
MLCQ: Industry-Relevant Code Smell Data Set
Lech Madeyski∗

Faculty of Computer Science and Management, Wroclaw
University of Science and Technology

Wyb.Wyspianskiego 27, 50370 Wroclaw, Poland
lech.madeyski@pwr.edu.pl

Tomasz Lewowski
Faculty of Computer Science and Management, Wroclaw

University of Science and Technology
Wyb.Wyspianskiego 27, 50370 Wroclaw, Poland

tomasz.lewowski@pwr.edu.pl

ABSTRACT
Context Research on code smells accelerates and there are many
studies that discuss them in the machine learning context. However,
while data sets used by researchers vary in quality, all which we
encountered share visible shortcomings—data sets are gathered
from a rather small number of often outdated projects by single
individuals whose professional experience is unknown.

Aim This study aims to provide a new data set that addresses
the aforementioned issues and, additionally, opens new research
opportunities.

Method We collaborate with professional software developers
(including the code quest company behind the codebeat automated
code review platform integrated with GitHub) to review code sam-
ples with respect to bad smells. We do not provide additional hints
as to what do we mean by a given smell, because our goal is to
extract professional developers’ contemporary understanding of
code smells instead of imposing thresholds from the legacy litera-
ture. We gather samples from active open source projects manually
verified for industry-relevance and provide repository links and
revisions. Records in our MLCQ data set contain the type of smell,
its severity and the exact location in source code, but do not con-
tain any source code metrics which can be calculated using various
tools. To open new research opportunities, we provide results of
an extensive survey of developers involved in the study including
a wide range of details concerning their professional experience in
software development and many other characteristics. This allows
us to track each code review to the developer’s background. To the
best of our knowledge, this is a unique trait of the presented data
set.

Conclusions The MLCQ data set with nearly 15000 code samples
was created by software developers with professional experience
who reviewed industry-relevant, contemporary Java open source
projects. We expect that this data set should stay relevant for a
longer time than data sets that base on code released years ago and,
additionally, will enable researchers to investigate the relationship
between developers’ background and code smells’ perception.

∗Corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
EASE 2020, April 15–17, 2020, Trondheim, Norway
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7731-7/20/04.
https://doi.org/10.1145/3383219.3383264

CCS CONCEPTS
• Software and its engineering → Software organization and
properties; Software creation and management;

KEYWORDS
data set, code smells, bad code smells, software development, soft-
ware quality

ACM Reference Format:
Lech Madeyski and Tomasz Lewowski. 2020. MLCQ: Industry-Relevant
Code Smell Data Set. In Evaluation and Assessment in Software Engineering
(EASE 2020), April 15–17, 2020, Trondheim, Norway. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3383219.3383264

1 INTRODUCTION
Code smells are an important concept for software maintainabil-
ity (e.g., [15, 17]) and even defect prediction (e.g., [14]). However,
their traditional definitions are rather vague and cannot be easily
applied in automated analysis. Moreover, the evolution of program-
ming languages (e.g., combining object-oriented and functional
programming paradigms in a single programming language) and
the fact that the concept of code smells was introduced over 20
years ago may require that we revise some of the original ideas and
perceptions.

Our overall research goal is to understand themeaning of specific
code smells (what is not and what is a smell, as well as how severe
it is) in the way that experienced software developers do in real,
contemporary software projects—projects that, according to our
earlier research [7], either are or can be used in commercial setting.
This research backs the development of the codebeat1 tool by the
code quest company. The tool is freely available to open source
projects and also used by many commercial projects. The goal of
this tool is to provide sort of automated reviews—project-specific
guidelines as to which parts of source code should be modified,
possibly also how to alter them. Our part of research, funded by
NCBR POIR 01.01.01-00-0792/16 research grant, was focused on
detecting code smells. To do that, we needed a body of source code
snippets reviewed by professional developers. We decided to collect
data also from junior developers to discover if understanding of the
code smell concept changes with experience.

We gathered reviews of four code smells–two on the class level
(Blob and Data Class) and two on the function level (Feature Envy
and Long Method)–from a total of 26 developers with professional
experience (8 hired as senior developers, 4 hired as regular develop-
ers2, 8 hired as junior developers and 6 with unknown background).

1https://codebeat.co
2“Regular developer” is a position in industry with experience expected to be some-
where between a junior developer and a senior developer.

https://doi.org/10.1145/3383219.3383264
https://doi.org/10.1145/3383219.3383264

EASE 2020, April 15–17, 2020, Trondheim, Norway Lech Madeyski and Tomasz Lewowski

All the reviewers were volunteers. In case of senior and regular
developers they were mostly coming from code quest software
development company, while the rest of reviewers were volunteers
with industrial experience recruited among MSc students from the
software engineering track involved in the R&D project in software
engineering course provided by the first author. The second author,
since employed as a lead developer, was involved in code smells
assessment as well. Our MLCQ3 data set consists of 14739 reviews
in total.

To allow further research based on developer experience profile,
we collected data from these developers using comprehensive sur-
veys on Typeform4. Data obtained via survey is published together
with the primary code smell data set. Six out of 26 reviewers did
not complete the survey. The total number of samples reviewed by
users that did not complete the survey equals 454 (≈3% of the data
set). Only one of those users has reviewed more than 60 samples.
All those samples still have a reviewer identifier, so they can be used
in research that requires only to be able to assign each sample to a
unique developer (without relying on the developer’s experience
etc.). These 454 samples can be easily removed if appear not needed.
Hence, we decided not to remove them upfront.

The contributions of this paper are:

(1) Contemporary and large data set including code samples
from actively developed software projects available from
GitHub that were assessed for industry-relevance, where
four code smells (Blob, Data Class, Feature Envy and Long
Method) were manually assessed on four-level severity scale
(critical, major, minor, and none) on both the class level, as
well as the method level, by developers with industrial expe-
rience. More details about how the software projects were
selected can be found in [7], while the R script to filter pos-
sibly relevant GitHub projects, built by the authors using
the GitHub GraphQL API, can be found in the reproducer
R package available from CRAN [10]. Please note that our
previous study [7] included only the selection of software
projects and did not concern the selection or review of any
code samples, which is the core part of this paper.

(2) Auxiliary context data, collected via survey, describing the
background of software developers assessing the severity of
the code smells. Both, the primary code smell data set and
the auxiliary data set is available on Zenodo at https://doi.
org/10.5281/zenodo.3666840, as well as in the subsequent
version of the reproducer R package on CRAN, as we did in
our previous papers (e.g., [4, 5, 7–9]) to streamline the usage
of the research results.

The rest of the paper is structured as follows. Section 2 outlines
briefly some other code smell data sets published to date. Section 3
describes the procedures we used for data acquisition. In Section 4
we present some numeric characteristics of the gathered data. Sec-
tion 5 contains detailed metadata, while in Section 6 we list several
threats to validity and misunderstandings that are likely. We con-
clude the paper describing possible applications in Section 7.

3MLCQ is an abbreviation formed from the initial letters of the words: Madeyski
Lewowski Code Quest
4https://www.typeform.com/

2 RELATED DATA SETS
Some researchers [1, 12] decide to create new data sets for the
task(s) at hand and publish them later on as part of their research.
This has some benefits—for example, the data set exactly matches
their research needs—but it also has several drawbacks. First and
foremost, access to senior software developers is fairly hard and
expensive, and it is not at all obvious whether smells reviewed
by students or junior developers align with those that would be
assigned by senior developers. Second, since junior developers may
not yet know about code smells, they are hastily trained to spot
them—however, these developers are often trained using rules. As
a result, it is possible that the decision about the meaning of code
smell is implicitly taken by the researcher when training junior
developers to spot them, instead of by each of the developers himself.
Third, those data sets are often not published in a form that can be
used for reliable reproduction—i.e., including class paths, source
code revisions, URLs, etc.

An important contribution to the field and one of the first public
data sets was published by Palomba et al. [13]. This data set con-
tains 243 instances of five types of code smells—Divergent Change,
Shotgun Surgery, Parallel Inheritance, Blob and Feature Envy—across
20 open source projects. The paper introduced also a tool for code
smell acquisition—however, hyperlinks present in the paper are no
longer valid (as of Dec 11, 2019), and the source code for the tool
itself does not seem to be open-sourced. The tool itself is accessible
at another URL.

Palomba et al. [12] use a data set containing 17350 instances of
13 different code smell types—Class Data Should Be Private, Complex
Class, Feature Envy, God Class, Inappropriate Intimacy, Lazy Class,
Long Method, Long Parameter List, Message Chain, Middle Man,
Refused Bequest, Spaghetti Code and Speculative Generality—across
395 releases of 30 projects. However, in another study [11] the
authors claim that the number of instances reaches 40888 (number
of code smell types, projects and releases match).

Fontana et al. introduced a data set of four code smells using
both—binary classification [1] and a severity scale [2]. Those data
sets contain several hundred samples per smell. Software projects
used there are taken from Qualitas Corpus [16]. While Qualitas
Corpus is often used in software engineering research, it contains
Java projects even as old as from 2002—much before the introduc-
tion of many recent techniques and features [3]. Thus might be
much less relevant for code smell detection now. The hyperlinks
listed in the publication are no longer valid (as of Dec 22, 2019), but
the data is still present on the site.

Another approach to creating code smell data set is presented
in [6]—authors used existing tools to analyze selected repositories.
The end result contains code smell annotations, but ones obtained
by a tool, not by real developers with professional experience.

The main limitation of all those data sets is the procedure used
for their creation—they were generally created either automatically
or by students or single researchers. Our data set also contains some
data from students and researchers, but there are three important
differences:

• all of the reviewers involved in the code smell assessment
are actively employed in the software development industry,

https://doi.org/10.5281/zenodo.3666840
https://doi.org/10.5281/zenodo.3666840

MLCQ: Industry-Relevant Code Smell Data Set EASE 2020, April 15–17, 2020, Trondheim, Norway

• the majority of samples is gathered by developers that are
neither students nor researchers,

• the data set provides unique and detailed insights related to
professional and academic background of the reviewers.

In [15] authors conducted a survey about code smell perception.
While [15] does not focus on developers’ experience, results can
be compared to the ones from our survey to identify differences
between analysed populations. It is worth noting that survey results
is one of main contributions of [15], while in our case it only brings
in the auxiliary information.

3 DATA ACQUISITION PROCEDURE
The whole data set consists of two parts—code smell reviews and
surveys. Surveys are manually anonymized, so while they still can
be linked to reviews by using the identifier of the reviewer, they
cannot be linked to any physical person.

3.1 Acquisition tool
To simplify the process of collecting data, a supporting tool for
displaying code samples and gathering the results of code smell
reviews was developed at code quest. The tool is not publicly avail-
able, thus we do not include hyperlink to the UI or to the code there.
The tool may be published by code quest at some point in the future,
but the URLs would then change.

3.2 Sample creation procedure
Code samples were generated from Java projects selected from
GitHub. We used the project data set described in [7]. We did not
apply any manual filters and all samples from all 792 projects were
used. Detailed sample acquisition flow is shown in Figures 1 and 2.

Figure 1: Acquiring set of samples

Projects selection

Code samples (classes
& functions) extraction

Saving samples
for future review

In the rest of this paper, a sample will mean either a class or
interface (for the class-level smells) or a method (for the method-
level smells). Developer is presented with a piece of source code (if
method is presented, the class is not immediately visible) together
with fully qualified name and link to the source code on GitHub if
there is a need for further, more contextual investigation.

We did not record whether developers used any external infor-
mation to review the samples.

3.3 Smell selection and gathering reviews of
code samples

We decided to focus on four code smells: Feature Envy and Long
Method on the method level and Data Class and Blob on the class

Figure 2: Sample review flow
Acquistion tool

chooses sample type
(class or function)
for next review

Acquistion tool chooses
sample for next review

User reviews
the sample

Acquistion tool records
the review in database

level. They were selected as they appeared to be the most popular
code smells analysed in literature according to our internal report
(yet unpublished) prepared in a form of systematic review for the
code quest company in 2017 and 2018.

To gather review samples the following procedure is executed:
(1) Code sample is selected for review using process described

below.
(2) Developer assigns the severity of possible code smells on the

four-level scale (critical, major, minor, and none). Developer
is free to skip any sample that he or she is uncertain of.

(3) Developer approves the selection by clicking “Next” button.
(4) Each pair (sample, smell) is saved in the database as a sepa-

rate review.
Developer can choose whether she or he wants to assess the sever-
ity of both smells on a given, class or method, level or only one of
them. Developer is able to change his (or hers) assessment later. We
did not conduct any training related to code smell identification,
because we believe that our goal is to extract professional develop-
ers’ understanding of code smells, instead of imposing thresholds
from the legacy literature or our own expectations what constitutes
particular code smells.

In total we gathered 14739 reviews of 4770 code samples, 8040
reviews of classes (2340 distinct classes from 437 projects) and 6699
reviews of functions (2430 functions from 426 projects). Reviews
were performed by 26 developers, 20 of which have completed the
survey described in Section 3.4.

Sample selection was not uniform during data acquisition, and
there were four phases. In the first two phases, we sampled from
678278 classes and 5101141 functions from 785 projects (7 projects
could not be analysed), the third one - from 552750 classes and
2297722 functions (due to filtering out less than 4 line samples) from
785 projects while in the last phase we only performed crosscheck
on already reviewed samples:

(1) The first 2175 samples (date range: March 27, 2019 - April
2, 2019) were selected when there was a defect in randomi-
sation part of selection query, and only 1 sample from each
hundred could have been selected. Nevertheless, they were
still selected randomly, but from a smaller population, and

EASE 2020, April 15–17, 2020, Trondheim, Norway Lech Madeyski and Tomasz Lewowski

inserted randomly into database—therefore we decided to
leave those as potentially valuable samples.

(2) The next 2648 samples (date range: April 3, 2019 - April 12,
2019) were selected randomly from all available.

(3) The next 4801 samples (date range: April 13, 2019 - July 25,
2019) were selected randomly from all samples longer than 4
lines, including opening and closing braces. This was the only
filtering rule, and it was only removing most trivial functions
and classes. This filter was suggested by code reviewers and
the aim was not to waste the precious time of developers and
to better focus their effort on reviewing potentially smelly
code samples.

(4) The last 5115 samples (date range: July 26, 2019 - September
13, 2019) were selected to perform a crosscheck—only from
samples already tagged with severity higher than ’none’.
Samples selected from crosscheck were those that had only 1
review or 2 reviews with different severities. These samples
were gathered by the group of developers involved in earlier
phases, with a restriction that developer could not crosscheck
his or her own review.

The split into phases was not initially intended, but we encoun-
tered the defect from the first phase only after starting the acqui-
sition. Then it turned out that the amount of “none” samples is
higher that we have estimated, thus the need to focus the effort
of professional developers on valuable samples that can reason-
ably constitute code smells to balance the data set. The last phase,
crosscheck, was needed to reach more reliable conclusions.

Since there were many more method samples than class samples,
and we wanted to gather similar number of both, we decided that
the first selection step in the first three phases will be selecting
whether we are looking for a class sample or method sample (and
bothwere selectedwith equal probability). The last step (crosscheck)
is the reason why the number of reviews for classes is higher than
for functions—there was less agreement on the former.

While the whole data set includes reviews of code samples
gathered from projects that are industry relevant, semi-industry-
relevant, and industry irrelevant, it is easy to select the subset of
samples from industry-relevant projects, which constitute 80% of
the total number of projects. Also the number of reviews of code
taken from industry-relevant projects constitutes 92.5% of total
code samples and reviews.

3.4 Survey
The survey was prepared using Typeform5 and all reviewers were
asked to complete it. However, six reviewers did not complete the
survey. The survey was an internal one and we did not publish it
in any external services. Its sole purpose was to provide us with
information about reviewers and it was not meant to be a tool for
general software development research.

The survey contained 59 questions, including detailed ques-
tions about professional experience, programming languages used
throughout the career, used tools, occupied positions, sizes of projects
that developer was involved in, known paradigms, open source

5www.typeform.com

involvement, review habits, knowledge about code smells and opin-
ions about state-of-the-art tools. Completing the survey took 48
minutes on average.

One of the questions in the surveywas GitHub login of reviewer—
by utilising it, we were able to map survey answers to reviews (our
review tool used GitHub-based authentication).

Of course, published version of the survey is stripped of all
personal data (emails, logins). We also decided to remove company
names, so that there will be nomisunderstanding—this research was
only supported by the code quest company and all other participants
completed the survey and reviews in their own free time.

4 DATA CHARACTERISTICS
We provide basic characteristics of the collected code smell and
survey data.

4.1 Smell data
The basic characteristics of the code smell data (presented in Ta-
ble Table 1) illustrate the size of the collected data set (e.g., in terms
of the number of sample reviews conducted by developers, the
number of unique samples, and the number of projects from which
the samples were gathered). It has taken about half a year to collect
the data set from over 500 software projects, and the number of
software developers with industrial experience involved in data
collection exceeded two dozens. Hence, the effort behind the data
collection can be considered large.

Table 1: Basic characteristics

Characteristic Value

total # of reviews 14739
reviews from industry-relevant projects 12710
reviews from semi-industry-relevant projects 924
reviews from industry irrelevant projects 1105
total # of samples 4770
of samples from industry-relevant projects 4129
of samples from semi-industry-relevant projects 290
of samples from industry irrelevant projects 351
projects 523
reviewers 26
smell types 4
time span 27.03.2019–

13.09.2019

The distribution severities of code smells (presented in Table 2)
shows how rare (according to developers with industrial experience)
some code smells are, especially critical instances of Feature Envy.

The distribution of the number of reviews performed by de-
velopers that have taken part in the study (presented in Table 3)
shows that some developers were more involved in code smell re-
views than other. Hence, the data set is imbalanced with this regard.
However, the average professional experience in programming of
the five developers who preformed more than 1000 reviews was
much higher than the average professional experience of all the
developers involved in the study (i.e., 10 years vs 4 years).

MLCQ: Industry-Relevant Code Smell Data Set EASE 2020, April 15–17, 2020, Trondheim, Norway

Table 2: Number of reviews per severity per smell

Code smell #reviews #critical #major #minor #none

Blob 4019 127 312 535 3045
Data Class 4021 146 401 510 2964
Long Method 3362 78 274 454 2556
Feature Envy 3337 24 142 288 2883

Table 3: Number of reviews

of performed # of professional experience
reviews reviewers in programming [years]

average | median

>1000 5 10.0 7.5
300-1000 5 2.1 1.0
100-299 7 2.11 1.31
<100 9 2.42 2.02

1 on the basis of 6 of 7 developers who filled in the survey
2 on the basis of 4 of 9 developers who filled in the survey

4.2 Survey data
20 developers involved in the study worked in at least 8 different
companies (four respondents decided not to unveil the company
they were working for), while their recent industrial experience
in software engineering measured in years (as shown in Table 4)
shows that the population of interest to which we aim to generalise
the results are developers with industrial software engineering
experience. We believe that such generalisation, in case of students
or researchers often involved in such studies, would not be possible.

Table 4: Software developers involved in the study

Metric Value

respondents 20
companies 81
average professional experience in programming 4.1 years
median professional experience in programming 1.8 years
min professional experience in programming 0.5 year
max professional experience in programming 19 years
average number of languages used 6.1
1 on the basis of 16 of 20 developers who filled this field in the
survey

Almost all (90%) of the developers involved in the study possessed
their university degrees, either on the master or bachelor level,
while their positions varied between senior/lead developer and
junior developer, as shown in Tables 5 and 6. In our opinion these
characteristics reflect the situation in the software industry fairly
well. According to a 2019 Developer survey by Stack Overflow6,
questioning over 70,000 employed professional software developers,
about 79% of professional developers have some degree in computer
6https://insights.stackoverflow.com/survey/2019/#education

sciences or related areas (in our case it was 90%). Furthermore, the
percentage of developers with the MSc degree (in the survey by
Stack Overflow) was 49.1%, while in our case it was 45%. The most
notable difference was the percentage of developers with the BSc
degree, which was 25.4% in the survey by Stack Overflow, while in
our case it was 45%.

Table 5: Education

Metric Value

Master (MSc) 9
Bachelor (BSc) 9
W/o BSc or MSc 2

Table 6: Positions

Metric Value

Senior/Lead Developer 8
Regular Developer 4
Junior Developer 8

5 DATA SHEET
The data sheet for this data set is inspired by the ESA7 datasheet
standard, adapted by us to match our needs in software engineer-
ing. Due to the paper length limitation we focus here on the pri-
mary data sheet (MLCQCodeSmellSamples), while the complete
description of the data sets, including the auxiliary data sheet
(MLCQCodeSmellDevelopersSurvey), is presented in detail in the
online appendix8.

Each of the records (reviewed samples) contains, among others,
the following information:

id a numeric identifier of the (code sample) review,
reviewer_id a numeric identifier of the reviewer,
smell a name of the code smell (Blob, Data Class, Feature Envy,

Long Method),
severity severity of the code smell (critical,major,minor, none),
review_timestamp date and time (millisecond precision) when

the sample was acquired,
type whether the reviewed code sample is a class or a function,
code_name a fully qualified name of the code sample – format:

𝑃𝑎𝑐𝑘𝑎𝑔𝑒.𝐶𝑙𝑎𝑠𝑠𝑁𝑎𝑚𝑒 [#𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑁𝑎𝑚𝑒 𝑎𝑟𝑔1|𝑎𝑟𝑔2|...]
(e.g., 𝑜𝑟𝑔.𝑒𝑐𝑙𝑖𝑝𝑠𝑒.𝑠𝑤𝑡 .𝑤𝑖𝑑𝑔𝑒𝑡𝑠.𝑀𝑒𝑛𝑢#𝑠𝑒𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑡 |𝑖𝑛𝑡),

link link to view the sample in a browser.

6 THREATS AND LIMITATIONS
Samples selected for review were chosen in four separate phases
(described in detail in Section 3.3). This means that the population
of source code entities used for selection was not uniform during
the whole research. While this is well-documented in this paper,

7https://esajournals.onlinelibrary.wiley.com/hub/journal/19399170/resources/data_paper_inst_ecy
8http://madeyski.e-informatyka.pl/download/MadeyskiLewowskiMLCQAppendix.pdf

https://insights.stackoverflow.com/survey/2019/#education
https://esajournals.onlinelibrary.wiley.com/hub/journal/19399170/resources/data_paper_inst_ecy
http://madeyski.e-informatyka.pl/download/MadeyskiLewowskiMLCQAppendix.pdf

EASE 2020, April 15–17, 2020, Trondheim, Norway Lech Madeyski and Tomasz Lewowski

this can still be confusing both for researchers and for machine
learning algorithms.

Unfortunately, we are not able to guarantee the good will of
all participants. We did conduct an additional crosscheck in the
end of research to verify the samples and assigned smell severities.
However, we only did this with samples that were initially tagged
with severity above none—therefore it is possible that some samples
which should have severity above none do not have it.

While we did gather nearly 15 thousand samples, over 77% show
no smells (none severity). We believe that this is still a useful re-
sult since negative samples are also relevant. However, we also
acknowledge the possibility that our code smell data set in large
part describes what is not a code smell, instead of what is one.

We do not provide any metrics. This is due to a few reasons:

• the set of possible metrics is ever expanding and for Java they
are relatively easy to obtain, so we believe that interested
researchers will manage to calculate ones that suit them best,

• any defects in metrics calculated software could then be
replicated in future research,

• our initial study did not find out any of popular metrics that
would work particularly well.

Some projects or files may no longer be available—if a repository
is removed, the project will be no longer accessible. The expected
removal rate has to be studied separately.

Of course, since the number of reviewers is relatively small (26),
and almost half of them are from the same company, there is always
possibility of bias. We acknowledge such a possibility. However,
we believe that various backgrounds of the core contributors (as
evidenced by the survey) address this problem at least partially.

7 APPLICATIONS
This data set can be applied in a number of research setups. Code
smell detection is probably the most obvious one, but this data set
can be also used to understand differences in perception between
junior developers and senior developers or to find out traits from
professional background that correlate with specific code smell
perception.

The data set can also be used as an auxiliary data set for defect
prediction or other complex scenarios where existence of code
smells may serve as a predictor.

ACKNOWLEDGMENTS
This work has been supported by the National Centre for Research
and Development (NCBiR) project POIR.01.01.01-00-0792/16 with
the aim to improve the codebeat platform (http://codebeat.co) by
code quest sp. z o.o.. We would like to thank all of the developers
involved in the study.

A SUPPLEMENTARY MATERIALS
Supplementary materials for this paper include the online appen-
dix9, as well as data sets. The data set is available on Zenodo10

9http://madeyski.e-informatyka.pl/download/MadeyskiLewowskiMLCQAppendix.pdf
10https://doi.org/10.5281/zenodo.3666840

and CRAN from the subsequent version of the reproducer R pack-
age [10]. We also maintain a website to provide the most up-to-date
list of code samples with smells (validated by developers)11.

REFERENCES
[1] Francesca Arcelli Fontana, Mika V. Mäntylä, Marco Zanoni, and Alessandro

Marino. 2016. Comparing and experimenting machine learning techniques for
code smell detection. Empirical Software Engineering 21, 3 (6 2016), 1143–1191.

[2] Francesca Arcelli Fontana and Marco Zanoni. 2017. Code smell severity classifi-
cation using machine learning techniques. Knowledge-Based Systems 128 (2017),
43 – 58. https://doi.org/10.1016/j.knosys.2017.04.014

[3] Hanna Grodzicka, Arkadiusz Ziobrowski, Zofia Łakomiak, Michał Kawa, and
Lech Madeyski. 2020. Code Smell Prediction Employing Machine Learning Meets
Emerging Java Language Constructs. In Data-Centric Business and Applications:
Towards Software Development (Volume 4), Aneta Poniszewska-Marańda, Natalia
Kryvinska, Stanisław Jarząbek, and Lech Madeyski (Eds.). Springer International
Publishing, Cham, 137–167. https://doi.org/10.1007/978-3-030-34706-2_8

[4] Marian Jureczko and Lech Madeyski. 2015. Cross–Project Defect Prediction With
Respect To Code Ownership Model: An Empirical Study. e-Informatica Software
Engineering Journal 9, 1 (2015), 21–35. https://doi.org/10.5277/e-Inf150102

[5] Barbara Kitchenham, Lech Madeyski, David Budgen, Jacky Keung, Pearl Brereton,
Stuart Charters, Shirley Gibbs, and Amnart Pohthong. 2017. Robust Statistical
Methods for Empirical Software Engineering. Empirical Software Engineering 22,
2 (2017), 579–630. https://doi.org/10.1007/s10664-016-9437-5

[6] Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. 2019. The Technical
Debt Dataset. In Proceedings of the Fifteenth International Conference on Predictive
Models and Data Analytics in Software Engineering (PROMISE’19). ACM, New
York, NY, USA, 2–11. https://doi.org/10.1145/3345629.3345630

[7] Tomasz Lewowski and Lech Madeyski. 2020. Creating Evolving Project Data
Sets in Software Engineering. In Integrating Research and Practice in Software En-
gineering, Stanislaw Jarzabek, Aneta Poniszewska-Marańda, and Lech Madeyski
(Eds.). Studies in Computational Intelligence, Vol. 851. Springer, Cham, 1–14.
https://doi.org/10.1007/978-3-030-26574-8_1

[8] Lech Madeyski and Marian Jureczko. 2015. Which Process Metrics Can Signifi-
cantly Improve Defect Prediction Models? An Empirical Study. Software Quality
Journal 23, 3 (2015), 393–422. https://doi.org/10.1007/s11219-014-9241-7

[9] Lech Madeyski and Barbara Kitchenham. 2018. Effect Sizes and their Variance
for AB/BA Crossover Design Studies. Empirical Software Engineering 23, 4 (2018),
1982–2017. https://doi.org/10.1007/s10664-017-9574-5

[10] Lech Madeyski, Barbara Kitchenham, and Tomasz Lewowski. 2020. re-
producer: Reproduce Statistical Analyses and Meta-Analyses. http://
madeyski.e-informatyka.pl/reproducible-research/ R package (http://CRAN.R-
project.org/package=reproducer).

[11] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco
Oliveto, and Andrea De Lucia. 2018. A large-scale empirical study on the lifecycle
of code smell co-occurrences. Information and Software Technology 99 (2018), 1 –
10. https://doi.org/10.1016/j.infsof.2018.02.004

[12] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco
Oliveto, and Andrea De Lucia. 2018. On the diffuseness and the impact on
maintainability of code smells: a large scale empirical investigation. Empirical
Software Engineering 23, 3 (01 Jun 2018), 1188–1221. https://doi.org/10.1007/
s10664-017-9535-z

[13] Fabio Palomba, Dario Di Nucci, Michele Tufano, Gabriele Bavota, Rocco Oliveto,
Denys Poshyvanyk, and Andrea De Lucia. 2015. Landfill: An Open Dataset of
Code Smells with Public Evaluation. In Proceedings of the 12thWorking Conference
on Mining Software Repositories (MSR ’15). IEEE Press, Piscataway, NJ, USA, 482–
485. https://doi.org/10.1109/MSR.2015.69

[14] Fabio Palomba, Marco Zanoni, Francesca Arcelli Fontana, Andrea De Lucia,
and Rocco Oliveto. 2019. Toward a Smell-Aware Bug Prediction Model. IEEE
Transactions on Software Engineering 45, 2 (Feb 2019), 194–218. https://doi.org/
10.1109/TSE.2017.2770122

[15] Davide Taibi, Andrea Janes, and Valentina Lenarduzzi. 2017. How developers
perceive smells in source code: A replicated study. Information and Software
Technology 92 (2017), 223 – 235. https://doi.org/10.1016/j.infsof.2017.08.008

[16] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus Lumpe,
Hayden Melton, and James Noble. 2010. Qualitas Corpus: A Curated Collection
of Java Code for Empirical Studies. In 2010 Asia Pacific Software Engineering
Conference (APSEC2010). 336–345. https://doi.org/10.1109/APSEC.2010.46

[17] A. Yamashita and L. Moonen. 2013. Do developers care about code smells?
An exploratory survey. In 2013 20th Working Conference on Reverse Engineering
(WCRE). 242–251. https://doi.org/10.1109/WCRE.2013.6671299

11http://madeyski.e-informatyka.pl/reproducible-research/#smells

http://codebeat.co
http://madeyski.e-informatyka.pl/download/MadeyskiLewowskiMLCQAppendix.pdf
https://doi.org/10.5281/zenodo.3666840
https://doi.org/10.1016/j.knosys.2017.04.014
https://doi.org/10.1007/978-3-030-34706-2_8
https://doi.org/10.5277/e-Inf150102
https://doi.org/10.1007/s10664-016-9437-5
https://doi.org/10.1145/3345629.3345630
https://doi.org/10.1007/978-3-030-26574-8_1
https://doi.org/10.1007/s11219-014-9241-7
https://doi.org/10.1007/s10664-017-9574-5
http://madeyski.e-informatyka.pl/reproducible-research/
http://madeyski.e-informatyka.pl/reproducible-research/
https://doi.org/10.1016/j.infsof.2018.02.004
https://doi.org/10.1007/s10664-017-9535-z
https://doi.org/10.1007/s10664-017-9535-z
https://doi.org/10.1109/MSR.2015.69
https://doi.org/10.1109/TSE.2017.2770122
https://doi.org/10.1109/TSE.2017.2770122
https://doi.org/10.1016/j.infsof.2017.08.008
https://doi.org/10.1109/APSEC.2010.46
https://doi.org/10.1109/WCRE.2013.6671299
http://madeyski.e-informatyka.pl/reproducible-research/#smells

	Abstract
	1 Introduction
	2 Related data sets
	3 Data acquisition procedure
	3.1 Acquisition tool
	3.2 Sample creation procedure
	3.3 Smell selection and gathering reviews of code samples
	3.4 Survey

	4 Data characteristics
	4.1 Smell data
	4.2 Survey data

	5 Data sheet
	6 Threats and limitations
	7 Applications
	Acknowledgments
	A Supplementary Materials
	References

