
Information and Software Technology 144 (2022) 106783

A
0

H
s
T
W

A

K
S
C
R
R

1

w
t
r
S
s
t
f
o
i
t
a

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

ow far are we from reproducible research on code smell detection? A
ystematic literature review
omasz Lewowski ∗, Lech Madeyski
roclaw University of Science and Technology, Department of Applied Informatics, Poland

R T I C L E I N F O

eywords:
oftware engineering
ode smells
eproducibility
eproducible research

A B S T R A C T

Context: Code smells are symptoms of wrong design decisions or coding shortcuts that may increase defect
rate and decrease maintainability. Research on code smells is accelerating, focusing on code smell detection
and using code smells as defect predictors. Recent research shows that even between software developers,
agreement on what constitutes a code smell is low, but several publications claim the high performance of
detection algorithms—which seems counterintuitive, considering that algorithms should be taught on data
labeled by developers.
Objective: This paper aims to investigate the possible reasons for the inconsistencies between studies in the
performance of applied machine learning algorithms compared to developers. It focuses on the reproducibility
of existing studies.
Methods: A systematic literature review was performed among conference and journal articles published
between 1999 and 2020 to assess the state of reproducibility of the research performed in those papers. A
quasi-gold standard procedure was used to validate the search. Modeling process descriptions, reproduction
scripts, data sets, and techniques used for their creation were analyzed.
Results: We obtained data from 46 publications. 22 of them contained a detailed description of the modeling
process, 17 included any reproduction data (data set, results, or scripts) and 15 used existing data sets. In
most of the publications, analyzed projects were hand-picked by the researchers.
Conclusion: Most studies do not include any form of an online reproduction package, although this has started
to change recently—8% of analyzed studies published before 2018 included a full reproduction package,
compared to 22% in years 2018–2019. Ones that do include a package usually use a research group website
or even a personal one. Dedicated archives are still rarely used for data packages. We recommend that
researchers include complete reproduction packages for their studies and use well-established research data
archives instead of their own websites.
. Introduction

Code smells are usually understood as patterns in the source code
hich make it less comprehensible and more error-prone (sometimes

hey are called antipatterns). According to several recent literature
eviews, for example, the one by Santos et al. [36] or the one by
harma and Spinellis [37], the amount of research related to code
mells grows steadily. However, a review by Azeem et al. [2] reports
hat the agreement between studies is very low. Our internal research
or an industrial partner, code quest (http://codequest.com), that devel-
ps the codebeat (http://codebeat.co) automated code review platform
ntegrated with GitHub, has brought us to the same conclusions. While
he sheer number of papers on the subject grows, the results that they
chieve differ vastly, even for papers that use the same algorithms.

∗ Corresponding author.
E-mail addresses: tomasz.lewowski@pwr.edu.pl (T. Lewowski), lech.madeyski@pwr.edu.pl (L. Madeyski).

We believe that there are two possible causes for this divergence:
either there is a difference in understanding of the subject matter
between researchers (which would mean that the ‘‘code smell’’ label
represents multiple concepts—which would fall in line with findings
from [15]) or published research has substantial problems with external
validity, i.e., the conclusions and methods are either not valid outside
of the narrow problem definition tackled in each of the papers or not
described in sufficient detail (which would be a problem similar to the
one described in [33] for the SZZ algorithm). It is also possible that
both interpretations contribute to the divergence.

This study was conducted to assess whether the latter problem – the
external validity – may be a substantial problem in current research on
machine learning methods of code smell detection.
vailable online 25 November 2021
950-5849/© 2021 The Authors. Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.infsof.2021.106783
eceived 27 February 2021; Received in revised form 6 November 2021; Accepted
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

8 November 2021

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
http://codequest.com
http://codebeat.co
mailto:tomasz.lewowski@pwr.edu.pl
mailto:lech.madeyski@pwr.edu.pl
https://doi.org/10.1016/j.infsof.2021.106783
https://doi.org/10.1016/j.infsof.2021.106783
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106783&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Information and Software Technology 144 (2022) 106783T. Lewowski and L. Madeyski

t
o
m
d
w
a
o
r
b
o
w
o
i
d
m
k

o
s
i
N
m
t
S

2

l
w
l
s
a
o
d
i
t
n
d
o

t
m

Problems with external validity may be discovered in reproduction
studies with slightly modified experimental setups. However, to create
a slightly modified experimental setup, one needs to exactly understand
the details of the original setup. In software engineering in general, and
in code smell detection in particular, it is not possible to summarize
the environment by only giving some of its core parameters—simply
because it is not well-known which parameters matter. As a result,
exact experimental setups in software engineering research may include
hundreds of projects with thousands of files, which itself poses a sub-
stantial challenge for reproducibility. Another easily forgotten issue is
related to the used software—while in many areas stable and supported
programs are the core research tools, in software engineering, we often
rely on open source tools with best-effort support or external services
that only offer access to data via API calls. It is not uncommon for
such tools to become inaccessible or unsupported, or simply to break
backward compatibility, especially years after the original research is
published. The same case applies to API providers—maintaining data
and compatibility is associated with certain costs, and every business
needs to decide whether they bring in enough benefit to bear them.

In this paper, we focus on reproducibility. A closely related term used
by some researchers is replicability. We follow the distinction set in
he paper by Madeyski and Kitchenham [21] and National Academy
f Sciences, Engineering and Medicine guidelines [27]—reproducibility
eans obtaining consistent computational results using the same input
ata, computational steps, methods, code, and conditions of analysis,
hile replicability means obtaining consistent results across studies
imed at answering the same scientific question, each of which has
btained its own data. We claim that providing a sufficient level of
eproducibility will be the key to understanding why results achieved
y various researchers vary. This paper is a systematic review based
n data gathered during the aforementioned research project, extended
ith information about study reproducibility. The main contribution
f this paper is the assessment of the current state of reproducibility
n research related to machine learning in code smell detection.1 We
id focus solely on methods that use machine learning, because the
eaning of ‘‘code smell’’ concept should be extracted from developers’

nowledge, and this is what machine learning methods do.
The rest of the paper is structured as follows: in Section 2 we discuss

ther literature reviews that consider machine learning in the code
mell detection area and publications that emphasize reproducibility,
n Section 3 we describe our research goals and research questions.
ext, in Section 4 we explain the technical details of our research setup,
ethods and assumptions. Then we present results in Section 5, discuss

he study results and setup in Section 6 and conclude the paper in
ection 7.

. Related work

Several literature reviews on code smell detection using machine
earning techniques have been recently published. Most of them –
orks by Al-Shaaby et al. [1], Caram et al. [4], Sharma and Spinel-

is [37], Singh and Kaur [39], Rasool and Arshad [32] – focus on the
tudied code smells, machine learning methods, predictors, data sets
nd tools. One, by Santos et al. [36], focuses on the general themes
f studies investigating code smells (such as whether they focus on
etection, correlation with issues or human aspects of code smells). An
mportant review by Azeem et al. [2] reports low agreement between
he conclusions of various researchers and the paper by Caram et al. [4]
otes the incomparability of the studies due to the usage of different
ata sets, but none of the ones we found focus on the reproducibility
f applied research methods. In particular, no literature review on code

1 Papers slightly outside the formal boundary of ‘‘machine learning’’ (e.g. in
he area of artificial intelligence or soft computing) were not rejected if they
atched the subject matter.
2

smells that we know of is dedicated to analysis of the reproducibility
of study results and their relevance to the industry.

According to Rozier and Rozier [35], reproducibility is a substantial
problem in all areas of science nowadays. This also includes soft-
ware engineering, where reproduction is challenging and, according
to Shepperd et al. [38], attempted relatively infrequently. Research
results can be non-reproducible for a plethora of reasons, starting from
unique population selection, through unclear methods and imprecise
results up to data fabrication, as reported by Carlisle [5]. While the
scientific community puts much effort into addressing those issues, the
consequences of misconduct can be critical. Sometimes, as reported
by Mousavi and Abdollahi [26], such misconduct can even endanger
people’s health and life.

Papers exhibiting signs of scientific misconduct are a minority of
published works, even though the analysis performed by Hensselman
et al. [13] reports that their amount is rising . Unintentional lack of
reproducibility seems to be much more common and, at the same time,
much harder to address. For example, research done on proprietary
data may be perfectly valid and lead to relevant results, but the details
of the data set acquisition will likely be covered by a nondisclo-
sure agreement, thus impacting reproducibility. Of course, researchers
should strive to reveal as many details as possible (e.g., number of
source files, classes, methods, average function complexity, etc.). Nev-
ertheless, reproducibility of the research itself will usually be severely
impacted. If the conclusions are not externally valid, it is challenging
to distinguish such a publication from a malicious one.

This paper was inspired by several others: two papers by Hozano
et al. [14,15], claiming that the agreement regarding code smell assess-
ment is low between developers, a paper by Fontana et al. [9], where
multiple machine learning techniques achieve F1-scores above 0.9 and
the review by Azeem et al. [2] which reports substantial differences
between results from various papers.

A paper addressing the same problem – reproducibility of research
methods – in a related domain (usage of SZZ algorithm) was recently
published by Rodriguez et al. [33], where the conclusion was that
less than 15% of the relevant publications provided a reproduction
package2 and 40% did not provide a sufficient method description.

A paper by Madeyski and Kitchenham [21] points out study re-
production as critical for confirming or rejecting research in the area
of software engineering. The state of reproducibility in the area of
code smell detection using machine learning techniques remains largely
undocumented up to now.

3. Goals

The goal of this paper is to assess the current state of reproducibility
in the area of code smell detection using machine learning techniques
and, if necessary, provide guidance on how to improve it. We believe
that the core aspects that are required to reproduce the study are: the
full process (used algorithms, configuration, preprocessing steps) and
input data (or its acquisition process). Therefore, we have formulated
the following research questions:

RQ1 Is the process of creating code smell machine learning mod-
els reproducible in the recent scientific studies on code smell
detection using AI/ML methods?

RQ2 Is the process of code smell data set acquisition reproducible in
the recent scientific studies on code smell detection using AI/ML
methods?

2 Some authors use the term replication package instead.

Information and Software Technology 144 (2022) 106783T. Lewowski and L. Madeyski

R

R

R

R

R

4

i
o
s
t
p

w

s

M
a
t
t
o

w

o
c

Since the questions may seem vague, we decided to split them
into several subquestions that address certain aspects of the original
question.

Reproducibility of the research process, which is the concern that
RQ1 deals with, is generally provided by a detailed description of all
the steps in the procedure. This description is usually one of the main
topics of a research paper. However, complex research processes, such
as ones employed in the software engineering area, often heavily de-
pend on the details that cannot be given in the paper, e.g., source code
of processing programs. In such case a common solution is to include
an appendix to the paper, which substantially improves reproducibility.
Therefore we decided to split RQ1 into following two subquestions:

Q1.1 Do the authors of recent scientific studies on code smell detec-
tion using AI/ML methods describe the modeling process with
enough details to reproduce their studies?

Q1.2 Do the authors of recent scientific studies on code smell detec-
tion using AI/ML methods publish reproduction packages for
their studies?

This review deals with machine learning models, and those can only
be as good as the data that was used to train it. Therefore, considering
the lack of result reproducibility among studies and the observations
presented by Caram et al. [4], we decided to take a closer look at the
training data. Training data acquisition for the code smell detection
problem can be divided into three phases:

1. selecting source code repositories (sometimes referred to as
projects),

2. selecting samples inside the repositories (usually files, classes or
methods),

3. classifying samples for training and testing data sets (whether a
sample represents a code smell, sometimes also the severity of
this smell).

Those three phases are modeled by the following subquestions:

Q2.1 How do the authors of recent scientific studies on code smell
detection using AI/ML methods select projects for their data
sets?

Q2.2 How are samples from projects selected for classification in
recent scientific studies on code smell detection using AI/ML
methods?

Q2.3 How are samples assessed for occurrence of code smells in recent
scientific studies on code smell detection using AI/ML methods?

It is important to note that those three subquestions may have a
single answer when the researcher uses a predefined data set, such
as the one provided by Madeyski and Lewowski [22] or by Palomba
et al. [30]. However, many researchers decide to use their own data
sets, often for good reasons—for example, if their research requires
to focus on a specific problem domain, programming language, or
paradigm. In such case, each of the steps is important and should be
described in detail (although data from a predefined set may be used
in some of the phases, e.g., to select projects).

4. Method

This literature review builds upon an earlier systematic literature
review [20] conducted with the same search string, acceptance criteria,
and filtering procedures. However, the results of the other review were
not conclusive. This made us look for the reason for the divergences
between various studies, stated as research goals in Section 3. We
decided to perform an additional data acquisition phase, this time
focused on the processes rather than on the results, for all previously
analyzed publications. In this section, we describe the whole data
acquisition procedure executed in the original review, as it brought us
to the set of publications that were analyzed in detail. We omit the
original research questions as irrelevant for this paper, and instead we
only focus on the ones discussed here.
3

p

4.1. Protocol development

The literature review has started with protocol development. During
this phase, a protocol was created that defined the procedures to
be used for the search process, study selection, data extraction, and
data analysis. The protocol was drafted by one of the authors and
double-checked by the other.

The following subsections are based on the protocol. If at any step
our actual process diverges from the one defined in the protocol, we
report the actual process.

4.1.1. Search process
We have selected Scopus as our publication source, due to its wide

coverage of academic papers. Our search was originally made as part
of an industrial project, so we were more interested in reproducible
findings than in a high recall rate. Nevertheless, we decided to verify
the search strategy using a quasi-gold standard as proposed by Zhang
et al. [44] and later by Kitchenham et al. [18] by manually inspecting
a specified set of relevant journals and proceedings from conferences
published in 2017. Detailed results are reported later in Section 4.2.

Our search process can be summarized as follows:

1. identify initial set of publications using Scopus automated search,
2. evaluate the papers for inclusions and exclusions.

.1.2. Initial study selection process
Major terms were derived from our initial research goals, i.e., find-

ng papers that describe approaches to machine learning in the area
f code smell detection. Then we identified alternative spellings and
ynonyms and constructed Scopus search strings. We decided to cover
he range from 1998, when the concept of code smell was widely
ublished by Fowler [11].

Our initial search string was:

TITLE−ABS−KEY (
(" code smel l " OR " bad smel l "

OR an t ipa t t e rn OR ant i−pat te rn
OR " an t i pa t te rn ")

AND (" machine learn ing " OR pred i c t ∗)
) AND PUBYEAR > 1998

The first search was performed on February 21, 2018. 88 papers
ere returned from Scopus and then archived in BibTeX format.

After analysis of this preliminary data set, several corrections to the
earch string were introduced. The final search string was:

TITLE−ABS−KEY (
(" code smel l " OR " bad smel l "

OR an t ipa t t e rn OR ant i−pat te rn
OR " an t i pa t te rn ")

AND (" machine learn ing " OR pred i c t ∗
OR { detec t } OR { de tec t ion }
OR h e u r i s t i c ∗

) AND software
) AND PUBYEAR > 1998

This search string was first used to retrieve a publication list on
arch 21, 2018, and it returned a list of 424 papers, which were then

rchived for further analysis in BibTeX. Due to the fact that the project
ook a long time, the search was rerun on June 05, 2020, yielding a
otal of 607 papers, which were then archived the same way as the
riginal set.

The biggest contributor to this increase is the new term ‘‘detect’’,
hich is fairly often used without the term ‘‘predict’’.

Those terms are also applicable to the current study, as it operates
n the same population of publications (ones that tackle detecting
ode smells using machine learning techniques), but examines different

roperties of the papers.

Information and Software Technology 144 (2022) 106783T. Lewowski and L. Madeyski

a
s
r
t
n
i

4

c
b
t

Table 1
Results of the study selection process.

Phase 1 Phase 2

of publications 607 169
of relevant publications 169 45
Precision 27.8% 26.6%
Relevant publications in QGS only 0 0
Relevant publications in set and QGS 5 ([31] [6], [28] [10][29]) 0
Recall 100% N/A

The initial plan contained also backward and forward snowballing
s described by Wohlin [42], but since the number of found primary
tudies exceeded the numbers of studies found in other systematic
eviews in the area of code smell detection using machine learning
echniques (e.g., [1,4,32]), and reviewed papers already included a
umber of various methods and techniques, we decided to stick to the
dentified studies.

.1.3. Inclusion and exclusion criteria
To simplify automated processing, the criteria were formulated as a

hecklist. A paper would be further processed (i.e., relevant data would
e extracted from it) only if all of the following statements would be
rue regarding it:

1. The entry is a single journal paper, chapter of a book or confer-
ence proceedings paper which requires peer review (i.e., it is not
an editorial, abstract, technical report etc.).

2. The paper is written in English.
3. The paper was published in 1999 or later.
4. Title or abstract of the paper indicates that it is related to

software engineering.
5. Title or abstract of the paper indicates that at least one code

smell/anti-pattern plays an important part of the study.
6. Title or abstract of the paper indicates that it might use machine

learning techniques.
7. Abstract or full text of the paper indicates that it focuses on code

smells/anti-patterns in programming languages.
8. Abstract or full text of the paper indicates that it focuses on code

smells/anti-patterns detection using source code.
9. The paper does not focus on techniques for resolving code

smells/anti-patterns.
10. The paper does not focus on using code smells/anti-patterns as

predictors of other code or project traits.
11. The paper focuses on detection/prediction of code smells/anti-

patterns.
12. If the paper is a chapter of a book or conference proceedings

publication, its authors have not published a study under the
same title in a journal (we want to include the paper once and it
may be expected that the journal version includes more details).

13. Full text of the paper is available.

These criteria were applied in two phases: first, on the basis of titles
and abstracts and second, on the basis of full texts. The second phase
was run concurrently with study quality assessment and data gathering,
but nevertheless full result table is presented in the appendix. The
results of those phases together with the results of the search quality
check are presented in Table 1.

In the case of uncertainty, we took an inclusive approach, i.e., we
continued to analyze the paper. For example, if a paper was found
that focused equally on both detection and resolution or detection and
prediction based on the smells, it would be included in the study. We
did not encounter such a paper during the review—papers that were
focused on resolution or prediction based on smells and only performed
detection as a necessary intermediate phase were rejected, because in
most cases they used existing tools to mark code fragments as smells,
without assessing the correctness of this step.
4

We were aware of one more publication relevant to the study which
was not present in the search results—[SLR1]. Therefore, we added the
aforementioned to the initial publication set manually and it has gone
through the same process as all the other papers qualified for the study.
Hence, finally 46 papers were included. It is worth mentioning that
the aforementioned paper was not found, because it lacked ‘‘software’’
keyword in title and abstract. However, we decided to include this
keyword in the search string, because not doing so would introduce a
substantial amount of noise (e.g., the increased number of papers about
bacteria and odor detectors). This paper would also have been found
if snowballing procedure was done after its publication (we started the
study before its publication date and later updated the data set with
the results of the same query, as described in Section 4.1.2).

4.2. Quality check

Two of the key criteria given by Dieste et al. [7] and Zhang
et al. [44] for verifying the search are precision and recall (also known
as sensitivity). They can be calculated as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑅𝑓𝑜𝑢𝑛𝑑

𝑁𝑡𝑜𝑡𝑎𝑙
(1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑅𝑓𝑜𝑢𝑛𝑑

𝑅𝑡𝑜𝑡𝑎𝑙
(2)

where 𝑅𝑓𝑜𝑢𝑛𝑑 is the number of relevant studies found, 𝑅𝑡𝑜𝑡𝑎𝑙 is the total
number of relevant studies and 𝑁𝑡𝑜𝑡𝑎𝑙 is the total number of studies
found. In practice, 𝑅𝑡𝑜𝑡𝑎𝑙 is not known. To estimate recall in real-life
setups, a ‘‘quasi-gold standard’’ (QGS) procedure for assessing search
performance was proposed by Zhang et al. [44] and the original results
were promising.

The procedure consists of selecting several topic-specific venues (in
our case journals and conferences dedicated to software engineering)
and performing an exhaustive search on this sample (treating it as pop-
ulation). Since the venues should be topic-specific, it is then assumed
that if a sufficient portion of the relevant papers from those venues
are discovered by the initial search (Zhang et al. [44] propose this
threshold to be between 70 and 80%), then the search strings are built
well enough. Otherwise, another iteration is required.

In the case of our review, the validation process (presented with
details in Fig. 1) was as follows:

1. identify topic-specific venues,
2. perform exhaustive search on all publications from those venues

to establish a quasi-gold standard,
3. if the initial search evaluation does not pass the threshold (we

decided to set it to 75% inspired by Zhang et al. [44]), revise
the search string.

It diverges slightly from the original proposal by Zhang et al. [44]
in that the initial search string is not derived from the QGS results but
created using the authors’ domain knowledge. There are two reasons
for this:

1. independence of initial search string formulation and selection
of venues enhances reliability of the procedure by decoupling
search string and validation data set,

2. lack of the aforementioned dependency enables parallel work on
quasi-gold standard data set and automated search data set, thus
it allowed us to deliver business value earlier and stakeholders
to review their expectations.

The results in the form of quasi-sensitivity and quasi-precision can
be calculated using Eqs. (1) and (2) and publications from venues

selected for QGS as the whole population.

Information and Software Technology 144 (2022) 106783T. Lewowski and L. Madeyski

.

Fig. 1. Workflow of the systematic search process (inspired by [44]).

4.2.1. Selected venues
Establishing a QGS requires the identification of relevant journals

and conferences. We only cover the main full paper research tracks of
the conferences, ignoring collocated conferences or workshops (with
an exception for SEIP track on ICSE). Venues are selected using the
authors’ expertise and domain knowledge.

The following venues were selected:

• Journal - IEEE Transactions on Software Engineering (TSE)
• Journal - Empirical Software Engineering (EMSE)
• Journal - ACM Transactions on Software Engineering Methodol-

ogy (TOSEM)
• Journal - Information and Software Technology (IST)
• Journal - Journal of Systems and Software (JSS)
• Journal - Journal of Software: Evolution and Process (JSEP)
• Conference - International Conference on Software Engineering

(ICSE + SEIP)
• Conference - Mining Software Repositories (MSR)
• Conference - IEEE International Conference on Software Analysis,

Evolution and Reengineering (SANER)
• Conference - International Conference on Software Maintenance

and Evolution (ICSME)

4.2.2. Quality check results
Publications from those venues were extracted from Scopus on April

23, 2018, using the search strings presented in Table 2. To keep the
table clear, we omit AND PUBYEAR = 2017, present at the end of every
search string. Number of extracted publications and established QGS
publications are presented in Table 3

It is worth mentioning that limiting PUBYEAR in Scopus to 2017
does not exclude papers accepted in this year but not yet assigned to a
specific issue (article in press). Therefore, more papers may have been
analyzed (papers from 2017, but possibly also some from 2018), but
this does not affect the results of the procedure.

To verify why our QGS procedure performed so bad, we have
investigated at which venues were the accepted papers published. Their
DOIs, venue names and CORE rankings are presented in Table 4. For
conferences we used CORE2014. We used this specific version as it
is the last release of the list before the submission date for papers
published in 2017, so the authors might have been using this list to
choose a venue to publish their research. We also checked CORE2017
5

Table 2
Search strings used to extract publications from Scopus to establish quasi-gold standard

Venue Search string

TOSEM SRCTITLE (‘‘ACM Transactions
on Software Engineering and Methodology’’)

TSE SRCTITLE (‘‘ieee transactions on software engineering’’)

EMSE SRCTITLE(‘‘Empirical Software Engineering’’) AND
(LIMIT-TO (
EXACTSRCTITLE , ‘‘Empirical Software Engineering’’))

IST SRCTITLE (‘‘Information and Software Technology’’)

JSS SRCTITLE (‘‘Journal of Systems and Software’’)

JSEP SRCTITLE (‘‘Journal of Software Evolution and Process’’)

ICSE SRCTITLE (‘‘International Conference
on Software Engineering’’)
AND (LIMIT-TO (
EXACTSRCTITLE , ‘‘Proceedings 2017 IEEE ACM
39th International Conference On
Software Engineering ICSE 2017’’) OR
LIMIT-TO (
EXACTSRCTITLE , ‘‘Proceedings International
Conference On Software Engineering’’) OR
LIMIT-TO (
EXACTSRCTITLE , ‘‘Proceedings 2017 IEEE ACM
39th International Conference On Software Engineering
Software Engineering In Practice Track ICSE Seip 2017’’))

MSR SRCTITLE (‘‘Mining Software Repositories’’)

SANER SRCTITLE (‘‘IEEE International Conference
on Software Analysis, Evolution and Reengineering’’)

ICSME SRCTITLE (‘‘International Conference on
Software Maintenance and Evolution’’)

Table 3
Results of QGS search and selection.

Title Total # in Phase 1 # in Phase 2

TSE 108 2 0
EMSE 131 0 0
TOSEM 12 0 0
IST 111 3 0
JSS 225 4 0
JSEP 68 0 0
ICSE 152 1 0
MSR 67 1 0
SANER 84 2 0
ICSME 175 5 0
Total 1133 18 0

and the results were the same. Only one of those papers was published
in a CORE A venue. Since there are 6 conferences on the CORE2014
list with ‘‘Software Engineering’’ in the title (not to mention others
with keywords like ‘‘Software Assessment’’, ‘‘Software Maintenance’’
or ‘‘Software Analysis’’) with ranking CORE A or higher, we were not
able to verify all of them, instead focusing on the ones we believed
were the most promising. As for the journals, Knowledge-Based Systems
is classified by Scopus to categories ‘‘Business, Management and Ac-
counting’’ and ‘‘Management Information Systems’’, while International
Journal of Electrical and Computer Engineering is classified as ‘‘Computer
Science: General Computer Science’’ and ‘‘Engineering: Electrical and
Electronic Engineering’’, neither of which is strictly related to software
engineering.

The original QGS procedure by Zhang et al. [44] assumed hav-
ing prior knowledge of some publications that would be included in
the review, which would decrease reliability of the procedure—since
the author knows which venues will be used to verify the search,
it is easy to tune the search string for those venues, even if this is
done subconsciously. To address this issue, we selected several well-
established software engineering venues without prior knowledge of
accepted publications. However, this approach also has its limitations—
in our case it turned out that no accepted paper was published in the

Information and Software Technology 144 (2022) 106783T. Lewowski and L. Madeyski

w

Table 4
Publications published in 2017 accepted for analysis.
DOI Venue name CORE

10.1109/
ASE.2017
.8115667

ASE 2017 - Proceedings of the
32nd IEEE/ACM
International Conference
on Automated
Software Engineering

A

10.1016/
j.knosys.
2017.04.014

Knowledge-Based Systems –

10.1109/
MOBILESoft.
2017.29

MOBILESoft 2017 -
Proceedings of the
2017 IEEE/ACM
4th Int. Conference on
Mobile Software
Engineering and Systems

None

10.1109/
MLDS.2017.8

2017 International
Conference on
Machine Learning
and Data Science (MLDS)

None

10.11591/
ijece.v7i6.
pp3613-3621

International Journal
of Electrical and
Computer Engineering

–

10.5220/
0063388
4740482

ICEIS 2017 - Proceedings of the
19th International Conference
on Enterprise
Information Systems

C

aforementioned venues within the selected time frame in spite of the
fact that we analyzed 1133 papers from a wide range of sources, see
Table 3.

Since the QGS procedure did not yield satisfying results, we did
an informal post-hoc check with some of the other systematic reviews
about machine learning in code smell detection and confirmed that our
study includes a majority of papers included in the other ones.

4.3. Data extraction process

During a single pass, we acquired both data related to assess-
ing study quality and to answer our research questions. To assess
study quality, we applied a quality checklist inspired by Dybå and
Dingsøyr [8]. As noted by Kitchenham et al. [18], this checklist can
be used across multiple study types using machine learning, e.g. effort
estimation [41] or software fault prediction [24].

Following the practice set by Wen et al. [41] and Malhotra [24],
each question has three possible answers: ‘‘Yes’’ (scored 1), ‘‘Partly’’
(scored 0.5) and ‘‘No’’ (scored 0). The final score for a publication is the
sum of scores for all items on the checklist. Each study scores between
0 and 7, but this score does not affect its inclusion to the study. Below
is a complete list of quality check questions.

Q1 Are the aims of the research clearly defined?

Yes goals of the paper are explicitly defined and presented

Partly goals of the paper are briefly mentioned (perhaps as part
of introduction)

No the paper goes straight to the proposed concept, without
discussing its goals

Q2 Are the performance measures used to assess the models clearly
defined?

Yes paper either explicitly refers to papers defining the perfor-
mance measures or defines them itself

Partly paper uses well-known measures, like precision and re-
call, but without defining or referencing them
6

t

No paper uses non-standard performance measures without
defining them or does not perform performance evaluation

Q3 Are the performance measures used to assess the models consid-
ered credible?

Yes performance measures use all quadrants of the confusion
matrix, e.g. MCC

Partly performance measures use some quadrants of the con-
fusion matrix, e.g. precision and recall use together three
out of four quadrants of confusion matrix or use entirely
different mechanisms (e.g. correlation with defects)

No no performance measurement done

Q4 Are the limitations or threats to validity of the study specified?

Yes a detailed analysis of threats is done in the paper

Partly only brief threat analysis is performed

No no analysis of threats is given in the paper

Q5 Is the proposed method or methods compared with other meth-
ods and/or baselines?

Yes well-defined baseline is used and uses same performance
measures and data sets as proposed methods

Partly baseline is used, but it is not entirely representative
(e.g. results reported on different data sets by other re-
searchers are used as baseline)

No no baseline is given

Q6 Are the findings of the study clearly stated and supported by
reported results?

Yes findings are presented and fully and unambiguously sup-
ported by reported results

Partly findings are presented and reported results can be rea-
sonably interpreted as supporting the findings

No findings are either not presented or are contradictory to
reported results (or at least not supported by them)

Q7 Does the study provide convincing arguments about additional
value given to academia or industry community?

Yes earlier research is described and new contributions are
clearly stated

Partly new contributions are stated without or with limited
reference to earlier research

No new contributions are not stated or are not new

A low study quality score did not cause excluding the study from
the review, but we gathered the values and reported the statistics in
Table 5 and in the attached data set, while the total counts of papers
with each score, split by quality question is shown in Fig. 2. The
lowest number of papers got a ‘‘Yes’’ assessment for Q3 (performance
metrics). Most papers included metrics like precision, recall, and F-
score. Those metrics include data from three out of four quadrants
from the confusion matrix which is problematic as described by Yao
and Shepperd [43]. The highest number of ‘‘No’’ assessments is for Q4
(limitations) and Q5 (baseline inclusion).

For this set of selected publications, we decided to follow the
same procedure as in the original review, only with a modified set of
Publication Questions (PQs)3:

PQ1 Was the modeling process explained in publication text?

3 We define Publication Question as an item in a data collection sheet,
hich is answered separately for each publication and which are then merged

o form an answer for the Research Question.

Information and Software Technology 144 (2022) 106783T. Lewowski and L. Madeyski
Table 5
Statistics for quality assessment scores.
Statistic name Statistic value

Max achievable score 7
Max achieved score 7
Average score 4.5
Median score 5
Min score 0.5
Total number of publications 46

Fig. 2. Number of publications with each score for each question.

Detailed all relevant details seem to be present, i.e., the paper
contains both description of the method and parameters
used during evaluation.

Moderate many details are present, but some seem to be lack-
ing, i.e., the description did contain the main elements
of the method, but lacked some details (e.g., parameters,
initial values).

Brief only a general description is given, i.e., the description
was clearly incomplete (e.g., contained only the name of
the algorithm).

PQ2 Was a reproduction package published?

Yes package was published and contained both used data and
scripts.

Scripts only package was published with only scripts or pro-
grams used in the study.

Data only package was published with only data used during
the study or study results.

No package was not published.

PQ3 How were projects selected? (free text answer)

PQ4 How were samples from projects for classification selected? (free
text answer)

PQ5 How were code smells assessed? (free text answer)

In Section 5, we present answers to RQs derived from PQ3, PQ4,
and PQ5 as categorized into several groups. The classifications in the
answers to these research questions are created post hoc, i.e., we first
gathered data as open-ended responses and created those classifications
only after data analysis. Details of the classifications are presented
together with answers to respective research questions.

The data from 46 publications was initially gathered by one of the
authors, while the other did a two-phase cross-check. In the first phase,
11 of 46 papers (≈25% of the whole data set) were analyzed. In the
7

Table 6
Inter-rater agreement (Cohen’s Kappa) for data acquisition.
PQ1 PQ2 PQ3 PQ4 PQ5

0.89 0.85 0.89 0.97 1.00

case of 5 papers there was complete agreement from the beginning, in
the case of 2 papers there were minor disagreements (such as the level
of detail with which answers were gathered). In the case of 4 papers,
there was a strong disagreement. All four strong disagreement cases
were related to PQ2, one of them also had disagreement regarding the
source of the data set. Two of the disagreement cases were related to
a link being unavailable for one of the authors, while available for the
other. In one of the cases, the reproduction link was valid in PDF but
not valid on the publication HTML page (wcre from PDF translated to
were in HTML in a paper by Maiga et al. [SLR2]). In the other case (in
the paper by [SLR3]), the link was valid on the publication HTML page,
but not in the PDF — this being caused by the tilde character in HTML
being represented as UTF "tilde (U+007E)", while the tilde in PDF was
represented by UTF "tilde operator (U+223C)" (there is also a few other
very similar characters in UTF). Visually those characters vary a little
in width and decoration, but it can only be seen by direct comparison,
and they are unlikely to be identified at a first glance. Browsers are also
able to display most Unicode characters in the address bar nowadays,
so there is virtually no option to distinguish between those two, if
one is not aware of the existence of such a problem—but only one
of them will be properly resolved by a HTTP server, thus leading to
researchers being sure that a link is broken despite it being correct.
The remaining two disagreement cases – [SLR4,SLR5] – were caused
by a different technique of referring to the reproduction data set, which
went unspotted by one of the authors on the first read (most papers add
a hyperlink, while those two cited the reproduction package).

Due to substantial disagreement on PQ2, the remaining 35 publi-
cations were once again verified and one additional change was made
to the data set (also caused by the invalid link in some of the sources
in [SLR6]). Finally, we were not able to reach two of the links: http://
essere.disco.unimib.it/wiki/research/mlcsd referred to by [SLR7] and
http://www.rcost.unisannio.it/mdipenta/papers/ase2013. The second
one is referred to by several publications (most notably [SLR8]), so we
concluded that this is the correct address, but the links are no longer
functional. This is unfortunate, since this data set is used in several
other studies as well.

After this additional verification for PQ2, the second phase of the
cross-check was carried out by the other author for the remaining 35
publications. This additional cross-check yielded seven disagreements
on seven publications that affected the final results—three of those
were related to PQ1 (Brief vs Moderate explanation of the modeling
process), two were related to PQ3 (Manual - criteria given vs Automated),
one was related to PQ2 (None vs Scripts) and one was related to PQ4
(Algorithm run vs Unknown). To calculate Cohen’s kappa metric for
inter-rater agreement for PQ3, PQ4 and PQ5, we had to first preprocess
the free-text answers given by the authors into post-hoc classes that are
presented in Section 5. The artifacts of the preprocessing are included in
the reproduction package. This metric was calculated after the second
cross-check and does not include the disagreements encountered during
the first one. The final inter-rater agreement in form of Cohen’s kappa
for each of the PQs is reported in Table 6. In each case, the agreement
was 0.85 or higher.

All disagreements were resolved by discussion. As a result, each en-
try in the data set was verified by both authors. The full data collection
sheet is available as part of the attached data package described briefly
in Section 4.4 and in detail in the data sheet distributed together with
the package.

Combined agreement rate for all PQs from both phases was 72%.
Nowadays, there are archive providers such as Zenodo, Figshare

or Dryad that allow researchers to submit even large data sets and

http://essere.disco.unimib.it/wiki/research/mlcsd
http://essere.disco.unimib.it/wiki/research/mlcsd
http://essere.disco.unimib.it/wiki/research/mlcsd
http://www.rcost.unisannio.it/mdipenta/papers/ase2013

Information and Software Technology 144 (2022) 106783T. Lewowski and L. Madeyski
Fig. 3. Number of publications from each year included in the study divided by its
type.

guarantee their accessibility for a prolonged period of time. However,
only one publication – [SLR9] – used these services as the target
location for the reproduction package—others used websites of re-
search groups or even single researchers. We believe this to be a
suboptimal solution, as those ad hoc locations are usually not thought
of as a persistent repository, not to mention the additional maintenance
effort that needs to be put into the project. Two of those packages,
referred from [SLR8] and [SLR7] are already not accessible, some
data from [SLR10] and package provided by [SLR11] are also no
longer accessible. We encountered also problems when accessing the
reproduction package from [SLR12], although this one was caused by
server downtime (which is usually lower for dedicated services), since
in the end we were able to access the package.

4.4. Data package

Data gathered during this study is published on Zenodo: https://doi.
org/10.5281/zenodo.5647093. The data set partly overlaps with the
one that was published for [20] (quasi-gold standard, initial publication
filtering and part of the quality check), but we decided to include it
separately here as since merging data from two separate data sets is
inconvenient for the reader.

The package contains:

• a file with results of initial publication screening,
• a file with data collection results,
• a datasheet for both those data sets based on the template pro-

vided by Gebru et al. [12],
• files with preprocessed answers for Cohen’s kappa calculation,
• scripts used to generate charts.

Details of the data, including structure, maintenance, acquisition
methods, and other properties can be found in the datasheet present
in the reproduction package.

5. Results

We obtained a total of 46 publications, listed with DOIs in the
Systematic Literature Review References at the end of the paper. Fifteen
of those were journal papers, while the other 31 were conference pro-
ceedings. Their distributions by publication date and type are presented
in Fig. 3. The number of relevant publications is nondecreasing since
2014 (we do not take into account 2020, as the data for this year was
not yet complete when we acquired it).

All reviewed papers refer to specifically named code smells, not to
the more general concept of ‘‘code, that requires additional
reviewing’’—the latter group was usually described as ‘‘design flaws’’,
‘‘anomalies’’ or ‘‘inconsistencies’’ not ‘‘code smells’’.
8

Fig. 4. Level of detail included in the process of modeling.

5.1. RQ1: Is the process of creating code smell machine learning models
reproducible in the recent scientific studies on code smell detection using
AI/ML methods?

5.1.1. RQ1.1: Do the authors of recent scientific studies on code smell
detection using AI/ML methods describe the modeling process with enough
details to reproduce their studies?

Out of 46 analyzed publications, 22 described the modeling process
with details sufficient to reproduce the study, eight contained some
details but not enough to reproduce basing on the paper alone, while
sixteen contained only a brief description, such as a listing of used
algorithms without any parameters or detailed architecture. Those
results are presented in Fig. 4, while a more detailed view, including
publication year, is presented in Fig. 5. In recent years, the number of
papers describing the process in moderate detail has increased, which
can be associated with an increased interest in deep learning tech-
niques. Those models are incredibly complex, so it may be preferable
to leave some details out of the paper, assuming that a reproduction
package is provided to resolve all ambiguities.

We did not attempt to reproduce all the studies based on the
description. Our assessment is based on a reproduction plan that was
created for each of them. In the case of Brief description, we were not
able to create such a plan. In the case of Moderate, we were able to draft
a plan, but it lacked some details. In the case of Detailed description,
we were able to create a plan how to reproduce the study. As such, it
is possible that we missed some parameters or steps that were actually
necessary for reproduction, but we omitted them in the reproduction
plan. Thus, the number of Detailed studies should be treated as an upper
bound and some of those studies will still lack some detail.

Categories of methods (decision tree, SVM) are present in every
study, but many studies lack details of configuration, e.g., type of SVM
kernel, architecture of a neural network, number of layers or neurons
in a neural network.

5.1.2. RQ1.2: Do the authors of recent scientific studies on code smell
detection using AI/ML methods publish reproduction packages for their
studies?

The results are presented in Fig. 6. 26 publications do not mention
any sort of reproduction package. Three publications ([SLR11,SLR8,
SLR7]) provide links which we were not able to resolve and one pub-
lication ([SLR13]) mentions providing a reproduction package, but we
were unable to find any reference to the said package in the rest of the
paper (no hyperlink or citation). Of the remaining fifteen publications,
seven ([SLR14,SLR10,SLR15,SLR16,SLR17,SLR5,SLR4]) contained both
scripts and data in the reproduction package, six ([SLR6,SLR2,SLR18,
SLR9,SLR19,SLR1]) contained only data for replications and the last
two – [SLR3,SLR12] – contained only reproduction scripts.

Some of those papers cannot provide any reproduction scripts, sim-
ply because there was no script running—if a tool was simply invoked

https://doi.org/10.5281/zenodo.5647093
https://doi.org/10.5281/zenodo.5647093
https://doi.org/10.5281/zenodo.5647093

Information and Software Technology 144 (2022) 106783T. Lewowski and L. Madeyski
Fig. 5. Number of publications from each year with given level of detail in model
description.

Fig. 6. Reproduction packages in publications.

Fig. 7. Number of publications from each year with reproduction package.

with its default parameters, this may have been done manually. In such
case, sufficient reproducibility should be provided by describing the
process in detail in the paper. For more complex manual workflows,
it may be reasonable to use a tool such as DVC [16] to keep track of
the research models and their evolution.

A more detailed view, including publication year, is presented in
Fig. 7. While the majority of papers do not include any form of repro-
duction package, it is slightly reassuring that this trend is declining and
recently more authors start to include such a package in their research.
9

5.1.3. RQ1 summary
Overall, as of today, the process of creating models is, with a few

exceptions, not reproducible.

The share of studies with definitely insufficient model descrip-
tion rises, from 28% of the studies before 2018 to 43% in years
2018–2019.

This effect is likely due to increase in the sheer number of papers—
from two relevant papers in 2012 to eleven in 2019.

The share of studies with a full reproduction package (data
and scripts) while still low, also rises—from 8% of the studies
before 2018 to 22% of the studies in years 2018–2019.

This effect can be attributed to maturing of the domain—since there
is more and more research on the subject, authors encounter the same
problems that we did and try to mitigate that in their subsequent
papers.

5.2. RQ2: Is the process of code smell data set acquisition reproducible in
the recent scientific studies on code smell detection using AI/ML methods?

Fifteen publications ([SLR6,SLR2,SLR9,SLR1,SLR17,SLR20,SLR21,
SLR22,SLR23,SLR24,SLR25,SLR26,SLR27,SLR28,SLR29]) use pre-
defined data sets, either without applying any modifications or with
only cosmetic changes (such as merging two data sets), thus the rest
of this section only discusses the remaining 31 publications (although
charts show all papers to provide scale).

5.2.1. RQ2.1: How do the authors of recent scientific studies on code smell
detection using AI/ML methods select projects for their data sets?

We categorized free-text answers to the applicable question into
seven categories: Predefined (Using the same data set as another
study), Manual - no criteria (Manual selection of projects, no selection
criteria described in the paper), Manual - criteria given (Manual
selection of projects, selection criteria were described in free text), Ex-
isting corpus subset (Projects were selected from an existing corpus,
but no selection criteria were given), Earlier studies (Selection was
inspired by earlier studies, but did not use same data set), Unknown
(No description of selection process) and Automated (Selection was
done automatically by a script).

Out of the remaining 31 publications, 22 used manual project selec-
tion. In half of the cases selection criteria were not given at all, while
in the other half they were briefly mentioned. Criteria were usually
related to the projects being used earlier in the research or projects
being well-known, nontrivial, known to authors, or diverse. Out of
the remaining nine publications, four used a subset of a well-known
corpus (Qualitas Corpus [40]), two used projects used in earlier studies,
and two publications did not disclose the selection method. In one
publication, [SLR14], the authors used an automated project selection
method like the one described by Lewowski and Madeyski [19], using
the highest number of stars on GitHub as the sole criterion.

The results are visualized in Fig. 8 and, split by publication year, in
Fig. 9. Unfortunately, the charts do not show any clear trend.

5.2.2. RQ2.2: How are samples from projects selected for classification in
recent scientific studies on code smell detection using AI/ML methods?

We categorized free-text answers to the applicable question into
eight categories: Predefined (Using the same data set as another
study), Advisors (Samples for examination were recommended by an
existing tool, e.g., JDeodorant. Any such tool is later on referred to
as an Advisor), Exhaustive search (All possible occurrences were
examined), Unknown (No selection details were present in the paper),
Bug seeding (Samples were created by artificially modifying the code),

Information and Software Technology 144 (2022) 106783T. Lewowski and L. Madeyski

-

,

Fig. 8. Project selection methods.

Fig. 9. Number of publications from each year split by project selection method.

Existing corpus (Samples were taken from existing code smell corpus
and examined again), Predefined + advisors (Samples were taken
from the existing data set, but it was additionally examined using exist-
ing programs) and Random sampling (Samples were picked randomly
from all available ones).

Out of the 31 publications that used custom data sets, six used an
exhaustive search (all entities were verified for smell occurrence), three
used smell-introducing refactoring or bug seeding, one used random
sampling, eleven used advisors (one of them used advisors for one smell
and an existing data set for another, so the numbers do not sum up),
two used an existing corpus of samples and the method used in six
publications remains unknown.

The results are visualized in Fig. 10 and, split by publication year,
in Fig. 11. Unfortunately, the charts do not show any clear trend.

5.2.3. RQ2.3: How are samples assessed for occurrence of code smells in
recent scientific studies on code smell detection using AI/ML methods?

We categorized free-text answers to the applicable question into
six categories: Predefined (Using the same data set as another study),
Students (Assessment was done by graduate or post-graduate stu-
dents), Automated (Other tools are used for assessment), Unknown
(No assessment details were present in the paper), Authors (Study
authors were doing the assessment), Developers (Assessment was done
by software developers). Some studies used multiple categories at the
same time, which resulted in three additional categories—Authors &
students, Predefined + Students & developers (predefined samples
additionally reviewed) and Students & developers.

As for sample assessment, it is usually done either by authors (seven
publications - [SLR11,SLR15,SLR30,SLR31,SLR32,SLR33,SLR34]) or stu
dents (twelve publications - [SLR14,SLR11,SLR10,SLR12,SLR35,SLR8,
10
Fig. 10. Sample selection methods.

Fig. 11. Number of publications from each year split by sample selection method.

SLR18,SLR16,SLR7,SLR36,SLR37,SLR38]). Only three publications ([14
SLR16,SLR36]) mention support from developers or engineers. Only
in three publications there were more than ten people involved in
data set creation. As for the remaining eleven publications, in the
case of seven ([SLR19,SLR39,SLR40,SLR41,SLR42,SLR43,SLR44]) the
assessment method is unknown, while in the last four ([SLR5,SLR4,
SLR45,SLR46]) samples are graded automatically—either because they
are seeded or taken from a bug database or because an automated
advisor is configured as automatically accepted.

The results are visualized in Fig. 12 and, split by publication year,
in Fig. 13. Unfortunately, the charts do not show any clear trend.

As for predefined data sets, two are predominantly used—one pro-
vided in [SLR10] using Qualitas Corpus [40] as project and sample
source, and another one that contains data from Azureus, ArgoUML and
Xerces-J. Other used data sets include the one published in [SLR8] and
another published by Khomh et al. [17].

5.2.4. RQ2 summary
Creating a code smell data set itself is not an easy endeavor, as

described in [22].

The most commonly employed strategy (33% of reviewed
publications) is to use an existing data set. This is also a
strategy that we recommend, as it lets the researchers focus
on the modeling and not on creating an ad hoc data set.

As this study has shown, in the overwhelming majority of pa-
pers where authors decide to create a new data set, the projects are

Information and Software Technology 144 (2022) 106783T. Lewowski and L. Madeyski
Fig. 12. Sample assessment methods.

Fig. 13. Number of publications from each year split by sample assessment method.

picked manually, which makes it impossible to automate (since detailed
selection rules are not known). After project selection, samples for
assessment are usually picked by advisors (such as JDeodorant), which
in turn skews the data set in the direction of the advisors’ ‘‘under-
standing’’. Finally, code smell assessment is usually done by students or
authors, who typically are not experienced developers. It is also fairly
common (ca. 10% of reviewed studies) to use automated assessment by
another tool, e.g., JDeodorant, which renders the whole machine learn-
ing procedure useless, since there is already an automated algorithm to
perform the task. Overall, as of today, the process of code smell sample
acquisition is generally not reproducible.

6. Discussion and study implications

Overall reproducibility. We found out that the current state of
the studies on code smell detection methods leaves a lot to be desired.
In particular, less than 20% of the studies include a full reproduction
package (scripts and data), less than 45% of the studies mention any
package (e.g., only used data or created models) and in less than 40%
of the cases the package is accessible. A third of all included studies
contains a description of a modeling process that is insufficient to allow
reproduction without access to additional information. Most of those
papers also do not include any sort of reproduction package, which
means that their results are unlikely to be reproduced. While Madeyski
and Kitchenham [21] raised awareness of the problems caused by
unreproducible research in software engineering in general, in this
paper we focus on one active research area, code smell detection, and
show the details, as well as scale of the problem in that particular area.
Despite the fact that our study is limited to just one of the research
11
areas in software engineering, similar results were obtained also by
Rodriguez [33], so it is unlikely that this area is unique regarding to
reproducibility problems, while the implications of these problems are
serious.

Implications: The lack of reproducibility in scientific research
implicates that the results are unlikely to directly impact:

• the industry (as, e.g., it is difficult to trust, invest in and
apply in practice ideas or findings that are not possible
to reproduce) or

• academia (as, e.g., it is much more difficult to verify
the findings, as well as build upon previous research,
i.e., build upon the shoulders of giants [3], when there is
no data and/or scripts).

Thus, it lowers scientific output efficiency, slows down
scientific progress, and leads to wasted time and money.

Reproduction packages. We encountered a number of studies de-
scribing increasingly complex algorithms (such as deep learning ones).
Those algorithms often include an enormous amount of parameters, and
it is not possible to include them all in the publication when they are
not the core research subject of the paper and the paper has to adhere
to strict size limits.

Implications: Papers, including complex (e.g., deep learning)
algorithms in particular, should provide reproduction scripts,
since the implicit parameters, unknown to other researchers,
may be crucial to the obtained results. We urge the re-
searchers to include reproduction scripts not only because it
substantially improves study reproducibility, but also because
it impacts validity of the results. The latter effect is caused
by the fact that the researcher has to once again get familiar
with details of the applied procedure when preparing a repro-
duction package. The original thought path for the procedure
might have been forgotten by this moment, so the researcher
is more likely to spot defects or inconsistencies.

An example to support the above implication: when preparing the
reproduction data set for this publication, we noticed that two of the
publications accepted in the initial screening were omitted in the data
collection sheet, and, as such, were not actually included in the study.
Those publications did not change the study conclusions substantially,
but the sole act of providing a reproduction package allowed us to
improve the paper. It is unlikely that our research is unique in that
matter, thus we strongly recommend providing a reproduction package.

Data set creation. Our study found out that only a third of the
analyzed studies used a predefined data set, while others introduced
their own data sets, usually without a detailed description. This finding
supports the claim made by Caram et al. [4]—data sets often are
created independently and researchers do not share the details of their
data set creation techniques. Since there are only few clues as to how
to acquire a similar data set and the data sets are rarely published, the
research, even if valid, becomes irreproducible.

While it is understandable that many researchers will need to create
their own data sets – they may be interested in various languages or
application types – the description of the data set creation should be
explicit. For selecting software projects, we recommend an automated
approach, for example, by following the process described by Lewowski
and Madeyski [19]. The data sets should also be described in detail,
for instance using a data sheet similar to one published by Gebru
et al. [12].

Information and Software Technology 144 (2022) 106783T. Lewowski and L. Madeyski

t
i
c

f
s
h

(
o
o
d
s
l
p
i
c
i
a
t
v
v
b
a
c
c
d
o
a
s
m
l
a

w
w
t

Implications: Researchers who decide to create a new data
set and do not share the details of how were the data gathered
(e.g., in form of a data sheet) severely hinder reproducibility
of their research.

Invalid link translation. A moderately common problem encoun-
ered in our study (two out of twenty publications with package links)
s the poor quality of linking in research papers—for example, URLs
ontaining a tilde character (∼) can either contain an ASCII tilde (∼)

or one of eight other UTF tilde-like characters (e.g. ∼, used by LATEX in
Math environments). Depending on the font, they may be either the
same or extremely similar symbol and even a skilled reader is unlikely
to be able to distinguish between them. However, the requests made
by the browser will differ, and only one of them will lead to the right
location (HTTP server will reject the others, usually with 404: Not
Found or 403: Forbidden status code). In the two described cases
([SLR2,SLR6]) the problem lies somewhere inside the mechanism used
for translation between document formats (PDF and HTML), where
particular characters were misread. Both those papers are published by
IEEE and are accessible on the IEEE Xplore website.

Implications: Researchers and practitioners should be aware
that such a problem in translation between various media for
same paper may exist and, if a hyperlink from one version of a
paper does not point the desired resource, verify the versions
present in other formats of said document.

While the publisher is responsible for making sure that all content
rom the paper is correctly translated into all supported media, occa-
ionally problems with the said translation do arise and researchers
ave to deal with them on an ad hoc basis.
Online data appendices. We found out that online appendices

reproduction scripts, data sets, prebuilt models) are often published
n research group sites or even single researchers’ personal sites—only
ne of analyzed papers, ([SLR9]) used an established data archive,
espite those archives being available since at least 2012. While this is a
ubstantial improvement over not publishing them at all, this solution
eaves a lot to be desired. First, those sites usually do not offer any
ermanent linking mechanism (e.g., by DOI). Therefore, any change
n organization layout (e.g., renaming of the working group or author
hanging affiliation) will render those links invalid, even if the data
s still valid and still available on the web. Second, they do not offer
ny structured versioning mechanism, so a reader several years from
he first publishing cannot be sure if the version they use is the same
ersion that is referred to in the paper. Third, those sites are often
olatile and can disappear from the web together with the data held
y them (such a thing happened with packages published for [SLR7]
nd [SLR8]). Sometimes some of those problems can be resolved by
ontacting the corresponding author directly, but it is not always the
ase and it is not a scalable solution for data sharing. Handling of
ata sets and other digital artifacts is an important matter for the
verall quality of science. This has been acknowledged by international
uthorities, e.g., in the form of the OECD recommendation, US NIH data
tewardship organization [34] or UN data policies. While those docu-
ents are discussed, reviewed, and sometimes criticized [23], there is

ittle doubt that this is a needed discussion and recommendations for
rtifact management are crucial for research reproducibility.

Implications: Authors should be aware of the maintenance re-
quirements arising from the use of custom infrastructure and,
whenever possible, use a dedicated archive, such as Zenodo,
Figshare, Dryad or the infrastructure provided by the pub-
lisher, which provides DOIs, versioning, platform maintenance
and other features helpful for increasing data visibility and
durability.
12

i

Online source code appendices. Half of the analyzed papers that
included any reproduction package included some sort of scripts or
program. In software engineering, it is common that one of the artifacts
is the source code of an application—in the case of seven papers
the researchers adopted the typical way of doing things in software
development and published the code on GitHub or other public source
code repository system (GitLab, BitBucket, Savannah), while all the
others who chose to publish their scripts have done that on their own,
custom sites (either private or research group site). We strongly rec-
ommend using version control for source code-related artifacts, both for
reproducibility and for possibility to track changes between subsequent
research papers. The dominant version control system as of today, at
least for open source code, is Git. Git assigns a checksum to each version
of the repository, so, technically speaking, giving the reader this check-
sum is the most precise version information available. However, to
adhere to scientific conventions, GitHub offers a possibility of assigning
a DOI to a specific repository version. Of course, underneath this is
really no different from a specific release tag and less specific than a
commit SHA,4 but may be more readable for researchers from other
domains, not familiar with modern software development techniques.
Researchers interested mostly in data modeling may prefer a tool such
as DVC [16], tailored to the needs of data science and machine learning.
For source code artifacts, as of today, GitHub is the only archive we
are aware of that makes it possible to assign a DOI to a source code
artifact without decoupling it from its history, although other providers
are working on this feature as well.

Implications: Software is much more volatile than publi-
cations. For reproducibility, it is important to mark (with
tag, release, SHA or DOI) a specific version used during the
research. Still, further improvements should not be ignored,
so public source code repositories should be preferred over
research group websites.

Code smell assessment. This study was focused on machine learn-
ing techniques in code smell detection and all 46 papers use some
machine learning techniques to try to detect code smells. Using ma-
chine learning implies that there is no simple, known algorithm for
code smell detection and that the concept is understood by developers,
who know how to identify it—for example, by using own domain
and technical expertise. In this context, it is puzzling that only three
of the analyzed papers explicitly mention any support from software
developers in code smell detection, while over 10 explicitly mention
that data set was obtained by students. We urge creators of the future
code smell data sets to use the domain knowledge of the experts in the
field (in this case—experienced software developers, as we did in [22])
as the source of assessment.

Implications: Using data from ad hoc trained participants
will only cause confusion, as those participants will usually
replicate simple rules that they were taught—and if the rules
are simple, they can be programmed directly, and there would
be no need to apply machine learning to this problem. As of
now, as shown by Hozano et al. [15], it is not even clear
whether the understanding of code smells is consistent among
seasoned developers, not to mention the less experienced ones.

Separate data set creation. Our study discovered that the most
idely used predefined data sets [25], [SLR35] are published as part of
ider studies on code smell detection. Since the papers that introduce

he data sets are focused on code smell detection, it is harder to

4 SHA is a unique fingerprint, while tags can technically be moved, even if
t is discouraged in practice

Information and Software Technology 144 (2022) 106783T. Lewowski and L. Madeyski

b
o
a
a

p
n
t
t
b
t
t
o
i

find information about data set details, including format and detailed
creation procedure, thus the origins of the data set may be easier lost.

It has recently been understood that creating reliable data sets is
more challenging than one would initially expect. There are separate
conferences dedicated to data publishing (e.g., MSR) and data papers
are becoming increasingly common. We recommend that the authors
of new data sets publish them separately from their main research
papers—this way the data set becomes the core artifact and it is possible
to avoid introducing study-specific variables to the data itself and to
focus effort on curating the data, not only on using it.

Implications: Data sets published as part of a wider study
(e.g., related to code smell detection) and not as separate
artifacts are at risk of (even inadvertently) being fine-tuned to
the specific solution that the researcher is presenting, instead
of being a sample of the data from the problem domain.
They are also less likely to contain detailed data sheets and
descriptions, as they are not the primary focus for researchers
and reviewers of a given paper.

Call for standardization. Our research has shown that about two-
thirds of research papers use a custom data set. This is understandable,
since the number of programming languages, domains, and paradigms
is overwhelming. However, the gathering of said data would be sub-
stantially simplified if there was a shared tool that would be able to
generate standardized outputs and allow the experts to easily recon-
figure it and share snapshots. A step in this direction was published
with the Landfill project by Palomba et al. [30], but its goal was less
ambitious, thus it cannot be easily used to configure multiple grades
(some researchers try to quantify the ‘‘smelliness’’ of the source code,
others treat it as a binary property) or to analyze languages other than
Java.

Implications: Lack of standardized tools for code smell data
acquisition makes it more difficult to create reliable and
reusable data sets and perform code smell related research.

6.1. Threats to validity

For the purpose of this study, we consider construct validity, internal
validity, external validity and reliability.

6.1.1. Construct validity
Construct validity is concerned with the degree to which the study

measures what it claims it does.
We believe that the main threat to construct validity is related

to the chosen publication set—publications were taken from a single
database (Scopus). To address this threat, we ran a Quasi-gold standard
procedure to verify the search quality, but unfortunately the procedure
did not give us definitive results.

The publication set was initially selected to serve a different purpose
—assessing state-of-the-art in the area of code smell detection for the
code quest company that develops codebeat code review platform. We
elieve this does not have any substantial impact on the outcome, since
ur review was focused on the same specific group of papers. Addition-
lly, our findings are consistent with those from other researchers in the
rea of software engineering [33].

An additional threat to the construct validity is that we did not
erform snowballing. Thus, the risk of missing out papers, and therefore
ot adequately implementing the construct ‘‘all published papers on the
opic’’, is higher. While snowballing might improve the confidence in
he selected publication set, the number of analyzed papers was already
igger than in the case of other systematic reviews which dealt with
he problem of machine learning for code smell detection. We decided
hat this was a sufficient reason to skip the effort-consuming process
f snowballing and instead focus on curating the data for further use,
13

ncluding replication and verification.
6.1.2. Internal validity
Internal validity is concerned with how the research was conducted.
The data acquisition procedure was manual, so this is a natural

place for errors to appear. To address this threat, we performed a cross-
check for all gathered data points in the data collection sheet and for
a random sample in the initial screening. For one of the publication
questions, the agreement rate after cross-checking the first 25% was
too low, so we regathered all of the data for it and ran a cross-check
for all remaining papers. To further improve reliability, we publish the
full data collection sheet created for the purpose of this publication and
another sheet with initial publication screening data.

While the data collection cross-check was complete, the one applied
to the initial screening was much briefer—only a tiny percentage of
initially rejected papers were double-checked for relevance. While we
carefully examined the data to make sure that relevant papers are in-
cluded, it is possible that some were rejected at that stage. However, to
address such a threat, we include data from the whole initial screening
in the reproduction data package.

6.1.3. External validity
External validity is concerned with the possibility of generalizing

the findings. This review was performed only on a selected problem in
software engineering—reproducibility of research in the area of code
smell detection using machine learning techniques. We do not claim
that the same issues can be observed throughout the whole area of
software engineering, although there are other studies, such as [33],
that obtain similar results in different subdomains.

6.1.4. Reliability
Reliability is concerned with the possibility to reproduce the re-

search and achieve the same results. To guarantee the maximum possi-
bility for reproduction, we describe the research procedure in detail
in Section 4 and attach links to the gathered data and processing
scripts. For the steps that were performed manually in the reproduction
package, we include all created intermediate artifacts.

7. Conclusion

Our findings are consistent with those of other researchers, e.g.,
[33]—nearly half of the publications did not describe the methodology
in detail sufficient for reproduction, over 60% do not include any form
of reproduction package and less than 20% provide a full reproduction
package (scripts and data sets).

Reproducibility in code smell detection should be treated more
seriously. This applies to all procedures—as of today, we are not even
sure if we are all discussing the same concepts.

Declaration of competing interest

No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict
with this work. For full disclosure statements refer to https://doi.org/
10.1016/j.infsof.2021.106783.

Acknowledgment

This research was partly financed by Polish National Centre for
Research and Development, Poland grant POIR.01.01.01-00-0792/16:
‘‘Codebeat - wykorzystanie sztucznej inteligencji w statycznej analizie
jakości oprogramowania.’’

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.infsof.2021.106783.

https://doi.org/10.1016/j.infsof.2021.106783
https://doi.org/10.1016/j.infsof.2021.106783
https://doi.org/10.1016/j.infsof.2021.106783
https://doi.org/10.1016/j.infsof.2021.106783

Information and Software Technology 144 (2022) 106783T. Lewowski and L. Madeyski
References

[1] A. Al-Shaaby, H. Aljamaan, M. Alshayeb, Bad smell detection using machine
learning techniques: A systematic literature review, Arab. J. Sci. Eng. 45 (2020)
http://dx.doi.org/10.1007/s13369-019-04311-w.

[2] M.I. Azeem, F. Palomba, L. Shi, Q. Wang, Machine learning techniques for code
smell detection: A systematic literature review and meta-analysis, Inf. Softw.
Technol. (ISSN: 0950-5849) 108 (2019) 115–138, http://dx.doi.org/10.1016/j.
infsof.2018.12.009.

[3] E. Barr, C. Bird, E. Hyatt, T. Menzies, G. Robles, On the shoulders of giants,
in: Proceedings of the FSE/SDP Workshop on Future of Software Engineering
Research, FoSER ’10, ACM, ISBN: 978-1-4503-0427-6, 2010, pp. 23–28, http:
//dx.doi.org/10.1145/1882362.1882368.

[4] F. Caram, B.R. de Oliveira Rodrigues, A. Campanelli, F. Silva Parreiras, Machine
learning techniques for code smells detection: A systematic mapping study,
Int. J. Softw. Eng. Knowl. Eng. 29 (2019) 285–316, http://dx.doi.org/10.1142/
S021819401950013X.

[5] J.B. Carlisle, Data fabrication and other reasons for non-random sampling in
5087 randomized, controlled trials in anaesthetic and general medical journals,
Anaesthesia 72 (8) (2017) 944–952, http://dx.doi.org/10.1111/anae.13938.

[6] B. Chen, Z.M.J. Jiang, Characterizing and detecting anti-patterns in the log-
ging code, in: Proceedings of the 39th International Conference on Software
Engineering, ICSE ’17, IEEE Press, ISBN: 9781538638682, 2017, pp. 71–81,
http://dx.doi.org/10.1109/ICSE.2017.15.

[7] O. Dieste, A. Grimán, N. Juristo, Developing search strategies for detecting
relevant experiments, Empir. Softw. Eng. 14 (5) (2009) 513–539.

[8] T. Dybå, T. Dingsøyr, Empirical studies of agile software development: A
systematic review, Inf. Softw. Technol. 50 (9–10) (2008) 833–859.

[9] F.A. Fontana, M.V. Mäntylä, M. Zanoni, A. Marino, Comparing and experimenting
machine learning techniques for code smell detection, Empir. Softw. Eng. 21 (3)
(2016) 1143–1191, http://dx.doi.org/10.1007/s10664-015-9378-4.

[10] F.A. Fontana, I. Pigazzini, R. Roveda, M. Zanoni, Automatic detection of insta-
bility architectural smells, in: 2016 IEEE International Conference on Software
Maintenance and Evolution, ICSME, 2016, pp. 433–437, http://dx.doi.org/10.
1109/ICSME.2016.33.

[11] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: Improving the
Design of Existing Code, Addison-Wesley, Boston, MA, USA, 1999.

[12] T. Gebru, J. Morgenstern, B. Vecchione, J.W. Vaughan, H.M. Wallach, H.D. III,
K. Crawford, Datasheets for datasets, 2018, , CoRR abs/1803.09010.

[13] F. Hesselmann, V. Graf, M. Schmidt, M. Reinhart, The visibility of scientific
misconduct: A review of the literature on retracted journal articles, Curr. Sociol.
65 (6) (2017) 814–845, http://dx.doi.org/10.1177/0011392116663807.

[14] M. Hozano, N. Antunes, B. Fonseca, E. Costa, Evaluating the accuracy of
machine learning algorithms on detecting code smells for different developers,
in: Proceedings of the 19th International Conference on Enterprise Information
Systems - Volume 2: ICEIS, SciTePress, INSTICC, 2017, pp. 474–482, http:
//dx.doi.org/10.5220/0006338804740482.

[15] M. Hozano, A. Garcia, N. Antunes, B. Fonseca, E. Costa, Smells are sensitive to
developers!: On the efficiency of (un)guided customized detection, in: Proceed-
ings of the 25th International Conference on Program Comprehension, ICPC ’17,
IEEE Press, Piscataway, NJ, USA, 2017, pp. 110–120.

[16] Iterative.ai, Data version control, http://https://dvc.org/.
[17] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, G. Antoniol, An exploratory study of

the impact of antipatterns on class change- and fault-proneness, Empir. Softw.
Eng. 17 (2012) 243–275, http://dx.doi.org/10.1007/s10664-011-9171-y.

[18] B. Kitchenham, D. Budgen, P. Brereton, Evidence-Based Software Engineering
and Systematic Reviews, CRC Press, 2016, http://dx.doi.org/10.1201/b19467.

[19] T. Lewowski, L. Madeyski, Creating evolving project data sets in software engi-
neering, in: S. Jarzabek, A. Poniszewska-Marańda, L. Madeyski (Eds.), Integrating
Research and Practice in Software Engineering, in: Studies in Computational
Intelligence, vol. 851, Springer, Cham, 2020, pp. 1–14, http://dx.doi.org/10.
1007/978-3-030-26574-8_1.

[20] T. Lewowski, L. Madeyski, Code smells detection using artificial intelli-
gence techniques: A business-driven systematic review, in: N. Kryvinska, A.
Poniszewska-Marańda (Eds.), Developments in Information & Knowledge Man-
agement for Business Applications : Volume 3, Springer, Cham, 2022, pp.
285–319, http://dx.doi.org/10.1007/978-3-030-77916-0_12.

[21] L. Madeyski, B. Kitchenham, Would wider adoption of reproducible research be
beneficial for empirical software engineering research? J. Intell. Fuzzy Systems
32 (2017) 1509–1521, http://dx.doi.org/10.3233/JIFS-169146.

[22] L. Madeyski, T. Lewowski, MLCQ: INdustry-relevant code smell data set, in:
Proceedings of the Evaluation and Assessment in Software Engineering, EASE
’20, ACM, New York, NY, USA, 2020, pp. 342–347, http://dx.doi.org/10.1145/
3383219.3383264.

[23] L. Madeyski, T. Lewowski, B. Kitchenham, OECD Recommendation’s draft con-
cerning access to research data from public funding: A review, Bull. Pol. Acad.
Sci.: Tech. Sci. 69 (2021) http://dx.doi.org/10.24425/bpasts.2020.135401.

[24] R. Malhotra, A systematic review of machine learning techniques for software
fault prediction, Appl. Soft Comput. 27 (2015) 504–518.
14
[25] N. Moha, Y.-G. Gueheneuc, L. Duchien, A.-F. Le Meur, DECOR: A Method for the
specification and detection of code and design smells, IEEE Trans. Softw. Eng.
36 (1) (2010) 20–36, http://dx.doi.org/10.1109/TSE.2009.50.

[26] T. Mousavi, M. Abdollahi, A review of the current concerns about misconduct
in medical sciences publications and the consequences, DARU J. Pharm. Sci. 28
(2020) 1–11, http://dx.doi.org/10.1007/s40199-020-00332-1.

[27] National Academies of Sciences, Engineering, and Medicine, Reproducibility and
Replicability in Science, The National Academies Press, Washington, DC, ISBN:
978-0-309-48616-3, 2019, http://dx.doi.org/10.17226/25303, https://www.nap.
edu/catalog/25303/reproducibility-and-replicability-in-science.

[28] F. Palomba, Alternative sources of information for code smell detection: Postcards
from far away, in: 2016 IEEE International Conference on Software Maintenance
and Evolution, ICSME, 2016, pp. 636–640, http://dx.doi.org/10.1109/ICSME.
2016.26.

[29] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, A. De Lucia, Lightweight
detection of android-specific code smells: The adoctor project, in: 2017 IEEE 24th
International Conference on Software Analysis, Evolution and Reengineering,
SANER, 2017, pp. 487–491, http://dx.doi.org/10.1109/SANER.2017.7884659.

[30] F. Palomba, D. Di Nucci, M. Tufano, G. Bavota, R. Oliveto, D. Poshyvanyk, A. De
Lucia, Landfill: An open dataset of code smells with public evaluation, in: 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories, 2015, pp.
482–485. http://dx.doi.org/10.1109/MSR.2015.69.

[31] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, A. De Lucia, The scent of
a smell: An extensive comparison between textual and structural smells, IEEE
Trans. Softw. Eng. (2017) http://dx.doi.org/10.1109/TSE.2017.2752171.

[32] G. Rasool, Z. Arshad, A review of code smell mining techniques, J. Softw.: Evol.
Process 27 (11) (2015) 867–895, http://dx.doi.org/10.1002/smr.1737.

[33] G. Rodríguez-Pérez, G. Robles, J.M. González-Barahona, Reproducibility and
credibility in empirical software engineering: A case study based on a systematic
literature review of the use of the SZZ algorithm, Inf. Softw. Technol. (ISSN:
0950-5849) 99 (2018) 164–176, http://dx.doi.org/10.1016/j.infsof.2018.03.009.

[34] S. Rosenbaum, Data governance and stewardship: Designing data stewardship
entities and advancing data access, Health Serv. Res. 45 (5p2) (2010) 1442–1455,
http://dx.doi.org/10.1111/j.1475-6773.2010.01140.x.

[35] K. Rozier, E. Rozier, Reproducibility, correctness, and buildability: the three
principles for ethical public dissemination of computer science and engineering
research, in: 2014 IEEE International Symposium on Ethics in Science, Technol-
ogy and Engineering, ETHICS 2014, 2014, http://dx.doi.org/10.1109/ETHICS.
2014.6893384.

[36] J.A.M. Santos, J. ao B. Rocha-Junior, L.C.L. Prates, R.S. do Nascimento, M.
a Falcão Freitas, M.G. de Mendonça, A systematic review on the code smell
effect, J. Syst. Softw. (ISSN: 0164-1212) 144 (2018) 450–477, http://dx.doi.org/
10.1016/j.jss.2018.07.035.

[37] T. Sharma, D. Spinellis, A survey on software smells, J. Syst. Softw. (ISSN:
0164-1212) 138 (2018) 158–173, http://dx.doi.org/10.1016/j.jss.2017.12.034.

[38] M. Shepperd, N. Ajienka, S. Counsell, The role and value of replication in
empirical software engineering results, Inf. Softw. Technol. (ISSN: 0950-5849)
99 (2018) 120–132, http://dx.doi.org/10.1016/j.infsof.2018.01.006.

[39] S. Singh, S. Kaur, A systematic literature review: Refactoring for disclosing code
smells in object oriented software, Ain Shams Eng. J. (ISSN: 2090-4479) (2017)
http://dx.doi.org/10.1016/j.asej.2017.03.002.

[40] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, J. Noble,
Qualitas corpus: A curated collection of java code for empirical studies, in: 2010
Asia Pacific Software Engineering Conference, APSEC2010, 2010, pp. 336–345,
http://dx.doi.org/10.1109/APSEC.2010.46.

[41] J. Wen, S. Li, Z. Lin, Y. Hu, C. Huang, Systematic literature review of ma-
chine learning based software development effort estimation models, Inf. Softw.
Technol. 54 (1) (2012) 41–59, http://dx.doi.org/10.1016/j.infsof.2011.09.002.

[42] C. Wohlin, Guidelines for snowballing in systematic literature studies and a
replication in software engineering, in: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering EASE’14,
2014. http://dx.doi.org/10.1145/2601248.2601268.

[43] J. Yao, M. Shepperd, The impact of using biased performance metrics on software
defect prediction research, Inf. Softw. Technol. (ISSN: 0950-5849) 139 (2021)
106664, http://dx.doi.org/10.1016/j.infsof.2021.106664.

[44] H. Zhang, M.A. Babar, P. Tell, Identifying relevant studies in software
engineering, Inf. Softw. Technol. 53 (6) (2011) 625–637.

Systematic Literature Review References

[SLR1] H. Grodzicka, A. Ziobrowski, Z. Łakomiak, M. Kawa, L. Madeyski, Code
smell prediction employing machine learning meets emerging java lan-
guage constructs, in: A. Poniszewska-Marańda, N. Kryvinska, S. Jarzabek, L.
Madeyski (Eds.), Data-Centric Business and Applications: Towards Software
Development (Volume 4), in: vol. 40 of book series Lecture Notes on
Data Engineering and Communications Technologies, Springer International
Publishing, Cham, 2020, pp. 137–167, http://dx.doi.org/10.1007/978-3-030-
34706-2_8.

http://dx.doi.org/10.1007/s13369-019-04311-w
http://dx.doi.org/10.1016/j.infsof.2018.12.009
http://dx.doi.org/10.1016/j.infsof.2018.12.009
http://dx.doi.org/10.1016/j.infsof.2018.12.009
http://dx.doi.org/10.1145/1882362.1882368
http://dx.doi.org/10.1145/1882362.1882368
http://dx.doi.org/10.1145/1882362.1882368
http://dx.doi.org/10.1142/S021819401950013X
http://dx.doi.org/10.1142/S021819401950013X
http://dx.doi.org/10.1142/S021819401950013X
http://dx.doi.org/10.1111/anae.13938
http://dx.doi.org/10.1109/ICSE.2017.15
http://refhub.elsevier.com/S0950-5849(21)00224-X/sb7
http://refhub.elsevier.com/S0950-5849(21)00224-X/sb7
http://refhub.elsevier.com/S0950-5849(21)00224-X/sb7
http://refhub.elsevier.com/S0950-5849(21)00224-X/sb8
http://refhub.elsevier.com/S0950-5849(21)00224-X/sb8
http://refhub.elsevier.com/S0950-5849(21)00224-X/sb8
http://dx.doi.org/10.1007/s10664-015-9378-4
http://dx.doi.org/10.1109/ICSME.2016.33
http://dx.doi.org/10.1109/ICSME.2016.33
http://dx.doi.org/10.1109/ICSME.2016.33
http://refhub.elsevier.com/S0950-5849(21)00224-X/sb11
http://refhub.elsevier.com/S0950-5849(21)00224-X/sb11
http://refhub.elsevier.com/S0950-5849(21)00224-X/sb11
http://dx.doi.org/10.1177/0011392116663807
http://dx.doi.org/10.5220/0006338804740482
http://dx.doi.org/10.5220/0006338804740482
http://dx.doi.org/10.5220/0006338804740482
http://refhub.elsevier.com/S0950-5849(21)00224-X/sb15
http://refhub.elsevier.com/S0950-5849(21)00224-X/sb15
http://refhub.elsevier.com/S0950-5849(21)00224-X/sb15
http://refhub.elsevier.com/S0950-5849(21)00224-X/sb15
http://refhub.elsevier.com/S0950-5849(21)00224-X/sb15
http://refhub.elsevier.com/S0950-5849(21)00224-X/sb15
http://refhub.elsevier.com/S0950-5849(21)00224-X/sb15
http://https://dvc.org/
http://dx.doi.org/10.1007/s10664-011-9171-y
http://dx.doi.org/10.1201/b19467
http://dx.doi.org/10.1007/978-3-030-26574-8_1
http://dx.doi.org/10.1007/978-3-030-26574-8_1
http://dx.doi.org/10.1007/978-3-030-26574-8_1
http://dx.doi.org/10.1007/978-3-030-77916-0_12
http://dx.doi.org/10.3233/JIFS-169146
http://dx.doi.org/10.1145/3383219.3383264
http://dx.doi.org/10.1145/3383219.3383264
http://dx.doi.org/10.1145/3383219.3383264
http://dx.doi.org/10.24425/bpasts.2020.135401
http://refhub.elsevier.com/S0950-5849(21)00224-X/sb24
http://refhub.elsevier.com/S0950-5849(21)00224-X/sb24
http://refhub.elsevier.com/S0950-5849(21)00224-X/sb24
http://dx.doi.org/10.1109/TSE.2009.50
http://dx.doi.org/10.1007/s40199-020-00332-1
http://dx.doi.org/10.17226/25303
https://www.nap.edu/catalog/25303/reproducibility-and-replicability-in-science
https://www.nap.edu/catalog/25303/reproducibility-and-replicability-in-science
https://www.nap.edu/catalog/25303/reproducibility-and-replicability-in-science
http://dx.doi.org/10.1109/ICSME.2016.26
http://dx.doi.org/10.1109/ICSME.2016.26
http://dx.doi.org/10.1109/ICSME.2016.26
http://dx.doi.org/10.1109/SANER.2017.7884659
http://dx.doi.org/10.1109/MSR.2015.69
http://dx.doi.org/10.1109/TSE.2017.2752171
http://dx.doi.org/10.1002/smr.1737
http://dx.doi.org/10.1016/j.infsof.2018.03.009
http://dx.doi.org/10.1111/j.1475-6773.2010.01140.x
http://dx.doi.org/10.1109/ETHICS.2014.6893384
http://dx.doi.org/10.1109/ETHICS.2014.6893384
http://dx.doi.org/10.1109/ETHICS.2014.6893384
http://dx.doi.org/10.1016/j.jss.2018.07.035
http://dx.doi.org/10.1016/j.jss.2018.07.035
http://dx.doi.org/10.1016/j.jss.2018.07.035
http://dx.doi.org/10.1016/j.jss.2017.12.034
http://dx.doi.org/10.1016/j.infsof.2018.01.006
http://dx.doi.org/10.1016/j.asej.2017.03.002
http://dx.doi.org/10.1109/APSEC.2010.46
http://dx.doi.org/10.1016/j.infsof.2011.09.002
http://dx.doi.org/10.1145/2601248.2601268
http://dx.doi.org/10.1016/j.infsof.2021.106664
http://refhub.elsevier.com/S0950-5849(21)00224-X/sb44
http://refhub.elsevier.com/S0950-5849(21)00224-X/sb44
http://refhub.elsevier.com/S0950-5849(21)00224-X/sb44
http://dx.doi.org/10.1007/978-3-030-34706-2_8
http://dx.doi.org/10.1007/978-3-030-34706-2_8
http://dx.doi.org/10.1007/978-3-030-34706-2_8

Information and Software Technology 144 (2022) 106783T. Lewowski and L. Madeyski
[SLR2] A. Maiga, N. Ali, N. Bhattacharya, A. Sabané, Y.-G. Guéhéneuc, E. Aimeur,
SMURF: A SVM-based incremental anti-pattern detection approach, in: 2012
19th Working Conference on Reverse Engineering, 2012, pp. 466–475, http:
//dx.doi.org/10.1109/WCRE.2012.56.

[SLR3] F.S. Ocariza, K. Pattabiraman, A. Mesbah, Detecting unknown inconsistencies
in web applications, in: 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering, ASE, 2017, pp. 566–577, http://dx.doi.org/
10.1109/ASE.2017.8115667.

[SLR4] H. Liu, Z. Xu, Y. Zou, Deep learning based feature envy detection, in:
Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, ASE 2018, Association for Computing Machinery, New
York, NY, USA, 2018, pp. 385–396, http://dx.doi.org/10.1145/3238147.
3238166.

[SLR5] H. Liu, J. Jin, Z. Xu, Y. Bu, Y. Zou, L. Zhang, Deep learning based code
smell detection, IEEE Trans. Softw. Eng. (2019) http://dx.doi.org/10.1109/
TSE.2019.2936376.

[SLR6] L. Amorim, E. Costa, N. Antunes, B. Fonseca, M. Ribeiro, Experience
report: Evaluating the effectiveness of decision trees for detecting code
smells, in: 2015 IEEE 26th International Symposium on Software Reliability
Engineering, ISSRE, 2015, pp. 261–269, http://dx.doi.org/10.1109/ISSRE.
2015.7381819.

[SLR7] F.A. Fontana, M. Zanoni, Code smell severity classification using machine
learning techniques, Knowl.-Based Syst. 128 (2017) 43–58, http://dx.doi.org/
10.1016/j.knosys.2017.04.014.

[SLR8] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, D. Poshyvanyk,
Detecting bad smells in source code using change history information,
in: 2013 28th IEEE/ACM International Conference on Automated Software
Engineering, ASE, 2013, pp. 268–278, http://dx.doi.org/10.1109/ASE.2013.
6693086.

[SLR9] T. Guggulothu, S.A. Moiz, Code smell detection using multi-label classifi-
cation approach, Softw. Qual. J. (2020) http://dx.doi.org/10.1007/s11219-
020-09498-y.

[SLR10] F.A. Fontana, M.V. Mäntylä, M. Zanoni, A. Marino, Comparing and ex-
perimenting machine learning techniques for code smell detection, Empir.
Softw. Eng. 21 (3) (2016) 1143–1191, http://dx.doi.org/10.1007/s10664-
015-9378-4.

[SLR11] U. Mansoor, M. Kessentini, B.R. Maxim, K. Deb, Multi-objective code-smells
detection using good and bad design examples, Softw. Qual. J. 25 (2) (2017)
529–552, http://dx.doi.org/10.1007/s11219-016-9309-7.

[SLR12] H. Liu, Q. Liu, Z. Niu, Y. Liu, Dynamic and automatic feedback-based
threshold adaptation for code smell detection, IEEE Trans. Softw. Eng. 42
(6) (2016) 544–558, http://dx.doi.org/10.1109/TSE.2015.2503740.

[SLR13] M. Hozano, N. Antunes, B. Fonseca, E. Costa, Evaluating the accuracy of
machine learning algorithms on detecting code smells for different devel-
opers, in: Proceedings of the 19th International Conference on Enterprise
Information Systems - Volume 2: ICEIS, SciTePress, INSTICC, 2017, pp.
474–482, http://dx.doi.org/10.5220/0006338804740482.

[SLR14] Z. Chen, L. Chen, W. Ma, X. Zhou, Y. Zhou, B. Xu, Understanding metric-
based detectable smells in Python software: A comparative study, Inf. Softw.
Technol. 94 (2018) 14–29, http://dx.doi.org/10.1016/j.infsof.2017.09.011.

[SLR15] M. Pradel, S. Heiniger, T.R. Gross, Static detection of brittle parameter typing,
in: Proceedings of the 2012 International Symposium on Software Testing and
Analysis, ISSTA 2012, Association for Computing Machinery, New York, NY,
USA, 2012, pp. 265–275, http://dx.doi.org/10.1145/2338965.2336785.

[SLR16] A. Barbez, F. Khomh, Y.-G. Guéhéneuc, A machine-learning based ensemble
method for anti-patterns detection, J. Syst. Softw. 161 (2020) http://dx.doi.
org/10.1016/j.jss.2019.110486.

[SLR17] A. Barbez, F. Khomh, Y.-G. Guéhéneuc, Deep learning anti-patterns from
code metrics history, in: 2019 IEEE International Conference on Software
Maintenance and Evolution, ICSME, 2019, pp. 114–124, http://dx.doi.org/
10.1109/ICSME.2019.00021.

[SLR18] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, H. Sahraoui, A Bayesian approach
for the detection of code and design smells, in: 2009 Ninth International
Conference on Quality Software, 2009, pp. 305–314, http://dx.doi.org/10.
1109/QSIC.2009.47.

[SLR19] S. Fakhoury, V. Arnaoudova, C. Noiseux, F. Khomh, G. Antoniol, Keep it sim-
ple: Is deep learning good for linguistic smell detection? in: 2018 IEEE 25th
International Conference on Software Analysis, Evolution and Reengineer-
ing, SANER, 2018, pp. 602–611, http://dx.doi.org/10.1109/SANER.2018.
8330265.

[SLR20] F. Palomba, Textual analysis for code smell detection, in: 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, Vol. 2, 2015,
pp. 769–771, http://dx.doi.org/10.1109/ICSE.2015.244.

[SLR21] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, A. Ouni, A cooperative
parallel search-based software engineering approach for code-smells detec-
tion, IEEE Trans. Softw. Eng. 40 (9) (2014) 841–861, http://dx.doi.org/10.
1109/TSE.2014.2331057.

[SLR22] D. Sahin, M. Kessentini, S. Bechikh, K. Deb, Code-smell detection as a
bilevel problem, ACM Trans. Softw. Eng. Methodol. 24 (1) (2014) http:
//dx.doi.org/10.1145/2675067.
15
[SLR23] M. Boussaa, W. Kessentini, M. Kessentini, S. Bechikh, S. Ben Chikha, Com-
petitive coevolutionary code-smells detection, in: Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 8084, 2013, pp. 50–65, http://dx.doi.org/
10.1007/978-3-642-39742-4_6.

[SLR24] X. Guo, C. Shi, H. Jiang, Deep semantic-based feature envy identification, in:
Proceedings of the 11th Asia-Pacific Symposium on Internetware, Internet-
ware ’19, Association for Computing Machinery, New York, NY, USA, 2019,
http://dx.doi.org/10.1145/3361242.3361257.

[SLR25] E.O. Kiyak, D. Birant, K.U. Birant, Comparison of multi-label classification
algorithms for code smell detection, in: 2019 3rd International Symposium
on Multidisciplinary Studies and Innovative Technologies, ISMSIT, 2019, pp.
1–6, http://dx.doi.org/10.1109/ISMSIT.2019.8932855.

[SLR26] M. Hadj-Kacem, N. Bouassida, Deep representation learning for code smells
detection using variational auto-encoder, in: 2019 International Joint Confer-
ence on Neural Networks, IJCNN, 2019, pp. 1–8, http://dx.doi.org/10.1109/
IJCNN.2019.8851854.

[SLR27] S. Tummalapalli, L. Kumar, L.B.M. Neti, An empirical framework for web
service anti-pattern prediction using machine learning techniques, in: 2019
9th Annual Information Technology, Electromechanical Engineering and
Microelectronics Conference, IEMECON, 2019, pp. 137–143, http://dx.doi.
org/10.1109/IEMECONX.2019.8877008.

[SLR28] K. Karađuzović-Hadžiabdić, R. Spahić, Comparison of machine learning
methods for code smell detection using reduced features, in: 2018 3rd
International Conference on Computer Science and Engineering, UBMK, 2018,
pp. 670–672, http://dx.doi.org/10.1109/UBMK.2018.8566561.

[SLR29] M. Hadj-Kacem, N. Bouassida, A hybrid approach to detect code smells
using deep learning, in: Proceedings of the 13th International Confer-
ence on Evaluation of Novel Approaches To Software Engineering -
ENASE, Vol. 2018-March, 2018, pp. 137–146, http://dx.doi.org/10.5220/
0006709801370146.

[SLR30] F. Gauthier, E. Merlo, Semantic smells and errors in access control models:
A case study in PHP, in: 2013 35th International Conference on Software
Engineering, ICSE, 2013, pp. 1169–1172, http://dx.doi.org/10.1109/ICSE.
2013.6606670.

[SLR31] S. Hassaine, F. Khomh, Y.-G. Gueheneuc, S. Hamel, IDS: AN immune-inspired
approach for the detection of software design smells, in: 2010 Seventh
International Conference on the Quality of Information and Communications
Technology, 2010, pp. 343–348, http://dx.doi.org/10.1109/QUATIC.2010.
61.

[SLR32] S. Bryton, F. Brito e Abreu, M. Monteiro, Reducing subjectivity in code
smells detection: Experimenting with the long method, in: 2010 Seventh
International Conference on the Quality of Information and Communications
Technology, 2010, pp. 337–342, http://dx.doi.org/10.1109/QUATIC.2010.
60.

[SLR33] J. Kreimer, Adaptive detection of design flaws, Electron. Notes Theor.
Comput. Sci. 141 (4 SPEC. ISS.) (2005) 117–136, http://dx.doi.org/10.1016/
j.entcs.2005.02.059.

[SLR34] J. Rubin, A.N. Henniche, N. Moha, M. Bouguessa, N. Bousbia, Sniffing
android code smells: An association rules mining-based approach, in: 2019
IEEE/ACM 6th International Conference on Mobile Software Engineering
and Systems, MOBILESoft, 2019, pp. 123–127, http://dx.doi.org/10.1109/
MOBILESoft.2019.00025.

[SLR35] F.A. Fontana, M. Zanoni, A. Marino, M.V. Mäntylä, Code smell detection:
Towards a machine learning-based approach, in: 2013 IEEE International
Conference on Software Maintenance, 2013, pp. 396–399, http://dx.doi.org/
10.1109/ICSM.2013.56.

[SLR36] M. Kessentini, A. Ouni, Detecting android smells using multi-objective genetic
programming, in: 2017 IEEE/ACM 4th International Conference on Mobile
Software Engineering and Systems, MOBILESoft, 2017, pp. 122–132, http:
//dx.doi.org/10.1109/MOBILESoft.2017.29.

[SLR37] M.W. Mkaouer, Interactive code smells detection: An initial investigation,
Lecture Notes in Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 9962 (2016)
281–287, http://dx.doi.org/10.1007/978-3-319-47106-8_24.

[SLR38] S. Fu, B. Shen, Code bad smell detection through evolutionary data mining,
in: 2015 ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement, ESEM, 2015, pp. 1–9, http://dx.doi.org/10.1109/
ESEM.2015.7321194.

[SLR39] A. Kaur, S. Jain, S. Goel, A support vector machine based approach for code
smell detection, in: 2017 International Conference on Machine Learning and
Data Science, MLDS, 2017, pp. 9–14, http://dx.doi.org/10.1109/MLDS.2017.
8.

[SLR40] A. Kaur, S. Jain, S. Goel, SP-J48: a novel optimization and machine-learning-
based approach for solving complex problems: special application in software
engineering for detecting code smells, Neural Comput. Appl. (2019) http:
//dx.doi.org/10.1007/s00521-019-04175-z.

[SLR41] B.M. Merzah, Software quality prediction using data mining techniques,
in: 2019 International Conference on Information and Communications
Technology, ICOIACT, 2019, pp. 394–397, http://dx.doi.org/10.1109/
ICOIACT46704.2019.8938487.

http://dx.doi.org/10.1109/WCRE.2012.56
http://dx.doi.org/10.1109/WCRE.2012.56
http://dx.doi.org/10.1109/WCRE.2012.56
http://dx.doi.org/10.1109/ASE.2017.8115667
http://dx.doi.org/10.1109/ASE.2017.8115667
http://dx.doi.org/10.1109/ASE.2017.8115667
http://dx.doi.org/10.1145/3238147.3238166
http://dx.doi.org/10.1145/3238147.3238166
http://dx.doi.org/10.1145/3238147.3238166
http://dx.doi.org/10.1109/TSE.2019.2936376
http://dx.doi.org/10.1109/TSE.2019.2936376
http://dx.doi.org/10.1109/TSE.2019.2936376
http://dx.doi.org/10.1109/ISSRE.2015.7381819
http://dx.doi.org/10.1109/ISSRE.2015.7381819
http://dx.doi.org/10.1109/ISSRE.2015.7381819
http://dx.doi.org/10.1016/j.knosys.2017.04.014
http://dx.doi.org/10.1016/j.knosys.2017.04.014
http://dx.doi.org/10.1016/j.knosys.2017.04.014
http://dx.doi.org/10.1109/ASE.2013.6693086
http://dx.doi.org/10.1109/ASE.2013.6693086
http://dx.doi.org/10.1109/ASE.2013.6693086
http://dx.doi.org/10.1007/s11219-020-09498-y
http://dx.doi.org/10.1007/s11219-020-09498-y
http://dx.doi.org/10.1007/s11219-020-09498-y
http://dx.doi.org/10.1007/s10664-015-9378-4
http://dx.doi.org/10.1007/s10664-015-9378-4
http://dx.doi.org/10.1007/s10664-015-9378-4
http://dx.doi.org/10.1007/s11219-016-9309-7
http://dx.doi.org/10.1109/TSE.2015.2503740
http://dx.doi.org/10.5220/0006338804740482
http://dx.doi.org/10.1016/j.infsof.2017.09.011
http://dx.doi.org/10.1145/2338965.2336785
http://dx.doi.org/10.1016/j.jss.2019.110486
http://dx.doi.org/10.1016/j.jss.2019.110486
http://dx.doi.org/10.1016/j.jss.2019.110486
http://dx.doi.org/10.1109/ICSME.2019.00021
http://dx.doi.org/10.1109/ICSME.2019.00021
http://dx.doi.org/10.1109/ICSME.2019.00021
http://dx.doi.org/10.1109/QSIC.2009.47
http://dx.doi.org/10.1109/QSIC.2009.47
http://dx.doi.org/10.1109/QSIC.2009.47
http://dx.doi.org/10.1109/SANER.2018.8330265
http://dx.doi.org/10.1109/SANER.2018.8330265
http://dx.doi.org/10.1109/SANER.2018.8330265
http://dx.doi.org/10.1109/ICSE.2015.244
http://dx.doi.org/10.1109/TSE.2014.2331057
http://dx.doi.org/10.1109/TSE.2014.2331057
http://dx.doi.org/10.1109/TSE.2014.2331057
http://dx.doi.org/10.1145/2675067
http://dx.doi.org/10.1145/2675067
http://dx.doi.org/10.1145/2675067
http://dx.doi.org/10.1007/978-3-642-39742-4_6
http://dx.doi.org/10.1007/978-3-642-39742-4_6
http://dx.doi.org/10.1007/978-3-642-39742-4_6
http://dx.doi.org/10.1145/3361242.3361257
http://dx.doi.org/10.1109/ISMSIT.2019.8932855
http://dx.doi.org/10.1109/IJCNN.2019.8851854
http://dx.doi.org/10.1109/IJCNN.2019.8851854
http://dx.doi.org/10.1109/IJCNN.2019.8851854
http://dx.doi.org/10.1109/IEMECONX.2019.8877008
http://dx.doi.org/10.1109/IEMECONX.2019.8877008
http://dx.doi.org/10.1109/IEMECONX.2019.8877008
http://dx.doi.org/10.1109/UBMK.2018.8566561
http://dx.doi.org/10.5220/0006709801370146
http://dx.doi.org/10.5220/0006709801370146
http://dx.doi.org/10.5220/0006709801370146
http://dx.doi.org/10.1109/ICSE.2013.6606670
http://dx.doi.org/10.1109/ICSE.2013.6606670
http://dx.doi.org/10.1109/ICSE.2013.6606670
http://dx.doi.org/10.1109/QUATIC.2010.61
http://dx.doi.org/10.1109/QUATIC.2010.61
http://dx.doi.org/10.1109/QUATIC.2010.61
http://dx.doi.org/10.1109/QUATIC.2010.60
http://dx.doi.org/10.1109/QUATIC.2010.60
http://dx.doi.org/10.1109/QUATIC.2010.60
http://dx.doi.org/10.1016/j.entcs.2005.02.059
http://dx.doi.org/10.1016/j.entcs.2005.02.059
http://dx.doi.org/10.1016/j.entcs.2005.02.059
http://dx.doi.org/10.1109/MOBILESoft.2019.00025
http://dx.doi.org/10.1109/MOBILESoft.2019.00025
http://dx.doi.org/10.1109/MOBILESoft.2019.00025
http://dx.doi.org/10.1109/ICSM.2013.56
http://dx.doi.org/10.1109/ICSM.2013.56
http://dx.doi.org/10.1109/ICSM.2013.56
http://dx.doi.org/10.1109/MOBILESoft.2017.29
http://dx.doi.org/10.1109/MOBILESoft.2017.29
http://dx.doi.org/10.1109/MOBILESoft.2017.29
http://dx.doi.org/10.1007/978-3-319-47106-8_24
http://dx.doi.org/10.1109/ESEM.2015.7321194
http://dx.doi.org/10.1109/ESEM.2015.7321194
http://dx.doi.org/10.1109/ESEM.2015.7321194
http://dx.doi.org/10.1109/MLDS.2017.8
http://dx.doi.org/10.1109/MLDS.2017.8
http://dx.doi.org/10.1109/MLDS.2017.8
http://dx.doi.org/10.1007/s00521-019-04175-z
http://dx.doi.org/10.1007/s00521-019-04175-z
http://dx.doi.org/10.1007/s00521-019-04175-z
http://dx.doi.org/10.1109/ICOIACT46704.2019.8938487
http://dx.doi.org/10.1109/ICOIACT46704.2019.8938487
http://dx.doi.org/10.1109/ICOIACT46704.2019.8938487

Information and Software Technology 144 (2022) 106783T. Lewowski and L. Madeyski
[SLR42] P. Sharma, E.A. Kaur, Design of testing framework for code smell detection
(OOPS) using BFO algorithm, Int. J. Eng. Technol.(UAE) 7 (2.27 Special Issue
27) (2018) 161–166, http://dx.doi.org/10.14419/ijet.v7i2.27.14635.

[SLR43] H. Gupta, L. Kumar, L.B.M. Neti, An empirical framework for code smell
prediction using extreme learning machine, in: 2019 9th Annual Information
Technology, Electromechanical Engineering and Microelectronics Conference,
IEMECON, 2019, pp. 189–195, http://dx.doi.org/10.1109/IEMECONX.2019.
8877082.
16
[SLR44] Z. Özkalkan, K.S. Aydin, H.Y. Tetik, R. Belen Saglam, Automatic detection
of feature envy using machine learning techniques, in: CEUR Workshop Pro-
ceedings, Vol. 2201, 2018, http://ceur-ws.org/Vol-2201/UYMS_2018_paper_
80.pdf.

[SLR45] D. Kim, Finding bad code smells with neural network models, Int. J. Electr.
Comput. Eng. 7 (6) (2017) 3613–3621, http://dx.doi.org/10.11591/ijece.
v7i6.pp3613-3621.

[SLR46] A.K. Das, S. Yadav, S. Dhal, Detecting code smells using deep learning,
in: TENCON 2019 - 2019 IEEE Region 10 Conference, TENCON, 2019, pp.
2081–2086, http://dx.doi.org/10.1109/TENCON.2019.8929628.

http://dx.doi.org/10.14419/ijet.v7i2.27.14635
http://dx.doi.org/10.1109/IEMECONX.2019.8877082
http://dx.doi.org/10.1109/IEMECONX.2019.8877082
http://dx.doi.org/10.1109/IEMECONX.2019.8877082
http://ceur-ws.org/Vol-2201/UYMS_2018_paper_80.pdf
http://ceur-ws.org/Vol-2201/UYMS_2018_paper_80.pdf
http://ceur-ws.org/Vol-2201/UYMS_2018_paper_80.pdf
http://dx.doi.org/10.11591/ijece.v7i6.pp3613-3621
http://dx.doi.org/10.11591/ijece.v7i6.pp3613-3621
http://dx.doi.org/10.11591/ijece.v7i6.pp3613-3621
http://dx.doi.org/10.1109/TENCON.2019.8929628

	How far are we from reproducible research on code smell detection? A systematic literature review
	Introduction
	Related work
	Goals
	Method
	Protocol development
	Search process
	Initial study selection process
	Inclusion and exclusion criteria

	Quality check
	Selected venues
	Quality check results

	Data extraction process
	Data package

	Results
	RQ1: Is the process of creating code smell machine learning models reproducible in the recent scientific studies on code smell detection using AI/ML methods?
	RQ1.1: Do the authors of recent scientific studies on code smell detection using AI/ML methods describe the modeling process with enough details to reproduce their studies?
	RQ1.2: Do the authors of recent scientific studies on code smell detection using AI/ML methods publish reproduction packages for their studies?
	RQ1 summary

	RQ2: Is the process of code smell data set acquisition reproducible in the recent scientific studies on code smell detection using AI/ML methods?
	RQ2.1: How do the authors of recent scientific studies on code smell detection using AI/ML methods select projects for their data sets?
	RQ2.2: How are samples from projects selected for classification in recent scientific studies on code smell detection using AI/ML methods?
	RQ2.3: How are samples assessed for occurrence of code smells in recent scientific studies on code smell detection using AI/ML methods?
	RQ2 summary

	Discussion and study implications
	Threats to validity
	Construct validity
	Internal validity
	External validity
	Reliability

	Conclusion
	Declaration of competing interest
	Acknowledgment
	Appendix A. Supplementary data
	References

