
Preprint of an article: Lech Madeyski and Marcin Kawalerowicz, “Continuous Test-Driven
Development: A Preliminary Empirical Evaluation using Agile Experimentation in Industrial
Settings”, vol. 733 of Studies in Computational Intelligence, pp. 105–118, Springer, 2018.
DOI: 10.1007/978-3-319-65208-5_8 [BibTeX] Draft:
http://madeyski.e-informatyka.pl/download/MadeyskiKawalerowicz18.pdf

Continuous Test-Driven Development: A
Preliminary Empirical Evaluation using
Agile Experimentation in Industrial
Settings

Lech Madeyski and Marcin Kawalerowicz

Abstract Test-Driven Development (TDD) is an agile software development
and design practice popularized by the eXtreme Programming methodology.
Continuous Test-Driven Development (CTDD), proposed by the authors, is
the recent enhancement of the TDD practice and combines TDD with the
continuous testing (CT) practice that recommends background testing. Thus
CTDD eliminates the need to manually execute the tests by a developer. This
paper uses CTDD research to test out the idea of Agile Experimentation. It is
a refined approach performing disciplined scientific research in an industrial
setting. The objective of this paper is to evaluate the new CTDD practice vs.
the well-established TDD practice via a Single Case empirical study involving
a professional developer in a real, industrial software development project
employing Microsoft .NET. We found that there was a slight (4 minutes) drop
in the mean red-to-green time (i.e., time from the moment when any of the
tests fails or the project does not build to the time when the project compiles
and all the tests are passing), while the size of the CTDD vs. TDD effect was
non-zero but small (d−index = 0.22). The recorded results are not conclusive
but are in accordance with the intuition. By eliminating the mundane need to
execute the tests we have made the developer slightly faster. If the developers
that use TDD embrace CTDD it can lead to small improvements in their
coding performance that, taking into account a number of developers using
TDD, could lead to serious savings in the entire company or industry itself.

Lech Madeyski
Wroclaw University of Science and Technology, Faculty of Computer Science and
Management, Wyb.Wyspianskiego 27, 50-370 Wroclaw, POLAND,
e-mail: Lech.Madeyski@pwr.edu.pl

Marcin Kawalerowicz
Opole University of Technology, Faculty of Electrical Engineering, Automatic Control
and Informatics, ul. Sosnkowskiego 31, 45-272 Opole, POLAND, and
CODEFUSION Sp. z o.o., ul. Armii Krajowej 16/2, 45-071 Opole, POLAND,
e-mail: marcin@kawalerowicz.net

105

http://dx.doi.org/10.1007/978-3-319-65208-5_8
http://madeyski.e-informatyka.pl/download/MadeyskiRefs.bib
http://madeyski.e-informatyka.pl/download/MadeyskiKawalerowicz18.pdf
Lech.Madeyski@pwr.edu.pl
marcin@kawalerowicz.net

106 Lech Madeyski and Marcin Kawalerowicz

1 Introduction

Recent surveys, case studies and white papers show wide adoption of ag-
ile methods and practices in the software industry [24, 9]. Test-Driven De-
velopment (TDD) introduced by Beck [5] is, alongside pair programming,
one of the main practices in Extreme Programming (XP) which in turn is
one of the main Agile software development methods. Beck in his influential
book [4] shows (see Figure 4 in Chapter 11) that both TDD and pair pro-
gramming are the most interconnected practices in XP, while recent surveys
and papers show increasing adoption of TDD among professional develop-
ers [14, 23, 1, 22, 6, 18].

Continuous compilation is a practice, used in modern IDEs (Integrated
Development Environment), that provides source code compilation in the
background that gives the developer immediate feedback about the potential
compilation errors while he edits the source code. It is practically a standard
in all modern IDEs like Microsoft VisualStudio (since 2010), Eclipse, IntelliJ
IDEA and so on. A recent extension of continuous compilation that adds
a background testing to the compilation hit the mainstream of IDEs. It is
called continuous testing (CT) [20], [21]. Using CT the developer gets not
only background compilation but background testing as well. CT provides an
immediate test feedback on top of compilation feedback. Microsoft introduced
CT in the two highest and most expensive versions of Visual Studio 2012
(Premium and Ultimate).

In our paper from 2013 [16] a combination of those two practices TDD and
CT, along with the continuous testing AutoTest.NET4CTDD open source
plugin, was proposed and the preliminary feedback, via a survey inspired
by Technology Acceptance Model (TAM), from developers in an industrial
setting was collected. The new practice, combining CT and TDD was called
Continuous Test-Driven Development or CTDD (the practice is described in
Section 2). The findings of that paper were that CTDD could gain acceptance
among TDD practitioners. Our initial speculations were that the benefits
regarding development time could be small for a single developer, but could
turn to be large due to the size of the software industry. There was no other
scientific research published comparing TDD and CTDD. Hence, we decided
to assert our initial speculations that the new practice could provide some
time-related benefits in comparison to the usage of TDD. Our research goal
and hypothesis are refined in Sections 3.1 and 3.2, respectively.

In our previous paper [17], we argued that software engineering needs ag-
ile experimentation and formulated Agile Experimentation Manifesto with
the aim to support lightweight, agile experimentation in industrial software
development setting, where fully fledged experiments are often not feasible
as it is not easy to involve professional software developers in a large-scale
experimental research. Because of this natural limitation, in accordance with
the first postulate of our Agile Experimentation Manifesto (Use small-n and
single case experiments rather than large scale experiments to cut costs and

107

enable experimentation), we decided to use the single-case/small-n experi-
ment design (described in detail in Section 3.3). We use single developer to
compare the TDD and CTDD practices in a baseline-intervention experiment
design, where we will treat TDD as a baseline and CTDD as an intervention.

2 Background

As it was proposed by the authors [16], CTDD is a software development
practice that combines TDD and Continuous Testing. If a developer uses
TDD he needs to first write a test and verify if the tests fails (or the build
fails because the functionality that is supposed to be tested was not written
yet), then writes the functionality to quickly satisfy the test and executes it
to check if it is the case, then he refactors the code regularly performing the
tests to check if he did not break anything. We proposed to add the notion
of continuous testing to TDD. The idea is that a developer that uses CTDD
is not forced to perform the tests by himself. In continuous testing, the code
is being compiled and tested automatically after the developer writes it and
saves the file. So the need to manually trigger the testing was removed, poten-
tially adding value to the process (via more frequent and earlier feedback from
the amended code to the developer). In our earlier paper [16], we conducted a
quick TAM inspired survey among the professional software developers that
encouraged us to proceed with the new CTDD practice research (and sup-
porting tool development), as it seems to be an improvement over the baseline
TDD practice which could be widely accepted and adopted by practitioners.
We make a conjecture that if the developers that use TDD embrace CTDD it
can lead to small improvement in their coding performance that, taking into
consideration a number of developers using TDD, could lead to noticeable
savings within a company adopting the practice, not to mention the entire
software industry.

AutoTest.NET4CTDD tool [16] that we co-developed makes it possible
to use CTDD practice and can gather, in real time, various statistics during
software development (the feature that the IDEs with built in CT, e.g., Visual
Studio, are lacking). The tool was designed to execute the tests that are
related to the changes the developer has made in the project. It detects what
tests to run regardless of their type – unit, integration, system. As long as
the tests are in the project and are related to the change they are run. If
those tests are used as regression tests they will also be targeted by the
AutoTest.NET4CTDD tool.

To allow empirical comparison of CTDD with the baseline TDD practice,
we needed another tool for gathering the same data while using TDD. We
did not found any suitable tool for the project setting we had access to.
Hence, we had to develop our tool called NActivitySensor described in the
appendix to our recent paper [17]. Having both tools, we were able to gather

108 Lech Madeyski and Marcin Kawalerowicz

data needed to perform the empirical evaluation of the investigated software
practices, TDD and CTDD. We were interested in the time that elapses from
the moment when any of the tests fails, or the project does not build to the
time where the project compiles, and all the tests are passing. We called this
the red-to-green time (RTG time). We focused on the RTG time as it is where
the advantage of the CTDD practice over the TDD practice may appear and
be easily measured using the aforementioned tool set we developed.

3 Experiment Planning

3.1 Experiment Goal

The objective of the empirical study is to determine the differences in indi-
vidual performance of a professional developer using CTDD vs. TDD. Our
quasi-experiment (as without random assignment of participants to different
groups) is motivated by a need to understand the differences in individual
performance while using the established TDD practice and the new CTDD
practice introduced earlier by the authors [16].

The object of the study is the participant of a real software project. He is
a professional software developer, computer science graduate with the MSc
degree and two years experience (at the time of the experiment) in commercial
software development.

The purpose of the quasi-experiment is to evaluate the individual perfor-
mance when CTDD and TDD are employed. The experiment provides insight
into what can be expected regarding individual performance when using the
CTDD practice instead of TDD.

The perspective is from the point of view of the researchers, i.e. the re-
searchers would like to know if there is any systematic difference in the CTDD
vs. TDD performance.

The main effect studied in the experiment is the individual performance
measured by the RTG time introduced in Section 2. As mentioned earlier,
the RTG time elapses from the moment the project is rendered not compiling
or any of the tests is not passing, until the time the project builds, and all
the tests are passing. The shorter the time, the more time the developer
is spending doing actual work, i.e., development of new features. Because
the task of executing the tests and waiting for their result is common and
constantly recurring, we can assume that if we can reduce the time spent
handling the tests we can reduce waste and make developers more productive.

The experiment is run within the context of the real software project in
which a civil engineering software for calculation of concrete constructions
was developed. The investigated developer developed modules for data ex-
change between this software and other data formats.

109

The summary of scoping of the study made according to the goal template
by Basili et al. [3] is as follows: Analyze the CTDD practice for the purpose
of evaluation with respect to its effectiveness from the point of view of the
researcher in the context of a professional software developer in a real-world
(industrial) software development project.

3.2 Hypothesis Formulation

An important aspect of experiments is to know and to formally state precisely
what is going to be evaluated.

Null hypothesis, H0: There is no difference in the developer coding ve-
locity, measured as the RTG time (TRTG) introduced in Section 2, be-
tween the CTDD and TDD observation occasions, i.e., H0: TRTG(CTDD) =
TRTG(TDD)

Alternative hypothesis, H1: TRTG(CTDD) < TRTG(TDD)
As CTDD reduce waste mentioned in Section 3.1, we may assume a di-

rected hypothesis.

3.3 Experiment Design

We decided to perform the experiment in a real professional software devel-
opment environment and on a real project to increase the external validity
of the obtained results to the level hard to achieve with computer science
students at a university lab. It would help us to generalize the results of our
experiment to industrial practice. However, we need to take into account that
the industrial resources willing to spend their precious time on research in-
vestigation instead of on commercial projects are scarce. Furthermore, we are
aware that the goals of the different parties regarding experimentation are
not necessary converging. For example, researchers are interested in perform-
ing controlled experiments in real projects resulting in reliable conclusions
that lead to industry process improvement. The project owner is mainly in-
terested in return of investment (ROI) and only secondarily in incorporating
the results of experimentation provided they have a positive impact on the
project itself. Furthermore, professional developers are expensive and busy
people, while projects they are working on are seldom available for scientific
research. Up front, we gave up the idea to perform a large scale experiment
in an industrial setting, and we had no possibility to perform the project or
even its part twice, once with the traditional (TDD) approach and once with
the new one (CTDD), as it would require a lot of money. However, we have
access to a small software development company based in Poland where one
of the customers had a scientific background and was kind enough to allow

110 Lech Madeyski and Marcin Kawalerowicz

some experimentation on a small staffed project. So we had a single object
(professional software project) and single subject (developer) available for
experimentation.

A good experimental design removes threats to internal validity, i.e., elim-
inate alternative explanations. A powerful tool in achieving internal validity
is randomization. In classic large-n experimental designs, treatments (inter-
ventions) are randomly assigned to subjects (participants). Unfortunately,
it is unattainable in single-case studies, but it does not mean that it is im-
possible to randomly assign treatments to observation occasions. If we make
a series of observations on a single case, or on a few cases, we can think of
each as an observation occasion. As we randomly assign treatments to partic-
ipants in large-n experimental designs, we may randomly assign treatments
to observation occasions in single-case or small-n experimental designs. It
is worth mentioning that classic parametric tests can not be used to ana-
lyze data coming from single-case or small-n experimental designs, even if we
do randomly allocate treatments to observation occasions. This is because
parametric tests assume (apart from other assumptions) that the observa-
tions are independent, which is obviously not suited to the situation when
we collect a series of measurements on a single case. Fortunately, there is a
kind of tests, namely randomization tests, that fit great to the scenario. First
of all, they do not require that the observations are independent. Secondly,
they do not rely on the unrealistic assumption of random sampling from a
population which is often not true in large-n experiments. Concluding, single-
case/small-n experimental design combined with randomization tests provide
us with a convenient design and analysis framework for agile experimentation
in an industrial setting. Such research methods were used until now mainly in
social psychology, medicine, education, rehabilitation, and social work [11].
Although they not entirely new in software engineering [10, 25].

We have access to a small project with two professional developers of which
one will be working using TDD. Specific characteristics (constraints) related
to our industrial software project environment are presented in Table 1.

Table 1 Software project under investigation

No. of programmers 2
No. of programmers in experiment 1
No. of testers 1
Project time per month 160 hours
Project duration 12 months
No. of modules 37
No. of TDD modules approx. 4–8
No. of TDD classes approx. 40–80

The software project characteristics impose some constraints on the design
of the experiment. Studying experimental designs discussed by Dugard et

111

al. [8] we found a single-case randomized blocks design with two conditions to
be the most appropriate because:

1. We have only one participant.
2. We have two conditions to compare: TDD (A) and CTDD (B).
3. We can arrange the two conditions in blocks.
4. It is possible to assign conditions to observation occasions in blocks at

random - how we do that is described in Section 4.

We will have one participant (developer), and we expect minimum 40
classes (in 4 modules) to be relevant for our research. Having approximately
40 classes to observe development on and two treatments (TDD and CTDD)
we would have 20 blocks1 giving us 220, i.e., a little over a million (1048576 to
be exact), possible arrangements, which should give us good statistical power
to detect difference between TDD and CTDD. We have used the Excel macro
by Dugard et al. [8] to confirm our calculations.

4 Execution of experiment

The experiment was conducted on an industry grade software project. The
software that was being created is a construction engineering software for
analysis and design of concrete constructions. Under investigation were all
the classes from one module used specifically to calculate the units of mea-
surement in the software. The customer from the United States for which the
software was build agreed to perform experimentation on the project, but he
issued one condition: the impact in terms of time and cost on the project
should be minimal. It was agreed that the software engineers conducting the
project would spend the minimal amount of time on the tasks not increasing
the immediate ROI for the customer. The tools developed for this research
proved to be sufficient for this task. The developers used the NActivitiSensor
and AutoTest.NET4CTDD – the use of those tools does require no or mini-
mal developer attention. The only manual thing required from developers to
do was to use another tool for randomization. As mentioned in Section 3.3 we
decided to use single-case randomized blocks design with two conditions. To
introduce randomization, we implemented a small tool. This tool was used by
the developers to randomly choose weather TDD or CTDD should be used
for a given source code part. The tool is presented in Figure 1. It randomly
chooses weather the next class that a developer adds to the project should or
should not to be decorated with a comment //AUTOTEST IGNORE. If the
comment is present the usage of AutoTest.NET4CTDD is disabled for this
class, and the developer needs to execute the test manually. Classes without
this comment are processed continuously tested. The act of “generating” the

1 There are always two possible arrangements for every block: first A then B or first
B then A.

112 Lech Madeyski and Marcin Kawalerowicz

next random phase A (TDD) or B (CTDD) and possibly decoration the class
with a comment is the only thing the developers needed to do to allow us to
perform the experiment.

The data was gathered in the relational databases of NActivitiSensor and
AutoTest.NET4CTDD. Post-processing of the data was done using a simple
C# script that calculated the time from of the raw timestamped event data
saved in the database. It calculated red-to-green (RTG) duration. RTG is
the time in minutes that elapses either from the moment the project is not
building to the moment the project is building properly, and all tests are
passing or from the moment a test or tests are not passing to the moment
when the project is building properly, and all tests are passing.

Fig. 1 Random block generator tool

5 Analysis

For the statistical analysis of the data, we used the R environment with the
SSDforR package. The former is a language and software environment for
statistical computing [19], while the latter is the R package for analyzing
single-subject data [2].

5.1 Descriptive statistics

A typical way to begin comparing the baseline (TDD) and the intervention
(CTDD) phases is by calculating descriptive statistics including measures of
central tendency (e.g., mean, median, trimmed mean), as well as variation in
both phases. It is often recommended to look for outliers and observations
beyond two SDs are often checked, considered outliers and excluded from
further analysis. We have followed this recommendation and found that the
RTG times including the midnight (when the project with some failing test(s)

113

was left until the next working day) were removed. Investigating further, we
found that some developers want to know where to start in the next working
day and that is why they leave a failing test.

Table 2 shows the descriptive statistics of the data collected during our
empirical study. The RTG times are further visualized in Figure 2, as well
as using boxplot in Figure 2 comparing the RTG time of the developer using
TDD and CTDD. Visual examination of the boxplot indicates a slight drop
of the RTG in the CTDD phase of the experiment.

Table 2 Descriptive statistics

Measurement A (TDD) B (CTDD)

number of observations 85 55
median (Md) 1.768 3.018
mean (M) 12.372 8.388
10% trimmed mean (tM) 7.713 5.67
standard deviation (SD) 20.724 12.459
minimum 0.275 0.295
maximum 116.746 60.286
IQR 13.439 9.804
0% quantile 0.275 0.295
25% quantile 0.584 0.758
75% quantile 14.023 10.562
100% quantile 116.746 60.286

The mean is a measure of central tendency helpful in describing the typical
observation. Smaller RTG time mean in the intervention phase (CTDD) than
in the baseline phase (TDD) suggests the positive impact of the CTDD prac-
tice (MTDD = 12.372 vs. MCTDD = 8.388). Unfortunately, the mean can be
strongly influenced by outliers, especially when the number of observations
is small.

The median, i.e., the value for which a half of the observations fall above
and half below, is the only measure of central tendency that shows the ad-
vantage of TDD, as suggests that the typical value of RTG time in TDD is
smaller than in CTDD (MdTDD = 1.768 vs. MdCTDD = 3.018).

However, the recommended measure of central tendency in empirical soft-
ware engineering are trimmed means. They which can support reliable tests
of the differences between the central location of samples [12]. Trimming
means removing a fixed proportion (e.g., 10 or 20%) of the smallest and
largest values in the data set. The obvious advantage of the trimmed mean
is that it can be used in the presence of outliers. 10% trimmed mean again
suggests the positive impact of the CTDD practice versus the TDD baseline
and reduction of the RTG time by over 2 minutes (10% tMTDD = 7.713 vs.
10% tMCTDD = 5.67).

114 Lech Madeyski and Marcin Kawalerowicz

Fig. 2 Subsequent RTG durations in phases A (TDD) and B (CTDD) with the mean
and median imposed

Fig. 3 Boxplot for RTG duration in A (TDD) and B (CTDD)

5.2 Measures of variations

As we reported a range of measures of central tendency, we need to describe
the degree to which scores deviate from typical values. The simple measure

115

of variation is the difference between the highest and the lowest observed
values. However, a bit more valuable form of this measure is the interquartile
range (IQR), i.e., the difference between the third (or 75%) quantile and the
first (or 25%) quantile. Figure 2 shows a great deal of variation. We have
calculated the interquartile range (IQR) and got 0.584 for the 1st and 14.023
for the 3rd quartile in phase A, i.e., IQRTDD = 13.439, and respectively 0.76
and 10.56 for the phase B, i.e., IQRCTDD = 9.804. Hence, the variation in
the middle 50% of the data is substantial.

The most common measure of variation frequently used together with the
mean is the standard deviation (SD), which is the average distance between
the scores and the mean. If the scores would be normally distributed then 95%
of them would fall between 2 SDs below and above the mean, while typical
scores fall between 1 SD below and above the mean. The standard deviation
while using the CTDD practice is about half of the standard deviation of the
baseline TDD practice (SDTDD = 20.724 vs. SDCTDD = 12.459) which is a
desirable effect of CTDD. It is also easy to explain as the aim of the CTDD
practice is to provide a fast feedback, to a developer, that tests do not pass.

5.3 Effect size

Effect size is a name given to indicators that measure the magnitude of a
treatment effect (CTDD vs. TDD in our case). Effect size measures are very
useful, as they provide an objective measure of the importance of the exper-
imental effect, regardless of the statistical significance of the test statistic.
Also, effect sizes are much less affected by sample size than statistical signif-
icance and, as a result, are better indicators of practical significance [12, 15].
In the context of the performed empirical study, effect size quantifies the
amount of change between the TDD and CTDD phases.

The SSD for R package calculates different kinds of effect size including
ES and d − index. ES is defined as the difference between the intervention
(CTDD) and baseline (TDD) means divided by the standard deviation of the
baseline. ES may show deterioration, lack of change or improvement due to
the intervention.

ES =
Mintervention(CTDD) −Mbaseline(TDD)

SDbaseline(TDD)
(1)

In contrary to ES, d − index uses a pooled standard deviation (i.e., a
weighted average of standard deviations for two groups) which improves ac-
curacy and is more appropriate when the variation between the phases differs,
which is also the case in our study (see Table 2). However, it is worth men-
tioning that d− index does not show the direction of the effect.

These effect size measures should only be used if there is no trend in the
phases [13]. Each phase should be judged on the presence of the trend before

116 Lech Madeyski and Marcin Kawalerowicz

continuing with the further investigation. If observations in any of the phase
exhibit a trend, either decreasing or increasing, then measures of central
tendency have limited abilities to correctly assess the response. In such case,
neither mean nor median should be used [7], and the same applies to effect
sizes ES and d− index.

A trend may be defined and visualized by the slope of the best fitting
line within the phase. The trends of both phases, A and B, were calculated
using ordinary least squares (OLS) regression because it was found to be an
accurate measure of the trend [7]. The multiple R-squared values were very
close to 0 (0.005 for the phase A as well as B), while the p-values for the
slopes in both phases were not statistically significant (p > .05), p = 0.519
for A and p = 0.608 for B. Hence, we may conclude that there were no (or
were negligible) trends in the data.

As there was no trend in the data, we calculated effect size to measure the
amount of change between A (TDD) and B (CTDD). The calculated effect
sizes (ES = −0.192 and d − index = 0.222) can be interpreted as small,
albeit non-zero, according to the guidelines provided by Bloom [7].

6 Conclusions and future work

The results of our first quasi-experiment are rather inconclusive. The mean
RTG time dropped in our experiment from 12.4 to 8.4 minutes, whereas the
median slightly increased from 1.8 to 3 minutes. Both effect sizes (ES =
−0.192 and d− index = 0.222) indicate a small degree of change (reduction)
in the red-to-green time needed to satisfy the tests. The calculated effect sizes
seem to suggest that there may be a slight impact of the application of the
CTDD practice regarding the RTG time, which aligns with to some extent
with our hypothesis. However, we need to remember that effect sizes alone,
do not prove that the intervention was the cause of the observed change and
further investigation is needed to obtain more reliable conclusions.

In our experiment the same developer uses TDD and CTDD which elimi-
nates the threat of experience variability among the subjects but it raises the
question whether the results of the experiment would scale across program-
mers of various backgrounds. That is one of the questions we would like to
address in the follow up study we are planning on this topic.

From the informal interviews with the developers taking part in the quasi-
experiment, we gathered positive feedback about the ease of use of the tool
but noted slight dissatisfaction with the AutoTest.NET4CTDD tool overall
performance. That might have an impact on the overall performance of the
CTDD practice itself. In the short term, we will address those concerns by
vertically scaling developer workplaces. To resolve the issue in the longer
term, substantial work on the tool itself will be necessary.

117

Nevertheless, we were able to put our rules for Agile Experimentation
Manifesto in motion while researching TDD vs. CTDD. We noticed that we
were able to incorporate state-of-the-art research techniques into a business-
driven software project without affecting the project itself, which enable fur-
ther experimentation. Using tools developed for this research we effectively
minimized the time a developer need to spend on tasks not related to his
core activities (e.g., related to research). Agile Experimentation applied in
practice due to the course of the reported research appeared very promising
to bridge the gap between research and industry in general, and developer,
researcher and business owner in software engineering project in particular.

References

1. Ambler, S.W.: How agile are you? 2010 survey results (2010). URL http://
www.ambysoft.com/surveys/howAgileAreYou2010.html

2. Auerbach, C., Zeitlin, W.: SSDforR: Functions to Analyze Single System Data
(2017). R package version 1.4.15

3. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach.
In: Encyclopedia of Software Engineering. Wiley (1994)

4. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley,
Boston, MA, USA (1999)

5. Beck, K.: Test Driven Development: By Example. Addison-Wesley, Boston, MA,
USA (2002)

6. Ber lowski, J., Chruściel, P., Kasprzyk, M., Konaniec, I., Jureczko, M.: Highly
Automated Agile Testing Process: An Industrial Case Study. e-Informatica Soft-
ware Engineering Journal 10(1), 69–87 (2016). DOI 10.5277/e-Inf160104. URL
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_10/
eInformatica2016Art4.pdf

7. Bloom, M., Fischer, J., Orme, J.: Evaluating Practice: Guidelines for the Ac-
countable Professional. Pearson/Allyn and Bacon (2008)

8. Dugard, P., File, P., Todman, J.: Single-case and Small-n Experimental Designs:
A Practical Guide to Randomization Tests, 2nd edn. Routledge (2012)

9. Geracie, G.: The study of product team performance (2014). URL
http://www.actuationconsulting.com/wp-content/uploads/
studyofproductteamperformance_2014.pdf

10. Harrison, W.: N = 1: An alternative for software engineering research? (1997).
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
5.2131&rep=rep1&type=pdf. Based upon an editorial of the same title in
Volume 2, Number 1 of Empirical Software Engineering (1997)

11. Kazdin, A.E.: Single-case Research Designs: Methods for Clinical and Applied
Settings. Oxford University Press (2011)

12. Kitchenham, B., Madeyski, L., Budgen, D., Keung, J., Brereton, P., Charters,
S., Gibbs, S., Pohthong, A.: Robust Statistical Methods for Empirical Software
Engineering. Empirical Software Engineering 22(2), 579–630 (2017). DOI 10.
1007/s10664-016-9437-5. URL http://link.springer.com/content/pdf/
10.1007%2Fs10664-016-9437-5.pdf

13. Kromrey, J.D., Foster-Johnson, L.: Determining the efficacy of intervention: The
use of effect sizes for data analysis in single-subject research. The Journal of Ex-
perimental Education 65(1), 73–93 (1996). DOI 10.1080/00220973.1996.9943464

http://www.ambysoft.com/surveys/howAgileAreYou2010.html
http://www.ambysoft.com/surveys/howAgileAreYou2010.html
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_10/eInformatica2016Art4.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_10/eInformatica2016Art4.pdf
http://www.actuationconsulting.com/wp-content/uploads/studyofproductteamperformance_2014.pdf
http://www.actuationconsulting.com/wp-content/uploads/studyofproductteamperformance_2014.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.5.2131&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.5.2131&rep=rep1&type=pdf
http://link.springer.com/content/pdf/10.1007%2Fs10664-016-9437-5.pdf
http://link.springer.com/content/pdf/10.1007%2Fs10664-016-9437-5.pdf

118 Lech Madeyski and Marcin Kawalerowicz

14. Kurapati, N., Manyam, V., Petersen, K.: Agile software development practice
adoption survey. In: C. Wohlin (ed.) Agile Processes in Software Engineering
and Extreme Programming, Lecture Notes in Business Information Processing,
vol. 111, pp. 16–30. Springer Berlin Heidelberg (2012)

15. Madeyski, L.: Test-Driven Development: An Empirical Evaluation of Agile
Practice. Springer, (Heidelberg, London, New York) (2010). DOI 10.1007/
978-3-642-04288-1

16. Madeyski, L., Kawalerowicz, M.: Continuous Test-Driven Development - A Novel
Agile Software Development Practice and Supporting Tool. In: L. Maciaszek,
J. Filipe (eds.) ENASE 2013 - Proceedings of the 8th International Conference
on Evaluation of Novel Approaches to Software Engineering, pp. 260–267 (2013).
DOI 10.5220/0004587202600267. URL http://madeyski.e-informatyka.
pl/download/Madeyski13ENASE.pdf

17. Madeyski, L., Kawalerowicz, M.: Software Engineering Needs Agile Experimenta-
tion: A New Practice and Supporting Tool. In: Software Engineering: Challenges
and Solutions, Advances in Intelligent Systems and Computing, vol. 504, pp.
149–162. Springer (2017). DOI 10.1007/978-3-319-43606-7 11. URL http://
madeyski.e-informatyka.pl/download/MadeyskiKawalerowicz17.pdf

18. Majchrzak, M., Lukasz Stilger: Experience Report: Introducing Kanban Into Au-
tomotive Software Project. e-Informatica Software Engineering Journal 11(1),
41–59 (2017). DOI 10.5277/e-Inf170102. URL http://www.e-informatyka.
pl/attach/e-Informatica_-_Volume_11/eInformatica2017Art2.pdf

19. R Core Team: R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria (2016)

20. Saff, D., Ernst, M.D.: Reducing wasted development time via continuous testing.
In: Fourteenth International Symposium on Software Reliability Engineering, pp.
281–292. Denver, CO (2003)

21. Saff, D., Ernst, M.D.: An experimental evaluation of continuous testing during
development. In: ISSTA 2004, Proceedings of the 2004 International Symposium
on Software Testing and Analysis, pp. 76–85. Boston, MA, USA (2004)

22. Sochova, Z.: Agile adoption survey 2009 (2009). URL http://soch.cz/
AgileSurvey.pdf

23. West, D., Grant, T.: Agile development: Mainstream adoption has changed agility
(2010). URL http://programmedevelopment.com/public/uploads/
files/forrester_agile_development_mainstream_adoption_has_
changed_agility.pdf

24. West, D., Hammond, J.S.: The forrester wave: Agile development management
tools, q2 2010 (2010). URL https://www.forrester.com/The+Forrester+
Wave+Agile+Development+Management+Tools+Q2+2010/fulltext/-/
E-RES48153

25. Zendler, A., Horn, E., Schwärtzel, H., Plödereder, E.: Demonstrating the usage of
single-case designs in experimental software engineering. Information & Software
Technology 43(12), 681–691 (2001). DOI 10.1016/S0950-5849(01)00177-X

http://madeyski.e-informatyka.pl/download/Madeyski13ENASE.pdf
http://madeyski.e-informatyka.pl/download/Madeyski13ENASE.pdf
http://madeyski.e-informatyka.pl/download/MadeyskiKawalerowicz17.pdf
http://madeyski.e-informatyka.pl/download/MadeyskiKawalerowicz17.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_11/eInformatica2017Art2.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_11/eInformatica2017Art2.pdf
http://soch.cz/AgileSurvey.pdf
http://soch.cz/AgileSurvey.pdf
http://programmedevelopment.com/public/uploads/files/forrester_agile_development_mainstream_adoption_has_changed_agility.pdf
http://programmedevelopment.com/public/uploads/files/forrester_agile_development_mainstream_adoption_has_changed_agility.pdf
http://programmedevelopment.com/public/uploads/files/forrester_agile_development_mainstream_adoption_has_changed_agility.pdf
https://www.forrester.com/The+Forrester+Wave+Agile+Development+Management+Tools+Q2+2010/fulltext/-/E-RES48153
https://www.forrester.com/The+Forrester+Wave+Agile+Development+Management+Tools+Q2+2010/fulltext/-/E-RES48153
https://www.forrester.com/The+Forrester+Wave+Agile+Development+Management+Tools+Q2+2010/fulltext/-/E-RES48153

	Continuous Test-Driven Development: A Preliminary Empirical Evaluation using Agile Experimentation in Industrial Settings
	Lech Madeyski and Marcin Kawalerowicz
	Introduction
	Background
	Experiment Planning
	Experiment Goal
	Hypothesis Formulation
	Experiment Design

	Execution of experiment
	Analysis
	Descriptive statistics
	Measures of variations
	Effect size

	Conclusions and future work
	References

