
This is a preprint of an article published in Lech Madeyski, Norbert Radyk: “Judy - a mutation
testing tool for Java”, IET Software, 2010, vol. 4, iss. 1, pp. 32–42.
http://dx.doi.org/10.1049/iet-sen.2008.0038

Judy – a mutation testing tool for Java

Lech Madeyski, Norbert Radyk
Institute of Informatics, Wroc law University of Technology,

Wyb.Wyspiańskiego 27, 50370 Wroc law, POLAND

Lech.Madeyski@pwr.wroc.pl, Norbert.Radyk@gmail.com

Abstract

Popular code coverage measures, such as branch coverage, are indica-
tors of the thoroughness rather than the fault detection capability of test
suites. Mutation testing is a fault-based technique that measures the effec-
tiveness of test suites for fault localization. Unfortunately, use of mutation
testing in the software industry is rare because generating and running
vast numbers of mutants against the test cases is time-consuming and diffi-
cult to do without an automated, fast and reliable tool. Our objective is to
present an innovative approach to mutation testing that takes advantage
of a novel aspect-oriented programming mechanism, called “pointcut and
advice”, to avoid multiple compilation of mutants and, therefore, to speed
up mutation testing. An empirical comparison of the performance of the
developed tool, called Judy, with the MuJava mutation testing tool on 24
open-source projects demonstrates the value of the presented approach.
The results show that there is a statistically significant (t(23) = −12.28,
p < .0005, effect size d = 3.43) difference in the number of mutants gen-
erated per second between MuJava (M = 4.15, SD = 1.42) and Judy
(M = 52.05, SD = 19.69). Apart from being statistically significant, this
effect is considered very large and, therefore, represents a substantive find-
ing. This therefore allows us to estimate the fault detection effectiveness
of test suites of much larger systems.

1 Introduction

Mutation testing is a fault-based technique that measures the effectiveness of
test suites for fault localization, based on seeded faults [1, 2]. Mutation testing
may be used to judge the effectiveness of a test set, as the test set should kill
all the mutants. The fault detection effectiveness of a test suite is defined as
the percentage of faults that can be detected by that test suite. A mutation
is a change made to the source code by a mutation testing tool. Faults are
introduced into the program by creating a collection of faulty versions, called
mutants. These mutants are created from the original program by applying
mutation operators which describe syntactic changes to the original code. The

1

test suite is then used to execute these mutants and to measure how well it is
able to find faults. A test case that distinguishes (returning a different result)
the program from one or more of its mutants is considered to be effective in
finding faults [3].

A mutation score is a quantitative measurement of the quality of the test
suite and is defined as a ratio of the number of killed mutants to the total
number of non-equivalent mutants [4]. The total number of non-equivalent
mutants results from the difference between the total number of mutants and
the number of equivalent mutants. Equivalent mutants always produce the
same output as the original program, so they cannot be killed. Unfortunately,
determining which mutant programs are equivalent to the original program is
an extremely tedious and error-prone activity. One of the practical solutions,
suggested by Offutt and Untch [5], is to ignore equivalent mutants. As a result,
Madeyski [6, 7] proposed the use of a mutant score indicator which is a lower
bound on the mutation score obtained by ignoring equivalent mutants.

The total mutation testing time is equal to the sum of the mutants generation
time and the mutants execution time [8]. We assume that the mutants execution
time is unaffected by the mutation testing tool being used because the impact
of the extra method calls due to the advice turned out to be negligible. Hence,
the empirical comparison of the performance of mutation testing can be based
on mutant generation times only. A measure of performance of the mutant
generation process, used in Section 6, is the number of mutants generated (and
compiled, in the case of source code manipulation) per second (NMPS). The
exception is the performance comparison of the tools on academic projects in
Section 2 where both the mutant generation and execution times are taken into
account. This is due to the fact that the academic projects are considerably
smaller than the open-source projects used in Section 6.

Section 2 starts with the presentation of the related work and presents the
main activities in the field of mutation testing, while Section 3 includes a com-
parison of mutation testing tools.

A new approach to mutation testing is presented in Section 4, while Section 5
introduces Judy [9] – a new mutation testing tool for Java. Judy supports the
phases of generation, compilation to bytecode, and execution (i.e. testing) of
mutants. It is developed in Java and AspectJ [10] to test Java programs, it
implements both traditional and object-oriented (OO) mutation operators, and
it supports JUnit [11, 12] (the de facto standard among unit testing frame-
works [13, 14, 15, 16]) and Ant [17] (a Java build tool) to help practitioners
carry out mutation testing.

In the presented approach, we create (dependent on the mutation opera-
tors enabled) a collection of mutants of the system under test. Meta-mutants
are used to manage the collection of mutants and to avoid multiple (i.e. time-
consuming) compilations for every mutant. This was made possible with the
help of pointcut and advice Aspect-Oriented Programming (AOP) mechanism.
As a result, the speed of mutant generation is improved. An empirical evalua-
tion of the speed of mutant generation for open-source projects is presented in
Section 6, while a summary of the paper is presented in Section 7.

2

2 Related work

Research in mutation testing has a rich history [5] and focuses on four kinds of
activities [18]: 1) defining mutation operators, 2) experimentation, 3) developing
tools, 4) reducing the cost of mutation analysis. The first one involves defining
new mutation operators for different languages and types of testing [3, 18, 19,
20, 21].

The second research activity is experimentation with mutations [22, 23, 24].
Empirical studies have supported the effectiveness of mutation testing. Muta-
tion testing has been found to be more powerful than statement and branch
coverage [25] and more effective in finding faults than data flow [26, 27]. Offutt
et al. [22, 28] and Wong and Mathur [29] evaluated the idea of selective mutation
which identifies the critical mutation operators that provide almost the same
testing coverage as non-selective mutation. Using this approach considerably
decreases the number of mutants generated and thus reduces computational
cost. Offutt et al. [22] suggested just five sufficient operators (ABS, AOR, LCR,
ROR, UOI) for Fortran. Andrews et al. [23] suggest that mutants can provide a
good indication of the fault detection ability of a test suite. Andrews et al. [24]
used mutation analysis for the assessment and comparison of testing coverage
criteria.

The third kind of activities in mutation testing research is developing mu-
tation tools. Mothra [30] and Proteum [31] were developed for Fortran and
C, respectively. Jester [32], Jumble [33], MuJava [8, 34, 35], JavaMut [36] and
Response Injection (RI) [37], as well as the tool presented in this paper, are
dedicated to the Java language. A comparison of mutation testing tools for
Java is presented in Section 3.

Last but not least in terms of research activities is investigating ways to re-
duce the cost of mutation analysis. The major cost of mutation analysis arises
from the computational expense of generating and running large numbers of mu-
tant programs. Mutation testing is a powerful but time-consuming technique
which is impractical to use without a reliable, fast and automated tool that
generates mutants, runs the mutants against a suite of tests, and reports the
mutation score of the test suite. The approaches to reduce this computational
expense of generating and running large numbers of mutant programs usually
follow one of three strategies [5]: 1) “do fewer”: seek ways of running fewer mu-
tant programs with minimal information loss, 2) “do smarter”: seek to distribute
the computational expense over several machines or to avoid complete execu-
tion, 3) “do faster”: focus on the ways of generating or running each mutant
program as fast as possible. Offutt et al. [34] have implemented three versions
of MuJava using different implementation techniques: source code modification,
bytecode modification (i.e. instrumentation of the bytecode of compiled Java
programs), and mutant schema (i.e. encoding all mutants for a program into
one “meta-mutant” program, which is subsequently compiled and run at speeds
considerably higher than achieved by interpretive systems [38]). Bogacki and
Walter’s [37] approach, as well as the approach presented in this paper, both
fall into this last category of research activities.

3

3 Comparison of existing tools

An important characteristic of mutation testing tools are the mutation operators
supported by a tool. Two types of mutation operators for object-oriented (OO)
languages can be distinguished, as suggested by Ma et al. [39]: (1) traditional
mutation operators adapted from procedural languages and (2) OO (or class)
mutation operators developed to handle specific features in OO programming.

Other essential characteristics of mutation testing tools are mutant genera-
tion methods (via bytecode or source code modification) and speedup techniques
(e.g., mutant schemata generation (MSG)) [38]. The MSG method is used to
generate one “meta-mutant” program at the source level that incorporates many
mutants [8].

A comparison of the facilities offered by Java mutation testing tools is pro-
vided in Table 1 along with some of their advantages and disadvantages.

Table 1: Comparison of mutation testing tools for Java

Characteristic MuJava Jester Jumble RI Judy
[8, 34, 35] [32] [33] [37]

Traditional, selective Yes No No1 No2 Yes
mutation operators (ABS,
AOR,LCR,ROR,UOI)
OO mutation operators Yes No No No Yes3

Mutant generation level bytecode4 source code bytecode – source code
Produces non-execu- Yes5 Yes Yes4 – Yes
table mutants
Meta-mutant Yes4 No No Yes6 Yes
Mutants format separate separate in-memory – grouped in

class files source files source files
JUnit support No Yes Yes Yes Yes
Build tool or com- No Yes Yes – Yes
mand line support

1The selective operators are not provided. They could be implemented, but not easily, by
modifying the code of the tool.

2The RI prototype uses only simple mutation operators, i.e. changing primitive types and
the objects of the String class.

3Only on the intra-method level.
4According to Offutt et al. [34], three versions of MuJava have been implemented using

different implementation techniques: source code modification, bytecode modification, and
mutant schema. There were some problems with the two latter techniques [34] but, finally,
they were combined [8]. This means that some mutations are still done with source code
analysis using the mutant schema.

5Although generation mechanisms based on bytecode transformation reduce the chance of
creating non-executable mutants in comparison to the ones based on source code transfor-
mation, they do not ensure that all mutants created using this technique will execute (i.e.
changing a visibility modifier from public to private (AMC mutation operator [41]) for a
method invoked externally in other project packages will create a non-executable mutant, but
this can be done using bytecode transformation).

6Meta-mutant includes only mutants for a given method [37].

4

3.1 MuJava

According to Ma et al. [8], JavaMut [36] is not freely available for download,
does not support the execution of mutants and separately compiles each mutated
class (which is a very slow process). Therefore, MuJava started with Cheval-
ley and Thévenod-Fosse’s work [36] with the goal of addressing the remaining
problems [8]. As a result, MuJava can be seen as a successor of JavaMut and
is included in the comparison presented in Table 1. MuJava [8, 34, 35] offers
a large set of both traditional and OO mutation operators dedicated to the
Java language (a comprehensive description of the implemented mutation op-
erators is presented in [40] and [41]). Moreover, it implements two advanced
techniques, bytecode transformations and MSG, with the aim of reducing the
mutant generation time. The MSG/bytecode translation method implemented
in MuJava is reported to be about five times faster than the separate compi-
lation approach [8]. MuJava, however, has some limitations that may prevent
practitioners from using this tool in everyday development. For example, it does
not provide a command line interface (which prevents running in batch mode)
and does not work with JUnit. However, the recently released MuClipse plu-
gin [42], acting as a bridge between the MuJava mutation engine and the Eclipse
IDE, seems to overcome this limitation. In fact, MuClipse exhibits some lim-
itations concerning the automation of mutants generation. For example, it is
not possible to adjust the test classes naming convention of MuClipse to the
naming convention used by the system under test (SUT) or to test easily the
whole project or a single package. Also there are limitations with the testing
process (e.g., it is not possible to select more than one class simultaneously, and
it is necessary to select additional tests for each class explicitly). As a result,
mutation testing using MuClipse and MuJava is not easy to run in a production
environment. Moreover, lack of integration with a build tool (Ant or Maven) is
still an issue. In spite of those limitations, MuJava is worth detailed empirical
comparison.

3.2 Jester

Jester [32] is a tool that was found to be useful (but too slow) by some practi-
tioners (e.g., Fowler in an interview with Venners [43]). However, Offutt argued
that Jester turned out to be a very expensive way to apply branch testing, rather
than mutation testing, owing to an oversimplified mechanism of mutants gen-
eration [44]. Actually, Jester offers a way to extend the default set of mutation
operations, but problems concerning performance and reliability of the tool (see
below), as well as a limited range of possible mutation operators (based only on
string substitution) remain. Moreover, the mutation operators offered by Jester
are not context-aware, and often lead to broken code. It is worth mentioning
that Jester’s approach is to generate, compile and run unit tests against a mu-
tant. The process (shown in Figure 6) repeats for every mutant of the SUT and,
thus, is inefficient. Because of these major disadvantages, Jester was excluded

5

from detailed empirical evaluation.

3.3 Jumble

Jumble operates directly at a bytecode level to speed up mutation testing, it
supports JUnit and it has been deployed in an industrial setting [33]. It was
therefore worthy of further investigation. Unfortunately, the limited set of mu-
tation operators supported by Jumble required us to disable most of the Judy
mutation operators to enable comparisons. The mutation operators supported
by Jumble are, in fact, simplified versions of AOR, ASR, COR, LOR, ROR and
SOR studied in [45]. They are simplified in such a way that only one of the
mutations defined by the mutation operators is, in fact, applied (e.g., ‘–’ is re-
placed by ‘+’, and not by each of the other operators, i.e. ‘+’, ‘*’, ‘/’, and ‘%’,
as the AOR mutation operator assumes). Including Jumble in the empirical
comparison of the tools would require a drastic reduction of the set of mutation
operators, i.e. excluding OO mutation operators. Furthermore, Jumble does
not support any means of adjusting the naming convention of unit tests. As
different conventions are used in open-source projects, bringing Jumble in the
comparison would require a huge amount of additional effort.

Judy has been compared to Jumble in a set of academic projects to answer
the question whether mutation operators implemented in Judy and Jumble re-
turn similar results. It turned out that Pearson’s correlation coefficient of the
reported mutation score indicator results for Judy and Jumble is positive and
very high, r = 0.89, while Cronbach’s alpha coefficient, an indicator of internal
consistency, is even higher (0.94). Hence, we may conclude that both tools are
measuring the same underlying construct.

3.4 Response Injection (RI)

RI is a prototype that takes advantage of aspect-oriented mechanisms to gen-
erate mutants. It uses only simple mutation operators, i.e. changing primitive
types and the objects of the String class. Unlike MuJava and Judy, the only
mutation applied to objects is null value. Furthermore, it is not clear how RI
would support the wide range of mutation operators designed for Java, as the
mutation testing approach was simplified to check only the result of a method,
exceptions thrown or changes to fields of a class. Another limitation is that the
RI approach does not allow the testing of changes in objects passed via method
parameters. The documentation, as well as the code of the prototype, is not
available. Hence, RI is not included in further empirical comparison.

6

3.5 Summary

Judy will be described in detail in Sections 4 and 5. The result of this short com-
parison shows that available mutation testing tools for Java have very different
characteristics. On the basis of the characteristics presented in Table 1, MuJava
seems to have several important advantages (meta-mutants and bytecode trans-
formation) that can make the tool very efficient. Furthermore, MuJava is the
only tool (except Judy) that supports OO mutation operators. The comparison
of Judy and MuJava required the implementation of a dedicated MuJava client
to automate both the mutant generation and compilation phases. As mentioned
by the MuJava authors, the most serious barrier to the practical use of mutation
testing is the unacceptable computational expense of generating vast numbers
of mutants [5, 39].

4 FAMTA Light – A new approach to mutation

testing

FAMTA Light (fast aspect-oriented mutation testing algorithm) is a novel ap-
proach to mutation testing that was inspired by the need for an efficient and
reliable mutation testing tool for use on real-world projects. This approach takes
advantage of the pointcut and advice mechanism, which allows the definition of
special points in the program flow (during method execution, constructor invo-
cation and class field value change) – called pointcuts – and related methods –
called advices – that can be invoked before, after or instead of a defined point-
cut. The main strength of the mechanism is related to its support for regular
expressions, what enables the definition of similar behaviour for specific types
of event. This introduces very effective solutions to some commonly known pro-
gramming issues, called “cross-cutting concerns”, such as logging or transaction
management – see [10, 46] for more details.

A detailed analysis of Jester revealed that the most time-consuming part of
the mutation testing process is the mutant compilation phase repeated for each
mutant. Therefore we looked for a way to reduce the number of compilations
and thus reduce the time spent in the compilation phase. The approach, called
FAMTA Light, is presented in Figure 1, while the main phases of the algorithm
are described in Sections 4.1, 4.2 and 4.3.

4.1 Mutant generation process

In comparison with existing mutation testing solutions, FAMTA Light intro-
duces some important changes in the mutant generation process. The basic
assumption is that, during the generation process, we aim to create, on the

7

basis of the enabled mutation operators, a collection of mutants of the SUT (in
the form of additional methods placed in mutated classes) instead of a single
mutant. Additionally, meta-mutants are generated to manage the collection and
to avoid multiple compilations for every mutant.

The pointcut and advice mechanism is used in the meta-mutant generation
process. In the FAMTA Light testing phase, every meta-mutant is responsible
for managing the collection of mutants related to one of the classes of the tested
system. It contains a set of class-related advices and pointcuts. Each advice is
responsible for the execution of one method of the tested system class and is
invoked instead of the method due to a defined pointcut. In the advice body a
decision is made either to invoke the original method or one of its mutations.
This limits the possible set of supported mutation operators to the intra-method
ones, i.e. the mutated code remains within a single method body. In order to
introduce the inter-method, intra-class and inter-class mutation operators, it is
indispensable to employ a different mutants generation technique (e.g. bytecode
modifications).

The use of meta-mutants makes it possible to perform mutant generation by
changing the source code of the SUT. However, instead of a single mutant, a
collection of mutants is generated. The mutations are generated in the form of
mutant methods, being modifications of the original methods. The generation
process defined in this way enables meta-mutants to dynamically invoke the
mutant methods instead of the original ones, and the behaviour depends on the
internal state of the mutation tester. The mutation tester state is represented
by the value of a static counter field and handled by a switch instruction of a
meta-mutant aspect.

We explain the presented approach with an example using Java and AspectJ
syntax [10] (see Figure 2). The example consists of a single class ClassA, with
a single method isEven, that is responsible for checking whether the number
passed as a parameter is even. For the class ClassA, mutations of the origi-
nal isEven method are generated in such a way that they extend the original
class with new methods isEven mutation0 and isEven mutation1 as shown
in Figure 3. Also generated is the meta-mutant aspect (see ClassAAspect in
Figure 4), which is used to manage the mutants collection.

4.2 Mutant compilation process

The generation process presented in Section 4.1 provides the single mutant com-
pilation solution, where mutants already created during the generation process
are compiled at the same time and there is no need to repeat the compilation
for every generated mutant. In consequence, a huge speedup during the mutant
compilation phase is observed, which influences the overall mutation testing
time. A detailed empirical evaluation of Judy is given in Section 6.

8

4.3 Mutants testing process

The FAMTA Light mutants testing process is the phase during which all the
created and compiled mutants are tested. It is the key phase of the mutation
testing process during which, for each tested class, the test suite is run against
the dynamically activated mutants. A pseudo-code description of the mutants
testing phase is given in Figure 5.

Mutants are activated for the tested class on the basis of internal mutation
tester state (the value of the counter attribute of the meta-mutant aspect – see
Figure 4). The counter attribute is modified at the end of each mutant test
in order to activate the next mutant. The testing process ends when all tested
system mutants have been activated.

It is worth mentioning that in the FAMTA Light algorithm, every new mu-
tant is an additional, modified copy of a mutated method, not a whole system or
class. Therefore, the algorithm copes quite well when the number of packages,
classes, methods and mutation operators is large.

5 Judy

Judy is an implementation of the FAMTA Light approach developed in Java
with AspectJ extensions. The core features of Judy are high mutation testing
process performance (see Section 6), advanced mutant generation mechanism
(Judy supports 16 predefined mutation operators presented in Table 2), inte-
gration with professional development environment tools, full automation of
mutation testing process (which makes the tool useful in automated build envi-
ronments common in industrial and open-source projects) and support for the
latest version of Java (supported Java versions are: 1.3, 1.4, 5.0, 6.0), enabling
it to run mutation testing against the most recent Java software systems or
components.

Judy, like MuJava, supports traditional mutation operators (ABS, AOR,
LCR, ROR and UOI). These were initially defined for procedural programs and
have been identified by Offutt et al. [22] as selective mutation operators. These
operators are to minimize the number of mutation operators, whilst maximizing
testing strength. The latter was measured by Offutt and Lee [22] by computing
the nonselective mutation scores of the test sets that were 100% adequate for
selective mutation. Other mutation operators dedicated to the Java language
and supported by Judy are UOD, SOR, LOR, COR, and ASR (see Ammann and
Offut [45]), along with the aforementioned selective operators. Judy supports
the EOA and EOC mutation operators proposed by Ma et al. [3] that can model
object-oriented (OO) faults, which are difficult to detect [39].

EAM, EMM, JTD and JTI mutation operators [3] were added, because there
was no reason to exclude them and there is still no standarized set of selective
mutation operators for class mutation operators [39]. Judy can be extended to
support more mutation operators.

9

Table 2: Mutation operators supported by Judy

Abbre- Description Example mutation Refe-
viation rence
ABS Absolute value insertion x = 2 ∗ a;→ x = 2 ∗ abs(a); [21]
AOR Arithmetic operator replacement x = a + b;→ x = a ∗ b; [21]
LCR Logical connector replacement x = a&&b→ x = a||b [21]
ROR Relational operator replacement if(a > b)→ if(a < b) [21]
UOI Unary operator insertion x = 2 ∗ a;→ x = 2 ∗ −a; [21]
UOD Unary operator deletion if(a < −b)→ if(a < b) [45]
SOR Shift operator replacement x = a << b;→ x = a >> b; [45]
LOR Logical operator replacement x = a&b;→ x = a|b; [45]
COR Conditional operator replacement if(a&&b)→ if(a&b) [45]
ASR Assignment operator replacement x+ = 2;→ x− = 2; [45]
EOA Reference assignment and content List l1, l2; l1 = new List(); [3]

assignment replacement l1 = l2;→ l1 = l2.clone()
EOC Reference comparison and content Integer a = new Integer(1); [3]

comparison replacement Integer b = new Integer(1);
boolean x = (a == b);→
boolean x = (a.equals(b));

JTD this keyword deletion this.r = r;→ r = r [3]
JTI this keyword insertion this.r = r;→ this.r = this.r [3]
EAM Accessor method change circle.getX();→ circle.getY (); [3]
EMM Modifier method change circle.setX(1);→ circle.setY (1); [3]

5.1 Implementation issues

Unfortunately constraints imposed by the Java development environment meant
that it was not possible to implement Judy (based on FAMTA Light approach)
exactly as planned. The major reason for this was the size of the generated
mutated classes which could run to tens of thousands of lines, causing severe
performance and reliability issues in compilation (e.g. throwing OutOfMemo-
ryError).

We therefore changed the initial FAMTA Light single iteration approach
(generation, compilation, and then the testing phase) and introduced an itera-
tive solution, which constrained the maximum number of mutations that could
be applied to a single Java class within the single iteration (MAXMUT). As
a result, all of the mutants are generated but if the number of mutants exceeds
MAXMUT they are generated in subsequent iterations (i.e. MAXMUT con-
straint applies only to a single iteration). The total number of iterations in the
mutation testing process has changed to

∣∣ NMUT
MAXMUT

∣∣+ 1, where NMUT is the
highest number of mutations generated for a single class among all the SUT
classes. The configurable MAXMUT value can be adjusted in order to tune
the mutation testing performance to the project characteristics. For most of the
tested projects, the best performance was observed for the MAXMUT value
between 50 and 100.

A second problem was related to the mass compilation of mutants where a
compilation error caused by any of the generated mutants results in breaking
all simultaneously compiled mutants. Therefore a compilation error handling
mechanism was introduced. If a compilation error occurs then the mutant that

10

caused the error is removed from the mutant set which, in a further attempt,
gets recompiled.

Disappointingly, this resulted in repeated compilations that had a negative
impact on the overall mutation testing performance. To minimize this impact,
the mutant generation mechanism was supplemented by dedicated syntactic and
semantic rules to help to identify valid mutants. These rules were derived from
the analysis of a large set of cases which led to compilation errors during the
testing of open-source projects (i.e. ASF projects, Hibernate, Eclipse). Their
introduction significantly reduced the influence of repeated compilations on the
overall Judy performance.

6 Empirical evaluation on open-source projects

The aim of this section is to evaluate the performance of Judy. As mentioned
in Section 1, performance of the mutant generation process is defined as the
number of mutants generated per second. Since MuJava implements a large set
of mutation operators as well as complex solutions (MSG, bytecode modifica-
tion) to increase the overall mutation testing process performance [8, 35], we
will use it for evaluating tools. In order to increase the validity of the empiri-
cal evaluation, real-world open-source Java projects from the Apache Software
Foundation (ASF) are used.

Because of the limitations of MuJava mentioned in Section 3, we must re-
strict our comparison of MuJava and Judy to the generation and compilation
phases. Furthermore, it is difficult to separate both phases as MuJava oper-
ates on bytecode transformations. Our approach is justified in the case of both
tools, as these phases lead to the generation of the set of already compiled mu-
tants. Also, the overall time of the testing phase should be similar, as it mainly
depends on the test suite execution time.

6.1 Experiment description

The following definition determines the foundation for the empirical study [47]:
Object of study: The objects of study are mutation testing tools.
Purpose: The purpose is to evaluate the impact of the selected mutation testing
tool (MuJava or Judy) on the mutation testing process conducted on software
development products.
Quality focus: The performance of the mutant generation process, measured
by the number of executable mutants generated per second.
Perspective: The perspective is from the researcher’s point of view.
Context: The study is run on 24 real-world open-source software products
selected at random from the Apache Software Foundation’s projects written in
Java which commonly take advantage of JUnit tests.

11

The independent variable is the mutation testing tool for Java – MuJava or
Judy. The dependent (response) variable is the number of mutants generated per
second (NMPS). In order to measure the mutants generation time for MuJava,
we implemented a dedicated MuJava to automate the mutant generation and
compilation phases for MuJava. The experiment was conducted on the same set
of mutation operators (AOR, ROR, COR, SOR, LOR, EOA, EOC, EAM and
EMM). The following null hypothesis is to be tested: H0 NMPS, MuJava/Judy –
there is no difference in the number of mutants generated per second between
MuJava and Judy. The ability to generalize from the context of the experiment
is further elaborated when discussing threats to the validity of the study.

The design of the study is one factor (the mutation testing tool), with two
treatments (MuJava and Judy). The design resulted in a balanced design, i.e.
design in which all treatments have equal sample size – 24 open-source products.

6.2 Analysis of the experiment

The experimental data, presented in Table 3, were analysed with descriptive
analysis and statistical tests. Descriptive statistics for NMPS are shown in
Table 4. The box plot in Figure 7 presents the shape of the distribution of the
results. Although visual inspection of the Figure 7 suggests that there were in
fact performance differences, with Judy performing better, statistical tests will
be conducted to answer the question whether the impact of mutation testing
tool on NMPS is significant, or not.

A common misconception is that a statistically significant result is always of
practical significance, or demonstrates a large effect in the population. Given a
sufficiently large sample, even small differences can be found to be statistically
significant but the number of analysed open-source projects is not so large as
to fall into that trap. Practical significance looks at whether the difference is
large enough to be of value in a practical sense. Therefore, not only statistical
significance, but also the effect size and the 95% confidence interval are reported.
Unlike significance tests, effect size is independent of sample size and shows
how much more effective the new tool is. The large effect size indicates that
the difference between the tools is substantial and meaningful beyond simple
statistical significance.

The exploratory analysis of the collected data has shown that the assump-
tions of the parametric tests are met. Therefore, the hypothesis from Sec-
tion 6.1 is evaluated by means of the dependent t-test. The t-test was conducted
to evaluate the impact of the mutation testing tool on NMPS. The results
(t(23) = −12.28, p < .0005) show that there is a statistically significant differ-
ence in NMPS between MuJava (M = 4.15, SD = 1.42) and Judy (M = 52.05,
SD = 19.69). The effect size statistic d = (M1−M2)/

√
(SD2

1 + SD2
2)/2 = 3.43

where Mi and SDi are the mean and standard deviation for each treatment.
This is considered to be a very large effect size. The mean difference (in NMPS)
between Judy and MuJava is −47.90 and the 95% confidence interval for the
estimated mean difference is between −39.83 and −55.97.

12

Table 3: Number of mutants per second on open-source projects

Project NMPS Lines Number of Branch
MuJava Judy of code test cases coverage

Apache Jakarta Commons Beanutils 4.43 52.64 18244 424 50%
Apache Jakarta Commons CLI 5.77 52.45 4121 108 69%
Apache Jakarta Commons Chain 2.06 42.47 7753 116 55%
Apache Jakarta Commons Codec 3.50 68.28 4699 189 83%
Apache Jakarta Commons DBCP 2.49 72.00 11291 274 51%
Apache Jakarta Commons DbUtils 1.73 23.21 3221 82 57%
Apache Jakarta Commons Digester 1.39 40.75 12885 159 35%
Apache Jakarta Commons Discovery 3.20 30.29 5000 11 29%
Apache Jakarta Commons Email 5.21 36.82 3177 75 35%
Apache Jakarta Commons FileUpload 5.52 38.78 5300 31 72%
Apache Jakarta Commons IO 5.96 70.60 14326 477 19%
Apache Jakarta Commons JXPath 4.43 53.99 28197 443 41%
Apache Jakarta Commons Lang 3.24 79.99 48290 1850 —1

Apache Jakarta Commons Launcher 3.18 31.39 3364 0 0%
Apache Jakarta Commons Logging 3.04 33.44 5997 109 27%
Apache Jakarta Commons Math 5.68 99.32 42212 1247 95%
Apache Jakarta Commons Modeler 4.94 56.91 7981 7 0%
Apache Jakarta Commons Transaction 4.05 43.03 6622 59 57%
Apache Jakarta Commons Validator 5.46 82.33 9906 277 43%
Apache Torque 4.70 57.38 22577 51 9%
Apache Velocity 3.43 25.80 44037 129 28%
Apache Velocity Tools 6.61 69.02 16593 21 —1

Apache XML Security Java 4.42 48.24 44304 373 —1

Apache XMLBeans 5.16 40.00 84804 0 0

1Branch coverage results were obtained using Cobertura 1.9. During testing of Apache
Jakarta Commons Lang, Apache Velocity Tools and Apache XML Security, Java errors oc-
curred and no results were returned.

6.3 Validity evaluation

When conducting the experiment, there is always a set of threats to the validity
of the results [47]. Hence, the possible threats are enumerated.

Threats to the statistical conclusion validity are considered to be under con-
trol. Robust statistical techniques, tools (SPSS) and enough sample sizes to
assure statistical power are used. Furthermore, calculating NMPS does not
involve human judgement.

Regarding internal validity, the experiment was conducted on projects se-
lected at random. However, it turned out that MuJava was not able to finish
the analysis of some larger projects (e.g., Apache Xerces Java XML Parser) due
to memory related issues (OutOfMemoryError).

Threats to the construct validity are considered not very harmful. Using a
single type of measure carries a mono-method bias threat. The performance
measure (NMPS) seems to be an accurate reflection of the performance con-
cept. However, there is a threat of the experimenters’ expectancies, since we
are also the inventors of the presented approach and tool. Only an independent
replication would remove this threat.

13

Table 4: Descriptive statistics for the number of mutants per second (NMPS)
Measure Mutation Mean Max Median Min

testing tool (M) (Mdn)
Number of mutants MuJava 4.15 6.61 4.43 1.39
per second (NMPS) Judy 52.05 99.32 50.35 23.21

The threat to external validity stems from the fact that the analysed projects
were open-source projects, not industrial ones. However, nowadays, open-source
projects are often used as the building blocks of industrial applications, in a wide
range of application domains. In addition, open-source projects are often big
and developed by large teams of professional developers around the world. Some
indications of the similarities between open-source projects and industrial ones
are also given by Rothfuss [48]. He pointed out several differences (concerning
different resource needs, voluntary participation, high level of software reuse
etc.) but these differences are not considered very harmful.

7 Summary

Mutation testing is not meant as a replacement for code coverage, but as a
complementary approach that is useful in detecting those pieces of the code
that are executed by running tests, but are not actually fully tested. It is
not widely used in software engineering due to the limited performance of the
existing tools [5, 18, 39] and the lack of support for standard unit testing and
build tools.

Our approach uses aspect-oriented mechanisms to increase the performance
of the mutation testing process, while providing a framework that can be ex-
tended to support additional intra-method mutation operators. We have shown
that, when applied to analysed projects, the new tool, Judy, outperforms Mu-
Java. However, extending the range of mutation operators to inter-method,
intra-class and inter-class operators would require combining meta-mutant and
source code manipulation techniques implemented in Judy with other mecha-
nisms, for example bytecode modification technique, as mentioned in Section 4.1.
Therefore, the tool combining strengths of the aforementioned techniques and
offering an even wider set of mutation operators is under active development.

The use of the FAMTA Light algorithm eliminates the huge overhead of
repeated generation and compilation phases and, therefore, leads to a situation
where total mutation testing time mainly depends on the execution time of the
test suite. Further improvements in mutation testing performance may be made
by decreasing the number of mutations (e.g., by means of selective mutations
for Java) or the time of the test suite execution.

14

Acknowledgements

This work has been financially supported by the Ministry of Education and
Science as a research grant 3 T11C 061 30. Judy is short for Judyta – the name
of the youngest daughter of the first author.

References

[1] DeMillo, R.A., Lipton, R.J., and Sayward, F.G.: ‘Hints on Test Data Selection:

Help for the Practicing Programmer’, IEEE Computer, 1978, 11, (4), pp. 34–41

[2] Hamlet, R.G.: ‘Testing Programs with the Aid of a Compiler’, IEEE Trans.Softw.

Eng. 1977, 3, (4), pp. 279–290

[3] Ma, Y.S., Kwon, Y.R., and Offutt, J.: ‘Inter-Class Mutation Operators for Java’.

Proc. 13th Int. Symposium Software Reliability Engineering, Washington, USA,

November 2002, pp. 352–363

[4] Zhu, H., Hall, Patrick.A.V., and May, J.H.R.: ‘Software Unit Test Coverage and

Adequacy’. ACM Comput. Surv. 1997, 29, (4), pp. 366–427

[5] Offutt, A.J., and Untch, R.H.: ‘Mutation 2000: Uniting the Orthogonal’, in

Wong, W. E. (Ed.): ‘Mutation testing for the new century’ (Kluwer Academic

Publishers, 2001, 1st edn.), pp. 34–44

[6] Madeyski, L.: ‘On the Effects of Pair Programming on Thoroughness and Fault-

Finding Effectiveness of Unit Tests’. Proc. Int. Conf. Product Focused Software

Process, Riga, Latvia, July 2007, pp. 207–221, http://dx.doi.org/10.1007/978-3-

540-73460-4 20

15

[7] Madeyski, L.: ‘The Impact of Pair Programming on Thoroughness and Fault

Detection Effectiveness of Unit Tests Suites’, Softw. Process Improve. Pract.,

2008, 13, (3), pp.281–295, http://dx.doi.org/10.1002/spip.382

[8] Ma, Y., Offutt, J., Kwon, Y.R.: ‘MuJava: an automated class mutation system’,

Softw Test Verif Rel, 2005, 15, (2), pp. 97-133

[9] Judy, http://www.e-informatyka.pl/sens/Wiki.jsp?page=Projects.Judy, accessed

June 2007

[10] Laddad, R.: ‘AspectJ in Action: Practical Aspect-Oriented Programming’ (Man-

ning Publications Co., 2003, 1st edn.)

[11] Massol, V., and Husted, T.: ‘JUnit in Action’ (Manning Publications Co., 2003,

1st edn.)

[12] Rainsberger, J. B.: ‘JUnit Recipes’ (Manning Publications Co., 2004, 1st edn.)

[13] Gaelli, M., Wamper, R., Nierstrasz, O.: ‘Composing Tests from Examples’, J

Object Tech., 2007, 6, (9), pp. 71–86

[14] Huang, C.H., Huo, Y.C.: ‘A semi-automatic generator for unit testing code files

based on JUnit’. Proc. Int. Conf. on Systems, Man and Cybernetics, Waikoloa,

USA, October 2005, pp. 140–145

[15] Janzen, D.S.: ‘An Empirical Evaluation of the Impact of Test-Driven Develop-

ment on Software Quality’. PhD thesis, University of Kansas, 2006

[16] Rompaey, B.V., Bois B.D., Demeyer, S.: ‘Characterizing the Relative Significance

of a Test Smell’. Proc. Int. Conf. on Software Maintenance, Philadelphia, USA,

September 2006, pp. 391–400

16

[17] Loughran, S., Hatcher E.: ‘Ant in Action’ (Manning Publications Co., 2007, 2nd

edn.)

[18] Offutt, J., Ma, Y.S., and Kwon, Y.R.: ‘The Class-Level Mutants of MuJava’.

Proc. Int. Workshop Automation of Software Test, Shanghai, China, May 2006,

pp. 78–84

[19] Kim, S., Clark, J.A., and McDermid, J.A.: ‘Class Mutation: Mutation Testing

for Object-Oriented Programs’. Proc. Net.ObjectDays, Erfurt, Germany, October

2000, http://www-users.cs.york.ac.uk/˜jac/papers/ClassMutation.pdf, accessed

March 2008

[20] Chevalley, P.: ‘Applying Mutation Analysis for Object-Oriented Programs Us-

ing a Reflective Approach’. Proc. 8th Asia-Pacific Software Engineering Conf.,

Washington, USA, December 2001, pp. 267–270

[21] King, K. N., Offutt A. J.: ‘A Fortran Language System for Mutation-based

Software Testing’, Softw. Pract. Exper., 1991, 21, (7), pp. 685–718

[22] Offutt, A.J., Lee, A., Rothermel, G., Untch, R.H., and Zapf, C.: ‘An Experimen-

tal Determination of Sufficient Mutant Operators’, ACM Trans. Softw. Eng. and

Meth., 1996, 5, (2), pp. 99–118

[23] Andrews, J.H., Briand, L.C., and Labiche, Y.: ‘Is Mutation an Appropriate Tool

for Testing Experiments?’. Proc. 27th Int. Conf. on Software Engineering, St

Louis, USA, May 2005, pp. 402–411

[24] Andrews, J.H., Briand, L.C., Labiche, Y., Namin, A.S.: ‘Using Mutation Analysis

for Assessing and Comparing Testing Coverage Criteria’. IEEE Trans. Softw.

Eng., 2006, 32, (8), pp. 608–624

17

[25] Walsh, P.J.: ‘A Measure of Test Case Completeness’. PhD thesis, University New

York, 1985

[26] Frankl, P.G., Weiss, S.N., Hu, C.: ‘All-Uses vs Mutation Testing: An Experi-

mental Comparison of Effectiveness’. J. Syst. Softw. 1997, 38, (3), pp. 235–253

[27] Offutt, A.J., Pan, J., Tewary, K., Zhang, T.: ‘An Experimental Evaluation of

Data Flow and Mutation Testing’. Softw. Pract. and Exper., 1996, 26, (2), pp.

165–176

[28] Offutt, A.J., Rothermel, G., and Zapf, C.: ‘An Experimental Evaluation of Selec-

tive Mutation’. Proc. 15th Int. Conf. on Software Engineering, Baltimore, USA,

May 1993, pp. 100–107

[29] Wong, W.E., Mathur, A.P.: ‘Reducing the cost of mutation testing: An empirical

study’. J. Syst. Softw. 1995, 31, (3), pp. 185–196

[30] DeMillo, R.A., Guindi, D.S., King, K.N., M.McCracken, W., Offutt, A.J.: ‘An

extended overview of the Mothra software testing environment’. Proc. 2nd Work-

shop on Software Testing, Verification, and Analysis, Banff, Canada, July 1988,

pp. 142–151

[31] Delamaro, M.E., Maldonado, J.C.: ‘Proteum – A Tool for the Assessment of Test

Adequacy for C Programs’. Proc. Conf. on Performability in Computing Systems,

East Brunswick, USA, July 1996, pp. 75–95

[32] Moore, I.: ‘Jester - a JUnit test tester’. Proc. 2nd Int. Conf. on Extreme Pro-

gramming and Flexible Processes in Software Engineering, Sardinia, Italy, May

2001, pp. 84–87

18

[33] Irvine, S. A., Tin, P., Trigg L., Cleary, J. G., Inglis, S., and Utting, M.: ‘Jum-

ble Java Byte Code to Measure the Effectiveness of Unit Tests’. Proc. Testing:

Academic and Industrial Conf. Practice and Research Techniques, Windsor, UK,

September 2007, pp. 169–175

[34] Offutt, J., Ma, Y.S., and Kwon, Y.R.: ‘An Experimental Mutation System for

Java’, SIGSOFT Softw. Eng. Notes, 2004, 29, (5), pp. 1–4

[35] Ma, Y.S., Offutt, J., and Kwon, Y.R.: ‘MuJava: A Mutation System for Java’.

Proc. 28th Int. Conf. on Software Engineering, Shanghai, China, May 2006, pp.

827–830

[36] Chevalley, P., Thévenod-Fosse, P.: ‘A mutation analysis tool for Java programs’,

Int. J. Softw. Tools Tech. Transfer, 2003, 5, (1), pp. 90–103

[37] Bogacki, B., and Walter, B.: ‘Aspect-Oriented Response Injection: An Alterna-

tive to Classical Mutation Testing’. Proc. IFIP Work. Conf. on Software Engi-

neering Techniques, Warsaw, Poland, October 2006, pp. 273–282

[38] Untch, R.H., Offutt A.J., and Harrold, M.J.: ‘Mutation Analysis Using Mutant

Schemata’. Proc. Int. Symp. on Software Testing and Analysis, Cambridge, USA,

June 1993, pp. 139–148

[39] Ma, Y.S., Harrold, M.J., and Kwon, Y.R.: ‘Evaluation of Mutation Testing

for Object-Oriented Programs’. Proc. 28th Int. Conf. on Software Engineering,

Shanghai, China, May 2006, pp. 869–872

[40] Ma, Y.S., Offutt, J.: ‘Description of Class Mutation Mutation Operators for

Java’, November 2005, http://cs.gmu.edu/~offutt/mujava/mutopsClass.pdf

19

http://cs.gmu.edu/~offutt/mujava/mutopsClass.pdf

[41] Ma, Y.S., Offutt, J.: ‘Description of Method-level Mutation Operators for Java’,

November 2005, http://cs.gmu.edu/~offutt/mujava/mutopsMethod.pdf

[42] Smith, B.H., and Williams, L.: ‘An Empirical Evaluation of the MuJava Mutation

Operators’. Proc. Testing: Academic and Industrial Conference, Windsor, UK,

September 2007, pp. 193–202

[43] Venners, B.: ‘Test-Driven Development. A Conversation with Martin Fowler,

Part V’. http://www.artima.com/intv/testdrivenP.html, accessed September

2007

[44] Offutt, J.: ‘An analysis of Jester based on published papers’.

http://cs.gmu.edu/˜offutt/jester-anal.html, accessed September 2006

[45] Ammann, P., and Offutt, J.: ‘Introduction to Software Testing’ (Cambridge Uni-

versity Press, 2008, 1st edn.)

[46] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier,

J.M., and Irwin, J.: ‘Aspect-Oriented Programming’. Proc. European Conf. on

Object-Oriented Programming, Jyväskylä, Finland, June 1997, pp. 220–242

[47] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., and Wesslén, A.:

‘Experimentation in Software Engineering: An Introduction’ (Kluwer Academic

Publishers, 2000, 1st edn.)

[48] Rothfuss, G.J.: ‘A Framework for Open Source’. MSc thesis, University of Zurich,

2002

20

http://cs.gmu.edu/~offutt/mujava/mutopsMethod.pdf

Environment
preparation

Meta-mutant and
mutants generation

using pointcut &
advice mechanism

Compilation

Reporting Testing

Start

End

Figure 1: A schematic illustration of mutation testing using the FAMTA Light
approach

21

1 pub l i c c l a s s ClassA {
2 pub l i c boolean isEven (i n t number){
3 i f (number % 2 == 0){
4 re turn true ;
5 } e l s e {
6 re turn f a l s e ;
7 }
8 }
9 }

Figure 2: Sample class named ClassA

22

1 pub l i c c l a s s ClassA {
2 pub l i c boolean isEven (i n t number){
3 i f (number % 2 == 0){
4 re turn true ;
5 } e l s e {
6 re turn f a l s e ;
7 }
8 }
9 pub l i c boolean isEven mutation0 (i n t number){

10 i f (number % 2 != 0) {
11 re turn true ;
12 } e l s e {
13 re turn f a l s e ;
14 }
15 }
16 pub l i c boolean isEven mutation1 (i n t number){
17 i f (number % 2 == 0 && f a l s e) {
18 re turn true ;
19 } e l s e {
20 re turn f a l s e ;
21 }
22 }
23 }

Figure 3: A mutated ClassA class.

23

1 pub l i c p r i v i l e g e d aspect ClassAAspect {
2 pub l i c s t a t i c i n t counter = 0 ;
3

4 po intcut i sEvenPointcut (ClassA th i sObject , i n t number) :
5 execut ion (boolean somePackage . ClassA . isEven (i n t))
6 && ! with in (somePackage . ClassAAspect)
7 && ta rg e t (th i sOb jec t)
8 && args (number) ;
9

10 boolean around (ClassA th i sObject , i n t number) :
11 i sEvenPointcut (th i sObject , number){
12 switch (ClassAAspect . counter){
13 case 0 :
14 re turn th i sObjec t . i sEven mutation0 (number) ;
15 case 1 :
16 re turn th i sObjec t . i sEven mutation1 (number) ;
17 de f au l t :
18 re turn th i sObjec t . isEven (number) ;
19 }
20 }

Figure 4: A meta-mutant for the ClassA class.

24

1 f o r (every−tes ted−c l a s s) do
2 I n i t i a l i z e c l a s s t e s t r e s u l t ;
3 //number o f mutants = 0 , number o f k i l l e d mutants = 0
4 Get meta−mutant aspect f o r the t e s t ed c l a s s ;
5 Get ‘ counter ’ and ‘MAXCOUNTER’ va lues from the aspect ;
6 Get t e s t s s u i t e f o r the t e s t ed c l a s s ;
7

8 f o r (every−c l a s s−mutant) do
9 Execute t e s t s u i t e ;

10 i f (any t e s t in t e s t s u i t e f a i l e d or t e s t s u i t e
11 runs l onge r then maximum run time) then
12 Add k i l l e d mutant ;
13 //number o f mutants++, number o f k i l l e d mutants++
14 e l s e
15 Add a l i v e mutant ;
16 //number o f mutants++
17 end i f ;
18 Add 1 to s t a t i c meta−mutant ‘ counter ’ f i e l d value
19 // S t a t i c f i e l d s can be modi f i ed us ing r e f l e c t i o n API
20 end f o r ;
21

22 Set ‘ counter ’ f i e l d value to −1;
23 Print t e s t r e s u l t s f o r c l a s s ;
24 end f o r ;

Figure 5: The implementation of the FAMTA Light mutants testing phase
(pseudo-code)

25

Environment
preparation

Mutants
generation Compilation

Reporting Testing

For each mutant

Start

End

Figure 6: A schematic illustration of mutation testing using Jester

26

Figure 7: Number of mutants per second box plot

27

	Introduction
	Related work
	Comparison of existing tools
	MuJava
	Jester
	Jumble
	Response Injection (RI)
	Summary

	FAMTA Light – A new approach to mutation testing
	Mutant generation process
	Mutant compilation process
	Mutants testing process

	Judy
	Implementation issues

	Empirical evaluation on open-source projects
	Experiment description
	Analysis of the experiment
	Validity evaluation

	Summary

