
Preprint: Tomasz Lewowski and Lech Madeyski, "Code Smells Detection Using Artificial Intelligence Techniques: A
Business-Driven Systematic Review", pp. 285–319. Cham: Springer International Publishing, 2022. DOI:
10.1007/978-3-030-77916-0_12

Preprint: https://madeyski.e-informatyka.pl/download/LewowskiMadeyski22.pdf

Code Smells Detection Using Artificial
Intelligence Techniques: A Business-Driven
Systematic Review

Tomasz Lewowski and Lech Madeyski

Abstract Context: Code smells in the software systems are indications that usually
correspond to deeper problems that can negatively influence software quality char-
acteristics. This review is a part of a R&D project aiming to improve the existing
codebeat platform that help developers to avoid code smells and deliver quality
code. Objective: This study aims to identify and investigate the current state of the
art with respect to: (1) predictors used in prediction models to detect code smells, (2)
machine learning/artificial intelligence (ML/AI) methods used in prediction models
to detect code smells, (3) code smells analyzed in scientific literature. Our secondary
objectives were to identify (4) data sets and projects used in research papers to pre-
dict code smells, (5) performance measures used to assess prediction models and (6)
improvement ideas with regard to code smell detection using ML/AI. Method: We
conducted a systematic review using a database search in Scopus and evaluated it
using the quasi-gold standard procedure to identify relevant studies. In the data sheet
used to obtain data from publications we factor research questions into finer-grained
ones, which are then answered on a per-publication basis. Those are then merged
over a set of publications using an automated script to obtain answers to the posed
research questions. Results: We have identified 45 primary studies relevant to the
primary objectives of this research. The results show the prediction capability of
the ML/AI techniques for predicting code smells. Conclusion: Only a few smells—
Blob, Feature Envy, Long Method and Data Class—have received the vast majority
of interest in research community. The usage of deep learning techniques is increas-
ing. Most researchers still use source code metrics as predictors. Precision, recall
and F-measure are the go-to performance metrics. There seems to be a need for
modern reference data/projects sets that reflect modern constructs of programming

Tomasz Lewowski
Department of Applied Informatics, Wroclaw University of Science and Technology, Poland,
e-mail: tomasz.lewowski@pwr.edu.pl, ORCID: 0000-0003-4897-1263

Lech Madeyski
Department of Applied Informatics, Wroclaw University of Science and Technology, Poland,
e-mail: lech.madeyski@pwr.edu.pl, ORCID: 0000-0003-3907-3357

http://dx.doi.org/10.1007/978-3-030-77916-0_12
https://madeyski.e-informatyka.pl/download/LewowskiMadeyski22.pdf
tomasz.lewowski@pwr.edu.pl
lech.madeyski@pwr.edu.pl

2 Tomasz Lewowski and Lech Madeyski

languages. We identified various promising paths of research that have the potential
to advance the state of the art in the area of code smells prediction.

1 Introduction

Software industry is a huge business withworldwide revenue totaled $407.3 billion in
2013 [13]. According to World Quality Report (2016-2017), in average the industry
was spending over 30% of the IT budget on Quality Assurance (QA) and Testing,
while the report study participants predicted an upward move to 40% by 2019 [3].
Hence, precise detection of quality issues in code (issues that make the code hard to
maintain and evolve, and thus need to be fixed/refactored), is of great importance.

At the end of the previous century, the term “code smells” has been coined by
Beck and Fowler [12] in the context of identifying quality issues in code that can be
refactored. Since then a lot of researchers investigated the smell metaphor in software
engineering describing a wide range of smells that can be detected, techniques that
can be used to predict (detect) smells, as well as metrics that can serve as predictors
of bad smells.

The aim of this systematic review is to summarize a large body of knowledge in
the aforementioned areas. However, it is worth mentioning that this review was con-
ducted as a preliminary step of a research & development (R&D) project funded by
NCBiR (POIR.01.01.01-00-0792/16) conducted in the code quest software develop-
ment company1. The company develops a platform, called codebeat2, for automated
code review for mobile and web, supporting developers in detection of code smells.
As the company wants to know what is the state of the art in prediction of code
smells using artificial intelligence (AI) in general, and machine learning (ML) in
particular, this review is in fact a business driven literature review with the goal to
present the state of the art in code smells detection with research questions presented
in Section 2.1.

1.1 Related work

This is not the first systematic review of literature regarding code smells. An earlier
review by Zhang et al. [30] focused on more meta-research questions: which code
smells were researched at the time, what were the aims of studies on code smells,
what techniques were used in these studies and whether there is an actual evidence
of usefulness of the code smell concept. Their study was focused on the original 22
code smells introduced by Fowler [12], and they discovered that relatively few smells
attract most research, and most of the smells were not thoroughly analyzed. Their

1 codequest.com

2 codebeat.co

codequest.com
codebeat.co

Code Smells Detection Using Artificial Intelligence Techniques: A Systematic Review 3

research included publications published between 2000 and 2009, which means that
a lot of recent research is simply not present there.

Singh and Kaur [24] incorporated data up to September 2015. They focused on
refactoring of code smells and anti-patterns, but some of the research questions are
related strictly to code smell detection. Authors analyzed a wide range of techniques
and tools, but their focus is on brief presentation of all tools and techniques (not
only automated, but also semi-automated and manual) used for code smell detection
rather than on analyzing and comparing performance of ML/AI methods.

Five other systematic studies on code smells were done in the last three years:
[23, 22, 2, 4, 1]. In the first one, by Sharma and Spinellis [23], authors cover broad
range of code smell-related issues, such as what do they actually represent, how do
they get introduced into software systems, what is their effect on processes, artifacts
and people and what are their detection methods. Due to the broad scope, the
paper only briefly lists categories of smell detection techniques, without going into
specific techniques in the category or achieved results. This paper covers publications
published from year 1999 to 2016.

A review by Santos et al. [22] covers a slightly different area—it focuses on the
„themes” of studies investigating code smells, their experimental settings and conver-
gence of their findings. It covers a total of 65 publications from years 2002 to 2017.
The „theme” in the context of this study is kind of a context classification—themes
are „Detection”, „Programming”, „Human aspects”, „Correlation with development
issues”. This study found that there is a multitude of inconsistencies among re-
searchers and, as of now, no known detection and removal techniques are adequate,
including human evaluation.

An extensive literature review conducted by Azeem et al. [2] included research
questions on used machine learning techniques, independent variables, machine
learning algorithms, data sets, evaluation techniques and impact of those factors on
final model performance. The paper findings include limited support for code smells
detection usingmachine learning techniques, the fact that current papers focusmostly
on using code metrics, problem of code smell intensity is under-researched and the
impact of each of these factors cannot be easily determined. The study analyzed
papers published between 2000 and 2017.

Caram et al. [4] discussed code smells addressed in the literature, used machine
learning techniques and frequency of their usage as well as performance of various
techniques. The study analyzed 26 papers published between 1999 and 2016. The
conclusion was that all machine learning techniques perform comparably, with Deci-
sion Tree, Random Forest, Semi-supervised and Nearest Neighbor having a slightly
better overall performance. One of the issues raised by the paper is incomparability
of the studies, mostly due to using different data sets.

Amore recent study in the area byAl-Shaaby et al. [1] focuses on papers published
between 2005 and 2018. 17 studies were deemed relevant and sufficiently precise
quality-wise. The study addresses several research questions: used machine learn-
ing techniques, code smells that researchers attempt to identify, used performance
measures, data sets and tools used for modelling.

4 Tomasz Lewowski and Lech Madeyski

None of these studies included any appendix with intermediate results, such as
full initial list of considered publications, reasons for rejection for each of them or
data elements extracted from each, which would simplify reproduction and improve
reviewability.

1.2 Contributions of this study

In response to the above mentioned needs we conducted a systematic review on
literature concerning prediction of code smells using ML/AI methods. As a result,
the review makes the following contributions to the field:

1. Presents the state-of-the-art in the current code smells detection research in-
cluding predictors and ML/AI methods used in prediction models, as well as the
range of code smells analyzed in the scientific literature.

2. Identifies performance metrics used by researchers today.
3. Identifies data sets or software projects being their origin (including their size

and other characteristics) used to create code smell prediction models.
4. Identifies research ideas to advance the domain of code smells prediction on

which other researchers and tool vendors may build upon, as well as factors that
influence the predictive performance of code smells prediction models.

We present the details of our research methods in Section 2, the results of our
systematic review in Section 3, the discussion of the results in Section 4, and we
conclude with Section 5.

2 Methods

Weperformed this systematic review (SR) according to the guidelines byKitchenham
et al [14]. The processes we adopted are specified in this section.

2.1 Research questions

The research questions relating to our review are as follows:

RQ1 Which predictors are used in prediction models to detect code smells?
RQ2 Which ML/AI methods are used in prediction models to detect code smells and

which methods are considered the best?
RQ3 Which code smells are analyzed in scientific literature?
RQ4 What data sets and projects, and of what characteristics are used in research

papers to predict code smells?
RQ5 Which performance metrics are most commonly used in the literature?

Code Smells Detection Using Artificial Intelligence Techniques: A Systematic Review 5

RQ6 What are the ideas, in the existing research, upon which code smell prediction
using machine learning may be built?

2.2 Protocol development

Initially a protocol was created to define the procedures we intended to use for the
systematic review including the search process, the primary study selection process,
the data extraction process and the data analysis process. It also identifies the main
tasks of all the co-authors. The protocol was initially drafted by the second author
and double-checked by the first author.

The following sections are based on the processes defined in the protocol. Any
divergences report our actual processes, as opposed to the planned processes are
described in the protocol.

2.3 Search process

We intend to search for papers that will help us to answer research questions posed
in Section 2.1 by following our search strategy described in Section 2.3.1.

2.3.1 Search Strategy

Our main search process will be an automated search using Scopus because of
its wide coverage. From the point of view of the research project we are involved
in and the code quest company, finding all of the relevant papers is not critical,
but to be on the safe side we will validate the Scopus search using a quasi-gold
standard [29, 14] performing a manual search across a limited set of topic-specific
journals and conference proceedings over a restricted time period (year 2017). The
results of this process are reported in subsequent sections.

2.3.2 Search strings

We derived major terms from research questions, identified alternative spellings or
synonyms for major terms using OR, used AND to connect the major terms, checked
the search terms in relevant publications we already had, and followed the rules to
construct search strings in Scopus3.

As a result, our initial search string in Scopus was as follows:

3 More details can be found at https://service.elsevier.com/app/answers/
detail/a_id/11213/supporthub/scopus/#tips and https://service.elsevier.com/
app/answers/detail/a_id/11236/kw/all%20fields/supporthub/scopus/

https://service.elsevier.com/app/answers/detail/a_id/11213/supporthub/scopus/#tips
https://service.elsevier.com/app/answers/detail/a_id/11213/supporthub/scopus/#tips
https://service.elsevier.com/app/answers/detail/a_id/11236/kw/all%20fields/supporthub/scopus/
https://service.elsevier.com/app/answers/detail/a_id/11236/kw/all%20fields/supporthub/scopus/

6 Tomasz Lewowski and Lech Madeyski

TITLE-ABS-KEY (("code smell" OR "bad smell" OR antipattern OR
anti-pattern OR "anti pattern") AND ("machine learning" OR predict*
)) AND PUBYEAR > 1998

which translates into the following URL:
https://www.scopus.com/results/results.uri?sort=plf-f&src=s&sid=

a9ac162c765cdd97d420c650614d365f&sot=a&sdt=a&sl=155&s=TITLE-ABS-KEY+
%28+%28+%22code+smell%22+OR+%22bad+smell%22+OR+antipattern+OR+anti-pattern+
OR+%22anti+pattern%22+%29+AND+%28%22machine+learning%22+OR+predict*+
%29+%29+AND+PUBYEAR+%3e+1998&origin=searchadvanced&editSaveSearch=
&txGid=272750ded430629599c4d74aae98f0e3

It is worth mentioning that Beck coined the term "code smell" in the context of
identifying quality issues in code that can be refactored to improve themaintainability
of a software in 1999 [12]. Hence, the time period to be covered by the review is
limited by PUBYEAR > 1998 in the search string.

Madeyski performed the search in Scopus on February 21, 2018. In total, 88
papers were returned from Scopus. All of the results were saved in BibTeX (and
CSV) format.

After analysis of the aforementioned preliminary set of 88 papers necessary
corrections to our search string were introduced. The final search string was:
TITLE-ABS-KEY (("code smell" OR "bad smell" OR antipattern OR

anti-pattern OR "anti pattern") AND ("machine learning" OR predict*
OR detect OR detection OR heuristic*) AND software) AND PUBYEAR
> 1998

while URL was:
https://www.scopus.com/results/results.uri?sort=plf-f&src=s&sid=

9d6009998ae2e22265826addfe46ebd6&sot=a&sdt=a&sl=210&s=TITLE-ABS-KEY+
%28+%28+%22code+smell%22+OR+%22bad+smell%22+OR+antipattern+OR+anti-pattern+
OR+%22anti+pattern%22+%29+AND+%28+%22machine+learning%22+OR+predict*+
OR+%7bdetect%7d+OR+%7bdetection%7d+OR+heuristic*+%29+AND+software+
%29+AND+PUBYEAR+%3e+1998&origin=searchadvanced&editSaveSearch=&txGid=
70e3ad5814b99ef9e407ff18c23a8c07

Madeyski performed the final search in Scopus on March 21, 2018. In total,
424 papers were returned from Scopus. All of the results were saved in BibTeX
(and CSV) format for further analysis. Due to the fact that work on this paper tool
substantial amount of time, the same search was re-run by Lewowski on June 05,
2020. This search yield a total of 607 papers.

It is worth mentioning that now our search string includes now not only terms
“predict” and “machine learning”, but also “detect” and “heuristic*”. Especially the
word “detect” was sometimes used in the abstracts of interesting papers without the
word “predict”.

Checking the accuracy of the search string, Madeyski found that an important
review paper by Sharma and Spinellis was missing in Scopus for unknown reason
(other papers in JSS journal vol. 138 are indexed). Fortunately, the paper was indexed
in Scopus later.

Our search procedure may be summarized as follows:

https://www.scopus.com/results/results.uri?sort=plf-f&src=s&sid=a9ac162c765cdd97d420c650614d365f&sot=a&sdt=a&sl=155&s=TITLE-ABS-KEY+%28+%28+%22code+smell%22+OR+%22bad+smell%22+OR+antipattern+OR+anti-pattern+OR+%22anti+pattern%22+%29+AND+%28%22machine+learning%22+OR+predict*+%29+%29+AND+PUBYEAR+%3e+1998&origin=searchadvanced&editSaveSearch=&txGid=272750ded430629599c4d74aae98f0e3
https://www.scopus.com/results/results.uri?sort=plf-f&src=s&sid=a9ac162c765cdd97d420c650614d365f&sot=a&sdt=a&sl=155&s=TITLE-ABS-KEY+%28+%28+%22code+smell%22+OR+%22bad+smell%22+OR+antipattern+OR+anti-pattern+OR+%22anti+pattern%22+%29+AND+%28%22machine+learning%22+OR+predict*+%29+%29+AND+PUBYEAR+%3e+1998&origin=searchadvanced&editSaveSearch=&txGid=272750ded430629599c4d74aae98f0e3
https://www.scopus.com/results/results.uri?sort=plf-f&src=s&sid=a9ac162c765cdd97d420c650614d365f&sot=a&sdt=a&sl=155&s=TITLE-ABS-KEY+%28+%28+%22code+smell%22+OR+%22bad+smell%22+OR+antipattern+OR+anti-pattern+OR+%22anti+pattern%22+%29+AND+%28%22machine+learning%22+OR+predict*+%29+%29+AND+PUBYEAR+%3e+1998&origin=searchadvanced&editSaveSearch=&txGid=272750ded430629599c4d74aae98f0e3
https://www.scopus.com/results/results.uri?sort=plf-f&src=s&sid=a9ac162c765cdd97d420c650614d365f&sot=a&sdt=a&sl=155&s=TITLE-ABS-KEY+%28+%28+%22code+smell%22+OR+%22bad+smell%22+OR+antipattern+OR+anti-pattern+OR+%22anti+pattern%22+%29+AND+%28%22machine+learning%22+OR+predict*+%29+%29+AND+PUBYEAR+%3e+1998&origin=searchadvanced&editSaveSearch=&txGid=272750ded430629599c4d74aae98f0e3
https://www.scopus.com/results/results.uri?sort=plf-f&src=s&sid=a9ac162c765cdd97d420c650614d365f&sot=a&sdt=a&sl=155&s=TITLE-ABS-KEY+%28+%28+%22code+smell%22+OR+%22bad+smell%22+OR+antipattern+OR+anti-pattern+OR+%22anti+pattern%22+%29+AND+%28%22machine+learning%22+OR+predict*+%29+%29+AND+PUBYEAR+%3e+1998&origin=searchadvanced&editSaveSearch=&txGid=272750ded430629599c4d74aae98f0e3
https://www.scopus.com/results/results.uri?sort=plf-f&src=s&sid=a9ac162c765cdd97d420c650614d365f&sot=a&sdt=a&sl=155&s=TITLE-ABS-KEY+%28+%28+%22code+smell%22+OR+%22bad+smell%22+OR+antipattern+OR+anti-pattern+OR+%22anti+pattern%22+%29+AND+%28%22machine+learning%22+OR+predict*+%29+%29+AND+PUBYEAR+%3e+1998&origin=searchadvanced&editSaveSearch=&txGid=272750ded430629599c4d74aae98f0e3
https://www.scopus.com/results/results.uri?sort=plf-f&src=s&sid=9d6009998ae2e22265826addfe46ebd6&sot=a&sdt=a&sl=210&s=TITLE-ABS-KEY+%28+%28+%22code+smell%22+OR+%22bad+smell%22+OR+antipattern+OR+anti-pattern+OR+%22anti+pattern%22+%29+AND+%28+%22machine+learning%22+OR+predict*+OR+%7bdetect%7d+OR+%7bdetection%7d+OR+heuristic*+%29+AND+software+%29+AND+PUBYEAR+%3e+1998&origin=searchadvanced&editSaveSearch=&txGid=70e3ad5814b99ef9e407ff18c23a8c07
https://www.scopus.com/results/results.uri?sort=plf-f&src=s&sid=9d6009998ae2e22265826addfe46ebd6&sot=a&sdt=a&sl=210&s=TITLE-ABS-KEY+%28+%28+%22code+smell%22+OR+%22bad+smell%22+OR+antipattern+OR+anti-pattern+OR+%22anti+pattern%22+%29+AND+%28+%22machine+learning%22+OR+predict*+OR+%7bdetect%7d+OR+%7bdetection%7d+OR+heuristic*+%29+AND+software+%29+AND+PUBYEAR+%3e+1998&origin=searchadvanced&editSaveSearch=&txGid=70e3ad5814b99ef9e407ff18c23a8c07
https://www.scopus.com/results/results.uri?sort=plf-f&src=s&sid=9d6009998ae2e22265826addfe46ebd6&sot=a&sdt=a&sl=210&s=TITLE-ABS-KEY+%28+%28+%22code+smell%22+OR+%22bad+smell%22+OR+antipattern+OR+anti-pattern+OR+%22anti+pattern%22+%29+AND+%28+%22machine+learning%22+OR+predict*+OR+%7bdetect%7d+OR+%7bdetection%7d+OR+heuristic*+%29+AND+software+%29+AND+PUBYEAR+%3e+1998&origin=searchadvanced&editSaveSearch=&txGid=70e3ad5814b99ef9e407ff18c23a8c07
https://www.scopus.com/results/results.uri?sort=plf-f&src=s&sid=9d6009998ae2e22265826addfe46ebd6&sot=a&sdt=a&sl=210&s=TITLE-ABS-KEY+%28+%28+%22code+smell%22+OR+%22bad+smell%22+OR+antipattern+OR+anti-pattern+OR+%22anti+pattern%22+%29+AND+%28+%22machine+learning%22+OR+predict*+OR+%7bdetect%7d+OR+%7bdetection%7d+OR+heuristic*+%29+AND+software+%29+AND+PUBYEAR+%3e+1998&origin=searchadvanced&editSaveSearch=&txGid=70e3ad5814b99ef9e407ff18c23a8c07
https://www.scopus.com/results/results.uri?sort=plf-f&src=s&sid=9d6009998ae2e22265826addfe46ebd6&sot=a&sdt=a&sl=210&s=TITLE-ABS-KEY+%28+%28+%22code+smell%22+OR+%22bad+smell%22+OR+antipattern+OR+anti-pattern+OR+%22anti+pattern%22+%29+AND+%28+%22machine+learning%22+OR+predict*+OR+%7bdetect%7d+OR+%7bdetection%7d+OR+heuristic*+%29+AND+software+%29+AND+PUBYEAR+%3e+1998&origin=searchadvanced&editSaveSearch=&txGid=70e3ad5814b99ef9e407ff18c23a8c07
https://www.scopus.com/results/results.uri?sort=plf-f&src=s&sid=9d6009998ae2e22265826addfe46ebd6&sot=a&sdt=a&sl=210&s=TITLE-ABS-KEY+%28+%28+%22code+smell%22+OR+%22bad+smell%22+OR+antipattern+OR+anti-pattern+OR+%22anti+pattern%22+%29+AND+%28+%22machine+learning%22+OR+predict*+OR+%7bdetect%7d+OR+%7bdetection%7d+OR+heuristic*+%29+AND+software+%29+AND+PUBYEAR+%3e+1998&origin=searchadvanced&editSaveSearch=&txGid=70e3ad5814b99ef9e407ff18c23a8c07
https://www.scopus.com/results/results.uri?sort=plf-f&src=s&sid=9d6009998ae2e22265826addfe46ebd6&sot=a&sdt=a&sl=210&s=TITLE-ABS-KEY+%28+%28+%22code+smell%22+OR+%22bad+smell%22+OR+antipattern+OR+anti-pattern+OR+%22anti+pattern%22+%29+AND+%28+%22machine+learning%22+OR+predict*+OR+%7bdetect%7d+OR+%7bdetection%7d+OR+heuristic*+%29+AND+software+%29+AND+PUBYEAR+%3e+1998&origin=searchadvanced&editSaveSearch=&txGid=70e3ad5814b99ef9e407ff18c23a8c07

Code Smells Detection Using Artificial Intelligence Techniques: A Systematic Review 7

• Identify a tentative set of papers via automated search in Scopus.
• Evaluate the papers for inclusions and exclusions.
• Validate (and perhaps correct) the search strategy.

Initially, we also planned to perform the snowballing procedure using both back-
ward and forward snowballing as described byWohlin [28], but the number of found,
read and included primary studies was so large that we decided to stick to the already
identified and accepted set of papers if it passes the validation step described in the
next section.

2.3.3 Validating the search strategy

Twokey criteria for assessing the automated search are recall (also termed sensitivity)
and precision [7, 29] that can be calculated as follows:

'420;; =
' 5 >D=3

'C>C0;

(1)

%A428B8>= =
' 5 >D=3

#C>C0;

(2)

where:
'C>C0; is the total number of relevant studies
#C>C0; is the total number of studies found
' 5 >D=3 is the number of relevant studies found
Unfortunately, the practical problem in calculating recall is that 'C>C0; is not

known. Hence, our strategy to validate the search process will be through the con-
struction of a “quasi-gold standard” (QGS). We will incorporate the QGS concept,
which consists of collection of known studies, and corresponding “quasi-sensitivity”
into the search process for evaluating search performance as described by Zhang et
al [29]. The quasi-gold standard will be determined by performing a manual search
across a limited set of topic-specific journals and conference proceedings over a re-
stricted time period (year 2017). The approach has been originally evaluated through
two participant-observer case studies with promising results. QGS will be applied
only to publications relevant to primary RQs (1-4) and publications relevant only to
secondary RQs(5-6) will not be included.

Our validation of the search strategy will be conducted in the following steps,
similar to what was recommended by Zhang et al [29]:

Step 1A Determine initial search string using domain knowledge and experience.
Step 1B Identify relevant journals and conferences.
Step 2 Establish quasi-gold standard using manual search

Step 3* Revise search string using QGS results4

4 Apply only if recall does not reach required threshold.

8 Tomasz Lewowski and Lech Madeyski

The review team screen all papers in the selected sources and apply the inclusion
and exclusion criteria, defined in advance. Screening can be applied initially to
the title and abstract of a paper (in Phase 1) or to the whole paper (in Phase 2).

Step 4 Conduct automated search
Step 5 Evaluate search performance

If we do not reach quasi-sensitivity threshold of 75% then we go to Step 3 and
revise search strings5.

The workflow of the validation of the search strategy is presented in Figure 2.3.3.
The workflow diverges from what was proposed by Zhang et al. [29] in that initial

Fig. 1 Workflow of the systematic search process (inspired by [29])

search string is not determined using QGS results but using authors’ domain knowl-
edge and experience. There are two causes for this divergence (taking advantage of
the fact that there is more than one author of the review):

5 Zhang et al. [29] suggest that a sensitivity (recall) threshold (i.e., a completeness target) of between
70% and 80% might be used to decide whether to go to Step 3 (and to refine the search terms) or
whether to proceed to the next stage of the review.

Code Smells Detection Using Artificial Intelligence Techniques: A Systematic Review 9

1. Independence of initial search string formulation and selection of venues for
QGS enhances reliability of the validation procedure by removing coupling
between the search string and the validation data set.

2. Lack of the aforementioned dependency enables parallel work on steps 2
and 4, thus making the process shorter and delivering business value ear-
lier. This allows stakeholders to review their expectations (for example by re-
fining/adding/removing research questions or providing additional guidance),
which in turn increases business relevance of the study, even at the cost of
additional search string revision.

The results of the automated search are compared to the results of the manual
search (the quasi-gold standard) and quasi-sensitivity ('420;; = ' 5 >D=3

'C>C0;
), as well as

quasi-precision (%A428B8>= =
' 5 >D=3

#C>C0;
) can be calculated, as on a basis of:

• ' 5 >D=3 is the number of relevant studies found by the automated search (Step
4) that are published in the venues used in Step 2 (the manual search) during the
time period covered by the manual search.

• 'C>C0; (the total number of relevant studies for the selected venues and time
period) is the number of relevant papers found by the manual search (Step 2).

• #C>C0; is the total number of papers found by the automated search (Step 4).

Validation of our search strategy requires (in Step 1B) to identify relevant journals
and conferences6. We decided to search for papers published in 2017 in the following
top software engineering journals:

• IEEE Transactions on Software Engineering (TSE)
• Empirical Software Engineering (EMSE)
• ACM Transactions on Software Engineering Methodology (TOSEM)
• Information and Software Technology (IST)
• Journal of Systems and Software (JSS)
• Journal of Software: Evolution and Process (JSEP)

and conference proceedings:

• International Conference on Software Engineering (ICSE)
• Mining Software Repositories (MSR)
• IEEE International Conference on Software Analysis, Evolution and Reengi-
neering (SANER)

• International Conference on Software Maintenance and Evolution (ICSME)

Publications from a venue were extracted using Scopus on April 23, 2018 using
search strings presented in Table 1. Number of extracted publications and established
QGS publications are presented in Table 2.

It is worth mentioning that limiting PUBYEAR in Scopus to 2017 does not
exclude papers accepted in this year, but still waiting for assigning to a specific issue

6 We focus on the main full papers research tracks of the conferences, and do not cover collocated
conferences or workshops.

10 Tomasz Lewowski and Lech Madeyski

Table 1 Search strings used to extract publications from Scopus to establish quasi-gold standard

Venue Search string

TOSEM SRCTITLE ("ACM Transactions on Software Engineering and Methodology") AND PUBYEAR = 2017
TSE SRCTITLE ("ieee transactions on software engineering") AND PUBYEAR = 2017

EMSE SRCTITLE ("Empirical Software Engineering") AND PUBYEAR = 2017 AND (
LIMIT-TO (EXACTSRCTITLE , "Empirical Software Engineering "))

IST SRCTITLE ("Information and Software Technology") AND PUBYEAR = 2017
JSS SRCTITLE ("Journal of Systems and Software") AND PUBYEAR = 2017
JSEP SRCTITLE ("Journal of Software Evolution and Process") AND PUBYEAR = 2017

ICSE

SRCTITLE ("International Conference on Software Engineering") AND PUBYEAR = 2017 AND (
LIMIT-TO (
EXACTSRCTITLE , "Proceedings 2017 IEEE ACM 39th International Conference On
Software Engineering ICSE 2017") OR
LIMIT-TO (
EXACTSRCTITLE , "Proceedings International Conference On Software Engineering") OR
LIMIT-TO (
EXACTSRCTITLE , "Proceedings 2017 IEEE ACM 39th International Conference On Software Engineering
Software Engineering In Practice Track ICSE Seip 2017"))

MSR SRCTITLE ("Mining Software Repositories") AND PUBYEAR = 2017

SANER SRCTITLE ("IEEE International Conference on Software Analysis, Evolution and Reengineering") AND
PUBYEAR = 2017

ICSME SRCTITLE ("International Conference on Software Maintenance and Evolution") AND PUBYEAR = 2017

Table 2 Results of QGS search and selection

Title Total # of publications # of publications References
accepted in Phase 1 accepted in Phase 2

TSE 108 2 0 -
EMSE 131 0 0 -
TOSEM 12 0 0 -
IST 111 3 0 -
JSS 225 4 0 -
JSEP 68 0 0 -
ICSE 152 1 0 -
MSR 67 1 0 -
SANER 84 2 0 -
ICSME 175 5 1 [SLR36]

(so called articles in press). This means that more papers might have been analyzed
(apart from papers published in 2017, we analyzed also some papers that will be
published in 2018 and maybe even later), but does not affect the relevance of the
procedure.

Established QGS contains only a single publication. To verify why, we have
investigated at which venues were the accepted papers published. Their DOIs and
venue names are included in Table 3.

Search Process Task Allocation: Madeyski prepared an initial search string and
performed initial search in Scopus which returned 88 results. He verified if any
known papers are missing, refined the search string, and performed a refined search
in Scopus which returned 424 results. He prepared the search evaluation strategy
on a basis of quasi-gold standard (QGS). Lewowski performed the manual search
required by QGS.

Code Smells Detection Using Artificial Intelligence Techniques: A Systematic Review 11

Table 3 Publications published in 2017 accepted for analysis

DOI Venue name

doi:10.1109/ICSME.2016.26 ICSME 2016 - Proceedings of the 2016 IEEE International
Conference on Software Maintenance and Evolution

doi:10.1109/ASE.2017.8115667 ASE 2017 - Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering

doi:10.1016/j.knosys.2017.04.014 Knowledge-Based Systems

doi:10.1109/MOBILESoft.2017.29 MOBILESoft 2017 - Proceedings of the 2017 IEEE/ACM 4th
Int. Conference on Mobile Software Engineering and Systems

doi:10.1007/s11219-016-9309-7 Software Quality Journal

doi:10.5220/0006338804740482 ICEIS 2017 - Proceedings of the 19th International Conference
on Enterprise Information Systems

2.4 Primary Study Selection Process

Primary studies were filtered using a two-phase approach: in the first phase (screen-
ing) the paper’s title and abstract were verified with a checklist, and if the paper
passed this phase, the second one was data acquisition from full text. Since the
screening was done using only abstract, some papers were rejected during second
phase—for example if their abstract suggested that the paper used machine learning,
but in fact it did not.

2.4.1 Inclusion and exclusion criteria

The inclusion criteria for papers are defined as follows:

• The paper reports the use of ML/AI prediction models
• The paper is related to code smell detection

The exclusion criteria:

• The paper was an editorial, abstract, presentation slides, is not peer-reviewed or
is not an article or chapter of a book or conference proceedings.

• The paper was written in a language other than English.
• Full text of the paper was not available.
• The paper was published before 1999 when Fowler at al [12] first introduced the
concept of code smells.

• The paper did not attempt to use ML/AI for code smell prediction/detection in
the context of text-based object-oriented, functional or procedural programming
languages or a language being a mix of some or all of them (e.g., Scala is
an object-oriented language, but has many features of functional programming
languages).

• The same or extended results were already published (only extended results are
then included in the study).

https://doi.org/10.1109/ICSME.2016.26
https://doi.org/10.1109/ASE.2017.8115667
https://doi.org/10.1016/j.knosys.2017.04.014
https://doi.org/10.1109/MOBILESoft.2017.29
https://doi.org/10.1007/s11219-016-9309-7
https://doi.org/10.5220/0006338804740482

12 Tomasz Lewowski and Lech Madeyski

• The same authors published a studywith the same title in conference proceedings
(or book chapter), as well as in a journal (only journal paper, which typically is
more thorough, was included).

Phase 1 of selection process was performed using a checklist that contained
inclusion and exclusion criteria, split into simple Yes/No statements that can be
answered basing only on publication title and abstract. The checklist is designed in
such a way that answering "No" results in rejection of the publication (i.e., all checks
are represented as inclusion criteria).

Applied checklist contained the following statements:

1. The entry is a single journal paper, chapter of a book or conference proceedings
paper which requires peer review (i.e., it is not an editorial, abstract, technical
report etc).

2. The paper is written in English.
3. The paper was published in 1999 or later.
4. Title or abstract of the paper indicates that it is related to software engineering.
5. Title or abstract of the paper indicates that at least one code smell/anti-pattern

plays an important part of the study.
6. Title or abstract of the paper indicates that it might use machine learning tech-

niques.
7. Abstract or full text of the paper indicates that it focuses on code smells/anti-

patterns in programming languages,
8. Abstract or full text of the paper indicates that it focuses on code smells/anti-

patterns detection using source code.
9. The paper does not focus on techniques for resolving code smells/anti-patterns.
10. The paper does not focus on using code smells/anti-patterns as predictors of

other code or project traits.
11. The paper focuses on detection/prediction of code smells/anti-patterns.
12. If the paper is a chapter of a book or conference proceedings publication, its

authors have not published a study under same title in a journal (we want to
include the paper once and it may be expected that the journal version includes
more details).

13. Full text of the paper is available.

Results after Phase 1 of selection (on the basis of abstracts) are as follows:

• Number of publications: 607.
• Number of relevant publications: 164.
• Precision: 27.0%.
• Number of relevant publications found in QGS, but not found in automated
search: 0

• Number of relevant publications found in both QGS and automated search:
5 [20, 5, 10, 18],[SLR36].

• Recall: 100%, i.e., above the assumed threshold 75%.

Results after Phase 2 of selection (on the basis of full texts) are as follows:

Code Smells Detection Using Artificial Intelligence Techniques: A Systematic Review 13

• Number of publications: 164.
• Number of relevant publications: 44.
• Precision: 26.8%.
• Number of relevant publications found in QGS, but not found in automated
search: 0

• Number of relevant publications found in both QGS and automated search:
1 [SLR36].

• Recall: 100%, i.e., above the assumed threshold 75%.

Wewere aware of onemore publication relevant to the studywhichwas not present
in search results, therefore we included the paper by Grodzicka et al [SLR12] to the
initial publication set manually. It has gone through the regular checklist and data
acquisition phases.

Final list of accepted studies is listed in the end of the publication. References for
Systematic Literature Review are prefixed with "SLR".

Task allocation during selection process:

1. Lewowski applied the inclusion and exclusion criteria to the identified studies.
2. Madeyski checked the application of the inclusion/exclusion criteria on randomly

selected papers.

Disagreements were resolved by discussion. Agreement rate for results of first phase
was 95% (disagreement on [21] - final decision: reject), for results of second phase
- 80% (disagreement on [26] - final decision: reject and [SLR31] - final decision:
accept).

2.5 Assessing study quality

Quality assessment is about determining the extent to which the results of an em-
pirical study are valid and free from bias. We applied the quality checklist inspired
by Dybå and Dingsøyr [8] which, as mentioned by Kitchenham et al. [14], has an
advantage that can be used across multiple study types. The same checklist inspired
other researchers performing systematic reviews of machine learning techniques in
other areas as well [27, 16]. Each question has only three possible answers: "Yes",
"Partly", or "No" and these three answers are scored in the following way: "Yes" =
1, "Partly" = 0.5, and "No" = 0 inspired by [27, 16]. The final score is obtained after
adding the values assigned to each question. A study could have maximum score of
11 and minimum score of 0. The criteria we take into account are as follows:

1. Are the aims of the research clearly defined?

Yes goals of the paper are explicitly defined and presented
Partly goals of the paper are briefly mentioned (perhaps as part of

introduction)

14 Tomasz Lewowski and Lech Madeyski

No the paper goes straight to the proposed concept, without dis-
cussing its goals

2. Is there an adequate description of the context in which the research was carried
out (analyzed projects, data sets, data collection procedure etc.)?

Yes paper contains detailed information on analyzed data sets (in-
cluding version tags or VCS revisions) or valid references to
data sets, detailed procedure of data collection (or data collec-
tion script) and reproducible analysis procedure (or runnable
script)

Partly paper contains information on analyzed data sets (without ver-
sion tags or VCS revisions), approximate procedure of data
collection, stated analysis goals

No only rough information on analyzed data sets (e.g. number of
data sets), no or rough information on data collection procedure

3. Are the independent variables (predictors) and dependent variable(s) clearly
defined?

Yes paper contains detailed description of all predictors and de-
pendent variables. If predictors are obtained by running a tool,
tool version is given (if required, parameters used for running
the tool are given as well)

Partly paper contains rough description of used predictors or refer-
ence to them. If predictors are obtained by running a tool,
tool version and used parameters are unknown (but the tool is
accessible)

No paper contains only basic information on predictors, like their
number and names (if names are not well-known). There is no
possibility to acquire information about predictors from used
tool (for example because the tool is not clearly mentioned or
is not accessible).

4. Are the predictive modelling techniques clearly defined?

Yes paper either refers explicitly to a specific technique (by citing
a paper that describes details) or describes in detail used mod-
elling technique (for both prediction model and data model, if
applicable)

Partly paper either refers to a well-known technique (e.g. "genetic
algorithm" or "decision tree") or describes general concepts of
models (both prediction model and data model, if applicable)

No paper either does not describe modelling techniques or uses
only general terms such as "neural network" or "population-
based algorithm"

5. Are the performance measures used to assess the models clearly defined?

Code Smells Detection Using Artificial Intelligence Techniques: A Systematic Review 15

Yes paper either explicitly refers to papers defining the perfor-
mance measures or defines them itself

Partly paper uses well-known measures, like precision and recall, but
without defining or referencing them

No paper uses non-standard performance measures without defin-
ing them or does not perform performance evaluation

6. Are the performance measures used to assess the models considered credible?

Yes performance measures use all quadrants of the confusion ma-
trix, e.g. MCC

Partly performance measures use some quadrants of the confusion
matrix, e.g. precision and recall use together three out of four
quadrants of confusion matrix or use entirely different mech-
anisms (e.g. correlation with defects)

No no performance measurement done

7. Are the limitations or threats to validity of the study specified?

Yes a detailed analysis of threats is done in the paper
Partly only brief threat analysis is performed
No no analysis of threats is given in the paper

8. Is the research reproducible (is a package including data sets and code or a
detailed description available)?

Yes complete information required to reproduce the study is avail-
able

Partly some of the information is missing (e.g. code version, data set
version, script parameters)

No paper lacks most of these elements

9. Is the proposed method or methods compared with other methods and/or base-
lines?

Yes well-defined baseline is used and uses same performance mea-
sures and data sets as proposed methods

Partly baseline is used, but it is not entirely representative (e.g. results
reported on different data sets by other researchers are used as
baseline)

No no baseline is given

10. Are the findings of study clearly stated and supported by reported results?

Yes findings are presented and fully and unambiguously supported
by reported results

Partly findings are presented and reported results can be reasonably
interpreted as supporting the findings

No findings are either not presented or are contradictory to re-
ported results (or at least not supported by them)

16 Tomasz Lewowski and Lech Madeyski

11. Does the study provide convincing arguments about additional value given to
academia or industry community?

Yes earlier research is described and new contributions are clearly
stated

Partly new contributions are stated without or with limited reference
to earlier research

No new contributions are not stated or are not new

Results of assessing study quality are presented in Table 4 and Figure 2.

Table 4 Statistics for quality assessment scores

Statistic name Statistic value

Max score 10.5
Average score 6.23
Min score 0.0
Total number of publications 44

Quality scores will help us during the interpretation of the findings of a review, but
our observation is that the quality scores do not always correlate with the importance
of the research ideas, to advance the domain, on which other researchers and tool
vendors may build upon while developing code smells prediction tools. For example,
[SLR36] scored only 4 points in quality assessment. However, this was a space-
constrained conference paper, and it introduced concepts of smell detection via
history mining and via text similarity analysis. To avoid rejection of such interesting
papers, we have decided not to reject any paper solely on the basis of quality
assessment score. All of the low-scoring papers are either short conference papers or
workshop notes that usually lack details related to limited descriptions of threats to
validity, reproducibility, and lack of comparison to the baseline, likely due to papers’
length limitations.

2.6 Data extraction

Data extraction form was prepared in Google Sheets to streamline, as much as
possible, data synthesis steps, as well as progress monitoring.

Selected fields of the form are presented below:

• DOI
• Authors
• Title
• Assessing study quality (each question has only three possible answers: "Yes",
"Partly", or "No" and these three answers are scored in the following way: "Yes"
= 1, "Partly" = 0.5, and "No" = 0):

Code Smells Detection Using Artificial Intelligence Techniques: A Systematic Review 17

0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10
.5

1

2

3

4

5

6

7

Quality assessment rating

N
um

be
ro

fp
ub

lic
at
io
ns

Fig. 2 Number of publications scored given amount of points in quality assessment rating

– Are the aims of the research clearly defined?
– Is there an adequate description of the context in which the research was
carried out (analyzed projects, data sets, data collection procedure etc.)?

– Are the independent variables (predictors) and dependent variable(s) clearly
defined?

– Are the predictive modelling techniques clearly defined?
– Are the performance measures used to assess the models clearly defined?
– Are the performance measures used to assess the models considered credi-
ble?

– Are the limitations or threats to validity of the study specified?
– Is the research reproducible (is a package including data sets and code or a
detailed description available)?

– Is the proposed method or methods compared with other methods and/or
baselines?

– Are the findings of study clearly stated and supported by reported results?
– Does the study provide convincing arguments about additional value given
to academia or industry community?

18 Tomasz Lewowski and Lech Madeyski

• PQ1: Which code smells are analyzed in the paper?
• PQ2: Which predictors are used for each of those code smells?
• PQ3: Which ML/AI methods are used for detection of the smells?
• PQ4: Which data sets were used in the study?
• PQ5: What are the reported performance measures of prediction models?
• PQ6: What novel concept/technique is introduced by the study?

We decided to include in the workbook references to page numbers while per-
forming data extraction of every important and hard to find again later chunk of
information.

Data Extraction Process Task Allocation:

1. Lewowski undertook all the extractions, which was held in Google Sheets.
2. Madeyski independently checked the extraction for randomly selected papers.
3. Disagreements were resolved by discussion. There were two disagreements, that

resulted in adjustments of collected data.

2.7 Data Synthesis and Aggregation Process

The basic objective while synthesizing data is to accumulate and combine data and
figures from the selected primary studies in order to formulate a response to the posed
research questions. In order to answer the research questions we used visualization
techniques such as bar charts and box plots. We also used tables for summarizing
and presenting the results combined with narrative synthesis.

During data preprocessing, smells with similar definitions will be merged into
one, details of execution of machine learning algorithms (such as whether boosting
was used or which parameters were configured) will be erased and project names and
versions will be adjusted to common scheme. If there are multiple similar machine
learning techniques (for example C4.5, J48 and generic Decision Tree), they will
also be merged into single category. Preprocessed data will be stored in a separate
file in provided data set, so that access to raw data will not be lost. Preprocessing is
performed manually.

Data used in the study as well as reproduction scripts are published on Zenodo:
https://doi.org/10.5281/zenodo.4783264.

3 Results

Figure 3 presents number of publications relevant to this study published in a
given year. A rise in interest is visible since 2009, probably due to increased interest
in machine learning techniques.

https://doi.org/10.5281/zenodo.4783264

Code Smells Detection Using Artificial Intelligence Techniques: A Systematic Review 19

20
05

20
09

20
10

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

0

2

4

6

8

10

12
N
um

be
ro

fr
el
ev
an
tp

ub
lic

at
io
ns

Fig. 3 Number of relevant publications per year

3.1 RQ1: Which predictors are used in prediction models to detect
code smells?

While the concept of using product metrics is shared between most publications,
predictor sets are hardly shared between any of them - most often used predictor
set is used by three publications (not counting source code as input), therefore it
is not possible to establish whether performance differences are related to usage of
different predictors or to other differences between studies (e.g., different data sets).

Even if publications claim to use same predictor set, it is hard to guarantee
that they actually do that—since software metrics are calculated automatically by
some tool, even if the description of a metric is given, it is not sufficient for full
reproducibility. This is because various tools, or even different versions of same
tool, may have operational-level differences or defects in calculation routines, which
will result in no possibility to reproduce the study. While some studies utilize high
amount of metrics [SLR8], the same studies claim that best prediction model used
only few of them.

Table 5 presents aggregated view on types of predictors used in the studies. Some
publications ([SLR27, SLR36]) use more than one type of predictor, so the numbers
in Table 5 do not add up to the number of studies.

20 Tomasz Lewowski and Lech Madeyski

Table 5 Number of publications containing reference to given predictors

Type of predictor Number of publications

Code metrics 30
Vectorized source 3
Textual similarity 2
Code history 2
Other 6
Unknown 5

3.2 RQ2: Which ML/AI methods are used in prediction models to
detect code smells?

We started with dividing used methods into the following categories:

Trees C4.5, C5.0, J48, unnamed decision trees
Rules JRip, Association rules
Genetic Programming Genetic Programming, Multi-Objective Genetic Pro-

gramming
Neural Networks MLP, perceptrones, Voted perceptrones
Deep Neural Networks Autoencoders, Convolutional Networks
Statistical Bayesian Belief Networks, Naive Bayes
Population Genetic Algorithms, PSO, BFO, Evolutionary Algo-

rithms, SPOA
Regression Logistic regression
Random Forests Random forests
SVM Support Vector Machine (with any kernel), SMO
Other FP-growth, Decision tables, KNN, Clustering, Simi-

larity measures, Tuning machine

Trees and SVMs (used in 12 and 11 studies respectively) are the most commonly
used machine learning techniques, with statistical methods and Random Forests
(both in 9 studies) closely following. A recent rise in deep learning techniques, used
in 7 studies, is also visible. Numbers of publications are presented in Table 6.

3.3 RQ3: Which code smells are analyzed in scientific literature?

By far the most researched smell is Blob, a class-level smell, present in 32 publica-
tions. Blob category contains several smells (like Large Class, Big Class and God
Class), for which boundaries are not defined well enough to justify separation. It is
relatively well-defined, as a class which is bigger and/or more complex than it should
be.

Next come Feature Envy with 26 analyzing publications and Long Method with
20 publications. Of those Long Method is well defined and fairly well understood,

Code Smells Detection Using Artificial Intelligence Techniques: A Systematic Review 21

Table 6 Number of publications containing reference to given ML methods

ML/AI method type Number of publications

Trees 12
Support Vector Machine 11
Random Forests 9
Statistical 9
Population 8
Deep Neural Networks 7
Rules 6
Neural Network 5
Genetic Programming 3
Regression 3
Other 9

while the understanding of Feature Envy seems to be more vague—sometimes it
is attributed to class, sometimes to method. Approaches to detect Feature Envy are
also more diverse than those used to detect Long Method.

Further researched smells are Data Class (14 publications), Spaghetti Code (8
publications), Functional Decomposition (8 publications), Shotgun Surgery (5 pub-
lications), Lazy Class (5 publications) and Long Parameter List (5 publications).

In total therewere references to 59 different smells. All smells thatwere researched
in more than one publication are listed in Table 7. A substantial number of smells is
only referred to by a single publication, probably because they were not formalized
earlier. This applies particularly to domain-specific smells, such as Android smells
(like UI Overdraw) or Web Service smells (like Chatty Web Service).

Table 7 Number of publications containing reference to given code smells

Smell Number of publications

Blob 32
Feature Envy 26
Long Method 20
Data Class 14
Spaghetti Code 8
Functional Decomposition 8
Shotgun Surgery 5
Lazy Class 5
Long Parameter List 5
Divergent Change 3
Swiss Army Knife 3
Misplaced Class 3
Duplicated Code 2
Leaking Inner Class 2
Member Ignoring Method 2
Parallel Inheritance 2
Promiscuous Package 2

22 Tomasz Lewowski and Lech Madeyski

3.4 RQ4: What datasets and projects, and of what sizes are used in
research papers to predict code smells?

According to gathered data, there is no single data set that is shared and universally
accepted. Most authors provide rough information regarding used projects—for
example their names and versions ([SLR27, SLR41]) or their general characteristics
(e.g. [SLR34, SLR39]).

The most common annotated data set is the one published by Fontana et al.
[SLR8], and it is used in 8 studies. Another code smell data set, Landfill ([19]), is
only used in a single paper, by Hadj-Kacem and Bouassida [SLR16]. Finally, data
set from the work of Di Nucci et al [6] is used in a single study by Guggulothu and
Moiz [SLR13]), but in a modified version. Two studies give no details on used data
sets.

Out of projects, the one most often encountered was Xerces, used in 12 of the
studies. Out of the rest only a few were used in more than two studies—these
include Azureus, ArgoUML, Ant, Gantt Project, Log4j and JFreeChart. All these
projects are outdated as of today—used versions were released over ten years ago
(for example, Azureus 2.3.0.6 was released on 4th February 2006, Xerces:2.7.0 on
24 June 2005 and Nutch:1.1 no 7 June 2010. We were able to obtain release dates
and basic size statistics for 30 open source projects and present those in Table 8.
Those projects contain between 22 and 4844 Java source files with an average of
724 and between 3374 and 325301 LoC with an average of 81912 (as calculated
by CLOC 1.727). Release dates range between 17/05/2002 and 25/06/2014, with a
median of 04/09/2009. Some studies used Qualitas Corpus [25] as the source of code
smells. It contains sligthly older set of projects—starting from 10/07/2002, ending
on 15/12/2011—but in similar size range (between single thousands and hundred of
thousands of lines).

3.5 RQ5: Which performance metrics are most commonly used in the
literature?

Two most commonly used performance metrics are precision (in 29 papers) and
recall (26 papers). They are often accompanied by F-measure (in 17 papers). In
earlier papers accuracy (11 papers) was fairly often used.

Seven publications use area under receiving operating characteristic (AUROC) as
the performance metric, while three use Matthews Correlation Coefficient (MCC).
Three papers do not use any performance metric. Only two papers report full confu-
sion matrix.

Several papers use other performance metrics, usually strictly related to the way
the research was performed—for example Kessentini and Ouni in [SLR22] use
relevance, understood as count of algorithm recommendations that were accepted

7 https://github.com/AlDanial/cloc

https://github.com/AlDanial/cloc

Code Smells Detection Using Artificial Intelligence Techniques: A Systematic Review 23

Table 8 Basic information about projects used as sources for data sets

Project name URL Release date # of files # of Java LoC

Apache Ant:1.5.2 https://github.com/apache/ant 13/01/2016 932 91132
Apache Ant:1.7.0 https://github.com/apache/ant 13/01/2016 1194 123697
ArgoUML:0.26 https://argouml-tigris-org.github.io/ 27/09/2008 1752 186425
ArgoUML:0.30 https://argouml-tigris-org.github.io/ 11/02/2010 2210 200662
ArgoUML:0.34 https://argouml-tigris-org.github.io/ 15/12/2011 1922 195670
AspectJ:1.5.3 https://github.com/eclipse/org.aspectj 22/11/2006 4844 325301
Class Editor:2.23 http://classeditor.sourceforge.net 21/03/2004 66 10027
DavMail:4.5.1 https://github.com/mguessan/davmail 20/06/2014 181 29696
DirBuster:1.0 https://sourceforge.net/projects/dirbuster/ 27/02/2009 75 12928
FormLayoutMaker:8.2.1rc https://sourceforge.net/projects/formlayoutmaker/ 26/03/2006 22 4239
HSQLDB:2.2.9 https://sourceforge.net/projects/hsqldb/ 06/08/2012 529 164026
Java3D Modeler:1.3.5 https://sourceforge.net/projects/java3dmodeler/ 24/07/2012 78 9105
jEdit:4.5pre1 https://sourceforge.net/projects/jedit/ 19/11/2011 554 110869
JFreeChart:1.0.13 https://sourceforge.net/projects/jfreechart/ 20/04/2009 989 143062
JFreeChart:1.0.14 https://sourceforge.net/projects/jfreechart/ 20/11/2011 1005 146966
JFreeChart:1.0.9 https://sourceforge.net/projects/jfreechart/ 04/01/2008 920 128209
JFtp:1.53 https://sourceforge.net/projects/j-ftp/ 07/11/2010 133 23808
JHotDraw:6.1 https://sourceforge.net/projects/jhotdraw/ 07/10/2004 484 28399
JPropsEdit:1.0.2 https://sourceforge.net/projects/jpropsedit/ 22/07/2003 47 3374
Log4j:1.2.1 https://github.com/apache/log4j 17/05/2002 283 23363
Lucene:1.4.3 https://github.com/apache/lucene-solr 26/11/2004 244 25472
nTorrent:0.5.1 https://code.google.com/archive/p/ntorrent/ 28/11/2009 377 36286
Nutch:1.1 https://github.com/apache/nutch 26/06/2010 447 45357
outliner:1.8.10.6 https://sourceforge.net/projects/outliner/ 04/06/2004 418 35404
PDF Split and Merge: 2.2.4 https://sourceforge.net/projects/pdfsam/ 25/06/2014 303 26717
pdfsam:2.2.1 https://sourceforge.net/projects/pdfsam/ 24/11/2010 299 26058
Rhino:1.6 https://github.com/mozilla/rhino 23/07/2007 175 58303
Rhino:1.7R1 https://github.com/mozilla/rhino 25/04/2011 329 78197
Tyrant:0.334 https://sourceforge.net/projects/tyrant/ 12/06/2005 179 41331
Xerces:2.7.0 https://github.com/apache/xerces2-j 24/06/2005 740 123275

by developers while Kaur et al in [SLR21] use the ratio of defects detected (in this
research not every smell represents a defect) to defects in the source code.

Table 9 Number of publications using given performance metric

Performance metric Number of publications

Precision 29
Recall 26
F-measure 17
Accuracy 11
AuROC 7
MCC 3

24 Tomasz Lewowski and Lech Madeyski

3.6 RQ6: What are the ideas, in the existing research, upon which code
smell prediction using machine learning may be built?

The following directions of future research and development seem to be promising
in the light of the performed review:

1. Text analysis, process metrics may add new useful predictors not correlated
with classic ones (e.g., product based metrics) to the tool. Unlikely that this
information is used by any of the tools on the market. Fusion of the classic
metrics and new ones may lead to interesting results.

2. Search-based software engineering methods (e.g., multi-objective optimization
algorithms using genetic programming [SLR23, SLR31, SLR22, SLR4]) may be
combined with classic ML methods as well to improve the results even further.

3. Some studies, e.g. the one by Hozano et al [SLR18], analyze level of agreement
between developers on the same set of code smells. The study yields 0.222
(Feature Envy) - 0.421 (Data Class) inter-rater agreement measured by ^, which
is a measure to evaluate the concordance or agreement among multiple raters
described by Fleiss [9], as to whether a given structure is or is not a smell. It is
important to take this into account when setting goals for and evaluating code
smell prediction tool(s), despite the fact that some scientific publications reported
over 95% accuracy or F-measure in detecting code smells when prediction
modelswere trained on data sets produced by a small group of peoplewith similar
background and experience (e.g., a small group of MSc students attending same
preparation lectures). Tool vendors aiming to serve a wide range of developers
with different background and skill sets may expect low inter-rater agreement.
An interesting path of further R&D activities seems to be customization of code
smell prediction models to specific projects.

4. Quite a lot of research (and thus one may expect code smells detection tools
development) was performed using really old versions of software projects (e.g.,
webmail-0.7.10 released in 2002, being a part of QualitasCorpus), often using
very old versions of Java (e.g., Java 5 released in 2004), see Table 8. A promising
path of future research would be to take into account how long way made
programming languages like Java, which now include, e.g., closures, streams,
varargs, type inference for local variables, generics, enumerations, annotations,
foreach loop, static imports and vast changes in standard libraries (introduction
of immutable data types, improved concurrency, database access, IO and lot of
others). Furthermore, very few projects were used in more than three studies
(these include: Xerces, Gantt Project, Apache Ant, JFreeChart and Azureus). It
would be important to create modern version of reference data/projects sets that
would reflect modern constructs of programming languages (one such attempt
was done by Grodzicka et al [SLR12]) instead of applying contemporaryML/AI
techniques to old projects, which may not reflect fully how software is developed
nowadays, and thus howcode smellsmay look likewhen new language constructs
are employed. This need for a benchmark data set is also supported by the fact
that results vary greatly between publications, which is likely to be caused by

Code Smells Detection Using Artificial Intelligence Techniques: A Systematic Review 25

different training data—most of the publications do not publish data, thus easy
replication is not possible.

5. Number of predictors (metrics) used in some papers is large (e.g.in the paper by
Fontana et al [SLR8]), but even in such papers it was possible to extract the most
important predictors (e.g., used to extract rules). In further research, it would
make sense to focus on rather small number of important predictors to avoid
overfitting of the models, which otherwise would overemphasize patterns that
are not reproducible.

6. Another direction of further research could be focused on applying ML/AI
methods to detect code smells which were not covered by any of the reviewed
papers, see the list in the beginning of Section 4.

7. Publications generally use precision and recall as performance metrics. High
precision is critical from the business point of view, while high recall is only
nice-to-have (cost of smell detected later on is generally lower than cost of
analyzing false positives). That said, valuable performance measures according
to which prediction models should be evaluated are measures which take into
account all of the four quadrants of the confusion matrix (e.g., MCC). Otherwise
performance measure could be misleading. Hence, an important path of further
research and development would be to evaluate models using better performance
measures.

8. Data acquisition is generally a resource-consuming task. While it likely cannot
be automated (since this would equal automated code smell detection and no
machine learning would be necessary), it may be reasonable to use some kind of
advisors. Advisors proposed in literature vary from regular code smell detection
tools (as in the work by Fontana et al [SLR8]) up verification of effects of a
potential refactoring (as in the work by Liu et al [SLR29])

Combining directions 3, 1 and 2 with observation that the work by Hozano et
al [SLR18] was inspired by Fontana et al [SLR8] and thus used product metrics as
predictors, we pose a hypothesis that using only product metrics may yield good
results for homogeneous groups of developers producing training data (for example,
accuracy was over 95% in the results obtained by Fontana et al [SLR8]), but much
worse for groups of developers with more divergent backgrounds, as described by
Hozano et al [SLR18] (mean accuracy 43.7-63%). In subject literature there are the
following promising inspirations to embrace that may not be yet well-explored by
code smells detection tool vendors:

• process metrics, such as code change history,
• lexical analysis, such as similarities between fragments of code,
• deep learning, which includes analysis of source as token stream,
• search-based methods.

26 Tomasz Lewowski and Lech Madeyski

4 Discussion

In this section we address our research questions, discuss our results and their
implications.

Table 7 shows that most research that applies ML/AI techniques to code smell
detection focuses on the original smells by Fowler et al. [12] (with an exception for
Blob, which is present in the original list as “Large Class”). The only smell from top
5 most often researched that did not appear in the original list is “Spaghetti Code”.
While other researchers attempt to extend the smell list with new ones, for example
Kessentini and Ouni [SLR22] introduced smells dedicated to mobile development,
apparently these attempts did not yet cause a major change in perception of code
smells and did not make it yet to the mainstream of the discussed domain.

What we did not find, but expected to find in our review were publications ad-
dressing some of the code smells originally defined by Fowler et al. [12]: Data
Clumps, Switch Statements, Middle Man, Alternative Classes with Different Inter-
faces, Incomplete Library Class. Hence, almost one fourth of code smells defined
by Fowler was not considered in any of the analyzed papers.

4.1 Threats to Validity

It is important to assess the threats to validity (e.g., construct, internal, external),
particularly constraints on the search process and deviations from the standard prac-
tice.

4.1.1 Internal validity

Internal validity concerns the process of performing the study. We exclude threats
related to study reproducibility, as these are explained in detail in Section 4.1.4. An
important threat arises from data preprocessing layer—since we merged some of the
categories (e.g., stripped parametrization from all methods, merged similar smells),
it is possible that we accidentally analyze multiple concepts under same common
name (this would be particularly visible for Blob smell and SVM machine learning
method).

Additionally we assume that metrics are calculated in similar manner in multiple
publications. While it would seem reasonable for a software metric (e.g., WMC or
LoC) to always represent the same value, it is not guaranteed, especially if researchers
use different frameworks for calculating metric values (or even different versions
of the same framework), that they are actually implemented in exactly the same
manner—even if used specification is same, there may be defects in implementation,
variations between tools or versions of the same tool.

Next threat to internal validity arises from various projects and techniques used
as teaching/training data for ML/AI algorithms. The range of used projects is re-

Code Smells Detection Using Artificial Intelligence Techniques: A Systematic Review 27

markably wide, but for the sake of quantitative analysis we analyzed values of
performance measures wrt. code smell, machine learning technique and used set of
predictors, without regarding characteristics of specific data sets on which the values
were calculated. While we were not able to find research proving that smells are
context-sensitive, this does not seem unlikely, which constitutes a threat.

4.1.2 Construct validity

Construct validity concerns design of the study and its possibility to reflect the actual
goal of the research. To avoid threats in study design we have applied a procedure
of systematic literature review. To assure that researched area is relevant for study
goal, we have cross-checked research questions with developers from code quest and
adjusted them several times to address the business needs.

As always in literature review, it is possible that some relevant studies were not
included in the search. To address this issue, we conducted a verification using a
quasi-gold standard procedure using publications from 10 top venues from year
2017. However, both initial study selection and quasi-gold standard search were
performed using Scopus database, therefore only publications present in Scopus are
analyzed. The search term used in this systematic literature review is limited. For
example, only papers referring to code smells via"code smell" OR "bad smell"
OR antipattern OR anti-pattern OR "anti pattern" will form the initial
data set. While it is possible that some will refer to the same concepts with a
different naming, we believe that the terms are established well enough to ensure
that a significant majority of relevant papers will use them.

We decided to focus on precision and treat recall as a slightly less important
performance measure—this decision was made, because goal of the whole NCBiR
project is to reduce ratio of false positive errors. False positive errors are related to
code snippet classified as smells, but which are not perceived as smells. While we
believe that focus on precision is a reasonable choice, it may be considered a risk for
construct validity.

It is important to also note that, while the term "code smells" was coined to name
the original 22 coding structures described by Fowler et al. [12], it is not exactly
restricted to them—on the contrary, this metaphor was widely adopted to name not
only structures in the source code, but also in the process, architecture and many
other areas. This study is not restricted to the original set of smells, if others are
well-represented, they will be analyzed as well.

4.1.3 External validity

External validity concerns possibility of generalizing the study to broader range of
applications. Most of the papers studied smells in Java programming language, often
in old versions (e.g., projects from 2005 in the work of Fontana and Zanoni [11]).
While Java as a language is very common, we admit that it is not used in every branch

28 Tomasz Lewowski and Lech Madeyski

of industry (e.g., iOS applications are generally written in Swift, web interfaces use
mostly JavaScript, Android has recently adopted Kotlin as a standard language
competing Java). Code smells described by Fowler et al. [12] were generally mean
for object-oriented languages like Java, Smalltalk or C#—in other languages they
may be even recommended solutions. This may be especially true when analyzing
languages with different paradigm—which is relevant, considering recent increase
of interest in functional programming (Scala, Elixir, Clojure) and adoption of its
features even in the mainstream languages (e.g., Java). For example, Data Class is
considered a code smell in object-oriented paradigm, but is an absolutely fine pattern
in the realm of functional programming.

Projects used in most of the studies are relatively old. As a result, they are
generally written in old versions of Java—even Java 5 or 6. As of today, the most
recent version is Java 15 and the oldest supported LTS version is Java 11. Between
these versions, significant changes were made to the core of the language, including
shifting the paradigm from strictly object-oriented to object-oriented with minor
functional features (like streams or immutable objects). This yields a threat for
generalizing the results to newer versions of Java.

An big threat to external validity is the technique used by researchers to assess
existence of code smells—in most cases these were assessed by a briefly trained
students. This is a problem, because existence of smell may be linked to some more
complex program structure, which cannot be spotted by novices.

4.1.4 Reliability

Reliability is concerned with possibility to reproduce the research and achieve same
results. To guarantee maximum possibility for reproduction, we describe research
procedure in detail in the and attach links to gathered data and processing scripts.
However, some steps were performed manually. To further improve auditability, we
provided a checklist for the first step of publication filtration. While most publication
selection and data extraction was done by one person, we performed three levels of
cross-checks (after initial screening, after final selection and after data gathering)
with high level of agreement. Another threat is that in our original search, we
considered all studies present in the database, i.e., we did not constrain upper bound
for publication date. While this was done on purpose—to include as many recent
studies as possible—the effect is that using the same search string will not yield
same results, which may impact study reproducibility.

5 Conclusions

Code Smells Detection Using Artificial Intelligence Techniques: A Systematic Review 29

Interest in academia for using machine learning techniques for code smell detec-
tion has definitely increased as of lately, which is indicated by the growing number
of papers published on the topic and conducted literature reviews.

It is clear that currently the most common predictors for whether a code sample
constitutes a code smell or not are source code metrics. Typical machine learning
algorithms are still dominant, with trees, SVMs, Random Forests and statistical
methods being the most commonly used techniques. However, with the advent of
deep learning, a new trend is visible—on one hand, feature reduction, and on the
other—automated feature extraction from code using tools like word2vec.

Blob, Feature Envy, Data Class and Long Method are four most commonly
researched smells in the literature. It is likely that existence of an independent data
set provided by Fontana et al [SLR8] has boosted research in these particular areas.
On the other hand, there are many smells that are only referred by a single paper,
which may mean that either they are not noticed by the research community, or
the research on them is carried under different labels (for example „anomalies” or
„inconsistencies”).

Precision, recall and F-measure are three most commonly reported model perfor-
mance metrics. Full confusion matrix is reported only in a few cases.

Problem of data sets used for machine learning is visible and is actively addressed
by researchers. In this review, we only found one data set used by several researchers
([SLR8]), but new ones have already been published ([15, 17]). We hope that this
will lead the community into a shared understanding of the concept of each code
smell, and to a solution that is relevant to the industry.

Acknowledgements This research was partly financed by Polish National Centre for Research and
Development grant POIR.01.01.01-00-0792/16: “Codebeat - wykorzystanie sztucznej inteligencji
w statycznej analizie jakości oprogramowania.”

References

[1] Al-Shaaby, A., Aljamaan, H., Alshayeb, M.: Bad Smell Detection Using Ma-
chine Learning Techniques: A Systematic Literature Review. Arabian Journal
for Science and Engineering 45, 2341–2369 (2020). doi:10.1007/s13369-019-
04311-w

[2] Azeem, M.I., Palomba, F., Shi, L., Wang, Q.: Machine learning tech-
niques for code smell detection: A systematic literature review and meta-
analysis. Information and Software Technology 108, 115 – 138 (2019).
doi:https://doi.org/10.1016/j.infsof.2018.12.009

[3] Buenen, M., Muthukrishnan, G.: World quality report 2016-17. Tech. rep.,
Capgemini, Sogeti and Hewlett Packard Enterprise (2016)

[4] Caram, F., de Oliveira Rodrigues, B.R., Campanelli, A., Silva Parreiras, F.: Ma-
chine learning techniques for code smells detection: A systematicmapping study.

https://doi.org/10.1007/s13369-019-04311-w
https://doi.org/10.1007/s13369-019-04311-w
https://doi.org/https://doi.org/10.1016/j.infsof.2018.12.009

30 Tomasz Lewowski and Lech Madeyski

International Journal of Software Engineering and Knowledge Engineering 29,
285–316 (2019). doi:10.1142/S021819401950013X

[5] Chen, B., Jiang, Z.M.: Characterizing and detecting anti-patterns in the logging
code. In: Proceedings - 2017 IEEE/ACM 39th International Conference on Soft-
ware Engineering, ICSE 2017, pp. 71–81 (2017). doi:10.1109/ICSE.2017.15

[6] Di Nucci, D., Palomba, F., Tamburri, D.A., Serebrenik, A., De Lu-
cia, A.: Detecting code smells using machine learning techniques: Are
we there yet? In: 2018 IEEE 25th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER), pp. 612–621 (2018).
doi:10.1109/SANER.2018.8330266

[7] Dieste, O., Grimán, A., Juristo, N.: Developing search strategies for detecting
relevant experiments. Empirical Software Engineering 14(5), 513–539 (2009).
doi:10.1109/ESEM.2007.19

[8] Dybå, T., Dingsøyr, T.: Empirical Studies of Agile Software Development: A
Systematic Review. Information and Software Technology 50(9-10), 833–859
(2008). doi:10.1016/j.infsof.2008.01.006

[9] Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psycho-
logical Bulletin 76(5), 378–382 (1971). doi:10.1037/h0031619

[10] Fontana, F.A., Pigazzini, I., Roveda, R., Zanoni, M.: Automatic detection of
instability architectural smells. In: Proceedings - 2016 IEEE International Con-
ference on Software Maintenance and Evolution, ICSME 2016, pp. 433–437
(2017). doi:10.1109/ICSME.2016.33

[11] Fontana, F.A., Zanoni, M.: Code smell severity classification using ma-
chine learning techniques. Knowledge-Based Systems 128, 43–58 (2017).
doi:10.1016/j.knosys.2017.04.014

[12] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improv-
ing the Design of Existing Code. Addison-Wesley, Boston, MA, USA (1999)

[13] Gartner: Gartner says worldwide software market grew 4.8 percent in 2013
(2014)

[14] Kitchenham, B., Budgen, D., Brereton, P.: Evidence-Based Software Engineer-
ing and Systematic Reviews. CRC Press (2016). doi:10.1007/11767718_3

[15] Madeyski, L., Lewowski, T.: MLCQ: Industry-Relevant Code Smell Data Set.
In: Proceedings of the Evaluation and Assessment in Software Engineering,
EASE ’20, p. 342–347. Association for Computing Machinery, New York, NY,
USA (2020). doi:10.1145/3383219.3383264

[16] Malhotra, R.: A systematic review of machine learning techniques for soft-
ware fault prediction. Applied Soft Computing 27, 504 – 518 (2015).
doi:10.1016/j.asoc.2014.11.023

[17] Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R., Lucia, A.:
On the diffuseness and the impact on maintainability of code smells: a large
scale empirical investigation. Empirical Software Engineering pp. 1–34 (2017).
doi:10.1007/s10664-017-9535-z

[18] Palomba, F., Di Nucci, D., Panichella, A., Zaidman, A., De Lucia,
A.: Lightweight detection of android-specific code smells: The adoctor
project. In: SANER 2017 - 24th IEEE International Conference on

https://doi.org/10.1142/S021819401950013X
https://doi.org/10.1109/ICSE.2017.15
https://doi.org/10.1109/SANER.2018.8330266
https://doi.org/10.1109/ESEM.2007.19
https://doi.org/10.1016/j.infsof.2008.01.006
https://doi.org/10.1037/h0031619
https://doi.org/10.1109/ICSME.2016.33
https://doi.org/10.1016/j.knosys.2017.04.014
https://doi.org/10.1007/11767718_3
https://doi.org/10.1145/3383219.3383264
https://doi.org/10.1016/j.asoc.2014.11.023
https://doi.org/10.1007/s10664-017-9535-z

Code Smells Detection Using Artificial Intelligence Techniques: A Systematic Review 31

Software Analysis, Evolution, and Reengineering, pp. 487–491 (2017).
doi:10.1109/SANER.2017.7884659

[19] Palomba, F., Di Nucci, D., Tufano, M., Bavota, G., Oliveto, R., Poshyvanyk,
D., De Lucia, A.: Landfill: An Open Dataset of Code Smells with Public Eval-
uation. In: 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories, pp. 482–485 (2015). doi:10.1109/MSR.2015.69

[20] Palomba, F., Panichella, A., Zaidman, A., Oliveto, R., De Lucia, A.: The scent
of a smell: An extensive comparison between textual and structural smells. IEEE
Transactions on Software Engineering (2017). doi:10.1109/TSE.2017.2752171

[21] Romano, S., Scanniello, G., Sartiani, C., Risi, M.: A graph-based ap-
proach to detect unreachable methods in java software. In: Proceedings
of the 31st Annual ACM Symposium on Applied Computing, SAC ’16, p.
1538–1541.Association for ComputingMachinery, NewYork, NY,USA (2016).
doi:10.1145/2851613.2851968

[22] Santos, J.A.M., Rocha-Junior, J.B., Prates, L.C.L., do Nascimento, R.S.,
Freitas, M.F., de Mendonça, M.G.: A systematic review on the code
smell effect. Journal of Systems and Software 144, 450 – 477 (2018).
doi:https://doi.org/10.1016/j.jss.2018.07.035

[23] Sharma, T., Spinellis, D.: A survey on software smells. Journal of Systems and
Software 138, 158 – 173 (2018). doi:https://doi.org/10.1016/j.jss.2017.12.034

[24] Singh, S., Kaur, S.: A systematic literature review: Refactoring for disclosing
code smells in object oriented software. Ain Shams Engineering Journal (2017).
doi:https://doi.org/10.1016/j.asej.2017.03.002

[25] Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton,
H., Noble, J.: Qualitas corpus: A curated collection of java code for empirical
studies. In: 2010 Asia Pacific Software Engineering Conference (APSEC2010),
pp. 336–345 (2010). doi:http://dx.doi.org/10.1109/APSEC.2010.46

[26] Wasylkowski, A., Zeller, A., Lindig, C.: Detecting object usage anomalies.
In: 6th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
ESEC/FSE 2007, pp. 35–44 (2007). doi:10.1145/1287624.1287632

[27] Wen, J., Li, S., Lin, Z., Hu, Y., Huang, C.: Systematic Literature Re-
view of Machine Learning Based Software Development Effort Estima-
tion Models. Information and Software Technology 54(1), 41–59 (2012).
doi:10.1016/j.infsof.2011.09.002

[28] Wohlin, C.: Guidelines for Snowballing in Systematic Literature Studies and a
Replication in Software Engineering. In: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering EASE’14
(2014). doi:10.1145/2601248.2601268

[29] Zhang, H., Babar, M.A., Tell, P.: Identifying Relevant Studies in Software
Engineering. Information and Software Technology 53(6), 625–637 (2011).
doi:10.1016/j.infsof.2010.12.010

[30] Zhang, M., Hall, T., Baddoo, N.: Code Bad Smells: a review of current knowl-
edge. Journal of Software Maintenance and Evolution: Research and Practice
23(3), 179–202 (2011). doi:10.1002/smr.521

https://doi.org/10.1109/SANER.2017.7884659
https://doi.org/10.1109/MSR.2015.69
https://doi.org/10.1109/TSE.2017.2752171
https://doi.org/10.1145/2851613.2851968
https://doi.org/https://doi.org/10.1016/j.jss.2018.07.035
https://doi.org/https://doi.org/10.1016/j.jss.2017.12.034
https://doi.org/https://doi.org/10.1016/j.asej.2017.03.002
https://doi.org/http://dx.doi.org/10.1109/APSEC.2010.46
https://doi.org/10.1145/1287624.1287632
https://doi.org/10.1016/j.infsof.2011.09.002
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1016/j.infsof.2010.12.010
https://doi.org/10.1002/smr.521

32 Tomasz Lewowski and Lech Madeyski

Systematic Literature Review References

[SLR1] Amorim, L., Costa, E., Antunes, N., Fonseca, B., Ribeiro, M.: Expe-
rience report: Evaluating the effectiveness of decision trees for detect-
ing code smells. In: 2015 IEEE 26th International Symposium on
Software Reliability Engineering, ISSRE 2015, pp. 261–269 (2016).
doi:10.1109/ISSRE.2015.7381819

[SLR2] Barbez, A., Khomh, F., Gueheneuc, Y.G.: Deep learning anti-patterns
from code metrics history. In: Proceedings - 2019 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2019, pp.
114–124 (2019). doi:10.1109/ICSME.2019.00021

[SLR3] Barbez, A., Khomh, F., Guéhéneuc, Y.G.: A machine-learning based en-
semble method for anti-patterns detection. Journal of Systems and Soft-
ware 161 (2020). doi:10.1016/j.jss.2019.110486

[SLR4] Boussaa, M., Kessentini, W., Kessentini, M., Bechikh, S., Ben Chikha,
S.: Competitive coevolutionary code-smells detection. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 8084 LNCS, 50–65 (2013).
doi:10.1007/978-3-642-39742-4_6

[SLR5] Bryton, S., Brito e Abreu, F., Monteiro, M.: Reducing subjectivity in
code smells detection: Experimenting with the long method. In: Pro-
ceedings - 7th International Conference on the Quality of Information
and Communications Technology, QUATIC 2010, pp. 337–342 (2010).
doi:10.1109/QUATIC.2010.60

[SLR6] Chen, Z., Chen, L., Ma, W., Zhou, X., Zhou, Y., Xu, B.: Understand-
ing metric-based detectable smells in python software: A compara-
tive study. Information and Software Technology 94, 14–29 (2018).
doi:10.1016/j.infsof.2017.09.011

[SLR7] Fakhoury, S., Arnaoudova, V., Noiseux, C., Khomh, F., Antoniol, G.:
Keep it simple: Is deep learning good for linguistic smell detection? In:
25th IEEE International Conference on Software Analysis, Evolution and
Reengineering, SANER 2018 - Proceedings, vol. 2018-March, pp. 602–
611 (2018). doi:10.1109/SANER.2018.8330265

[SLR8] Fontana, F.A., Mäntylä, M.V., Zanoni, M., Marino, A.: Comparing and ex-
perimenting machine learning techniques for code smell detection. Empir-
ical Software Engineering 21(3), 1143–1191 (2016). doi:10.1007/s10664-
015-9378-4

[SLR9] Fontana, F.A., Zanoni, M., Marino, A., Mäntylä, M.V.: Code smell de-
tection: Towards a machine learning-based approach. In: IEEE Interna-
tional Conference on Software Maintenance, ICSM, pp. 396–399 (2013).
doi:10.1109/ICSM.2013.56

[SLR10] Fu, S., Shen, B.: Code bad smell detection through evolutionary data
mining. In: International Symposium on Empirical Software Engi-
neering and Measurement, vol. 2015-November, pp. 41–49 (2015).
doi:10.1109/ESEM.2015.7321194

https://doi.org/10.1109/ISSRE.2015.7381819
https://doi.org/10.1109/ICSME.2019.00021
https://doi.org/10.1016/j.jss.2019.110486
https://doi.org/10.1007/978-3-642-39742-4_6
https://doi.org/10.1109/QUATIC.2010.60
https://doi.org/10.1016/j.infsof.2017.09.011
https://doi.org/10.1109/SANER.2018.8330265
https://doi.org/10.1007/s10664-015-9378-4
https://doi.org/10.1007/s10664-015-9378-4
https://doi.org/10.1109/ICSM.2013.56
https://doi.org/10.1109/ESEM.2015.7321194

Code Smells Detection Using Artificial Intelligence Techniques: A Systematic Review 33

[SLR11] Gauthier, F., Merlo, E.: Semantic smells and errors in access con-
trol models: A case study in PHP. In: Proceedings - Interna-
tional Conference on Software Engineering, pp. 1169–1172 (2013).
doi:10.1109/ICSE.2013.6606670

[SLR12] Grodzicka, H., Ziobrowski, A., Łakomiak, Z., Kawa, M., Madeyski, L.:
Code Smell Prediction Employing Machine Learning Meets Emerging
Java Language Constructs. In: A. Poniszewska-Marańda, N. Kryvinska,
S. Jarząbek, L. Madeyski (eds.) Data-Centric Business and Applications:
Towards Software Development (Volume 4), vol. 40 of book series Lecture
Notes on Data Engineering and Communications Technologies, pp. 137–
167. Springer International Publishing, Cham (2020). doi:10.1007/978-3-
030-34706-2_8

[SLR13] Guggulothu, T., Moiz, S.A.: Code smell detection using multi-label classi-
fication approach. Software Quality Journal (2020). doi:10.1007/s11219-
020-09498-y

[SLR14] Guo, X., Shi, C., Jiang, H.: Deep semantic-based feature envy identi-
fication. In: ACM International Conference Proceeding Series (2019).
doi:10.1145/3361242.3361257

[SLR15] Hadj-Kacem, M., Bouassida, N.: A Hybrid Approach To Detect
Code Smells using Deep Learning. In: ENASE 2018 - Proceed-
ings of the 13th International Conference on Evaluation of Novel Ap-
proaches to Software Engineering, vol. 2018-March, pp. 137–146 (2018).
doi:10.5220/0006709801370146

[SLR16] Hadj-Kacem, M., Bouassida, N.: Deep Representation Learning for Code
Smells Detection using Variational Auto-Encoder. In: Proceedings of the
International Joint Conference on Neural Networks, vol. 2019-July (2019).
doi:10.1109/ĲCNN.2019.8851854

[SLR17] Hassaine, S., Khomh, F., Guéhéneucy, Y.G., Hamel, S.: IDS: An immune-
inspired approach for the detection of software design smells. In: Pro-
ceedings - 7th International Conference on the Quality of Information
and Communications Technology, QUATIC 2010, pp. 343–348 (2010).
doi:10.1109/QUATIC.2010.61

[SLR18] Hozano, M., Antunes, N., Fonseca, B., Costa, E.: Evaluating the Accuracy
of Machine Learning Algorithms on Detecting Code Smells for Different
Developers. In: Proceedings of the 19th International Conference on En-
terprise Information Systems - Volume 2: ICEIS„ pp. 474–482. INSTICC,
SciTePress (2017). doi:10.5220/0006338804740482

[SLR19] Karaduzovic-Hadziabdic, K., Spahic, R.: Comparison of machine learning
methods for code smell detection using reduced features. In: UBMK 2018
- 3rd International Conference on Computer Science and Engineering, pp.
670–672 (2018). doi:10.1109/UBMK.2018.8566561

[SLR20] Kaur, A., Jain, S., Goel, S.: A support vector machine based approach for
code smell detection. In: Proceedings - 2017 International Conference on
Machine Learning and Data Science, MLDS 2017, vol. 2018-January, pp.
9–14 (2018). doi:10.1109/MLDS.2017.8

https://doi.org/10.1109/ICSE.2013.6606670
https://doi.org/10.1007/978-3-030-34706-2_8
https://doi.org/10.1007/978-3-030-34706-2_8
https://doi.org/10.1007/s11219-020-09498-y
https://doi.org/10.1007/s11219-020-09498-y
https://doi.org/10.1145/3361242.3361257
https://doi.org/10.5220/0006709801370146
https://doi.org/10.1109/IJCNN.2019.8851854
https://doi.org/10.1109/QUATIC.2010.61
https://doi.org/10.5220/0006338804740482
https://doi.org/10.1109/UBMK.2018.8566561
https://doi.org/10.1109/MLDS.2017.8

34 Tomasz Lewowski and Lech Madeyski

[SLR21] Kaur, A., Jain, S., Goel, S.: SP-J48: a novel optimization and machine-
learning-based approach for solving complex problems: special application
in software engineering for detecting code smells. Neural Computing and
Applications (2019). doi:10.1007/s00521-019-04175-z

[SLR22] Kessentini,M.,Ouni,A.:DetectingAndroid SmellsUsingMulti-Objective
Genetic Programming. In: 2017 IEEE/ACM 4th International Conference
on Mobile Software Engineering and Systems (MOBILESoft), pp. 122–
132 (2017). doi:10.1109/MOBILESoft.2017.29

[SLR23] Kessentini, W., Kessentini, M., Sahraoui, H., Bechikh, S., Ouni, A.: A
cooperative parallel search-based software engineering approach for code-
smells detection. IEEE Transactions on Software Engineering 40(9), 841–
861 (2014). doi:10.1109/TSE.2014.2331057

[SLR24] Khomh, F., Vaucher, S., Guéehéeneuc, Y.G., Sahraoui, H.: A Bayesian
Approach for the Detection of Code and Design Smells. In: Proceed-
ings - International Conference on Quality Software, pp. 305–314 (2009).
doi:10.1109/QSIC.2009.47

[SLR25] Kiyak, E.O., Birant, D., Birant, K.U.: Comparison ofmulti-label classifica-
tion algorithms for code smell detection. In: 3rd International Symposium
on Multidisciplinary Studies and Innovative Technologies, ISMSIT 2019
- Proceedings (2019). doi:10.1109/ISMSIT.2019.8932855

[SLR26] Kreimer, J.: Adaptive detection of design flaws. Electronic Notes in
Theoretical Computer Science 141(4 SPEC. ISS.), 117–136 (2005).
doi:10.1016/j.entcs.2005.02.059

[SLR27] Liu, H., Jin, J., Xu, Z., Bu, Y., Zou, Y., Zhang, L.: Deep learning based
code smell detection. IEEE Transactions on Software Engineering (2019).
doi:10.1109/TSE.2019.2936376

[SLR28] Liu, H., Liu, Q., Niu, Z., Liu, Y.: Dynamic and automatic
feedback-based threshold adaptation for code smell detection. IEEE
Transactions on Software Engineering 42(6), 544–558 (2016).
doi:10.1109/TSE.2015.2503740

[SLR29] Liu, H., Xu, Z., Zou, Y.: Deep learning based feature envy detec-
tion. In: ASE 2018 - Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, pp. 385–396 (2018).
doi:10.1145/3238147.3238166

[SLR30] Maiga, A., Ali, N., Bhattacharya, N., Sabané, A., Guéhéneuc, Y.G.,
Aimeur, E.: SMURF: A SVM-based incremental anti-pattern detection
approach. In: Proceedings - Working Conference on Reverse Engineering,
WCRE, pp. 466–475 (2012). doi:10.1109/WCRE.2012.56

[SLR31] Mansoor, U., Kessentini, M., Maxim, B.R., Deb, K.: Multi-objective code-
smells detection using good and bad design examples. Software Quality
Journal 25(2), 529–552 (2017). doi:10.1007/s11219-016-9309-7

[SLR32] Merzah, B.M.: Software quality prediction using data mining tech-
niques. In: 2019 International Conference on Information and
Communications Technology, ICOIACT 2019, pp. 394–397 (2019).
doi:10.1109/ICOIACT46704.2019.8938487

https://doi.org/10.1007/s00521-019-04175-z
https://doi.org/10.1109/MOBILESoft.2017.29
https://doi.org/10.1109/TSE.2014.2331057
https://doi.org/10.1109/QSIC.2009.47
https://doi.org/10.1109/ISMSIT.2019.8932855
https://doi.org/10.1016/j.entcs.2005.02.059
https://doi.org/10.1109/TSE.2019.2936376
https://doi.org/10.1109/TSE.2015.2503740
https://doi.org/10.1145/3238147.3238166
https://doi.org/10.1109/WCRE.2012.56
https://doi.org/10.1007/s11219-016-9309-7
https://doi.org/10.1109/ICOIACT46704.2019.8938487

Code Smells Detection Using Artificial Intelligence Techniques: A Systematic Review 35

[SLR33] Mkaouer,M.W.: Interactive code smells detection: An initial investigation.
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 9962 LNCS,
281–287 (2016). doi:10.1007/978-3-319-47106-8_24

[SLR34] Ocariza, F.S., Pattabiraman, K., Mesbah, A.: Detecting unknown incon-
sistencies in web applications. In: ASE 2017 - Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineer-
ing, pp. 566–577 (2017). doi:10.1109/ASE.2017.8115667

[SLR35] Palomba, F.: Textual Analysis for Code Smell Detection. In: Proceedings
- International Conference on Software Engineering, vol. 2, pp. 769–771
(2015). doi:10.1109/ICSE.2015.244

[SLR36] Palomba, F.: Alternative sources of information for code smell detec-
tion: Postcards from far away. In: Proceedings - 2016 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2016, pp.
636–640 (2017). doi:10.1109/ICSME.2016.26

[SLR37] Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A., Poshy-
vanyk, D.: Detecting bad smells in source code using change history
information. In: 2013 28th IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2013 - Proceedings, pp. 268–278
(2013). doi:10.1109/ASE.2013.6693086

[SLR38] Pradel, M., Heiniger, S., Gross, T.R.: Static detection of brittle parameter
typing. In: Proceedings of the 2012 International Symposium on Software
Testing andAnalysis, ISSTA2012, p. 265–275.Association for Computing
Machinery, New York, NY, USA (2012). doi:10.1145/2338965.2336785

[SLR39] Rubin, J., Henniche, A.N., Moha, N., Bouguessa, M., Bousbia, N.: Sniff-
ing android code smells: An association rules mining-based approach.
In: Proceedings - 2019 IEEE/ACM 6th International Conference on Mo-
bile Software Engineering and Systems, MOBILESoft 2019, pp. 123–127
(2019). doi:10.1109/MOBILESoft.2019.00025

[SLR40] S, J.B.F., Vinod, V.: Design and analysis of improvised genetic algorithm
with particle swarm optimization for code smell detection. International
Journal of Innovative Technology and Exploring Engineering 9(1), 5327–
5330 (2019). doi:10.35940/ĳitee.A5328.119119

[SLR41] Sahin, D., Kessentini, M., Bechikh, S., Deb, K.: Code-smell detection
as a bilevel problem. ACM Transactions on Software Engineering and
Methodology 24(1) (2014). doi:10.1145/2675067

[SLR42] Sharma, P., Kaur, E.A.: Design of testing framework for code smell de-
tection (OOPS) using BFO algorithm. International Journal of Engi-
neering and Technology(UAE) 7(2.27 Special Issue 27), 161–166 (2018).
doi:10.14419/ĳet.v7i2.27.14635

[SLR43] Tummalapalli, S., Kumar, L., Neti, L.B.M.: An empirical framework for
web service anti-pattern prediction using machine learning techniques. In:
IEMECON 2019 - 9th Annual Information Technology, Electromechan-
ical Engineering and Microelectronics Conference, pp. 137–143 (2019).
doi:10.1109/IEMECONX.2019.8877008

https://doi.org/10.1007/978-3-319-47106-8_24
https://doi.org/10.1109/ASE.2017.8115667
https://doi.org/10.1109/ICSE.2015.244
https://doi.org/10.1109/ICSME.2016.26
https://doi.org/10.1109/ASE.2013.6693086
https://doi.org/10.1145/2338965.2336785
https://doi.org/10.1109/MOBILESoft.2019.00025
https://doi.org/10.35940/ijitee.A5328.119119
https://doi.org/10.1145/2675067
https://doi.org/10.14419/ijet.v7i2.27.14635
https://doi.org/10.1109/IEMECONX.2019.8877008

36 Tomasz Lewowski and Lech Madeyski

[SLR44] Özkalkan, Z., Aydin, K.S., Tetik, H.Y., Belen Saglam, R.: Automatic de-
tection of feature envy using machine learning techniques. In: CEUR
Workshop Proceedings, vol. 2201 (2018). URL http://ceur-ws.org/
Vol-2201/UYMS_2018_paper_80.pdf

http://ceur-ws.org/Vol-2201/UYMS_2018_paper_80.pdf
http://ceur-ws.org/Vol-2201/UYMS_2018_paper_80.pdf

	Code Smells Detection Using Artificial Intelligence Techniques: A Business-Driven Systematic Review
	Tomasz Lewowski and Lech Madeyski
	Introduction
	Related work
	Contributions of this study

	Methods
	Research questions
	Protocol development
	Search process
	Primary Study Selection Process
	Assessing study quality
	Data extraction
	Data Synthesis and Aggregation Process

	Results
	RQ1: Which predictors are used in prediction models to detect code smells?
	RQ2: Which ML/AI methods are used in prediction models to detect code smells?
	RQ3: Which code smells are analyzed in scientific literature?
	RQ4: What datasets and projects, and of what sizes are used in research papers to predict code smells?
	RQ5: Which performance metrics are most commonly used in the literature?
	RQ6: What are the ideas, in the existing research, upon which code smell prediction using machine learning may be built?

	Discussion
	Threats to Validity

	Conclusions
	References
	References
	Systematic Literature Review References
	Systematic Literature Review References

