
Lech Madeyski and Lukasz Sza la, “Impact of aspect-oriented programming on software
development efficiency and design quality: an empirical study”, IET Software Journal, vol. 1, no. 5,
pp. 180–187, 2007. http://dx.doi.org/10.1049/iet-sen:20060071

Copyright notice: This paper is a postprint of a paper submitted to and accepted for publication
in IET Software and is subject to Institution of Engineering and Technology Copyright. The copy
of record is available at IET Digital Library”

Impact of aspect-oriented programming on
software development efficiency and design

quality: an empirical study

Lech Madeyski, Lukasz Sza la

Institute of Applied Informatics, Wroc law University of Technology,
Wyb.Wyspiańskiego 27, 50370 Wroc law, POLAND

Lech.Madeyski@pwr.wroc.pl, Lukasz.Szala@e-informatyka.pl

Abstract. The aspect-oriented programming approach is supposed to
enhance a system’s features, such as its modularity, readability and sim-
plicity. Due to a better modularization of crosscutting concerns, the de-
veloped system implementation would be less complex, and more read-
able. Thus software development efficiency would increase, so the system
would be created faster than its object-oriented equivalent. An empiri-
cal study of a web-based manuscript submission and a review system is
carried out to examine aspect-oriented vs. object-oriented approach with
regard to software development efficiency and design quality. The study
reveals that the aspect-oriented programming approach appears to be
a fullfledged alternative to the pure object-oriented approach. Neverthe-
less, the impact of aspect-oriented programming on software development
efficiency and design quality was not confirmed. In particular, it appeared
that design quality metrics were not significantly associated with using
aspect-oriented programming, instead of object-oriented programming.
It is possible that the benefits of aspect-oriented programming will exceed
the results obtained in this study for experiments with larger number of
subjects.

1 Introduction

The aspect oriented programming (AOP) is a relatively recent approach
that has been argued to better enable modularization of crosscutting
concerns [1] and consequently hasten the development process. The hy-
potheses are that well separated concerns are more easily maintained,
changed and developed, so the total programmer’s working time should
be shorter than the development time of analogous system, realized with-
out mechanisms offered by AOP. The validation of these hypotheses re-
quires empirical studies.
The authors present the results of preliminary empirical evaluation of
the impact of AOP on software development efficiency and design qual-
ity. Three experienced programmers, with recent industrial experience,
were acquired to develop a web-based manuscript submission and re-
view system, using AOP and the Object-Oriented Programming (OOP)
approach.

1

The paper includes a comparison of developed AOP and OOP systems,
based on software metrics proposed by Chidamber and Kemerer (here-
after CK) [2], Distance from the Main Sequence metric proposed by
Martin [3], external code quality metric (defined as a number of accep-
tance tests passed) [4,5,6], and programmers’ productivity metric. CK
software metrics [2] were adapted to new properties of aspect-oriented
software [7,8].
Subramanyam and Krishnan state that research on metrics for object-
oriented software development is limited, and empirical evidence, link-
ing the object-oriented methodology and project outcomes, is scarce [9].
Even more scarce is empirical evidence of the effect of aspect-oriented
programming on software design quality, or development efficiency met-
rics. Therefore, the aim of this paper is to fill this gap and provide empir-
ical evidence of the impact of aspect-oriented programming on software
development efficiency and design quality metrics, as design aspects are
extremely important to produce high quality software [9]. The hypothe-
sis that design quality metrics are good predictors of the fault proneness
is supported in [10] and [11].
The paper starts with the presentation of the related work in the field
in Section 2. Section 3 contains a description of the examined system in
terms of user requirements. Section 4 defines goals of the study, ques-
tions to be answered and metrics to be collected, in accordance with the
Goal-Question-Metric (GQM) approach [12]. The results of the study are
presented in Section 5, with the validity of the study in Section 6. The
conclusions of the paper are presented in Section 7.

2 Related work

There is little related work focusing on the quantitative assessment of
aspect-oriented solutions [13]. Kersten and Murphy [14] described the
effect of aspects on object-oriented development practices, as well as
some rules and policies that were employed to achieve maintainability
and modifiability. Walker et al. [15] provided initial insights into the use-
fulness and usability of aspect-oriented programming. Soares et al. [16]
reported that the AspectJ implementation of the Web-based information
system has significant advantages over the corresponding pure Java im-
plementation. Garcia et al. [17] presented a quantitative study, designed
to compare the maintenance and reuse support of a pattern-oriented
approach, and an aspect-oriented approach for a multi-agent system. It
turned out that the aspect-oriented approach allowed the construction of
the investigated system with improved modularization of the crosscutting
agent-specific concerns. The use of aspects resulted in superior separation
of the agent-related concerns, lower coupling (although less cohesive) and
fewer lines of code. Tsang et al. [18] evaluated the effectiveness of AOP
for separation of concerns. They applied the CK metrics suite to assess
and compare an aspect-oriented and object-oriented real-time system in
terms of system properties. They found improved modularity of aspect-
oriented system over object-oriented system, indicated by the reduction
in coupling and lack of cohesion values of the CK metrics. Hannemann

2

and Kiczales [19], as well as Garcia et al. [20], have developed systematic
studies that investigated the use of aspect-oriented programming to im-
plement classical design patterns. It is worth mentioning that Tonella and
Ceccato [21] performed an empirical assessment of refactoring the aspec-
tizable interfaces. This study indicates that migration of the aspectizable
interfaces has a limited impact on the principal decomposition size, but,
at the same time, it produces an improvement of the code modularity.
From the point of view of the external quality attributes, modularization
of the implementation of the crosscutting interfaces clearly simplifies the
comprehension of the source code. Unfortunately, most empirical studies
involving aspects have been based on subjective criteria and qualitative
investigation [13].

3 Empirical study

3.1 User requirements

The project was led with the eXtreme Programming methodology. Al-
though some practices (such as pair programming practice) were ne-
glected, user stories were used for the specification of requirements con-
cerning the developed system. The whole set of 30 user stories was pre-
pared to describe the complete, coherent system. The outlined applica-
tion is a web-based manuscript submission and review system. It defines
different user roles such as Article Author, Reviewer, Conference Chair
and Content Manager and specifies multi-level authentication functional-
ity. The workflow system involves the management of articles and their
reviews on each step in their life cycle. Additionally, the application
provides access to accepted and published articles to all registered and
unregistered users.

3.2 Participants

Three experienced programmers took part in the study. Two of them (la-
belled as OO1 and OO2) developed the system using pure object-oriented
programming approach, whilst one (labelled as AO1), implemented the
system using aspect-oriented approach (he was the only programmer with
about one year of AOP experience). The subjects are students taking the
final MSc in Software Engineering diploma course concerning empirical
assessment of novel approaches to software engineering. The additional
selection criterion is based on Höst et al. [22] classification scheme. In
particular it means that all participants can be classified as E4 accord-
ing to Höst et al. classification scheme (i.e. recent industrial experience,
between 3 months and 2 years). Moreover, the design and programming
skills of participants were observed by the corresponding author in 18-
months period during ambitious Java projects in industrial as well as
academic settings (e.g. e-Informatyka portal, LaTeX2XML conversion
service). It turned out that all of the participants possess similar and
high design and programming skills. Nevertheless, OO2 developer has
the richest programming experience (in years), and has developed the

3

biggest software project among participants. Table 1 contains informa-
tion gained from questionnaires and the differences in the programmers’
experience. Although this information is given by programmers and rep-
resents their subjective estimates, the differences are substantial enough
to take them into consideration during analysis. All programmers were
subscribed to a mailing list, where misconceptions concerning user stories
were explained.

Table 1. Comparison of programmers’ experience in projects AO1, OO1
and OO2

AO1 OO1 OO2

Experience in programming [years] 8 5 10

Programming in Java [years] 2 3 2

Size of the biggest project [NCLOC] 5000 2500 20000

Size of the biggest project in Java [NCLOC] 5000 1500 4500

3.3 Restrictions

In order to compare the projects’ metrics, all the participants must obey
the same rules. The technology used to develop the application were:
Java and AspectJ programming languages with Java Servlets. The pre-
sentation tier was provided by JSP pages and all the persistent entities
were kept in XML files. Each participant used the Eclipse Integrated De-
velopment Environment (IDE) with the ActivitySensor plugin installed.
The source code was committed to an SVN repository after each com-
pleted user story.

4 Measurements definition

The empirical study was conducted using the GQM method, described
in [12], to define measurements on the software projects. Two goals were
defined. The first one relates to code quality (in terms of its modularity
and size), and the other concerns software development efficiency.

Goal 1: The evaluation of the AOP impact on code quality.
Questions:
– Question 1: How does AOP affect a system’s modularity?

Metrics: The answer to this question is given by metrics Dn (Dis-
tance from the Main Sequence), CBM (Coupling Between Modules),
RFM (Response For a Module) and LCO (Lack of Cohesion in Op-
erations). The detailed description of Dn metric may be found in [3],
whilst description of CBM , RFM and LCO metrics may be found
in [7,8]. The lower the distance from the ideal line (Dn metric) is

4

measured, the better the system has been developed. The same rule
is valid for CBM – modules that are not coupled with each other
are better modularized and thus better manageable and easier to
change. The RFM metric calculates the size of a potential commu-
nication between modules, and expresses a module modularity and
complexity. The LCO metric points out the modules that are not
cohesive, which means that they realize a functionality that should
be divided, and thus the LCO metric is an indirect modularity in-
dicator.

– Question 2: How does AOP affect a system’s size?

Metrics: Metrics that indicate a system’s size are: NCLOC (Non-
Comment Lines Of Code), NOM (Number Of Modules) and WOM
(Weighted Operations in Module). If the system is smaller (in terms
of number of source code lines and modules), it is easier to grasp the
programmer’s intentions and comprehend the whole functionality.
The WOM metric counts operations in a module (class, interface or
aspect) and together with NOM metric indicates its size.

All the specified metrics were calculated by aopmetrics tool [8] devel-
oped at the Wroclaw University of Technology and used before to analyse
software metrics [23]. The tool provides calculations of the same set of
metrics for object-oriented, as well as aspect-oriented systems [7]. This
allowed us to compare the data gathered from applications developed
using both programming approaches.

Goal 2: The evaluation of the AOP impact on software development
efficiency.

Questions:

– Question 1: How does AOP affect software development efficiency
in terms of the number of acceptance tests passed?

Metrics: A comprehensive set of 87 acceptance tests validated the
degree to which requirement specifications were implemented. User
stories have different sizes and different number of associated accep-
tance tests. This is why the NATP (Number of Acceptance Tests
Passed) metric is a more accurate indicator of a system completion
than the number of implemented user stories. While an absolute
measure is useful, it is beneficial to report a normalized measure
NATP/T (number of acceptance tests passed per development time)
as well.

– Question 2: How does AOP affect software development efficiency
in terms of the time needed to develop the system?

Metrics: The programming paradigm may simplify the development
process, so the software product may be created faster. In this case,
the helpful metric is a total development time labelled as T . While
an absolute measure is useful, it is beneficial to report a normalized
measure NCLOC/T (non-commented lines of code per development
time) as well.

– Question 3: How does AOP affect software development efficiency
in terms of the active time and the passive time needed to develop
the system?

5

Metrics: The total development time spent on programming may
be divided into active time and passive time, labelled as TA and TP ,
accordingly. The active time is when a programmer types, and pas-
sive time is when a programmer performs other activities concerning
a project. If a programmer knows what to do and which part of the
source code is to be changed, the fraction of passive time in total
time is smaller.

The NATP metric was collected manually. Each test is a sentence writ-
ten in natural language that depicts a piece of functionality. The testing
procedure checks whether statements in acceptance tests are true or false.
The metrics T (total programming time) and TA (active programming
time) were calculated by ActivitySensor Eclipse plugin developed at the
Wroclaw University of Technology [24].

5 Results

The data are analysed with descriptive analysis (in Section 5.1) and
statistical tests (in Section 5.2).

5.1 Descriptive Statistics

Depending on a metric properties, the average, minimum, maximum and
median values were calculated either for packages or classes.

Modularity The Normalized Distance from the Main Sequence (Dn)
metric is calculated for packages, and the third row of Table 2 contains
its average value. However, this indicator may be misleading, because
packages have different sizes. In order to present more accurate value,
a weighted average value of Dn has been calculated and presented in
the fourth row of Table 2. Depending on calculation method, either AO1
(arithmetical average) or OO2 (weighted average) system is character-
ized by lower average value of Dn. However, the median value rather
advocates aspect-oriented solution – in both object-oriented systems the
median value is about twice as high as in AO1.

Table 2. Average, weighted average and median values of Normalized Distance
from the Main Sequence (Dn) in AO1, OO1 and OO2 systems

AO1 OO1 OO2

Dn metric Value Value Ratio Value Ratio

Average 0, 31 0, 50 160, 13% 0, 43 135, 83%

Weighted Average 0, 41 0, 45 111, 32% 0, 35 86, 65%

Median 0, 25 0, 55 220, 00% 0, 47 186, 67%

The CBM metric is presented in Table 3. The average value is lower in
AO1 system than in both OO1 and OO2 systems. The difference is higher

6

than 30 per cent in both cases. A plausible explanation might by that
new modularisation possibilities, provided by aspect-oriented program-
ming, decrease coupling between modules (CBM) and allow enclosing
functionality pieces in separate units.

Table 3. Average, maximum, minimum and median values of Coupling Between
Modules (CBM) in AO1, OO1 and OO2 systems

AO1 OO1 OO2

CBM metric Value Value Ratio Value Ratio

Average 3, 22 4, 26 132, 24% 4, 22 130, 80%

Max 15 29 193, 33% 16 106, 67%

Min 0 0 100, 00% 0 100, 00%

Median 2 3 150, 00% 1 50, 00%

The RFM metric values presented in Table 4 seem to be similar in each
system. The comparison of median and maximal values does not bring
any clarification.

Table 4. Average, maximum, minimum and median values of Response For a
Module (RFM) in AO1, OO1 and OO2 systems

AO1 OO1 OO2

RFM metric Value Value Ratio Value Ratio

Average 9, 43 9, 53 101, 08% 9, 24 98, 05%

Max 49 56 114, 29% 50 102, 04%

Min 0 0 100, 00% 0 100, 00%

Median 8 6 75, 00% 8 100, 00%

The LCO metric values are depicted in Table 5. Again, the AO1 system
is characterized by the lowest level of lack of cohesion in operations. The
lowest cohesion level (the highest LCO) was observed in OO1 system,
where the average value of LCO metric is over twice as big as in AO1 or
OO2 system.

The gathered descriptive statistics do not allow judging which program-
ming approach provides more modular implementation. To answer the
question whether the impact of aspect-oriented programming on design
modularity metrics is significant, or not, statistical tests are performed
in Section 5.2.

Size The usual value of WOM metric ranges from 1 to 10. Table 6
presents metric values for all three systems. The lowest average value
is represented by AO1 system, but the differences do not seem to be
large. The comparison of median and maximal values does not bring any

7

Table 5. Average, maximum, minimum and median values of Lack of Cohesion
in Operations (LCO) in AO1, OO1 and OO2 systems

AO1 OO1 OO2

LCO metric Value Value Ratio Value Ratio

Average 16, 6 41, 4 249, 79% 17, 06 102, 89%

Max 446 849 190, 36% 350 78, 48%

Min 0 0 100, 00% 0 100, 00%

Median 0 0 100, 00% 0 100, 00%

clarification, either, because the median and maximum values of WOM
for AO1 are between the values for OO1 and OO2.

Table 6. Average, maximum, minimum and median values of Weighted Oper-
ations in Module (WOM) in AO1, OO1 and OO2 systems

AO1 OO1 OO2

WOM metric Value Value Ratio Value Ratio

Average 4, 79 5, 33 111, 42% 5, 27 110, 08%

Max 34 50 147, 96% 29 85, 29%

Min 0 0 100, 00% 0 100, 00%

Median 3 2 66, 67% 3,5 116, 67%

Table 7 presents the size metrics. For NCLOC and NOM metrics two
values have been presented. One contains values counted for production
code (without unit tests), whilst the other contains values for production
code with unit tests.

Table 7. NCLOC and NOM metrics in AO1, OO1 and OO2 systems

AO1 OO1 OO2

Size metrics Value Value Ratio Value Ratio

NCLOC(w/o tests) 3895 4378 112, 40% 4680 120, 15%

NCLOC2(with tests) 7260 8850 121, 90% 14176 195, 20%

NOM(w/o tests) 89 87 97, 75% 78 87, 64%

NOM2(with tests) 131 144 109, 92% 138 105, 34%

The OO2 system was built using smaller number of production code mod-
ules (NOM), which (for the systems with similar LCO level) is desirable.
When comparing production code with unit tests, the AO1 system turns
out to be developed with the minimal number of modules. The explana-
tion of this fact may lie in aspects that facilitate writing unit tests. The
AO1 system includes aspects that set up the appropriate database state
before and after execution of test methods, and separates application

8

persistent data from unit test entities, saved during testing procedure.
According to the second size metric (NCLOC), aspect-oriented system
AO1 is smaller than object-oriented solutions OO1 and OO2. A plau-
sible explanation might be a shift of some (e.g. logging) functionality,
spread over classes to cohesive aspects. This relation is retained when
comparing production code with unit tests (NCLOC2). In this case the
difference is even bigger. It may suggest that object-oriented program-
mers were more thorough when writing unit tests, or the aspect-oriented
mechanisms make tests even more concise.

Table 8 containing code coverage values may be helpful in resolving this
issue. Code coverage indicates how much of the code has been covered by
the tests. A number of code coverage measures have been proposed e.g.
line, branch, or method coverage. The line, method, or branch coverage
is a ratio of lines, methods, or branches executed during the testing pro-
cedure to the total number of lines, methods, or branches in a system.
The main disadvantage of line coverage is that it is insensitive to some
control structures. To avoid this problem, branch coverage has been de-
vised. Branch coverage is a measure based on whether decision points,
such as if and while statements, evaluate to both true and false during
test execution, thus exercising both execution paths [25]. The calculated
code coverage metrics1 reveal the fact that line coverage and method
coverage are slightly higher in the case of AO1 whilst branch coverage is
slightly higher in the case of OO1.

Table 8. Code coverage metrics in AO1, OO1 and OO2 systems

AO1 OO1 OO2

Coverage metrics Value Value Ratio Value Ratio

Line coverage % 88 85 95, 45% 80 90, 91%

Branch coverage % 93 95 102, 15% 83 89, 25%

Method coverage % 91 76 83, 52% 91 100, 00%

It is worth mentioning that unit tests were written by means of JUnit
framework [26] by all developers, contrary to acceptance tests designed
by requirements’ giver and used to measure the development efficiency.
Test-last and test-first programming strategies were applied by all de-
velopers during the course of development, as both strategies are used
in professional software development. Test-last programming phase was
followed by test-driven phase and then test-last phase occurred again.
The points at which test-first programming was introduced and with-
drawn were randomly determined in all projects. Test-first programming
is a practice based on specifying piece of functionality as a low level unit
test, before writing production code, implementing the functionality, so
that the test passes, refactoring (e.g. removing duplication) and iterating

1 Code coverage was measured by Cobertura http://cobertura.sourceforge.net/ as the
tool provides code coverage metrics for object-oriented and aspect-oriented systems.

9

the process [27]. In the case of test-last programming, tests are specified
after writing production code of the selected user story.

To answer the question whether the impact of aspect-oriented program-
ming on size metrics is significant, or not, statistical tests are performed
in Section 5.2.

Efficiency The results concerning software development efficiency are
presented in Table 9. The ActivitySensor Eclipse plugin [24] allows to
automatically collect development time and to divide total development
time into active and passive times. The active time may be spent on
typing and producing code, whilst the passive time is spent on reading
the source code, looking for bugs etc. A switch from active to passive time
happens after 15 seconds of a programmer’s inactivity (the threshold was
proposed by the activity sensor authors). After 15 minutes of inactivity,
the passive time counter is stopped until a programmer hits a key.

The highest level of implemented functionality (in terms of acceptance
tests passed) was achieved by AO1 project, although the OO2 project
had only 1 acceptance test passed less. The OO1 managed to imple-
ment 90% of its competitors’ functionality. Looking at the development
time, one can conclude that OO2 system was implemented faster than
OO1 and AO1. This observation is supported by normalized measures
(non-commented lines of code per development time NCLOC/T and
number of acceptance tests passed per development time NATP/T).
However, there is no correlation between the programming approach and
NATP/T . It is interesting that all three developers needed nearly the
same amount of active time to finish the project (similar level of the TA

metric value).

Table 9. Software development efficiency in AO1, OO1 and OO2 projects

AO1 OO1 OO2

Development efficiency results Value Value Ratio Value Ratio

NATP 86 78 90, 70% 85 98, 84%

T Total Time [h] 95, 93 101, 36 105, 66% 72, 61 75, 69%

TA Active Time [h] 42, 79 46, 94 109, 69% 44, 29 103, 50%

TP Passive Time [h] 53, 13 54, 42 102, 42% 28, 32 53, 30%

TP / T [%] 55, 39 53, 69 96, 93% 39, 00 70, 42%

NCLOC(w/o tests)/T 40, 60 43, 19 106, 38% 64, 45 158, 74%

NATP/T 0, 90 0, 77 85, 84% 1, 17 130, 58%

5.2 Statistical tests

The number of subjects who have taken part in the study is limited. How-
ever, since internal metrics are computed for each class, aspect or package
in the system, the number of data appeared to be sufficient, as suggested

10

by one of the reviewers, for the reliable execution of statistical tests. Sta-
tistical tests are performed to answer the question whether the impact
of aspect-oriented programming on design quality metrics is significant,
or not. Packages and classes developed according to object-oriented pro-
gramming approach are labelled OO. The following null hypotheses are
to be tested:

– H0 Dn, OO/AO — There is no difference in the Dn metric values be-
tween packages developed using object-oriented and aspect-oriented
programming approach (OO and AO).

– H0 WOM, OO/AO — There is no difference in the WOM metric val-
ues between modules (classes or aspects) developed using object-
oriented and aspect-oriented programming approach (OO and AO).

– H0 CBM, OO/AO — There is no difference in the CBM metric val-
ues between modules developed using object-oriented and aspect-
oriented programming approach (OO and AO).

– H0 RFM, OO/AO — There is no difference in the RFM metric val-
ues between modules developed using object-oriented and aspect-
oriented programming approach (OO and AO).

– H0 LCO, OO/AO — There is no difference in the LCO metric val-
ues between modules developed using object-oriented and aspect-
oriented programming approach (OO and AO).

– H0 NCLOC, OO/AO — There is no difference in the NCLOC metric
values between modules developed using object-oriented and aspect-
oriented programming approach (OO and AO).

– H0 NCLOC2, OO/AO — There is no difference in theNCLOC2 metric
values between modules developed using object-oriented and aspect-
oriented programming approach (OO and AO).

We start with exploratory analyses on the collected data to check whether
they follow the assumptions of the parametric tests (i.e. normal distri-
bution, interval or ratio scale, homogeneity of variance). The first as-
sumption of parametric tests is that our data have come from a popula-
tion that has normal distribution. Objective tests of the distribution are
Kolmogorov-Smirnov and Shapiro-Wilk tests. These tests compare the
set of scores in the tested sample to a normally distributed set of scores
with the same mean and standard deviation. If the test is non-significant
(p > .05) it tells us that the distribution of the sample is not significantly
different from a normal distribution (i.e. it is probably normal). If the test
is significant (p < .05) then the distribution in question is significantly
different from a normal distribution (i.e. it is non-normal). It is worth
noting that the Shapiro-Wilk test yields exact significance values and
is thus more accurate (though less widely used) than the Kolmogorov-
Smirnov test. In fact, the Shapiro-Wilk test results (see Table 10) are
highly significant (p < .05), as the column labelled Significance is less
than .05 for both, OO and AO development methods in all cases.

The data distribution for OO and AO appears to be non-normal. This
finding alerts us to the fact that non-parametric tests should be used.
Therefore the hypotheses are evaluated using the Mann-Whitney one
way analysis of variance by ranks. Tables 11 and 12 show test statistics
and significances.

11

Table 10. Tests of Normality

Metric Development Kolmogorov-Smirnov1 Shapiro-Wilk
Method Statistic df Significance Statistic df2 Significance

Dn OO .151 35 .041 .901 35 .004
AO .181 19 .102 .852 19 .007

WOM OO .255 165 .000 .594 165 .000
AO .227 89 .000 .665 89 .000

CBM OO .237 165 .000 .808 165 .000
AO .168 89 .000 .842 89 .000

RFM OO .188 165 .000 .810 165 .000
AO .163 89 .000 .831 89 .000

LCO OO .410 165 .000 .267 165 .000
AO .404 89 .000 .247 89 .000

NCLOC OO .221 165 .000 .675 165 .000
AO .224 89 .000 .744 89 .000

NCLOC2 OO .233 282 .000 .637 282 .000
AO .177 131 .000 .863 131 .000

1 Lilliefors Significance Correction.
2 Degrees of freedom.

Table 11. Mann-Whitney Test Statistics (grouping variable: Development Method)

Dn WOM CBM RFM LCO

Mann-Whitney U 259.000 6963.500 7302.500 6926.500 6828.500
Wilcoxon W 449.000 20658.500 20997.500 20621.500 20523.500
Z -1.337 -.684 -.073 -.748 -1.066
Asymp.Sig.(2-tailed) .181 .494 .941 .455 .286

Table 12. Mann-Whitney Test Statistics continued

NCLOC NCLOC2

Mann-Whitney U 7193.000 17347.000
Wilcoxon W 11198.000 25993.000
Z -.268 -.996
Asymp.Sig.(2-tailed) .789 .319

12

It turned out that Dn, package level design quality indicator, was not sig-
nificantly affected by aspect-oriented programming approach (the Mann-
Whitney test statistics: U = 259.0, non-significant, z = −1.337). Class
level design quality indicators were also not significantly affected by
aspect-oriented programming approach: WOM (the Mann-Whitney test
statistics: U = 6963.5, non-significant, z = −.684), CBM (U = 7302.5,
non-significant, z = −.073), RFM (U = 6926.5, non-significant, z =
−.748), LCO (U = 6828.5, non-significant, z = −1.066), NCLOC (U =
7193.0, non-significant, z = −.268) and NCLOC2 (U = 17347.0, non-
significant, z = −.996).
An effect size (r = Z√

N
where Z is the z-score in Tables 11 and 12, and

N is the number of observations i.e. 54 packages and 254 classes) is an
objective and standardized measure of the magnitude of observed effect.
The effect size is rather small for Dn (r = −.18) and is even smaller for
all class level metrics (r < −.07).
Why did not aspect-oriented programming approach result in a signifi-
cant improvement of software design quality, measured by package level,
as well as class level design quality metrics? The plausible explanation
is that software development skill may, to a certain extent, compensate
for the lack of useful features of aspect-oriented programming. Another
possible explanation is that AspectJ exhibits some limitations as a Java
language extension.
Additionally, we decided to analyse the relationships between the sub-
jects’ experience and the design quality metrics. We used a questionnaire
to measure the subjects’ experience in programming. The subjects were
asked to indicate the number of years experience in programming. All
of the subjects had between 2 and 3 years of experience in program-
ming in Java, and therefore this variable was neglected. However, there
were differences between subjects’ programming experience in general.
It turned out that the relationships between programmer experience and
class level design quality metrics were weak (Spearman’s and Kendall’s
tau correlation tests were non-significant and far from a high degree of
correlation) with the exception of WOM metric where there was a sig-
nificant relationship (rs = .15, τ = .13, p < .05). Although Spearman’s
statistic is more popular, Kendall’s statistic is used as well, as it is ac-
tually a better estimate of the correlation in the population [28]. The
relationship between programmer experience and package level design
quality metric (Dn) was weak and non-significant as well. Lack of sig-
nificant relationships in almost all cases may be due to the fact that all
programmers were at the same experience level (E4 according to Höst et
al. [22] classification scheme).

6 Validity evaluation

To enable an analysis of the validity of the study, possible threats are
discussed, based on the schema presented in [29].
As a statistical conclusion validity threat, the authors see limitations of
inferential statistics used in the analysis, caused by a small number of

13

professional programmers who have taken part in the study. Actually, it
was impossible to conduct statistical tests for some metrics e.g. NATP .
However, since internal metrics are computed for each class, aspect or
package in the system, statistical tests for the internal metrics have been
conducted in Section 5.2. The validity of the experiment is highly de-
pendent on the reliability of the measures, which can be divided into
two classes: objective measures, and subjective measures [29]. Measures
used in the study were selected to be objective rather than subjective
e.g. lines of code are more reliable than function points since it does not
involve human judgement [29].

Internal validity of the experiment concerns the question whether the
effect is caused by independent variables, or by other factors. A natu-
ral variation in human performance, as well as experience, presented in
Table 1, is a threat. However, programmers were at the same experi-
ence level E4, and the relationships between programmer experience and
almost all design quality metrics were weak and non-significant. Concern-
ing the internal validity, the risk of compensatory rivalry, or demoraliza-
tion of subjects receiving less desirable treatments must be considered.
Programmers using the classical method (i.e. object-oriented program-
ming) may do their very best to show that the old method is competitive.
On the other hand, subjects receiving less desirable treatments may not
perform as well as they generally do. However, the subjects were in-
formed that the goal of the study was to measure different programming
approaches, not the subjects’ skills. Possible diffusion, or imitation of
treatments were under control of the authors.

The mono-operation bias is a construct validity threat, as the study was
conducted on a single requirements set. Using a single type of measures is
a mono-method bias threat. To minimize this threat, different measures
(e.g. package as well as class level measures) were used in the study.
Interaction of different treatments is limited, due to the fact that the
subjects were involved in only one study. Other threats to construct
validity are social threats (e.g. hypothesis guessing and experimenter’s
expectancies). As neither the subjects nor the experimenters have any
interest in favour of one approach or another, we do not expect it to be
a large threat.

The main threat to the external validity is related to the fact that sub-
ject population may not be representative to the software developers
population. This is not a major issue as long as we are interested in the
evaluating the use of a technique by novice or nonexpert software engi-
neers [30]. Moreover, Kitchenham et al.[30] state that students are the
next generation of software professionals and thus, are relatively close to
the population of interest. Actually, all the subjects were classified as E4
according to Höst et al. [22]. The programmers’ experience, presented in
Table 1, is typical of young programmers, with solid software engineering
academic background and some industrial experience. Tichy argues why
it is acceptable to use students as subjects [31]. Some indications on the
similarities between student subjects and professionals are also given by
Höst et al. [32]. The threats to external validity were further reduced by
using standard development tools e.g. SVN, Eclipse or AspectJ.

14

The validity of the results must be considered within the context of the
limitations discussed in this section. The study can benefit from several
improvements before replication is attempted. The most significant one
is conducting a study with a sample of size large enough to guarantee a
high-power design to establish evidence-based recommendations for the
impact of aspect-oriented programming on software design quality and
development efficiency.

7 Conclusions

It was not possible to apply statistical tests to analyse the impact of
aspect-oriented programming on software development efficiency met-
rics (related to the goal 2) due to limited number of subjects. However,
execution of statistical tests was possible for internal metrics (computed
for each class, aspect or package in the system) related to software design
quality.
It turned out that aspect-oriented programming approach did not signif-
icantly affect software design quality metrics i.e. Dn, WOM , CBM ,
RFM , LCO, NCLOC and NCLOC2. It means that the impact of
aspect-oriented programming on software design modularity and size
(related to the goal 1) was not confirmed. In fact, the impact of aspect-
oriented programming on class-level software quality metrics (WOM ,
CBM , RFM , LCO) as well as on NCLOC and NCLOC2 was ex-
tremely weak, as suggested by the obtained effect size (r) values, see
Section 5.2. A bit different situation is in the case of package level qual-
ity indicator i.e. Dn. The effect size value is still rather small, but a bit
higher (see Section 5.2). It may suggest the need of further investigation
of the hypothesis that aspect-oriented programming has the impact on
higher level software quality indicators.
As pointed out in Section 5.2, there are two plausible explanations of the
obtained results. First, the software development skill may, to a certain
extent, compensate for the lack of useful features of aspect-oriented pro-
gramming (e.g. modularised implementation of crosscutting concerns).
Second, the AspectJ exhibits some limitations as a Java language exten-
sion and therefore the effect of aspect-oriented programming on software
design quality may not be significant. AspectJ draws on an asymmetric
approach i.e. there is a base body of object-oriented Java code that is
then augmented with aspects. Therefore, there is an important differ-
ence between the base and the aspects, so that an aspect cannot serve
as the base of another composition (in contrast to languages based on a
symmetric approach). Moreover, AspectJ as a Java language extension
does not force the use of aspects. In fact, the ratio of aspects to plain
Java classes and interfaces in AO1 system was 13%.
Future studies can build on this study and its key takeaways in differ-
ent manners. Aspect-oriented programming mechanisms and tools ap-
peared to be mature enough to build system in an alternative manner to
the pure object-oriented approach. The impact of aspect-oriented pro-
gramming on software development efficiency was not confirmed. Future
studies can benefit from assuring a sample of size large enough to guar-
antee a high-power design to establish evidence-based recommendations

15

for the impact of aspect-oriented programming on software development
efficiency. The impact of aspect-oriented programming on software de-
sign quality was not confirmed either. However, since internal metrics are
computed for each class, aspect or package in the system, the number
of subjects needed for the reliable execution of statistical tests may be
seriously reduced, assuming large enough number of classes or aspects
are considered. Future studies concerning software design quality may
take advantage of this idea.

Acknowledgements

We thank Adam Piechowiak for his invaluable help by means of Activ-
itySensor Eclipse plugin development and all subjects for their engage-
ment. We also thank the anonymous reviewers for their careful review
of the manuscript, valuable comments and suggestions. This work has
been financially supported by the Ministry of Education and Science, as
a research grant 3 T11C 061 30 (years 2006-2007).

References

1. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V.,
Loingtier, J.-M., and Irwin, J.: ‘Aspect-Oriented Programming’,
Proc. European Conf. Object-Oriented Programming (ECOOP
1997), vol. 1241 of Lecture Notes in Computer Science, Jyväskylä,
Finland, June 1997, pp. 220–242

2. Chidamber, S. R., and Kemerer, C. F.: ‘A Metrics Suite for Object
Oriented Design’, IEEE Trans. Softw. Eng., 1994, 20, (6), pp. 476–
493

3. Martin, R. C.: ‘OO Design Quality Metrics: An Analysis of
Dependencies’,
http://www.objectmentor.com/resources/articles/oodmetrc.pdf,
accessed September 2006

4. George, B., and Williams, L. A.: ‘An Initial Investigation of Test
Driven Development in Industry’, Proc. ACM Symposium on Ap-
plied Compupting (SAC 2003), Melbourne, USA, March 2003, pp.
1135–1139

5. George, B., and Williams, L. A.: ‘A structured experiment of test-
driven development’, Inf. Softw. Tech., 2004, 46, (5), pp. 337–342

6. Madeyski, L.: ‘Preliminary Analysis of the Effects of Pair Program-
ming and Test-Driven Development on the External Code Quality’,
in Zieliński, K., and Szmuc, T. (Ed.): ‘Software Engineering: Evolu-
tion and Emerging Technologies’, vol. 130 of Frontiers in Artificial
Intelligence and Applications, (IOS Press, 2005), pp. 113–123

7. Ceccato, M., and Tonella, P.: ‘Measuring the Effects of Software
Aspectization’, Proc. Workshop on Aspect Reverse Engineering
(WARE 2004), Delft, The Netherlands, November 2004 (Cd-rom)

8. Aopmetrics project,
http://www.e-informatyka.pl/sens/Wiki.jsp?page=Projects.AOPMetrics,
accessed September 2006

16

9. Subramanyam, R., and Krishnan, M. S.: ‘Empirical Analysis of
CK Metrics for Object-Oriented Design Complexity: Implications
for Software Defects’, IEEE Trans. Softw. Eng., 2003, 29, (4), pp.
297–310

10. Briand, L. C., Wüst, J., Ikonomovski, S. V., and Lounis, H.: ‘Inves-
tigating Quality Factors in Object-Oriented Designs: an Industrial
Case Study’, Proc. Int. Conf. on Software Engineering (ICSE 1999),
Los Alamitos, USA, May 1999, pp. 345–354

11. Emam, K. E., Melo, W. L., and Machado, J. C.: ‘The Prediction
of Faulty Classes Using Object-Oriented Design Metrics’, J. Syst.
Softw., 2001, 56, (1), pp. 63–75

12. Basili, V. R., Caldiera, G., and Rombach, H. D.: ‘The Goal Question
Metric Approach’, in Marciniak J.J. (Ed.): Encyclopedia of Software
Engineering, (Wiley, 1994), pp. 528–532

13. Garcia, A. F., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C.
J. P.de, and Staa, A.von: ‘Modularizing Design Patterns with As-
pects: A Quantitative Study’, in Rashid, A., and Aksit, M. (Ed.): T.
Aspect-Oriented Software Development I, 2006, vol. 3880 of Lecture
Notes in Computer Science, pp. 36–74

14. Kersten, M., and Murphy, G. C.: ‘Atlas: A Case Study in Building a
Web-Based Learning Environment using Aspect-oriented Program-
ming’, Proc. ACM SIGPLAN Conf. on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA 1999), New
York, USA, November 1999, pp. 340–352

15. Walker, R. J., Baniassad, E. L. A., and Murphy, G. C.: ‘An Initial
Assessment of Aspect-oriented Programming’, Proc. Int. Conf. on
Software Engineering (ICSE 1999), Los Alamitos, USA, May 1999,
pp. 120–130

16. Soares, S., Laureano, E., and Borba, P.: ‘Implementing Distribu-
tion and Persistence Aspects with AspectJ’, Proc. ACM SIGPLAN
Conf. on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2002), New York, USA, November 2002, pp.
174–190

17. Garcia, A. F., Sant’Anna, C., Chavez, C., Silva, V. T.da, Lucena, C.
J. P.de, and Staa, A.von: ‘Separation of Concerns in Multi-agent
Systems: An Empirical Study’, Proc. Int. Workshop on Software
Engineering for Large-Scale Multi-Agent Systems (SELMAS 2003),
vol. 2940 of Lecture Notes in Computer Science, pp. 49–72

18. Tsang, S. L., Clarke, S., and Baniassad, E. L. A.: ‘An Evaluation
of Aspect-Oriented Programming for Java-Based Real-Time Systems
Development’, Proc. Int. Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2004), Vienna, Austria, May 2004,
pp. 291–300

19. Hannemann, J., and Kiczales, G.: ‘Design Pattern Implementation in
Java and AspectJ’, Proc. ACM SIGPLAN Conf. on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA
2002), New York, USA, November 2002, pp. 161–173

20. Garćıa, F., Bertoa, M. F., Calero, C., Vallecillo, A., Rúız-Sánchez, F.,
Piattini, M., and Genero, M.: ‘Towards a consistent terminology for
software measurement’, Inf. Softw. Tech., 2006, 48, (8), pp. 631–644

17

21. Tonella, P., and Ceccato, M.: ‘Refactoring the aspectizable inter-
faces: An empirical assessment.’, IEEE Trans. Softw. Eng., 2005,
31, (10), pp. 819–832

22. Höst, M., , Wohlin, C., and Thelin, T.: ‘Experimental Context Clas-
sification: Incentives and Experience of Subjects’, Proc. Int. Conf.
on Software Engineering (ICSE 2005), New York, USA, May 2005,
pp. 470–478

23. Madeyski, L.: ‘The Impact of Pair Programming and Test-Driven
Development on Package Dependencies in Object-Oriented Design -
An Experiment’, Proc. International Conf. Product Focused Soft-
ware Process Improvement (PROFES 2006), vol. 4034 of Lecture
Notes in Computer Science, Amsterdam, The Netherlands, June
2006, pp. 278–289

24. ActivitySensor project,
http://www.e-informatyka.pl/sens/Wiki.jsp?page=Projects.ActivitySensor,
accessed March 2007

25. Cornett, S., ‘Code Coverage Analysis’,
http://www.bullseye.com/coverage.html, accessed September
2006

26. Husted, T., and Massol, V.: ‘JUnit in Action’ (Manning Publica-
tions, 2003)

27. Erdogmus, H., Morisio, M., and Torchiano, M.: ‘On the Effectiveness
of the Test-First Approach to Programming’, IEEE Trans. Softw.
Eng., 2005, 31, (3), pp. 226–237

28. Howell, D. C.: ‘Statistical Methods for Psychology’ (Duxbury, Bel-
mont, CA, 2002)

29. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and
Wesslén, A.: ‘Experimentation in Software Engineering: An Intro-
duction’ (Kluwer Academic Publishers, Norwell, MA, USA, 2000)

30. Kitchenham, B., Pfleeger, S. L., Pickard, L., Jones, P.,
Hoaglin, D. C., Emam, K. E., and Rosenberg, J.: ‘Preliminary Guide-
lines for Empirical Research in Software Engineering’, IEEE Trans.
Softw. Eng., 2002, 28, (8), pp. 721–734

31. Tichy, W. F.: ‘Hints for Reviewing Empirical Work in Software
Engineering’, Empir. Softw. Eng., 2000, 5, (4), pp. 309–312

32. Höst, M., Regnell, B., and Wohlin, C.: ‘Using Students as Subjects
— A Comparative Study of Students and Professionals in Lead-Time
Impact Assessment’, Empir. Softw. Eng., 2000, 5, (3), pp. 201–214

18

	Impact of aspect-oriented programming on software development efficiency and design quality: an empirical study
	Lech Madeyski, Łukasz Szała

