly forgotten, so if learning one method of
performing an SE task makes it more difficult (or
easier) to learn another method, then the better we
train our participants in the method they use first,
the more likely we are to introduce a method by
time period interaction when they attempt to learn
the second method.

Whatever the reason, low values of r cast doubts on the va-
lidity of a crossover experiment in SE. Thus, it is important
that values of r are reported, and the impact of low values
of r is discussed.

Furthermore, it is critical that we investigate causes of
low r values, because if inadequate training is a major factor,
this affects all empirical software engineering experiments,
not just crossover experiments. Reverting to between groups
designs with strategies such as balancing the skill levels
between groups will not make problems associated with
training and available practice time disappear. We will just
deny ourselves any observable indicators of potential prob-
lems. Unless we undertake longitudinal studies that allow
us to track improvements in performance over time, we
cannot be sure that participants have been given sufficient
training and practice time to become competent in a specific
technique. In addition, if further studies confirm that the
problem is a result of inadequate training and/or practice
time, it raises an important ethical issue, because we need
to ensure that experiments involving student participants
do not adversely affect their educational experience.

6 CONCLUSIONS AND RECOMMENDATIONS

In summary, r values in SE crossover studies can be quite
low. Our data and simulations make it clear that small
sample sizes lead to large variations in the observed r-
values. However, our results do not suggest that sample size
is the cause of low r values, because even for larger sample
sizes r-values remain low.

In the context of software engineering low r values are
difficult to understand. Like most software practitioners
and educators, we expect skilled software engineers to out-
perform less skilled engineers. Most software engineering
experiments involve students rather than practitioners, but
we have no reason to believe that skill differences are non-
existent among students.

A particular problem is that a low value of r could
be due to insufficient training, in one or both techniques
being compared, for the effect of the different methods to be
properly evaluated. In addition, crossover methods require
participants to use both techniques in sequence. However,
learning one technique may help or hinder the ability to
use another. Any interaction between sequence order and
technique would lower values of r.
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We do not claim that any of these issues actually caused
the low values, only that the low values exist and need to be
explained before we can be sure that crossover designs are
suitable for SE experiments. We recommend that researchers
currently analysing crossover design experiments (or, in-
deed any other repeated measures design) report observed
values of r. If the observed estimate is low or negative (i.e.,
< 0.3) researchers should discuss why this has happened,
and the impact of the small value of r on the reliability of
their results.

For future studies, researchers in SE need to increase
sample sizes. This is a familiar request, but it remains an
important issue. Without increased sample sizes we cannot
reduce the likelihood that we will observe spurious inter-
actions between technique, participant skill and sequence
group that make crossover designs difficult to interpret.
Increased sample sizes can be addressed by designing
distributed experiments and families of experiments (see,
e.g., [29]), but our simulation results suggest that estimates
of r estimates and variance estimate do not begin to stabilise
until participant numbers reach at least 60. The analysis of
the power of two-group crossover designs reported in Sec-
tion 2.2 suggests that sequence group sizes of approximately
32 participants (for a medium effect size) are equivalent to
a between groups study with 64 participants even if r = 0.
Thus, we assume that two-group crossover designs should
aim for a minimum of 30 participants per sequence group.
However, without further simulation studies, we cannot be
sure of appropriate numbers of participants per sequence
group for four-group crossover designs.

In addition, although crossover studies were designed to
cater for individual differences, we cannot be confident that
crossovers are working as expected unless we collect data
about the differences among participants. Such data can be
used to investigate, both the validity of crossover design in
SE and more detailed hypotheses about the impact of a new
SE technique or method.

For studies that investigate difference between com-
peting SE methods (e.g., test-before versus test-after), we
strongly advise researchers to give participants time to
become familiar with new methods. It would be worthwhile
tracking the results of participants over several different
practice sessions, which will allow the existence of any
individual differences to be identified empirically. Formal
hypothesis tests should only be applied once r values ob-
tained from different practice sessions start to stabilise.

For experiments that aim to investigate different work-
ing conditions, such as the impact of background noise,
or variations in component documentation, the method of
performing the software engineering task is the same for
all conditions. In such cases, a crossover design with an
appropriate sample size is much less risky than a crossover
experiment aimed at evaluating competing software engi-
neering technologies. In such cases, the power benefits of
replicated experiments is likely to be substantial compared
with simple between group experiments, and the risk of sig-
nificant and genuine interactions complicating analysis and
interpretation of results is likely to be substantially reduced.

Finally, we reiterate that if the low r-values are due
to insufficient training, this is a problem for all human-
participant-based SE experiments that aim to compare dif-

ferent SE techniques or methods, not just crossover experi-
ments.

REFERENCES

[1] S. Vegas, C. Apa, and N. Juristo, “Crossover Designs in Software
Engineering Experiments: Benefits and Perils,” IEEE Transactions
on Software Engineering, vol. 42, no. 2, pp. 120–135, 2016.

[2] L. Madeyski and B. Kitchenham, “Effect sizes and their
variance for AB/BA crossover design studies,” Empirical Software
Engineering, vol. 23, no. 4, pp. 1982–2017, 2018. [Online]. Available:
https://doi.org/10.1007/s10664-017-9574-5

[3] B. Kitchenham, L. Madeyski, and P. Brereton, “Problems with
Statistical Practice in Human-Centric Software Engineering
Experiments,” in Proceedings of the Evaluation and Assessment
on Software Engineering, ser. EASE ’19. New York, NY,
USA: ACM, 2019, pp. 134–143. [Online]. Available: http:
//doi.org/10.1145/3319008.3319009

[4] O. Laitenberger, K. E. Emam, and T. G. Harbich, “An Inter-
nally Replicated Quasi-Experimental Comparison of Checklist and
Perspective-Based Reading of Code Documents,” IEEE Transac-
tions on Software Engineering, vol. 27, no. 5, pp. 387–421, 2001.

[5] W. P. Dunlap, J. M. Cortina, J. B. Vaslow, and M. J. Burke,
“Meta-analysis of Experiments with Matched Groups or Repeated
Measures Designs,” Psychological Methods, vol. 1, no. 2, pp. 170–
177, 1996.

[6] B. Kitchenham, L. Madeyski, and P. Brereton, “Meta-analysis for
families of experiments in software engineering: A systematic
review and reproducibility and validity assessment,” Empirical
Software Engineering, vol. 25, no. 1, pp. 353–401, 2020. [Online].
Available: https://doi.org/10.1007/s10664-019-09747-0

[7] B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark,
E. Horowitz, R. Madachy, D. Reifer, and B. Steece, Software Cost
Estimation with COCOMO II. Prentice-Hall Inc., 2000.

[8] B. Kitchenham, L. Madeyski, G. Scanniello, and C. Gravino.
Supplementary material to the paper ”The Importance
of the Correlation in Crossover Experiments”. Alterna-
tive download: https://madeyski.e-informatyka.pl/download/
KitchenhamMadeyskiScannielloGravinoTSEappendix.pdf. [On-
line]. Available: https://doi.org/10.5281/zenodo.4475865

[9] J. Cohen, “A power primer,” Psychological Bulletin, vol. 46, no. 1,
pp. 155–159], 2020.

[10] S. Senn, Cross-over Trials in Clinical Research, 2nd ed. Indianapolis,
Indiana, USA: John Wiley and Sons, Ltd., 2002.

[11] L. Madeyski, B. Kitchenham, and T. Lewowski, reproducer:
Reproduce Statistical Analyses and Meta-Analyses, 2020, R package
version 0.4.0. [Online]. Available: http://CRAN.R-project.org/
package=reproducer

[12] F. Ricca, M. D. Penta, M. Torchiano, P. Tonella, and M. Ceccato,
“How developers’ experience and ability influence web applica-
tion comprehension tasks supported by uml stereotypes: A series
of four experiments,” IEEE Transactions on Software Engineering,
vol. 36, no. 1, pp. 96—118, 2010.

[13] A. Fernandez, S. Abrahão, and E. Insfran, “Empirical validation
of a usability inspection method for model-driven web develop-
ment,” The Journal of Systems and Software, vol. 86, no. 5, 2013.

[14] G. Scanniello and U. Erra, “Distributed modeling of use case
diagrams with a method based on think-pair-square: Results from
two controlled experiments,” Journal of Visual Languages and Com-
puting, vol. 25, no. 4, pp. 494–517, 2014.

[15] G. Scanniello, A. Marcus, and D. Pascale, “Link analysis al-
gorithms for static concept location: an empirical assessment,”
Empirical Software Engineering, vol. 20, no. 6, pp. 1666–1720, 2015.

[16] G. Scanniello, C. Gravino, M. Genero, J. A. Cruz-Lemus,
and G. Tortora, “On the Impact of UML Analysis Models
on Source-code Comprehensibility and Modifiability,” ACM
Transactions on Software Engineering and Methodology, vol. 23,
no. 2, pp. 13:1–13:26, Apr. 2014. [Online]. Available: http:
//doi.acm.org/10.1145/2491912

[17] S. Abrahao, C. Gravino, E. Insfran Pelozo, G. Scanniello, and
G. Tortora, “Assessing the effectiveness of sequence diagrams in
the comprehension of functional requirements: Results from a
family of five experiments,” IEEE Transactions on Software Engi-
neering, vol. 39, no. 3, pp. 327–342, March 2013.

https://doi.org/10.1007/s10664-017-9574-5
http://doi.org/10.1145/3319008.3319009
http://doi.org/10.1145/3319008.3319009
https://doi.org/10.1007/s10664-019-09747-0
https://madeyski.e-informatyka.pl/download/KitchenhamMadeyskiScannielloGravinoTSEappendix.pdf
https://madeyski.e-informatyka.pl/download/KitchenhamMadeyskiScannielloGravinoTSEappendix.pdf
https://doi.org/10.5281/zenodo.4475865
http://CRAN.R-project.org/package=reproducer
http://CRAN.R-project.org/package=reproducer
http://doi.acm.org/10.1145/2491912
http://doi.acm.org/10.1145/2491912


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3070480, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH ZZZZ 12

[18] M. Torchiano, G. Scanniello, F. Ricca, G. Reggio, and M. Leotta,
“Do uml object diagrams affect design comprehensibility? results
from a family of four controlled experiments.” Journal of Visual
Languages and Computing, vol. 41, pp. 10–21, 2017.

[19] G. Scanniello, M. Staron, H. Burden, and R. Heldal, “On the effect
of using SysML requirement diagrams to comprehend require-
ments: results from two controlled experiments,” in Proceedings
of the 18th International Conference on Evaluation and Assessment in
Software Engineering, EASE. ACM, 2014.

[20] C. Gravino, G. Scanniello, and G. Tortora, “Source-code compre-
hension tasks supported by uml design models: Results from a
controlled experiment and a differentiated replication,” Journal of
Visual Languages and Computing, vol. 28, pp. 23–38, 2015.

[21] F. Ricca, G. Scanniello, M. Torchiano, G. Reggio, and E. Astesiano,
“Assessing the effect of screen mockups on the comprehension of
functional requirements,” ACM Transactions on Software Engineer-
ing and Methodology, vol. 24, no. 1, pp. 1:1–1:38, Oct. 2014.

[22] G. Reggio, F. Ricca, G. Scanniello, F. D. Cerbo, and G. Dodero,
“On the comprehension of workflows modeled with a precise
style: results from a family of controlled experiments.” Software
and Systems Modeling, vol. 14, pp. 1481–1504, 2015.

[23] L. Madeyski, Test-Driven Development: An Empirical Evaluation
of Agile Practice. (Heidelberg, London, New York): Springer,
2010, foreword by Prof. Claes Wohlin. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-04288-1

[24] G. Scanniello, M. Risi, P. Tramontana, and S. Romano, “Fixing
faults in c and java source code: Abbreviated vs. full-word
identifier names,” ACM Trans. Softw. Eng. Methodol., vol. 26, no. 2,
Jul. 2017. [Online]. Available: https://doi.org/10.1145/3104029

[25] S. Romano, G. Scanniello, D. Fucci, N. Juristo, and B. Turhan, “The
effect of noise on software engineers’ performance,” in Proceedings
of the 12th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ser. ESEM’18, 2018.

[26] L. Madeyski and B. Kitchenham, “Would wider adoption of repro-
ducible research be beneficial for empirical software engineering
research?” Journal of Intelligent & Fuzzy Systems, vol. 32, no. 2, pp.
1509–1521, 2017.

[27] A. Santos, O. Gomez, and N. Juristo, “Analyzing families of
experiments in se: A systematic mapping study,” IEEE Transactions
on Software Engineering, vol. 46, no. 5, 2020.

[28] R. L. Rosnow and R. Rosenthal, People Studying People Artifacts and
Ethics in Behavioural Research. New York: W.H. Freeman & Co.,
1997.

[29] B. Kitchenham, L. Madeyski, D. Budgen, J. Keung, P. Brere-
ton, S. Charters, S. Gibbs, and A. Pohthong, “Robust Statistical
Methods for Empirical Software Engineering,” Empirical Software
Engineering, vol. 22, no. 2, pp. 579–630, 2017.

Barbara Kitchenham is an Emeritus Professor
in the School of Computing and Mathematics
at Keele University in the UK. She has worked
in software engineering for over 40 years both
in industry and academia. She has published
over 150 software engineering journal and con-
ference papers. Her most recent research has
focused on the application of evidence-based
practice to software engineering. In 2019, she
was awarded the IEEE Technical Committee
Distinguished Women in Science & Engineering

(WISE) Leadership Award.

Lech Madeyski is an Associate Professor and
Deputy Head for Research at Department of
Applied Informatics, Wroclaw University of Sci-
ence and Technology, Poland. He has been a
Visiting Researcher at Keele University, Brunel
University London, and a Visiting Professor at
Blekinge Institute of Technology. His research
focus is on empirical (evidence-based) software
engineering, data science in software engineer-
ing, robust statistical methods, reproducible re-
search, software quality, mutation testing, agile

methods. He is a co-founder of e-Informatica Software Engineering
Journal, published, e.g., in IEEE Transactions on Software Engineering,
Empirical Software Engineering, Information and Software Technology,
and authored “Test-Driven Development: An Empirical Evaluation of
Agile Practice” book by Springer. He serves as steering committee
member, program co-chair, workshops/special sessions/track co-chair,
and PC member of international conferences in software engineering.

Giuseppe Scanniello received his Laurea and
Ph.D. degrees, both in Computer Science, from
the University of Salerno, Italy, in 2001 and 2003,
respectively. In 2006, he joined, as an Assistant
Professor, the Department of Mathematics and
Computer Science at the University of Basilicata,
Potenza, Italy. In 2015, he became an Associate
Professor at the same university. He has pub-
lished more than 170 referred papers in journals,
books, and conference proceedings. He serves
on the organizing of major international confer-

ences and workshops in the field of software engineering. Giuseppe
Scanniello leads both the group and the laboratory of software engi-
neering at the University of Basilicata (BASELab).

Carmine Gravino is an Associate Professor at
the Department of Computer Science of Univer-
sity of Salerno. He is the co-director of the Soft-
ware Quality and Measurement (SQM)/Web En-
gineering Laboratory and his research interests
include software project management, software
measurement and functional size measurement
methods, predictive modeling for software en-
gineering, software maintenance and evolution,
software technology evaluation through experi-
mental means. He has published more than 100

papers in international journals, books, and conference proceedings. He
has served as organizing and program committee member of several
international conferences in the field of software engineering and is in
the editorial boards of international journals. He has also served as
reviewer of several software engineering journals.

http://dx.doi.org/10.1007/978-3-642-04288-1
https://doi.org/10.1145/3104029

