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Context. The equivalent mutant problem (EMP) is one of the crucial problems in mutation testing widely studied over decades.
Objectives. The objectives are: to present a systematic literature review (SLR) in the field of EMP; to identify, classify and improve
the existing, or implement new, methods which try to overcome EMP and evaluate them.
Method. We performed SLR based on the search of digital libraries. We implemented four second order mutation (SOM) strategies,
in addition to first order mutation (FOM), and compared them from different perspectives.
Results. Our SLR identified 17 relevant techniques (in 22 articles) and three categories of techniques: detecting (DEM); suggesting
(SEM); and avoiding equivalent mutant generation (AEMG). The experiment indicated that SOM in general and JudyDiffOp strategy
in particular provide the best results in the following areas: total number of mutants generated; the association between the type of
mutation strategy and whether the generated mutants were equivalent or not; the number of not killed mutants; mutation testing
time; time needed for manual classification.
Conclusions. The results in the DEM category are still far from perfect. Thus, the SEM and AEMG categories have been developed.
The JudyDiffOp algorithm achieved good results in many areas.

Index Terms—mutation testing, equivalent mutant problem, higher order mutation, second order mutation.
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1 Introduction

Mutation testing is a fault-based technique which
measures the fault-finding effectiveness of test

suites, on the basis of induced faults [12], [21]. Muta-
tion testing induces artificial faults or changes into an
application (mutant generation) and checks whether a test
suite is “good enough” to detect them. However, there are
mutations which keep the program semantics unchanged
and thus cannot be detected by any test suite. The prob-
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lem of detecting equivalence either between two arbitrary
programs or two mutants is an undecidable problem [4],
[8], [18], [56], [64] and is known as the equivalent mutant
problem (EMP).

Mutation testing provides a “mutation score” (MS),
or “mutation adequacy”, which is a testing criterion to
measure the effectiveness or ability of a test suite to detect
faults [9], [12], [21], [79]:

MS = MK

MT −ME
(1)

Where MT is the total number of produced mutants,
MK is the number of killed mutants (where the differ-
ence in behaviour between the original program and the
mutated one was observed) and ME is the number of
equivalent mutants.

There is a range of mutation testing tools like
Judy [52], Javalanche [71] or µJava (MuJava) [46] with
MuClipse [73]. Unfortunately, finding equivalent mutants
still consumes a lot of time and there is no automated
way to detect all of the equivalent mutants. Furthermore,
as observed by Schuler and Zeller [72], it takes an average
of 15 minutes to assess one single mutation for equivalence.
Therefore, analysing real world software projects there
is often a need (also in this paper) to ignore equivalent
mutants, which would mean that we can only measure the
mutation score indicator [47], [48], [49], [52]:

MSI = MK

MT
(2)

It is still a valuable measure but not as desirable as
obtaining the mutation score (Equation 1).
The rest of this paper is organized as follows: Section 2

presents a systematic literature review of equivalent mu-
tant detection methods. The results of the systematic
review (Section 3) indicate that the most promising tech-
niques for handling EMP is higher order mutation (HOM)
in general, and second order mutation (SOM) in particu-
lar. SOM testing strategies found in the systematic review
are presented in detail in Section 4. Those strategies were
analysed, extended, improved, and implemented in the
Judy mutation testing tool [52] and then empirically evalu-
ated on a number of open source software items. Section 5
presents the design and execution of the experiment, while
Section 6 presents the results of the analysis concerning
various SOM and FOM testing strategies. Threats to va-
lidity are discussed in Section 7, while Section 8 discusses
the results. Conclusions and future work are presented in
Section 9.

2 Systematic review
The authors followed the instructions presented by
Kitchenham et al. [40]. As far as we know, there is no
previous systematic literature review (SLR) regarding the
equivalent mutant problem. The only study which can be
classified as a systematic review is the paper by Jia and
Harman [31], which focused on mutation testing in general
and not on the EMP. In their insightful work, Jia and

Harman only mentioned some of the most crucial methods
and, thus, the relevant research questions posed by us
could not be answered by their review.

Most of the papers found in our preliminary search, e.g.
[60], [70], [75], include sections such as “Related work,”
where the authors discuss some of the existing approaches.
However, they do not perform an SLR and, thus, only a
small number of the existing methods are introduced in
an ad hoc manner. We were, therefore, not convinced that
a representative sample had been presented previously.

The protocol of our systematic literature review is pub-
licly available online [62].

2.1 Research questions
Research questions must determine the goal of an SLR [7],
[38], [40], [41], [43]. The objective of this study was to
find a method (or methods) with which we would be able
to overcome the equivalent mutant problem to a possibly
most significant extent.

• RQ1: Which of the existing methods try to
solve the problem of equivalent mutants?
This is a very general question. In this case general
ideas are also expected. Some of them might have
been implemented and evaluated, while some might
be theoretical suggestions for further refinements.

• RQ2: How can those methods be classified?
As a result, the classification of the existing methods
to some general domains and areas is expected.

• RQ3: What is the maturity of the existing
methods?
All existing methods will be grouped by their matu-
rity.

• RQ4: What are the theoretical ideas on how
to improve the techniques which have already
been empirically evaluated?
In this case, all the sources which the authors mention
in “Future work” are to be analysed. Any possible
suggestions which would lead to an increase in the
number of detected equivalent mutants are welcome.

2.2 Search terms
For each research question, related major terms were
developed. Synonyms, variations in spelling and structure
(e.g. terms with and without hyphenation) were
considered and accounted for in the queries formed.
After constructing the preliminary search strings, pilot
testing against the search engines was also undertaken in
order to investigate the capability of the search engines,
e.g. the handling of Boolean combinations and sub-query
nesting. The resulting query was as follows:
equivalen* AND mutant* AND (mutation OR testing OR analysis
OR problem* OR issue* OR question* OR (detect* OR find*
OR recognize* OR catch*) AND (method* OR technique*) OR
(method* OR technique*) AND (classification* OR ranking* OR
classified OR categorisation* OR categorization* OR systematisation
OR type* OR kind*) OR (method* OR technique*) AND (empirical*
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OR evaluat* OR implement* OR development OR developed) OR
(method* OR technique*) AND (further OR next OR future OR
new) OR (method* OR technique*) AND (improv* OR progress*
OR enhanc* OR refin* OR increas*))

The detailed forms (due to differences in search
capabilities between various databases) are presented in
the SLR protocol [62]. The title, abstract and keywords
of the articles in the electronic databases were searched
according to those search terms.

2.3 Resources to be searched
2.3.1 Database search
The main information sources to be searched, in the first
iteration, were electronic databases: the ACM Digital Li-
brary, IEEE Xplore, Science Direct, the Springer Link and
the Wiley Online Library.

Those databases were selected because they had been
used as sources for other reviews in this area [31]. Also,
we had a number of “key papers” [6], [20], [25], [56], [58],
[59], [72] and we verified that we could find all of them in
the above databases.

2.3.2 Grey literature
In order to cover grey literature (not necessarily peer-
reviewed) [68], some alternative sources were investigated:

• Google scholar
We used three search terms for the first phase, and for
each of them checked the first 200 results. The search
terms were slightly modified in order to adopt them to
Google scholar and to improve the effectiveness of the
search process. We used the following search terms:
– equivalen* AND mutant* AND (mutation OR

testing OR analysis)
– equivalen* AND mutant* AND (method* OR

technique*)
– equivalen* AND mutant* AND (problem* OR

issue* OR question*)
• All the proceedings from “Mutation: The Interna-
tional Workshop on Mutation Analysis” (five editions:
2000–2010).

• Scanning lists of references in all primary studies1,
according to the snowball sampling method [19].

• Checking the personal websites of all the authors of
primary studies, in search of other relevant sources
(e.g. unpublished or latest results).

• Contacting all the authors of primary studies. The
authors were contacted in order to make sure that no
relevant material had been missed.

It is also worth mentioning that the Mutation Testing
Repository [32] provides a very thorough coverage of the
publications in the literature on Mutation Testing and,
therefore, is a highly recommended resource.

1. The research papers summarised in the review are referred to as
primary studies, while the review itself is a secondary study [7]

2.4 Results selection process
The following inclusion criteria were taken into account
when selecting the primary studies (it was enough for the
paper to pass one of them):

• Describes at least one method for detecting, suggest-
ing or avoiding equivalent mutants (this could include
proof of concepts, empirically evaluated solutions, as
well as theoretical ideas).

• Discusses the classification of the aforementioned
methods.

• Evaluates, analyses or compares the aforementioned
methods.

• Determines the current state of maturity of the meth-
ods dealing with EMP (theoretical ideas/proofs of
concept/empirically evaluated solutions).

• Proposes theoretical ideas on how to improve the
already evaluated methods dealing with EMP.

If the analysed study referred to one of the previously
selected primary studies, then it additionally drew our
attention but it was not the inclusion criterion per se.

The following type of studies were excluded (exclusion
criteria):

• The article’s language was other than English.
• The full text of the article could not be found.
• The article concerned mutations in the fields of study

other than software engineering or computer science,
e.g. genetics.

2.5 Quality assessment
In addition to the general inclusion and exclusion criteria,
it is important to assess the quality of primary studies [38].
Study quality assessment was adopted in order to deter-
mine the strength of the evidence and to assign grades
to the recommendations generated by the systematic re-
view [34]. The questionnaire used in this study was based
on the recommendations by Kitchenham and Charters [40]
and Khan et al. [34] with some specific additions result-
ing from our research questions. The quality assessment
questionnaire can be found in the SLR protocol [62].

3 Review results
A detailed process of identifying relevant literature is
presented in Figure 1. The number of results found and
used in each phase of the SLR are shown in Figure 1. In
the end, we found 22 primary studies. One of them [59]
was a substantial extension of the earlier conference pa-
per [56]. All of the primary studies, except for one [31],
presented methods for how to deal with the equivalent
mutant problem. The exception, Jia and Harman’s [31]
study, is a valuable survey of the development of mutation
testing, which, however, only lists and briefly describes
some crucial approaches.

Below we have ranked the top-5 authors, according to
the number of publications. The most active researchers
in the subject of EMP were thus:
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Fig. 1. Identifying relevant literature.

• M. Harman (University College London, UK) [1], [22],
[25], [30], [31]

• J. Offutt (George Mason University, USA) [56], [57],
[58], [59], [61]

• R. Hierons (Brunel University, UK) [1], [22], [25]
• D. Schuler (Saarland University, Germany) [20], [70],

[72]
• A. Zeller (Saarland University, Germany) [20], [70],

[72]
The literature published by those authors represent 55%

of all primary studies.
In the following section, each of the previously presented

research questions is examined separately with the help of
the findings from the SLR (see Table 1).

3.1 Which of the existing methods try to solve the
problem of equivalent mutants?
On the basis of the primary studies, we have found 17
methods for equivalent mutant detection (in chronological
order):

• Compiler optimizations techniques [6], [58] (1979)
• Using mathematical constraints to automatically de-

tect equivalent mutants [56], [59] (1996)
• Using program slicing to assist in the detection of

equivalent mutants [25] (1999)
• Selective mutation [55] (1999)
• Avoiding equivalent mutant generation using program

dependence analysis [22] (2001)
• Using Bayesian-learning based guidelines to help to

determine equivalent mutants [76] (2002)
• Co-evolutionary search techniques [1] (2004)
• Using equivalency conditions to eliminate equivalent

mutants for object oriented mutation operators [61]
(2006)

• Using semantic differences in terms of a running pro-
file to detect non-equivalent mutants [17](2007)

• Margrave’s change-impact analysis [54] (2007)

• Using Lesar model-checker for eliminating equivalent
mutants [15] (2008)

• Examining the impact of equivalent mutants on cov-
erage [20] (2009)

• Distinguishing the equivalent mutants by semantic
exception hierarchy [28](2009)

• Higher order mutation testing [30], [37], [57], [63]
(2009)

• Using a fault hierarchy to improve the efficiency of
the DNF logic mutation testing [33] (2009)

• Using the impact of dynamic invariants [70] (2009)
• Examining changes in coverage to distinguish equiv-

alent mutants [69], [72] (2010)

The paper’s length limit does not allow us to explain
the details of the aforementioned methods, as the number
of the latter is quite large. The details of the methods,
however, are described in the references we cite above
(each of the techniques found in this review has at least one
reference). The readers interested in the basics of software
testing in general, and mutation testing in particular, are
expected to look through books [2], [78] which complement
the above mentioned references and extend the coverage
of the topic.

Figure 2 shows how the primary studies are dis-
tributed according to programming language implemen-
tation. Java, Fortran and C are the three languages with
the highest rank. Early work on dealing with equivalent
mutants (including some avoidance rules) were carried
out using Fortran [36]. For C programs, the tools Pro-
teum [11], MILU [29] or Csaw [17] were used; while for
Java programs, it was muJava [46] and the more recent
Javalanche [71] and Judy [52]. There were no publications
describing solutions for the EMP applied in C# and C++.
For example in CREAM [13], [14] (a mutational tool for
C#), equivalent mutants were identified by hand.
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Fig. 2. Percentage of primary studies (methods only) address-
ing the equivalent mutant problem in different programming
languages.

3.2 How can the equivalent mutant detection meth-
ods be classified?
There was no classification of equivalent mutant detection
methods proposed in any of the papers found. Even the
latest analysis and survey of the development of mutation
testing by Jia and Harman [31] has not provided any cat-
egorization yet, only a list of some important approaches
in chronological order. Due to the amount of research in
this field, some sort of early classification would be helpful
to summarize existing the techniques and to help indicate
future work.

Two approaches to grouping have been considered. The
first one - according to the application domain of the
proposed solution (e.g. compiler optimization techniques
or co-evolutionary approaches) and the second - accord-
ing to the character of the obtained results (e.g. direct
indication, suggestion, etc.) During the data extraction
process we have noticed that almost all of the included
techniques in the primary studies have their origins in
different and unique areas of computer science. With such
a classification, we would get many categories containing
primarily one or, at the most, two methods. (That might
be a good solution after some time, if this area continues
to grow.) Moreover, as shown in the answer to the fourth
question, the majority of the proposed approaches combine
solutions from more than one field of study. Therefore, we
would like to propose the classification of methods based
on the collected data (especially as found in the column
“Method Effectiveness” in Table 1).

Our classification distinguishes between three main cat-
egories of methods used to overcome the EMP (for sake of
brevity when there is more than one publication discussing
the topic we have sometimes introduced a new description
of a method):

1) Detecting equivalent mutants techniques
• Compiler optimizations techniques [6], [58]

(1979)
• Mathematical constraints to automatically de-

tect equivalent mutants [56], [59] (1996)
• Program slicing to assist in the detection of

equivalent mutants [25] (1999)

• Semantic differences in terms of running profile
to detect non-equivalent mutants [17](2007)

• Margrave’s change-impact analysis [54](2007)
• Lesar model-checker for eliminating equivalent

mutants [15] (2008)
2) Avoiding equivalent mutant generation techniques

• Selective mutation [55] (1999)
• Avoiding equivalent mutant generation using

program dependence analysis [22] (2001)
• Co-evolutionary search techniques [1] (2004)
• Equivalency conditions to eliminate equivalent

mutants for object-oriented mutation opera-
tors [61] (2006)

• Fault hierarchy to improve the efficiency of DNF
logic mutation testing [33] (2009)

• Distinguishing the equivalent mutants by seman-
tic exception hierarchy [28](2009)

• Higher order mutation testing [30], [37], [57], [63]
(2009)

3) Suggesting equivalent mutants techniques
• Using Bayesian-learning based guidelines to help

to determine equivalent mutants [76] (2002)
• Examining the impact of equivalent mutants on

coverage [20] (2009)
• Using the impact of dynamic invariants [70]

(2009)
• Examining changes in coverage to distinguish

equivalent mutants [69], [72] (2010)
Figure 3 shows the distribution of primary studies over

the years. It is quite clear that recently researchers have
focused more on two categories of methods to overcome
the EMP: avoiding equivalent mutant generation and sug-
gesting equivalent mutants. We can only speculate as to
the reason behind that tendency, but a plausible expla-
nation is that detection techniques are also very hard
to implement, and few researchers in the past decade
have tackled testing problems which require hard pro-
gramming. Beyond Offutt’s research on software testing
coupling effects and higher order mutation testing from
1992 [57], which actually was not focused on the EMP per
se (it was not considered to be the main benefit of this
technique), we can claim that the first and most obvious
way of dealing with equivalent mutants are the equivalent
mutant detection techniques (the first category). The most
effective approach from this category detects 47.63% of
the equivalent mutants and finds over 70% of unreachable
statements [56], [59]; however, such a solution still needs
a lot of manual and error-prone work. An advantage of
detecting techniques is that they give no false positives,
as suggesting equivalent mutants does. On the other hand,
detecting techniques can never be complete. In summary,
all three categories are thus complementary.

With the beginning of the 21st century, two new ap-
proaches began to be considered. Ever since then, the best
method for suggesting equivalent mutants to a software
tester has been considered to be the technique of assessing
the impact of a mutant’s internal behaviour as proposed
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TABLE 1
Primary studies.

Ref Authors Year Language Maturity Method Effectiveness QA Result
[6] D. Baldwin,

F. Sayward
1979 Fortran TI Not Given 72%

[57] J. Offutt 1992 Fortran EE Only from 0.53% to 1.4% generated 2-order
mutants were equivalent.

82%

[58] J. Offutt, M. Craft 1994 Fortran EE About 10%, with 25% standard deviation 100%
[56],
[59]

J. Offutt, J. Pan 1996 Fortran EE 47.63% 100%

[25] R. Hierons et al. 1999 Not Given TI Should be equal to constraint solving approaches
[56], [59] — 47.63%. However, slicing was able to
subsume the Offut&Pan’s approach [56], [59] and
find additional equivalent mutants.

89%

[55] E. Mresa, L. Bottaci 1999 Fortran EE Not Given 85%
[22] M. Harman et al. 2001 Not Given TI Not Given 89%
[76] A. Vincenzi et al. 2002 C EE Not Given 100%
[1] K. Adamopoulos et al. 2004 Not Given TI Avoids equivalent mutant generation 72%
[61] J. Offutt et al. 2006 Java EE Not Given 95%
[17] M. Ellims et al. 2007 Not Given TI Not Given 75%
[54] E. Martin, T. Xie 2007 XACML

policies
PoC Not Given 78%

[15] L. du Bousquet,
M. Delaunay

2008 Lustre EE Not Given 95%

[20] B. Grün et al. 2009 Java EE Suggests (non-)equivalent mutants 100%
[28] C. Ji et al. 2009 Java TI 100% 78%
[30] Y. Jia, M. Harman 2009 C PoC Not Given 83%
[33] G. Kaminski,

P. Ammann
2009 Java EE Avoids equivalent mutant generation 85%

[70] D. Schuler et al. 2009 Java EE Not Given 100%
[37] M. Kintis et al. 2010 Java EE Reduces the number of generated equivalent

mutants (from 65.6% to 86.8%).
91%

[63] M. Papadakis,
N. Malevris

2010 C EE Reduction of approx. 80% to 90% of generated
equivalent mutants

91%

[69],
[72]

D. Schuler, A. Zeller 2010 Java EE Suggests non-equivalent mutants with a 75%
probability

91%

[31] Y. Jia, M. Harman 2010 - - - 67%
TI - Theoretical idea; PoC - Proof of concept; EE - Empirically evaluated

by Schuler [72]. If it is observed that the mutation changes
coverage, it has a 75% chance of being non-equivalent.

From the group of techniques which avoid equivalent
mutant generation, two recent studies provide interesting
results. Both of the papers are empirical evaluations of
higher order mutation testing. The method implemented
by Papadakis and Malevris [63] for the C programming
language leads to the reduction of approximately 80–
90% of the generated equivalent mutants. For the Java
language, according to Kintis et al. [37], the obtained
results vary from 65.5% for HDom(50%) to 86.8% for the
SDomF strategy with the loss of test effectiveness being
only 1.75% for HDom(50%) and 4.2% for SDomF 2.

As Table 1 indicates, only a small number of studies
provide explicit results, which, thus, makes it difficult to
compare methods.

2. HDom(50%) and SDomF are the names of the mutation test-
ing strategies evaluated by Kintis et al. [37]. It is worth mentioning
that 50% in the name of the former strategy comes from the fact
that besides SOMs generated by the strategy on a basis of FOMs,
a randomly selected subset of the 50% of the remaining FOMs is
included in the generated set of mutants. Hence the HDom(50%)
strategy produces both FOMs and SOMs.

3.3 What is the maturity of existing methods?

In order to categorize further the identified methods we
have distinguished between three categories: theory (six
studies), proof of concept (two studies) and empirically
evaluated methods (thirteen studies). In short, 62% of the
studies are classified as being empirically evaluated.

Figure 4 shows the number of techniques by year (1979–
2010). It is clear that the number of published studies in
recent years is growing and most of the recent techniques
are empirically evaluated. That provides some evidence
corresponding with the results obtained for mutation test-
ing in general by Jia and Harman [31] that EMP, like the
overall field of mutation testing, is moving from theory to
practical solutions.

3.4 What are the theoretical ideas on how to improve
already empirically evaluated techniques?

Seven out of thirteen (54%) publications which contain
empirical evaluation present ideas on how to improve the
proposed methods. Furthermore, the authors of three the-
oretical studies have also provided some ideas for future
work, hence, a total of 50% of the primary studies suggests
future improvements.
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Fig. 3. Classified solutions of equivalent mutant problem from 1992–2010 (cumulative view).
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Fig. 4. Solutions of the equivalent mutant problem by maturity from 1979–2010 (cumulative view).

Some authors have ideas on how to use two methods
in tandem [22], [25], like for example Hierons et al. [25],
in which the authors want to use a constraint solving
technique together with program slicing. Other ideas are
based on solving the problems which occurred in their
specific studies [15], [56]. A very common suggestion is
to consider some other possibilities [20], [28], [58], [70],
[76], e.g. Schuler et al. [70] and Grün et al. [20] mention
alternative impact measures, while Ji et al. [28] propose
also to consider weak and firm mutations in higher order
mutation testing.

3.5 Limitations of the review

This section presents the limitations of our SLR, in order
to assess the validity of the outcome. The findings of this
systematic review may have been mainly affected by the
following limitations: difficulty in finding all the relevant
studies (including grey literature); bias in the selection of
the reviewed papers; inaccuracy in data extraction; inaccu-
racy in classifying the reported approaches; inaccuracy in
assigning scores to each study of each element for the qual-
ity assessment criteria; and possible misinterpretations due
to the fact that English is not the native language of the
authors.

Finding all the relevant papers is known to be one of



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 1, JANUARY 2014 (PREPRINT V.2) 30

the major problems of systematic literature reviews [42].
In this case, we used an automated search of five main
sources. However, we did not look into every possible
source. The chosen databases were selected on the basis
of the experiences shared by other groups [31], [41], [42].

Our search strings were designed to find the maximum
number of known approaches towards EMP but it is still
possible that we have left out the studies which might
describe their subject in terms other than “equivalent
mutant”.

Due to the growing interest and the number of pub-
lications in the research area of mutation testing, some
relevant papers may have been omitted. However, like
other researchers of SLR, we are confident that it is not a
systematic error [26], [35]

In addition, we found it to be a good practice to include
grey literature search in order to make sure we covered
non-published work to some extent [39]. For that reason,
when considering grey literature, we took a large number
of sources into account (e.g. Google Scholar, the personal
webpages of authors and snowball sampling). The final
step was to contact all relevant authors to review our list
of primary studies.

In order to avoid subjective bias, it is helpful to follow
the best practices suggested by the SLR practitioners.
For example, it is recommended that three researchers be
involved in the literature review process [5]. For both the
screening and data extraction phases three people were
involved in order to avoid subjective bias and to resolve
doubts and discrepancies.

To ensure that the selection process during the detailed
assessment of the papers’ full text was entirely indepen-
dent, we recorded the motivations for its inclusion or
exclusion; then we verified the findings according to the
inclusion and exclusion criteria from the SLR protocol.
During full text screening we had some discrepancies, e.g.
an article by Mresa and Botacci [55] was initially excluded
by one of the researchers but we finally decided to include
it due to the description of selective mutation from the
perspective of the equivalent mutant problem.

The process of classifying the approaches towards EMP,
as well as classifying the maturity (theoretical ideas, proofs
of concept and empirically evaluated solutions), involved
subjective decisions on the part of the researchers. To
minimize these limitations, whenever there was a doubt on
how to classify a particular paper, we discussed the case
in order to resolve all discrepancies and doubts. During
the data extraction phase we found several papers which
lacked sufficient details regarding method effectiveness,
i.e. in our sample of 22 papers only 8 papers provided
details regarding the method’s effectiveness. Due to that
limitation, we were unable to compare methods and offer
a complete view of their effectiveness.

Since English is not the native language of any of the
researchers involved in this study, there is a risk that some
of the papers have been misinterpreted during any of the
stages of the performed literature review. On the other
hand, all the decisions and results were checked by all of

the authors.

3.6 Conclusions of the systematic review
The first part of the paper provided a detailed review of
the EMP area. As has been shown, the last twenty years
have witnessed a particularly large increase in the number
of approaches on how to solve the EMP, with many of
them in an advanced maturity stage.

So far, the paper has identified the existing methods
for EMP and provided data in order to highlight the
growth of the number of papers. The collected data also
offer suggestions on how to improve these techniques. In
addition, we have proposed a detailed categorization of the
existing approaches, i.e. detecting, suggesting and avoiding
equivalent mutant generation.

One contribution of our SLR, in comparison to Jia
and Harman’s survey [31], is a more complete list of the
existing solutions for the equivalent mutant problem. With
a thorough analysis of the available sources, including
coming into contact with all relevant authors and scanning
their personal websites, more methods have been iden-
tified. We have investigated avoiding equivalent mutant
generation techniques as an additional group of approaches
and found some omitted methods in other categories.
Obviously, by focusing only on the equivalent mutant
problem and having more delimited research questions,
our study consequently supplies more detailed results from
the EMP perspective. It is important to mention, though,
that taking a subset of Jia and Harman’s results regarding
EMP will not give as complete a view on EMP as our SLR
actually does.

The most promising technique for overcoming EMP
seems to be higher order mutation (HOM) in general,
and second order mutation (SOM) in particular. SOM has
potential advantages to be of benefit for mutation testing
tools, e.g. reducing the number of equivalent mutants [30],
[57], [63] and reducing test effort (testing time) due to a
reduced number of produced second order mutants [30],
[63]. Furthermore, the manual assessment of mutant equiv-
alence in the case of second order mutants should be
fast. If the first of two first order mutants (combined to
produce a second order mutant) is non-equivalent then it
is very likely that the second order mutant will be non-
equivalent too [65, Table I]. Hence, for the remaining part
of the paper, we will focus on the SOM testing strategies,
present implementations of the SOM strategies in the
Judy mutation testing tool for Java [52], and empirically
evaluate those implementations.

4 Higher order mutation testing strategies
Higher order mutation testing was initially introduced in
the context of the mutant coupling effect in 1992 by Offutt.
Offutt showed that “the set of test data developed for
FOMs actually killed a higher percentage of mutants when
applied to SOMs” [57].

Jia and Harman [30] distinguished between six types of
HOMs and created a categorization of HOMs. They intro-
duced the concept of subsuming and strongly subsuming
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higher order mutants (subsuming HOMs are harder to kill
than FOMs from which they are constructed). The authors
suggested that it might be preferable to replace constituent
FOMs with a single HOM as a cost reduction technique. In
particular, strongly subsuming HOMs are highly valuable
to the mutation testing process. They are only killed by
a subset of the intersection of test cases which kill each
constituent FOM. As we may see via analysis of the types
of HOMs discussed by Jia and Harman [30], there is no
simple relation between killabilities (defined as how hard
it is to kill the mutant) of HOM and the FOMs the HOM
is constructed from. Jia and Harman also concluded that
“the numbers of strongly subsuming HOMs is high and
introduced a search-based optimization approach to select
valuable HOMs” [30].

It is also worth mentioning that there is some empirical
evidence to suggest that the majority of real faults are
complex faults [16], [66]. A complex fault is a fault that
cannot be fixed by making a single change to a source
statement [57]. Such complex faults could only be simu-
lated by higher order mutation [23]. The empirical results
by Purushothaman and Perry [66] also reveal that there is
less than 4 percent probability that a one-line change will
introduce a fault in the code. All of those arguments make
HOM an interesting alternative to evaluate to FOM.

Langdon et al. [44] applied multi objective Pareto op-
timal genetic programming to a generation of HOMs.
Their algorithm evolves mutant programs according to
two fitness functions: semantic difference and syntactic
difference. In their experiment, they found realistic HOMs
which are harder to kill as compared with first order
mutants.

The opposite approach to selecting an optimal set of
HOMs, according to the results from the mutation anal-
ysis of FOMs, is a technique used by Polo et al. [65].
They introduced three different algorithms (Last2First,
DifferentOperators, and RandomMix) to combine FOMs
to generate second order mutants (SOMs). Empirical re-
sults suggest that applying SOMs reduced the number of
mutants by approximately 50%, without much decrease in
the quality of the test suite.

Algorithms from the study by Polo et al. [65] were
further investigated by Papadakis and Malevris [63], in
particular, from the perspective of EMP. The results of
their empirical study are promising: equivalent mutant
reduction between 85.65–87.77% and fault detection abil-
ity loss from 11.45–14.57%. They indicate that SOMs can
significantly decrease the number of introduced equivalent
mutants and, because of approximately 50% mutants re-
duction, be a valid cost effective alternative.

Kintis et al. [37] presented another empirical study of
higher order mutation testing strategies. They focused
on the fact that SOMs achieve higher collateral coverage
for strong mutation as compared with third or higher
order mutants. A set of new SOM testing strategies was
introduced and evaluated. The authors obtained the most
promising results using hybrid strategies. Equivalent mu-
tant reduction varied between 65.5% for HDom(50%)

and 86.8% for the SDomF strategy, with a loss of test
effectiveness from just 1.75% for HDom(50%) to 4.2% for
SDomF .

The short verbal description of algorithms given by
Polo et al. [65] appears to be open to interpretation. As
a result, there is no guarantee that our versions of the
Last2First and RandomMix algorithms act in exactly the
same manner as proposed by Polo et al. That sounds like a
disadvantage but, fortunately, appears to be an advantage
as well, because our version of the DifferentOperators
algorithm (called JudyDiffOp) not only significantly dif-
fers from the original one but also outperforms Polo’s et
al. version. To help other researchers and practitioners
replicate our study, we decided to include in the paper
a detailed pseudo-code of the algorithms evaluated in our
study (Algorithms 1-4).

The first algorithm proposed by Polo et al. [65] is the
Last2First algorithm. It needs the list of first-order mu-
tants in the order in which they were generated. Last2First
combines the first mutant with the last, then the second
with the next-to-last, and so on. Each first-order mutant is
used once, except when the number of first-order mutants
is odd. In that case, one mutant is used twice. The number
of generated second-order mutants is reduced to half of
the number of first-order mutants. The pseudo-code of the
Last2First algorithm is presented as Algorithm 1.

Algorithm 1 Last2First(program, operators[ ]).
1: LET firstOrderMutants be an empty list
2: FOR ALL operator in operators
3: mutationP oints[] ⇐ operator.countMutationP oints

(program)
4: FOR ALL point in mutationP oints
5: possibleMutations[] =

operator.countP ossibleMutations(program, point)
6: FOR EACH possibleMutant in possibleMutations

DO
7: newMutant ⇐ operator.mutate(program, point,

possibleMutant)
8: firstOrderMutants ⇐ newMutant
9: END FOR
10: END FOR
11: END FOR
12: LET secondOrderMutants be an empty list
13: WHILE firstOrderMutants.size > 1 DO
14: fom1 ⇐ firstOrderMutantsÕlast
15: firstOrderMutants.remove(fom1)
16: fom2 ⇐ firstOrderMutantsÕfirst
17: IF firstOrderMutants.size 6= 2 THEN
18: firstOrderMutants.remove(fom2)
19: END IF
20: operator ⇐ fom2Õoperator
21: newMutant ⇐ operator.mutate(fom1Õprogram,

fom2Õpoint, fom2ÕpossibleMutant)
22: secondOrderMutants ⇐ newMutant
23: END WHILE
24: RETURN secondOrderMutants

In the DifferentOperators strategy the combination of
first-order mutants is made by selecting pairs that use
mutants produced by different operators. The short verbal
description of algorithms given by Polo et al. [65] leads to
a situation where that can be interpreted differently. In
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the version implemented in the Judy mutation testing tool
(hence called JudyDiffOp) each first-order mutant is used
as little as possible (i.e. both constituent FOMs are used
only once for producing a SOM). Our version gives at least
a 50% mutants reduction and we find it hard to obtain
the level of reduction as achieved by [63], [65]; however, it
appears that our version outperforms Polo’s version. The
pseudo-code of the JudyDiffOp algorithm is presented as
Algorithm 2.

Algorithm 2 JudyDiffOp(program, operators[ ]).
1: LET firstOrderMutants be an empty list
2: FOR ALL operator in operators
3: mutationP oints[] ⇐ operator.countMutationP oints

(program)
4: FOR ALL point in mutationP oints
5: possibleMutations[] =

operator.countP ossibleMutations(program,
point)

6: FOR EACH possibleMutant in possibleMutations
DO

7: newMutant ⇐ operator.mutate(program, point,
possibleMutant)

8: firstOrderMutants ⇐ newMutant
9: END FOR
10: END FOR
11: END FOR
12: LET secondOrderMutants be an empty list
13: WHILE firstOrderMutants.size > 1 DO
14: fom1 ⇐ firstOrderMutants→first
15: firstOrderMutants.remove(fom1)
16: WHILE firstOrderMutants.size > 0 DO
17: fom2 ⇐ firstOrderMutants→first
18: IF fom1→operator 6= fom2→operator THEN
19: operator ⇐ fom2→operator
20: newMutant ⇐ operator.mutate(fom1→program,

fom2→point, fom2→possibleMutant)
21: secondOrderMutants ⇐ newMutant
22: firstOrderMutants.remove(fom2)
23: BREAK
24: END IF
25: END WHILE
26: END WHILE
27: RETURN secondOrderMutants

RandomMix is the last algorithm from the set proposed
by Polo et al. [65]. To allow for a comparison of the
two previous algorithms with pure chance, that algorithm
combines any two first-order mutants, using each mutant
once. Similarly to Last2First, when the number of first-
order mutants is odd, one of the mutants is used twice. By
definition RandomMix reduces the number of generated
second-order mutants by half, with respect to first-order
mutants. The pseudo-code of the RandomMix algorithm is
presented as Algorithm 3.

In contrast to the Last2First algorithm, we would like
to introduce the NeighPair strategy. It combines FOMs
which are as close to each other as possible, i.e. a list of mu-
tation points for FOMs is created and neighbouring pairs
are selected to construct SOMs. The number of generated
SOMs is, thus, reduced by half. The pseudo-code of the
NeighPair algorithm is presented as Algorithm 4.

It is also worth remembering that our SOM strategies

Algorithm 3 RandomMix(program, operators[ ]).
1: LET firstOrderMutants be an empty list
2: FOR ALL operator in operators
3: mutationP oints[] ⇐ operator.countMutationP oints

(program)
4: FOR ALL point in mutationP oints
5: possibleMutations[] =

operator.countP ossibleMutations(program, point)
6: FOR EACH possibleMutant in possibleMutations

DO
7: newMutant ⇐ operator.mutate(program, point,

possibleMutant)
8: firstOrderMutants ⇐ newMutant
9: END FOR
10: END FOR
11: END FOR
12: LET secondOrderMutants be an empty list
13: WHILE firstOrderMutants.size > 1 DO
14: fom1 ⇐ firstOrderMutantsÕfirst
15: firstOrderMutants.remove(fom1)
16: fom2 ⇐ firstOrderMutantsÕrandom
17: IF firstOrderMutants.size 6= 2 THEN
18: firstOrderMutants.remove(fom2)
19: END IF
20: operator ⇐ fom2Õoperator
21: newMutant ⇐ operator.mutate(fom1Õprogram,

fom2Õpoint, fom2ÕpossibleMutant)
22: secondOrderMutants ⇐ newMutant
23: END WHILE
24: RETURN secondOrderMutants

Algorithm 4 NeighPair(program, operators[ ]).
1: LET firstOrderMutants be an empty list
2: FOR ALL operator in operators
3: mutationP oints[] ⇐ operator.countMutationP oints

(program)
4: FOR ALL point in mutationP oints
5: possibleMutations[] =

operator.countP ossibleMutations(program, point)
6: FOR EACH possibleMutant in possibleMutations

DO
7: newMutant ⇐ operator.mutate(program, point,

possibleMutant)
8: firstOrderMutants ⇐ newMutant
9: END FOR
10: END FOR
11: END FOR
12: LET secondOrderMutants be an empty list
13: WHILE firstOrderMutants.size > 1 DO
14: fom1 ⇐ firstOrderMutantsÕfirst
15: firstOrderMutants.remove(fom1)
16: fom2 ⇐ firstOrderMutantsÕfirst
17: IF firstOrderMutants.size 6= 2 THEN
18: firstOrderMutants.remove(fom2)
19: END IF
20: operator ⇐ fom2Õoperator
21: newMutant ⇐ operator.mutate(fom1Õprogram,

fom2Õpoint, fom2ÕpossibleMutant)
22: secondOrderMutants ⇐ newMutant
23: END WHILE
24: RETURN secondOrderMutants
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do not search for subsuming HOMs.

5 Experimental setup
The aim of the experiment was to answer the following
research questions:

• RQe1: What is the reduction in the number of
mutants for the SOM strategies as compared
with FOM?

• RQe2: What is the reduction in the number of
equivalent mutants for the SOM strategies as
compared with FOM?

• RQe3: What is the reduction in the number of
live mutants for the SOM strategies as com-
pared with FOM?

• RQe4: What is the relative change in mutation
scores for each of the investigated SOM strate-
gies as compared with FOM?

• RQe5: What is the reduction of mutation test-
ing time using the SOM strategies as compared
with FOM?

• RQe6: What is the potential reduction in the
time required to assess whether each of the
mutants is equivalent or non-equivalent?

5.1 Software under test (SUT)
In most of the papers [23], [29], [30], [37], [44], [63] related
to higher order mutant generation strategies the bench-
mark programs (SUT) were small (50–5,000 lines of code,
or LOC). Only Polo et al. [65] applied their strategies to a
SUT which had more than 10,000 lines of code. However,
the most important concern regards the scalability of
using mutation when we have thousands of classes. Solving
that is as much about automation (by means of mutation
testing tools which are able to smoothly integrate with
different software development infrastructures) as about
reducing the number of mutants (which we will discuss in
the paper). Judy mutation testing tool for Java helped us
to deal with both concerns.

For our experiment, we selected four open source
projects, which are larger (in terms of lines of code) than
those analysed by other researchers [23], [29], [30], [37],
[44], [63], have high quality test cases and high branch
coverage. We assumed that such programs would represent
software developed in the industry and allow us to draw
unbiased conclusions to some extent. Table 2 presents our
software under test. Apart from the LOC, branch coverage,
number of classes and test cases, we also included the
mutation score indicator (MSI) [47], [48], [49], which is a
quantitative measure of the quality of test cases, defined as
the ratio of killed mutants to all mutants (see Equation 2).

This definition is different from mutation score (MS), as
MSI ignores equivalent mutants. Hence, MSI can be seen
as the lower bound on mutation score.

The following projects have been selected for the exper-
iment:

• Barbecue3 – is a library that provides the means to
create barcodes for Java applications.

• Apache Commons IO4 – is a library of utilities to
assist with developing input/output functionality.

• Apache Commons Lang5 – provides a host of helper
utilities for the standard java.lang package, includ-
ing operations on strings, collections, dates, etc.

• Apache Commons Math6 – is a wide set of utilities for
mathematical and statistical operations.

5.2 Supporting tool
For the experiment we have used Judy [52], a mutation
testing tool for Java, which supports all three mutation
testing phases: mutant generation, mutant execution and
mutation analysis. We have extended the latest version of
Judy [53] with second-order mutation testing mechanisms.
The list and description of all 48 mutation operators
available in Judy is presented in Table 3.

5.3 Experimental procedure
In the first phase we implemented all of the investigated
strategies in Judy. Next, four 7–80 KLOC, open source
programs were chosen (see Section 5.1) for an empirical
evaluation. We first applied FOM testing on each SUT. In
this way the number of all generated mutants, the number
of all live mutants, and the MSI metric were obtained.
Then, the comparison was performed with each SOM
strategy. Each of the examined strategies were applied to
each SUT, i.e. for four programs we applied five strategies
(i.e. four SOM strategies as well as the FOM strategy).

To answer the second research question, all of the results
were verified manually in order to identify possible equiv-
alent mutants. However, determining the exact number of
equivalent mutants was not the purpose of this study. In
fact, it is a tedious and very time-consuming task [72], due
to the large number of mutants in real world projects and
the time necessary to assess whether each of the mutants is
equivalent or non-equivalent (about 15 minutes according
to Schuler and Zeller [72]). As the cost of manually collect-
ing data for too many mutants is prohibitive, we needed
to set a sample size out of convenience, i.e. we decided
to manually analyse 50 randomly selected live mutants
per strategy per SUT. As a result, we manually classified
1,000 mutants (five mutation strategies × four SUT ×
50 mutants per sample) as equivalent or non-equivalent.
During this process we kept in mind the characteristics of
second order mutants’ constituents, as introduced by Polo
et al. [65, Table I].

The next section presents the comparisons regarding the
reduction in the number of mutants (to answer RQe1), the
reduction in the number of equivalent mutants (RQe2),
the reduction in the number of live mutants (RQe3), the
relative change in mutation scores (RQe4), the reduction

3. http://barbecue.sourceforge.net/
4. http://commons.apache.org/io/
5. http://commons.apache.org/lang/
6. http://commons.apache.org/math/

http://barbecue.sourceforge.net/
http://commons.apache.org/io/
http://commons.apache.org/lang/
http://commons.apache.org/math/
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TABLE 2
Software under test.

Project LOC No. of
classes

No. of test
cases

Branch
coverage

MSI No. of
FOMs

Barbecue 7,413 59 21 50% 41% 1112
Commons IO 16,283 100 43 84% 84% 5983
Commons Lang 48,507 81 88 89% 72% 17833
Commons Math 80,023 406 221 95% 77% 21691

TABLE 3
Mutation operators available in Judy mutation testing tool.

AIR

AIR_ Add Replaces basic binary arithmetic instructions with ADD
AIR_ Div Replaces basic binary arithmetic instructions with DIV
AIR_ LeftOperand Replaces basic binary arithmetic instructions with their left operands
AIR_ Mul Replaces basic binary arithmetic instructions with MUL
AIR_ Rem Replaces basic binary arithmetic instructions with REM
AIR_ RightOperand Replaces basic binary arithmetic instructions with their right operands
AIR_ Sub Replaces basic binary arithmetic instructions with SUB

JIR

JIR_ Ifeq Replaces jump instructions with IFEQ (IF_ ICMPEQ, IF_ ACMPEQ)
JIR_ Ifge Replaces jump instructions with IFGE (IF_ ICMPGE)
JIR_ Ifgt Replaces jump instructions with IFGT (IF_ ICMPGT)
JIR_ Ifle Replaces jump instructions with IFLE (IF_ ICMPLE)
JIR_ Iflt Replaces jump instructions with IFLT (IF_ ICMPLT)
JIR_ Ifne Replaces jump instructions with IFNE (IF_ ICMPNE, IF_ ACMPNE)
JIR_ Ifnull Replaces jump instruction IFNULL with IFNONNULL and vice-versa

LIR

LIR_ And Replaces binary logical instructions with AND
LIR_ LeftOperand Replaces binary logical instructions with their left operands
LIR_ Or Replaces binary logical instructions with OR
LIR_ RightOperand Replaces binary logical instructions with their right operands
LIR_ Xor Replaces binary logical instructions with XOR

SIR
SIR_ LeftOperand Replaces shift instructions with their left operands
SIR_ Shl Replaces shift instructions with SHL
SIR_ Shr Replaces shift instructions with SHR
SIR_ Ushr Replaces shift instructions with USHR

Inheritance

IOD Deletes overriding method
IOP Relocates calls to overridden method
IOR Renames overridden method
IPC Deletes super constructor call
ISD Deletes super keyword before fields and methods calls
ISI Inserts super keyword before fields and methods calls

Polymorphism

OAC Changes order or number of arguments in method invocations
OMD Deletes overloading method declarations, one at a time
OMR Changes overloading method
PLD Changes local variable type to super class of original type
PNC Calls new with child class type
PPD Changes parameter type to super class of original type
PRV Changes operands of reference assignment

Java-Specific Features

EAM Changes an accessor method name to other compatible accessor method names
EMM Changes a modifier method name to other compatible modifier method names
EOA Replaces reference assignment with content assignment (clone) and vice-versa
EOC Replaces reference comparison with content comparison (equals) and vice-versa
JDC Deletes the implemented default constructor
JID Deletes field initialization
JTD Deletes this keyword when field has the same name as parameter
JTI Inserts this keyword when field has the same name as parameter

Jumble-Based [27], [74]
Arithmetics Mutates arithmetic instructions
Jumps Mutates conditional instructions
Returns Mutates return values
Increments Mutates increments

of time required for mutation testing (RQe5) and the
potential reduction in the time required to assess whether
each of the second order mutants is equivalent or non-
equivalent in comparison with first order mutants (RQe6).

6 Experimental results and analysis

The experimental results derived from the application of
the FOM testing and the four SOM testing strategies are
presented and analysed in this section.

6.1 Mutant reduction

For each of the analysed projects and investigated strate-
gies, the number of generated first order mutations was
compared with the number of produced second order mu-
tations. The results are presented in Table 4. Decreasing
the number of mutants (called mutants reduction) makes
the process of mutation testing more efficient, since exe-
cution time decreases.
RandomMix, Last2First and NeighPair strategies

achieved a reduction (approx. 50%) consistent with theory
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TABLE 4
Total number of mutants using First Order Mutation (FOM) and different Second Order Mutation (SOM) strategies.

Project name FOM SOM strategies:
RandomMix Last2First JudyDiffOp NeighPair

Barbecue 1,112 562 562 314 562
Commons IO 5,983 3,009 3,009 2,319 3,009
Commons Lang 17,833 8,930 8,930 6,452 8,930
Commons Math 21,691 10,498 10,498 9,252 10,498
Average reduction
with respect to FOM: 50.2% 50.2% 63.5% 50.2%

(see Section 4), as well as the results from the studies of
Polo et al. [65] and Papadakis and Malevris [63] (except,
of course, for the NeighPair algorithm, which has not been
previously evaluated). The highest mutant reduction was
obtained by the JudyDiffOp strategy. The explanation is
simple, the JudyDiffOp strategy by definition does not
create SOMs from two consecutive FOMs, if the latter
involve the same operator. Hence, the number of SOMs
created according to the JudyDiffOp strategy is less, and
the reduction is higher (i.e. well over 50%)..

It is worth noting that Papadakis and Malevris [63] only
achieved a 27.68% reduction on average. This discrepancy
in the results most likely stems from the differences in
the implementations of the algorithms. In our version of
the DifferentOperators algorithm (i.e. JudyDiffOp), both
constituent FOMs were used only once for producing a
SOM. This algorithm removes at least half the number
of generated mutants. Consequently, with this version of
DifferentOperators it is impossible to obtain mutant reduc-
tions at a level similar to Papadakis and Malevris [63]. Un-
fortunately, the authors of the original algorithm did not
make available its code or pseudo-code, only a plain-text
description, which is not precise enough to replicate their
version of the algorithm. We can still declare with cer-
tainty that our modified version of the DifferentOperators
algorithm (called JudyDiffOp) provides the highest mu-
tants reduction. (We have included the pseudo-code of our
implementation as Algorithms 1, 2, 3, and 4.)

On the basis of the empirical results (presented in this
section) and statistical analysis of mutants reduction (de-
scribed in detail in Appendix A1 [51]) one may come to
the conclusion labelled as Finding 1.

Finding 1: The second order mutation strategy
called JudyDiffOp significantly reduced the total num-
ber of generated mutants in comparison with the first
order mutation. The size of the effect was large and
in favour of JudyDiffOp.

Other findings are discussed in subsequent sections.

6.2 Equivalent mutant reduction
This section presents the achieved reductions of the intro-
duced equivalent mutants. Two of the authors manually

classified samples of live mutants. Following the experi-
mental procedure described in Section 5.3, 1000 mutants
were manually classified in total, i.e. 50 mutants for each
of the analysed SUT (Barbecue, Commons IO, Commons
Lang, Commons Math) and each of the analysed mutation
strategy (FOM, RandomMix SOM, Last2First SOM, Judy-
DiffOp SOM, NeighPair SOM). The obtained results are
shown in detail in Table 5. In each sample of 50 manually
classified unkilled mutants in the SUTs, we found between
11 (in Commons Math) and 33 (in Barbecue) equivalent
mutants using FOM, but only 7-9 equivalent mutants
applying the RandomMix strategy, 5-6 equivalent mutants
applying the Last2First strategy, 4-6 equivalent mutants
applying the JudyDiffOp strategy, and 11-25 equivalent
mutants applying the NeighPair strategy. Our results are
in line with the results obtained by Schuler and Zeller [69],
[72]. They found, by manual assessment of 140 uncaught
mutations in seven Java programs, that 45% of all un-
caught mutations were equivalent. We also agree with
their explanation, which applies to our work as well, that
this high number, although it may come as a surprise,
comes from the fact that several non-equivalent mutants
are already caught by the test suite.

Equivalent mutant reduction with respect to the FOM
strategy is presented in Figure 5. This figure brings out
more interesting findings and leads to four valuable con-
clusions. First of all, we should admit that all three strate-
gies proposed by Polo et al. [65] reduce the number of
equivalent mutants. By applying them to larger and more
complex projects than in earlier publications, we provide
even better indications of their value.

TABLE 5
Number of equivalent mutants in a sample (50 unkilled

mutants) using First Order Mutation (FOM) and different
Second Order Mutation (SOM) strategies.

Project FOM SOM strategies:
name Random Last2 Judy Neigh

Mix First DiffOp Pair
Barbecue 33 9 5 6 25
Commons IO 13 7 6 4 14
Commons Lang 12 7 6 5 14
Commons Math 11 8 6 5 11
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Fig. 5. Equivalent mutant reduction with respect to first order mutation.

For NeighPair—the new algorithm proposed by us—
we obtained disappointing results. Equivalent mutant re-
duction was observable only for Barbecue. For the Com-
mons IO and Lang projects, that strategy generated more
equivalent mutants than the FOM strategy. From the
perspective of equivalent mutant reduction, the NeighPair
strategy generated the worst results.

Our second algorithm, JudyDiffOp, is based on the
DifferentOperators idea by Polo et al. [65]. The algorithm
generates the least equivalent mutants and from the per-
spective of the equivalent mutant problem seems to be
the best choice. The results published by Papadakis and
Malevris [63] are in contradiction with our results. In
their study Last2First has the highest reduction (87.77%),
followed by RandomMix (87.11%) and, finally, Different-
Operators (85.65%). In our study, the differences between
reductions obtained for each strategy are not as small. A
plausible explanation for the aforementioned differences
comes from possible discrepancies between the textual
descriptions provided by Polo et al. [65] and the algorithms
which are described in the pseudo-code (Algorithms 1–4)
and implemented by us.

The last conclusion is that the highest reduction was
achieved for Barbecue; the smallest project (in terms of
lines of code), with the lowest branch coverage and lowest
MSI. The results obtained for Barbecue are close to the
results presented by Papadakis and Malevris [63], who
only analysed small projects (7 projects with a number
of LOC below or equal to 513 and one project with LOC
below 6 KLOC). They also achieved approximately 80%
less equivalent mutants. It was observed that equivalent
mutant reduction decreases with the increase in LOC (see
Figure 6) or branch coverage (see Figure 7) for all the
strategies except NeighPair.

The observed results are in line with our expectations

(as the SOM approach hides equivalent mutants behind
killable mutants or, looking from a different perspective,
excludes equivalent mutants by combining them with the
non-equivalent ones) but SOM strategies still differ be-
tween each other with regard to the number of equivalent
mutants and this information can be of practical impor-
tance.

On the basis of the empirical results (presented in this
section) and statistical analysis of the equivalent mutants
reduction (described in detail in Appendix A2 [51]) one
may come to the conclusion labelled as Finding 2.

Finding 2: The second order mutation significantly
reduced the number of equivalent mutants in compar-
ison to the first order mutation. The size of the effect
was medium [67].

Other findings, e.g. related to the loss in testing
strength, are discussed in subsequent sections.

6.3 Live mutant reduction
Table 6 presents the numbers of not killed (live) mutants
which had to be classified as equivalent or non-equivalent.
It is fairly easy to observe that the JudyDiffOp exhibits
the best results among these four algorithms.

On the basis of the empirical results (presented in this
section) and statistical analysis of the live mutants reduc-
tion (described in detail in Appendix A3 [51]) one may
come to the conclusion labelled as Finding 3.

Finding 3: The second order mutation strategy,
called JudyDiffOp, significantly reduced the number of
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Fig. 6. The ratio of equivalent mutant reduction to lines of
code in the project.
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Fig. 7. The ratio of equivalent mutant reduction to the
project’s branch coverage.

TABLE 6
Number of live (i.e. not killed) mutants in the population
using First Order Mutation (FOM) and different Second

Order Mutation (SOM) strategies.

Project FOM SOM strategies:
name Random Last2 Judy Neigh

Mix First DiffOp Pair
Barbecue 661 289 282 80 303
Commons IO 972 296 274 262 446
Commons Lang 4973 979 945 699 1404
Commons Math 4974 664 932 753 1115

not killed mutants in comparison with the first order
mutation. The size of the effect was large.

The magnitude of the observed effect is an indicator of
its practical importance which, in turn, comes from the
extremely high cost of manual classification of not killed
mutants (as equivalent or non-equivalent).

6.4 Relative change in mutation score estimations
We measured the relative change in mutation score estima-
tions (RCMSE) for each SOM (HOM) strategy in com-
parison to FOM. It allowed us to compare the FOM and
the SOM results in mutation score estimations employing
results from manual classification of 1000 live mutants
as equivalent or non-equivalent. The detailed results of
the manual classification of live mutants are presented in
Section 6.2, while the experimental procedure (including
sampling strategy) is described in Section 5.3.

The basic terms needed to define our RCMSE metric
(the relative change in mutation score estimations) are
as follows: MK is the number of killed mutants in the
analysed mutation strategy (FOM or SOM), MT is the
total number of produced mutants (i.e. killed and live
mutants added up: MK + ML) in the analysed mutation
strategy (FOM or SOM) and M̂E is the estimated number
of equivalent mutants in the analysed mutation strategy

(FOM or SOM). The estimated number of equivalent
mutants (M̂E) comes from the number of live mutants
(ML) and the ratio of equivalent mutants in the manu-
ally classified sample (REsample). The ratio of equivalent
mutants in the manually classified sample is defined as
follows: REsample = MEsample

SampleSize , where MEsample is the
number of equivalent mutants in the manually classified
sample, while SampleSize is the number of mutants in
the each manually classified sample, i.e. fifty mutants per
each of the analysed projects and each of the analysed
mutation strategy.

Let M̂SF OM and M̂Ss be the estimations of the muta-
tion score for the FOM and SOM strategies, respectively,
obtained from the following equation

(3)

M̂S = MK

MT − M̂E

= MK

MT − (MA ×REsample)

= MK

MT − (ML × MEsample

SampleSize )

Having all the basic ingredients defined we may define
our RCMSE metric as follows:

RCMSE = M̂Ss − M̂SF OM

M̂SF OM

(4)

Both, FOMs and SOMs were generated by using the Judy
mutation testing tool for Java. Mutation operators imple-
mented in Judy are presented in detail in Table 3. It is
worth mentioning that removing all equivalent mutants
first is not feasible if we analyse real world projects, i.e.
the large number of mutants, as we did.

Our RCMSE metric is expressed as a ratio and is a
unitless number. By multiplying this ratio by 100 it can
be expressed as percentage, so the term percentage change
in mutations score estimations may also be used.

Table 7 presents results regarding RCMSE and con-
firms (as we expected) that there is some difference in
mutation score estimations between FOM and SOMs.
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TABLE 7
Relative change in mutation score estimations

Project FOM SOM strategies:
name Random Last2 Judy Neigh

Mix First DiffOp Pair
Barbecue 0 -.198 -.214 .152 -.055
Commons IO 0 .045 .051 .024 .016
Commons Lang 0 .170 .172 .166 .141
Commons Math 0 .166 .135 .141 .128

Finding 4: Second order mutation strategies af-
fected mutation score estimations and, as a result,
RCMSE defined by Equation 4. In most of the cases
mutation score estimations were higher for the SOM
strategies than for FOM.

This finding can be seen as a disadvantage of the SOM
strategies, as it may suggest that our second order mu-
tants could be easier to kill than first order mutants.
Furthermore, the relative change grows over 0.1 in 11 of 16
subjects. Therefore, we will further investigate this issue
in Section 6.5.

6.5 Relative change in mutation score indicators
We measured the relative change in mutation score in-
dicators for the SOM strategy (or the HOM strategy in
general) in comparison to FOM. We named the metric
the relative change in mutation score indicators (RCMSI)
and defined as follows:

RCMSI = MSIs −MSIF OM

MSIF OM
(5)

whereMSIF OM is the mutation score indicator (see Equa-
tion 2) calculated by means of the classic FOM strategy,
while MSIs is the mutation score indicator calculated by
means of the analysed SOM/HOM strategy (s).

Our RCMSI metric is also expressed as a ratio and is
a unitless number. By multiplying this ratio by 100 it can
be expressed as percentage, so the term percentage change
in mutations score indicators may also be used. Summa-
rizing, our RCMSI metric allows us to compare the FOM
and the SOM results in mutation score indicators.

Table 8 presents results regarding RCMSI and confirms
(as we expected) that there is some difference in mutation
score indicators between FOM and SOMs.

Finding 5: Second order mutation strategies af-
fected mutation score indicators and, as a result,
RCMSI defined by Equation 5. In all of the cases
mutation score indicators were higher for the SOM
strategies than for FOM.

The obtained results suggest that unit tests included in
the analysed software projects killed proportionally fewer

TABLE 8
Relative change in mutation score indicators

Project FOM SOM strategies:
name Random Last2 Judy Neigh

Mix First DiffOp Pair
Barbecue 0 .198 .228 .837 .136
Commons IO 0 .077 .085 .059 .017
Commons Lang 0 .235 .240 .236 .169
Commons Math 0 .215 .182 .192 .160

first order mutants than second order mutants in all of
the projects and all of the SOM strategies. Furthermore,
the relative change grows over 0.1 in 12 of 16 subjects.
These results strengthen the conviction from Section 6.4
that our second order mutants appear to be easier to
kill then first order mutants. Hence, further research will
be focused on obtaining better higher order mutants. A
promising way to achieve that goal, suggested by Harman
et al. [23], [29], [30], [45], is to search for the HOMs which
can subsume their first order counterparts (a subsuming
HOM is harder to kill than the FOMs from which it is
constructed), thereby reducing test effort without reducing
test effectiveness.

6.6 Time of mutation testing process
One of the main reasons why mutation testing is not used
in industrial projects is the fact that it is a highly time-
consuming process. Fortunately, in our case, the number
of generated mutants decreased by 50–72% due to the
applied SOM strategies (72% was obtained in Barbecue
project when the JudyDiffOp SOM strategy was used, see
Table 4). As a result, SOM caused a useful reduction in the
time needed for testing mutants even though there is some
overhead for generating the second order mutants instead
of the first order ones. Fortunately, SOM generation time
accounts for only about 3% of the total time. The total
time spent on the mutation testing process is presented in
Table 9.

TABLE 9
Time spent on mutation testing process in seconds.

Project FOM SOM strategies:
name Random Last2 Judy Neigh

Mix First DiffOp Pair
Barbecue 18.83 8.85 9.25 5.95 8.81
Comm. IO 315.32 178.97 231.00 132.27 219.43
Comm. Lang 1207.31 600.86 504.03 359.84 536.17
Comm. Math 1727.16 642.59 688.46 498.75 534.42

The overall time for running the JudyDiffOp SOM strat-
egy dropped 67% on average, as compared with first order
mutation. It may be noticed that those results are strictly
related to the reduction of generated mutants as presented
in Table 4, e.g. the average reduction of mutants in the
case of the JudyDiffOp SOM strategy equals 63.5%.
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On the basis of the empirical results (presented in this
section) and statistical analysis of the mutation testing
time (described in detail in Appendix A4 [51]) one may
arrive at the conclusion labelled as Finding 6.

Finding 6: The second order mutation strategy
called JudyDiffOp significantly reduced the mutation
testing time in comparison with first order mutation.
The size of the effect was large.

6.7 Manual mutants classification time
The time required for manual assessment (whether the
mutant is equivalent or non-equivalent) is well known as
one of the vital problems in mutation testing. As observed
by Schuler and Zeller [72], it takes on average 14 minutes
and 28 seconds to assess one single first order mutation
for equivalence. We have measured the classification time
for FOMs as well as SOMs, as an extension of Schuler and
Zeller’s study and, as in their investigation, the variance
was high. The minimum classification time for FOM was
2 minutes 5 seconds, while the maximum was 26 minutes
40 seconds. For SOMs, the boundary classification time
was 55 seconds and 26 minutes. The obtained results are
shown in Table 10. We assessed 200 FOMs (sample size of
50 mutants for each of the four projects) and 800 SOMs
(sample size of 50 mutants; four strategies for each of the
four projects—all randomly selected).

TABLE 10
FOMs and SOMs classification times [min:sec].

Project FOM SOM strategies:
name Random Last2 Judy Neigh SOM

Mix First DiffOp Pair Ave

Barbecue 11:49 10:13 10:08 09:34 09:59 09:58
Comm. IO 12:56 09:44 08:57 09:26 09:26 09:23
Comm. Lang 11:13 08:16 08:32 08:04 09:42 08:39
Comm. Math 13:10 10:02 10:40 09:34 11:21 10:24
Average time 12:17 09:34 09:34 09:09 10:07 09:36

One can easily see that the average classification time for
the SOM strategies is shorter than for FOM. This might
be explained as the effect of the second order mutations’
characteristics, as described in detail by Polo et al. [65,
Table I], e.g. if one of the constituent first order mutations
involves examining large parts of the program we can,
instead, focus on the second constituent FOM which might
be easier to assess. According to Polo et al. [65], the combi-
nation of two first-order non-equivalent mutants produces,
in general, one second-order non-equivalent mutant. The
exception to that rule is possible, but extremely rare.
Furthermore, if one of the two first-order mutants is non-
equivalent, then the second order mutant is non-equivalent
as well (see [65, Table I]). As a result, the time spent on
the manual assessment of mutants may be minimized in
the case of a second-order mutation.

On the basis of the empirical results (presented in this
section) and statistical analysis of manual mutants’ clas-
sification times (described in detail in Appendix A5 [51]),
one may come to the conclusion labelled as Finding 7.

Finding 7: The second-order mutation strategy
significantly reduced the time needed for the man-
ual classification of mutants as equivalent or non-
equivalent in comparison with the first-order muta-
tion. The size of the effect was medium. A more
detailed analysis shows that each of the second-order
mutation strategies (i.e. JudyDiffOp, RandomMix,
Last2First, NeighPair) significantly reduced the time
needed for the manual classification of mutants as
equivalent or non-equivalent in comparison with the
first-order mutation, while the size of the effects were
considered small to medium.

6.8 Summary of the experimental results
The experiment indicated strongly that SOM in general
and JudyDiffOp strategy in particular increase most the
efficiency of mutation testing and provide the best results
in all but one (the relative change in mutation scores
measured via RCMSE and RCMSI) of the investigated
areas:

1) There was a significant difference in the total number
of mutants generated using the FOM and the four
SOM strategies (χ2(4) = 16.00, p < .001). Using
JudyDiffOp SOM strategy (as well as the other anal-
ysed SOM strategies) instead of FOM significantly
reduced the total number of mutants, while the effect
size was large (r = .65, Â = 1).

2) There was a significant association between the
type of mutation strategy (i.e. FOM vs. SOM) and
whether the generated mutant was equivalent or not
(χ2(1) = 30.066, p < .001), while the effect size was
medium (the odds ratio was 2.57).

3) The number of not killed mutants was significantly
affected by mutation strategy applied (χ2(4) =
14.20, p < .001). JudyDiffOp SOM strategy signif-
icantly reduced the number of not killed mutants in
comparison to FOM, while the effect size was large
(r = .65, Â = 1).

4) The SOM strategies negatively affected mutation
scores measured via relative change in mutation
score estimations (RCMSE) and relative change in
mutation score indicators (RCMSI), so there is still
an area for improvement of the SOM strategies.

5) The mutation testing time was significantly affected
by the mutation strategy applied (χ2(4) = 13.60,
p = .001). JudyDiffOp SOM strategy significantly
reduced the mutation testing time in comparison
with FOM, while the effect size was large (r = .65,
Â = 1).

6) Using SOM instead of FOM significantly reduced
the time needed for manual classification of mu-
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tants as equivalent or non-equivalent (t(998) = 6.68,
p < .001), while the effect size was medium (r = .21).

A visual summary of the experimental results related
to the number of mutants is presented in Figure 8. The
numbers of killed and live mutants were added up across
the four analysed projects. The numbers of equivalent
and non-equivalent mutants in the analysed projects are
estimated on the basis of manually classified samples (1000
mutants were classified manually).

0 10000 20000 30000 40000 50000

FOM

RandomMix

Last2First

JudyDiffOp

NeighPair

Number of killed mutants in analyzed projects

Est. number of live non-equivalent mutants in analysed projects

Est. number of live equivalent mutants in analysed projects

Fig. 8. Comparison of mutation strategies with regard to the
number of mutants in four analysed projects

7 Threats to validity
When conducting an experiment, there are always threats
to the validity of the results (the validity threats for the
systematic literature review have already been discussed
separately in Section 3.5). Here, the main threats are
discussed on the basis of the list of threats by Cook
and Campbell [10] and later described in the context of
software engineering by, for example, Wohlin et al. [77]
and Madeyski [50].

The internal validity of the experiment concerns our
ability to draw conclusions about the connections between
our independent and dependent variables [77]. There may
be threats related to the manual assessment of mutants’
equivalence. This part might also be subject to errors and
bias. To reduce that threat, the manual cross verification
of the obtained results was undertaken between two re-
searchers.
External validity refers to our ability to generalize the

results of our study [77]. We examined 50 sample mu-
tations for each strategy and for each of the four non-
trivial open source projects. The code size of the analysed
projects is larger than in other studies (as shown in Sec-
tion 5.1).

Even though the analysed projects have disparate char-
acteristics, there is no guarantee that the same results
will be obtained for other, very different programs (e.g.
with poor code coverage or low fault detection effective-
ness measured by the mutation score indicator). However,
taking into account the size of the effects and practical
implications of the presented results, the relevance to

industry, which is a part of external validity [50], seems
to be plausible.

Threats to construct validity are “the degree to which
the independent and the dependent variables are accu-
rately measured by the measurement instrument used
in the experiment” [77]. The counting of generated mu-
tants was fully automated in the Judy mutation test-
ing tool. Regarding the manual assessment of mutants’
equivalence, the ultimate measure of whether a mutant
is non-equivalent is whether or not we are able to write
a test which detects a mutation [72]. Preventing possible
diffusion or imitation of treatments (i.e. mutation testing
strategies) was never an issue since Judy mutation testing
tool prevents it.

Threats to the statistical conclusion “refers to the appro-
priate use of statistics to infer whether the presumed inde-
pendent and dependent variables covary” [10]. To address
the risk of low statistical power, we selected a sample size
of 50 mutants for each of the four analysed projects and
five strategies (1,000 manually classified mutants in total).
Moreover, for the sampling method, true random numbers
were used. Even though it would have been appropriate
to choose a more sophisticated sampling technique with
a larger sample size, a researcher has to strike a balance
between generalizability and statistical power [3], as well
as the effort. Violating the assumptions of statistical tests
was minimized by means of non-parametric statistics, as
well as the careful checking of the assumptions in cases
where parametric tests were used (see Appendix A [51]
for further discussion of issues related to statistical tests).

8 Discussion
We interpret our results in such a way that using second
order mutant generation strategies, in particular the Judy-
DiffOp algorithm, has a positive influence on effective-
ness in solving the equivalent mutant problem. However,
an alternative explanation of the results could be that
the SOM approach hides some of the equivalent mutants
behind killable mutants. This is something which needs
further research as it may mean that using SOMs to reduce
the number of equivalent mutants is not cost effective.
Moreover, the authors have discovered that manual classi-
fication of second order mutants, against its equivalence,
takes less time than with first order mutants.

One contribution of the SLR in comparison to Jia and
Harman’s survey [31] is what we believe to be a more
complete list of existing solutions for the equivalent mu-
tant problem in particular. With a much deeper review
of available sources, including coming into contact with
all relevant authors and scanning their personal websites,
more methods were identified. We have, in particular,
investigated the idea of avoiding the equivalent mutant
generation techniques as an additional group of approaches
and found some omitted methods in other categories.
Obviously, because of the focus on the equivalent mutant
problem, and having more delimited research questions,
our study results are, in our opinion, of high quality from
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the perspective of EMP. What is important, nevertheless,
is that taking a subset of Jia and Harman’s results will
not give as complete a view on EMP as our SLR.

We have, in addition, proposed the first ever categoriza-
tion of the existing techniques for EMP. With an increas-
ing number of publications in this field of study, such a
classification will, it is our hope, improve transparency and
allow for a better understanding of the benefits, disadvan-
tages and differences between methods. Also, because we
included theoretical and unproven ideas on how to improve
the existing methods and, furthermore, provided what we
believe to be a complete review of EMP, this SLR might
be a good starting point for future work.

Our contribution from the comparative experiment is
the idea, implementation and empirical evaluation of the
new as well as the existing strategies for generating second
order mutants.

The subsequent contribution of this experiment was the
independent investigation of the characteristics of practi-
cal application of three existing strategies as proposed by
Polo et al. [65]. Polo et al. and Papadakis and Malevris [63]
have evaluated these strategies before, but only on small
projects. In our research, four larger open source projects
were used. Additionally, the authors of the previous stud-
ies, in particular [63], [65], used some approximation in-
stead of manual mutants evaluation (as we did).

One additional result of our experiment is the measured
time for manual mutant classification against its equiva-
lence. This was the second documented measurement of
first order mutants assessment. The first was made by
Schuler and Zeller [72] on 140 mutants. In our study, a
bigger sample size was used (200 FOMs). Moreover, we
are the first who also documented the manual second
order mutants classification (800 SOMs), that is, the basis
to estimate the real cost of mutation testing (including
equivalent mutant elimination).

Our additional contribution which is directly connected
with the aforementioned contributions is a tool — Judy
mutation testing tool for Java — which is under de-
velopment with two early versions available online [53].
We believe that our tool may have a positive impact on
research and practice in this area.

We believe that the above mentioned contributions
make this work important for future mutation testing
research. Identifying all methods for EMP, classifying
them and collecting the ideas for improvements is by
itself valuable, while the investigation of the behaviour of
the existing algorithms should be relevant for companies
interested in mutation testing.

9 Conclusions and future work
In our opinion, mutation testing is not widely used, mainly
because of the problem of efficiency, the generation of too
many equivalent mutants, and lack of reliable and usable
tools able to integrate with different software development
infrastructures and processes. This paper examined a sec-
ond order mutation approach to deal with those issues

specifically. We evaluated the concept of using a set of
second order mutants by applying them to large open
source software and, thus, increasing the generalizability
of this approach. For our experiment we implemented,
in the Judy mutation testing tool, different algorithms:
Last2First, RandomMix, JudyDiffOp, and NeighPair. The
first two algorithms were proposed by Polo et al. [65]. The
idea for the third one (coined by Polo et al. [65]) was
improved by us, while the fourth one was completely new.

This study shows that second order mutation techniques
can significantly improve the efficiency of mutation testing
at a cost in the testing strength (see Sections 6.4 and 6.5).
All four SOM strategies reduced the number of generated
mutants by 50% or more. Furthermore, the amount of
equivalent mutants has been notably decreased for three
of the four strategies. The best results were achieved with
the JudyDiffOp algorithm. An alternative explanation of
the results could be that the SOM approach hides some of
the equivalent mutants behind killable mutants and it may
be subject to future research. What is more, the measured
time needed for the classification of equivalent mutants,
of both first and second order, indicates quite strongly
that the time needed to manually evaluate mutants can
be reduced even more when using second order mutation.

The reduction of generated mutants caused a decrease
in the time needed for their execution, with approximately
30% of the original time for the most efficient algorithm,
i.e. JudyDiffOp.

It is also worth noting that second and higher order
mutation are not only valuable as a way to address EMP.
They also allow us to look at fault masking and to address
subtle faults [29]. Previously, this was thought simply im-
possible because of the large number of mutants required,
but it has been shown that search based optimisation
algorithms [24] can tame this space quite nicely, so that
we can search for good HOMs and need not consider all
of them [23], [29], [30].

There is still much work to be done in the field of
mutation testing. This paper shows, in our opinion, that
second order mutation can be an interesting solution for
common problems in mutation testing; however, that can
be developed further. Mutants of a higher than second
order should be tested on larger programs and other strate-
gies (e.g. employing search based approach) might also be
considered. Additionally, the combination of higher order
and selective mutation could reduce both the number of
equivalent mutants and the execution time even further.
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