
Preprint of an article: Lech Madeyski and Tomasz Lewowski (2023), ”Detecting code smells using industry-relevant data”, Information and
Software Technology, Volume 155, Pages 107112, DOI: 10.1016/j.infsof.2022.107112
Preprint: https://madeyski.e-informatyka.pl/download/MadeyskiLewowski23ISTpreprint.pdf

Detecting code smells using industry-relevant data

Lech Madeyskia,b,1,∗, Tomasz Lewowskia,2,∗

aWroclaw University of Science and Technology, Department of Applied Informatics, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
bBlekinge Institute of Technology, Department of Software Engineering, Karlskrona, Sweden

Abstract

Context Code smells are patterns in source code associated with an increased defect rate and a higher maintenance
effort than usual, but without a clear definition. Code smells are often detected using rules hard-coded in detection
tools. Such rules are often set arbitrarily or derived from data sets tagged by reviewers without the necessary industrial
know-how. Conclusions from studying such data sets may be unreliable or even harmful, since algorithms may achieve
higher values of performance metrics on them than on models tagged by experts, despite not being industrially useful.

Objective Our goal is to investigate the performance of various machine learning algorithms for automated code
smell detection trained on code smell data set(MLCQ) derived from actively developed and industry-relevant projects
and reviews performed by experienced software developers.

Method We assign the severity of the smell to the code sample according to a consensus between the severities
assigned by the reviewers, use the Matthews Correlation Coefficient (MCC) as our main performance metric to account for
the entire confusion matrix, and compare the median value to account for non-normal distributions of performance. We
compare 6720 models built using eight machine learning techniques. The entire process is automated and reproducible.

Results Performance of compared techniques depends heavily on analyzed smell. The median value of our perfor-
mance metric for the best algorithm was 0.81 for Long Method, 0.31 for Feature Envy, 0.51 for Blob, and 0.57 for Data
Class.

Conclusions Random Forest and Flexible Discriminant Analysis performed the best overall, but in most cases the
performance difference between them and the median algorithm was no more than 10% of the latter. The performance
results were stable over multiple iterations. Although the F-score omits one quadrant of the confusion matrix (and thus
may differ from MCC), in code smell detection, the actual differences are minimal.

Keywords: reproducible research, software engineering, machine learning, code smells

1. Introduction

The amount of software written each year increases
dramatically, and even just the cost of correcting defects is
measured in billions of dollars [1]. Research on the cost of
changes suggests that the effort spent to introduce a mod-
ification increases substantially with the evolution of the
project [2]. This, of course, poses a number of challenges
for large projects.

Some studies suggest that both maintenance effort and
number of defects are distributed according to the Pareto
principle: a small number of entities consume most of the
effort and have most of the defects [3, 4, 5, 6]. Detecting
those entities (regardless of whether they are files, classes,
modules, subsystems, or microservices) is likely to help
software maintainers refactor the critical areas and avoid
a number of problems.

∗Corresponding author
Email addresses: lech.madeyski@pwr.edu.pl (Lech Madeyski),

tomasz.lewowski@pwr.edu.pl (Tomasz Lewowski)
1ORC ID: 0000-0003-3907-3357
2ORC ID: 0000-0003-4897-1263

However, the detection of such fragments prior to pro-
duction deployment is a challenging task, as it requires a
thorough review of the whole code base. While this may
be a viable option for system maintainers (since they need
to know the code anyway), it is hardly a scalable solu-
tion. It is also not a solution that can be adopted by any
consultancy (except for a few high-risk industries, such
as medical and military). While it is possible to detect
these fragments retroactively by analyzing incoming de-
fect reports, it is generally preferable to solve problems
without involving users. This is true especially in non-
open-source environments, where there may be only a few
paying customers. In such a context, defects may attract
higher management attention or even cause the company
to lose contracts.

Therefore, it is reasonable to look for automated tools
and heuristics that can help software developers detect
modules that are likely to contain defects. To aid in this
detection, the concept of code smell was coined by Fowler
and Beck in the late 1990s [7]. A “code smell” is a code
snippet (or several snippets) that “usually corresponds to
a deeper problem in the system”. Once such code smells

https://doi.org/10.1016/j.infsof.2022.107112
https://madeyski.e-informatyka.pl/download/MadeyskiLewowski23ISTpreprint.pdf

are detected, increased focus must be placed on them, as
they are likely to require extra effort during maintenance
and implementation of new features. Sometimes, such a
detection may lead to reworking the module in the form of
a refactoring. A “code smell” is a heuristic concept, so it
is not necessarily a problem itself—a developer may have
planned such a design and may very well have had valid
reasons to use such a pattern. However, if the “smelly”
code spontaneously emerges, it is likely to cause problems.
Even if it was planned, extra caution should be exercised
when performing modifications that may affect it (e.g.,
additional layer of regression testing, additional documen-
tation, etc.), as unplanned consequences are likely.

That said, “usually corresponds to a deeper problem
in the system” does not say anything about how to detect
such problems, so by itself it is not a useful criterion even
for experienced software developers, not to mention au-
tomated detection. To address this problem and present
some more concrete examples (not an exhaustive list), in
the initial publication Fowler [7] presented a catalog of 22
named code smells (“Feature Envy”, “Functional Decom-
position”, “Long Method” etc.) and a brief description,
meant for human developers (in a fashion similar to how
Gang of Four described the original set of design patterns
in [8]). While software developers may find those descrip-
tions useful and perhaps even prefer them vague, those
descriptions are also not well suited for automated tools.

There have been many attempts to define code smells
using various techniques and predictors–from classic object-
oriented metrics [9, 10] through text-based detection [11]
up to analyzing clusters of changes and co-changes [12, 13].
However, even though much effort has already been put
into the domain, we believe that there is still room for
an exploratory study like this one. There are four main
differences between this study and similar studies in the
area:

1. we use a separately published data set built from ac-
tively maintained software projects and reviewed by
software developers with industrial experience [14],

2. our primary focus is on optimizing Matthews’ Corre-
lation Coefficient (MCC) metric, taking into account
recommendations from recent studies by Shepperd et
al. [15] and Yao and Shepperd [16],

3. we focus on median results and quartiles to account
for non-normal distributions of performance metrics,

4. our study is focused on reproducibility [17, 18, 19],
providing all source data, execution scripts, and pa-
rameters in a complete reproduction package (de-
scribed in detail in Section 3.6).

The rest of the paper is structured as follows: Sec-
tion 2 describes the approaches to code smell detection
taken by other researchers, Section 3 describes details of
our research setup, and Section 4 contains the results of
our study. Then, in Section 5, we discuss the findings and
possible shortcomings, and we conclude the paper in Sec-
tion 6.

2. Related work

Code smell detection is an area that has been inten-
sively researched. We found seven systematic reviews pub-
lished in the last six years that cover the area of code
smell detection. Some of the reviews, e.g., [20, 21, 22] fo-
cus solely on code smell detection using machine learning
techniques, while others, like [23], also include more tradi-
tional methods, such as preset detection rules. Reviews by
Caram et al. [24] and Santos et al. [25] cover a wider per-
spective on the general state of the art, the usefulness of
code smells (mainly in the areas of code maintainability,
change proneness, error proneness, and bug prediction),
and their wider applicability.

A particularly large-scale survey (spanning papers from
1990 to 2017) is presented in [26] and discusses the overall
state of the art in code smell research, including who the
researchers are, what the trends are, what the research
goals are, and what the future goals are for the domain.

In general, methods used for code smell detection in-
clude a plethora of solutions: static algorithms (e.g., rules
like in DETEX [10]), general-purpose machine learning
solutions (such as decision trees and random forests [9,
27, 28], SVMs [9, 27], Bayesian techniques [29, 9], neural
networks [30] or rules [27]) and some methods developed
specifically for code smells, such as analysis of co-change
patterns [12], code history analysis [31], text processing
[11] and deep learning methods [32, 33, 34, 35, 36], which
were not yet thoroughly researched in regard to application
in code smell detection. Some researchers do not create full
machine learning models but instead decide to only tune
parameters of pre-created models [37, 38]. Often, this tun-
ing uses sophisticated statistical [39] or evolutionary [40]
techniques.

A recent comparison between machine learning tech-
niques and rules (represented by the DÉCOR tool) [41]
suggests that rules may achieve better performance than
machine learning algorithms, but are still not good enough
to be practically useful. Other research, e.g., [36] shows
machine learning algorithms performing better than pre-
defined rules. Overall, the performance of the methods
used by more than one researcher varies greatly between
different studies (we show specific examples in Section 5.3).
In [19], we concluded that one of the reasons for this varia-
tion may be the lack of a shared data set that would enclose
the understanding of the "code smell" concept that comes
from experienced software developers or, more generally,
the lack of a standardized way to create such data sets, as
it is obvious that a single data set would not be sufficient.

From a practical standpoint, it is also important to un-
derstand that not all smells are equal; developers prioritize
addressing them not only by their severity, but also by the
importance of the module in which they occur [42]. Some
smells are not perceived as problems, but as suboptimal
(but acceptable) design choices [43]. There are also papers
suggesting that refactoring does not decrease the severity
of code smells [44].

2

There are several drawbacks that we found in most of
the existing body of research: first, the most popular data
sets, including the one provided by Fontana et al. [9], were
tagged by students. As we argue in [14], existence and
severity of code smells is part of technical knowledge that
is not taught in universities, but rather obtained during
industrial practice. Since students, by definition, lack this
experience, their tagging of code smells has to be super-
ficial. While the overall agreement between developers as
to what constitutes a code smell does not seem to be high
[45], developers are the domain experts and ones who, in
practice, get to decide whether a given code snippet is or is
not smelly, simply by virtue of being the people who work
with code. Although the understanding of code smells ex-
hibited by students may be similar to the understanding
exhibited by some of the developers, we are not aware of
any study that demonstrates this to a satisfying degree.
Second, as demonstrated in [19], most studies do not pro-
vide a complete reproduction package, and a substantial
part of the studies do not provide a description that is
detailed enough for reproduction.

Perception of code smells severity is an area of active
research. Fontana et al. [46] used four-point severity scale
from 0 (no-smell), through 1 (non-severe smell), 2 (smell)
to 3 (severe smell). The scale is used to prioritize code
smell and acquire more information from the data set re-
viewers – however, the number of severities is arbitrary.
Pecorelli et al. [47] used a five-point severity scale dur-
ing the data collection phase to assess the severity of code
smell (called criticality in their paper), but later decided
to use a three-point scale for modeling purposes. Taibi
et al. [48] conducted a medium-scale survey on perceived
code smell harmfulness. They also used a five-point scale,
but the paper does not report any modeling. Results of
[48] suggest that there may be an important difference be-
tween the theoretical sentiment toward code smells (even
by senior developers) and practical consequences of this
sentiment (e.g., in the form of refactoring recommenda-
tions). A further study by Sae-Lim et al. [42] selected
task relevance and module importance as two important
factors (apart from the severity of the smell) that guide
the refactoring recommendations of developers.

Performance metrics that researchers most often use
include precision, recall, accuracy, and F-score [20]. How-
ever, accuracy behaves badly in the presence of imbalanced
classes, while precision, recall, and F-score only include
three quadrants of the confusion matrix. Yao and Shep-
perd [16] reported that this may have a substantial impact
on the interpretation of the results. Their research is re-
lated to defect prediction, but the same argument can also
be made for code smells. Thus, we present the most com-
mon metrics together with the MCC metric, while at the
same time reporting the full confusion matrices in the re-
production package described in Section 3.6.

This is our first study on creating general purpose code
smell models; previously we focused on creating a large-
scale data set [14], systematic reviews of the literature on

applying machine learning techniques to code smell de-
tection [20] and the reproducibility of code smell research
[19], and, on a smaller scale, investigating the relationship
between new Java language features and the existence of
code smells [49].

In this study, we use a curated data set that was built
by software engineers with industrial expertise [14] and
provide a full reproduction package that contains all op-
erations performed on the data set to obtain the results
presented. Of course, since the process of machine learn-
ing relies on randomness (e.g., to generate folds for cross-
validation), the results that other researchers obtain dur-
ing reproduction may be slightly different. Nevertheless,
the results we obtained were remarkably stable for virtu-
ally every algorithm and data set, so there shall be no
significant differences.

We used the MLCQ data set reported by us in data
paper [14] based on a set of industry-relevant projects se-
lected using a technique presented in [50]. The same data
set was also used in [51] and [36]. The main difference
between this study and [51] lies primarily in the data pre-
processing and details of the machine learning procedure
— the authors of [51] used a decision tree and random
forest algorithm, while we analyzed a much wider range
of algorithms. We also use the hyperparameter optimiza-
tion method for training, since, wherever applicable, we
optimize for MCC (hyperparameter optimization was not
reported by the authors of [51]). The third difference lies in
the set of predictors used. While both our paper and [51]
use metrics provided by PMD3, we added an additional
set of metrics, calculated by internal CODEBEAT tools4.
These metrics are briefly described in Tables A.7 and A.8.
On the other hand, the authors of [51] also used results
from a commercial tool, Understand by SciTools. On the
other hand, the authors of [36] used a different approach
and, in addition to using code metrics, they also decided
to use three source code embeddings (code2vec, code2seq
and CuBERT). Their method to resolve the severity of
code smell is the same as the method we used for DS1
(the severity resolution in this paper is described in Sec-
tion 3.3). The authors of [36] also decided to focus on Blob
(called God Class in their paper) and Long Method.

3. Method

In this section, we describe the details of our research
setup and process, including the characteristics of the data
set used, the set of predictors, algorithms, and perfor-
mance metrics used.

The main goal of this paper is to investigate which
algorithms achieve the best performance metrics in the

3https://pmd.github.io/
4https://codebeat.co/ is an automated online code review ser-

vice developed by the code quest company that assisted in creating
the MLCQ data set that, in turn, we needed to help them develop
code smell prediction models.

3

https://pmd.github.io/
https://codebeat.co/

problem of code smell detection (RQ1), and to determine
whether the difference in performance between various al-
gorithms is substantial. However, we are aware that there
may be predictors that we did not include, and that mat-
ter; to estimate this effect, we decided to compare our work
with other publications that use same data set (but possi-
bly different predictors). We reflect upon this problem in
RQ2.

Lastly, we also briefly compare our results with the re-
sults that other researchers achieved on different data sets,
using various techniques. We did not replicate all other
studies, but instead we simply included the performance
reported by the authors of each method. This activity is
the subject of RQ3 and is meant to present the scale of
differences that can be expected when changing data sets.

The research questions we will attempt to answer are
the following:

RQ1 Which machine learning algorithms are best used for
the detection of code smells?

RQ2 How do our results compare to the results that other
researchers were able to achieve on the MLCQ data
set?

RQ3 How do our results compare with the results that
other researchers were able to achieve (irrespective
of the data set)?

3.1. Data set
We use the data set that was originally published in [14].

The data set contains over 14000 reviews of around 5000
Java code snippets gathered from 26 software developers.
Reviews are split into four code smells: Blob, Data Class
(DC), Feature Envy (FE), and Long Method (LM). Each
review assigns exactly one severity of a single smell to a sin-
gle code snippet. There are four available severity levels:
none, minor, major, and critical. The exact number
of reviews with each severity for each smell is presented
in Table 1.

Table 1: Number of reviews per severity per smell

Name #total #critical #major #minor #none

Blob 4019 127 312 535 3045
DC 4021 146 401 510 2964
LM 3362 78 274 454 2556
FE 3337 24 142 288 2883

The data set has an embedded cross-check, i.e., every
snippet that was selected to exhibit some features of a
given smell (i.e., the first reviewer assigned a minor, ma-
jor, or critical severity to the sample) is cross-checked by
another developer. If the reviewers disagree, a third review
is provided. The reviewers responsible for performing the
cross-check did not see the severity assigned by the first
ones, but were aware that they are performing a cross-
check.

There were 26 reviewers from at least eight compa-
nies (some of the reviewers declined to answer this ques-
tion), with a maximum of eight developers known to be
from a single company. These eight developers contributed
around 55% of the total number of reviews. All the devel-
opers had industrial experience. 19% of the total number
of reviews were contributed by developers with less than
two years of experience, 14% by developers with two to five
years of experience, and the remaining 67% by developers
with more than five years of experience.

The published version of the data set presented in [14]
does not contain predictors. This was a deliberate deci-
sion, and its goal was to avoid locking researchers into
predefined predictors and, possibly, into the errors that
the authors have made when calculating those.

Compared to other code smell data sets, there are sev-
eral important differences: in this one, the reviews were
made by experienced software developers, random sam-
pling was used for obtaining candidate code snippets (ones
that were later reviewed), and an automated approach was
used for project acquisition. These properties make it pos-
sible to replicate a code smell data set that should have
similar properties.

3.2. Predictors
Predictors are obviously required to perform classifica-

tion. We decided to use two sets of software metrics: one
provided by our industrial partner (i.e., the code quest
company that owns the CODEBEAT platform) and the
other provided by PMD. Occasionally, some metrics may
have been duplicated between those two sets, which might
have caused issues for some algorithms, for example for
Naive Bayes. PMD is an open-source tool that can analyze
source code and calculate metrics (using a special module
– metrics framework). Its default set of metrics is lim-
ited, but it allows for the creation of custom user-defined
metrics. It is also a tool used by other researchers to gen-
erate code metrics [52, 51, 53]. CODEBEAT metrics have
not yet been used in research, because they are metrics
generated by our industrial partner, who calculates them
in several languages and was interested in knowing how
useful they are for code smell detection, since they were
looking at expanding the capabilities of their product.

The initial set of default predictors provided by CODE-
BEAT and PMD was extended to include the predictors
that were most commonly used by other researchers. The
analysis of the use of predictors in the literature was done
as part of a joint research project with the code quest com-
pany. The results were partially published in [20]. The de-
tailed analysis of the usage of predictors is not part of [20],
but is based on the data included in the reproduction pack-
age for [20], thus is fully reproducible.

Since there are more than 50 metrics available in total,
we do not describe all of them in detail here. Instead, we
include a brief description in tables A.7 and A.8 and com-
plete documentation in the reproduction package in Sec-
tion 3.6. Some metrics were only relevant for classes, while

4

others were only relevant for methods. In total, 49 metrics
were used in class smell models and 14 metrics were used
for method smell models. We generally did not remove
any predictors from the source data set, but instead fil-
tered them out during data preprocessing in our R scripts.
A predictor was removed from the data set if its variability
was low (below 2% of the samples was different from the
mode of the data set), since constant features are of little
relevance to machine learning algorithms[54].

We explicitly decided to focus only on the source code
metrics and ignore process metrics due to how data set
was built: developers were presented with a code sample
and then they had to decide whether the sample exhibits
a smell or not. Although they did have a link to the entire
repository and could look up file history, in practice this
option was not used during review (some reviewers used
it to look up projects from particularly interesting code
snippets, but this was usually done post-review). This
means that developers were able to detect the smell from
the structure of the code snippet alone, without knowing
its history. Therefore, the model should be able to detect
the structure as well. This does not mean that process
metrics cannot be used as predictors as is the case in soft-
ware defect prediction [55]; in fact, it is possible that some
features that lead to smelly code stem from interactions
that can be detected using process metrics [56]. However,
our assumption is that it should not be necessary to use
process metrics to reach the same conclusions, since the
developer does not use them.

In software engineering, in general, obtaining predic-
tors with low correlation is challenging and requires a com-
plex feature engineering process (e.g., all "size" metrics are
usually correlated with each other). We decided not to per-
form such a process, at risk of impacting performance of
models that are more sensitive to correlated variables (e.g.,
Naïve Bayes). This decision should not affect the results of
algorithms with built-in resilience to correlation between
predictors, such as Random Forest. After performing a
post hoc correlation analysis (after the models were al-
ready evaluated), we discovered that multiple predictors
have a high correlation (occasionally even more than 0.9),
which impacts some, but not all, of the models. In partic-
ular, the Naïve Bayes classifier is heavily affected, which
may be the reason why it performed poorly.

3.3. Severities
Each review from the data set published in [14] con-

tains an assessment of a severity assigned by a reviewer
(software developer) to a given code sample for a given
code smell – each reviewer assigns a single severity to a
sample/smell pair, but there may be multiple reviews of
the same sample. There are four possible severities, in as-
cending order of severity: none, minor, major, and critical.
Developers were not presented with any specific guidelines
for assigning severities and were asked to select according
to their expertise.

Initial data set

Selecting reviews
for a given smell

Grouping by sample id

Assigning median sever-
ity as sample severity

Thresholding/Binarization

Figure 1: Data set preparation process

For some samples, the original data set has more than
one review. For all samples in which any of the reviews
points to a severity other than none a cross-check was em-
ployed. In case of disagreement, a third review was re-
quested. A direct usage of the data set would mean as-
signing several severities to some of the samples. To avoid
this, we assign to each sample the median severity of all
its reviews, disregarding who the reviewer was. In the
rare case where the number of reviews was even and did
not result in a clean median, the higher severity value was
used.

After that operation, we have decided to perform the
training as a binary classification task. To do that, for each
of the code smells, we have created two data sets based on
two different cutoff points:

DS1 C1: none, C2: minor + major + critical,
DS2 C1: none + minor, C2: major + critical.

A diagram showing this process is presented in Fig-
ure 1. Samples with severity at the threshold or below are
assigned a negative class in the final binary data set ("no
smell"), samples above are assigned a positive class ("smell
present"). The process was executed two times for each
code smell – once with the threshold at severity=none
(DS1 – positive class contains all samples with median
severity equal to minor, major, or critical), second with
the threshold at severity=minor (DS2 – positive class
contains all samples with median severity equal to major
or critical).

We also considered using DS3 with only critical sam-
ples marked as smelly, but there were too few samples
marked as critical to provide a solid training data set.
Even in the case of DS2 the data set is severely imbalanced,
and in the case of one smell – Feature Envy – it was not
possible to build models performing better than random,

5

thus we do not include analysis for DS2 for Feature Envy
in this paper.

Other data sets, e.g., one used in [9], are often balanced
to some extent and include a similar number of smells of
each kind. This is often done by using advisors (automated
scripts that suggest "potential candidates") and/or arbi-
trary selection of samples for review and training process.
Which of the methods should be used to provide data sets
that can be used in practical applications may be a subject
of further research and we will not discuss it in this paper.

3.4. Algorithms
To preprocess data and build machine learning mod-

els, we use the R package mlr [57]. Pre-processing steps
and models were initially developed by the authors as
part of the joint research and development project with
the code quest company, but evolved further to the form
published on GitHub5. We used the following algorithms:
Conditional Inference Trees (CTree) [58], Flexible Discrim-
inant Analysis (FDA) [59] Mixture Discriminant Analy-
sis (MDA) [60], K-Nearest Neighbor (KNN) [61], Support
Vector Machine (SVM) [62, 63], Naïve Bayes [63], and
Random Forests [64]. To rectify the imbalance in the data
set, we oversampled the minority class by a factor of 10 us-
ing the bagging technique. Originally, we also tried using
SMOTE, but in preliminary tests (not reported in this pa-
per), there was no substantial performance improvement.

Obviously, we were unable to verify every possible set
of parameters for these algorithms, but a wide range of
them were tested using the hyperparameter tuning feature
of mlr. We present a summary in Section 4.

Whenever the tuning of hyperparameters was applica-
ble, we optimized for the highest value of MCC.

3.5. Performance metrics
As we found in [20], most studies use accuracy, preci-

sion, recall, and F-score as their performance metrics. To
provide some comparison possibility, we do report those
metrics, but at the same time we also provide MCC (rec-
ommended by Shepperd et al. [15] and Yao and Shepperd[16]),
as well as balanced accuracy.

The final results of our performance metrics are based
on average values from 120 runs of a five-fold cross-validation
procedure for each machine learning algorithm. Sampling
during fold creation is stratified to ensure that each fold
receives data from each class. We also provide standard
deviation and quartiles in the box plots.

The value of MCC also serves as a basic benchmark,
since it indicates how well a classifier performs compared to
random guessing. In response to RQ3, we briefly present
results published in the scientific literature for other data
sets. These results are incomparable, since the data set
acquisition process is very different. Problems with com-
parison and reproducibility of code smell data set creation

5https://github.com/thecodebeat/model-build-scripts

are discussed in detail in [19] – here we only note that very
high performance on one data set does not mean high per-
formance for another one. The differences in performance,
as noted in [24], can be attributed to the differences in
the data sets, and discussing the details of the data set
creation procedures is outside the scope of this study.

3.6. Reproduction package
Reproducibility of research is important [17, 19, 18].

To streamline the uptake of the research results of this
paper and to guarantee maximum reproducibility of the
study, a complete reproduction package is provided. The
package can be downloaded from Zenodo https://doi.
org/10.5281/zenodo.7319860. It contains the following
artifacts:

1. a complete data set (including values of all predictors
for all samples),

2. brief description of all available predictors,
3. a set of R scripts used to preprocess data, as well as

create and evaluate models,
4. a set of R scripts used to generate diagrams and data

tables,
5. an instruction on how to use the scripts,
6. a complete set of results, including full confusion ma-

trices and built R models,
7. description of the environment where experiments

were conducted,
8. tables with detailed results,
9. scripts used for statistical analysis and their results,

10. a data sheet that describes the contents in detail.

The source code used in the study was also published
on GitHub6 with the tag 1.0.0-paper. We encourage
researchers to verify our results and submit pull requests
in case of any issues.

4. Results

In this section, we briefly study the results obtained for
each of the smells and methods. Due to limited space, we
only present boxplot diagrams with the results here; exact
values can be found in the data tables present in a separate
data appendix. Statistical analysis of differences between
distributions is performed using a global Kruskal-Wallis
test with a follow-up pairwise Nemenyi test. Statistical
analysis is performed only for MCC values. The nonpara-
metric effect size was estimated using the probability of
superiority (Vargha and Delaney’s A) p̂ – its value ranges
from 0 to 1, with 0.5 indicating stochastic equality, and 1
indicating that the first group dominates the second [65].

6https://github.com/tlewowski/code-smell-modelling

6

https://doi.org/10.5281/zenodo.7319860
https://doi.org/10.5281/zenodo.7319860
https://github.com/tlewowski/code-smell-modelling

4.1. Feature Envy
Feature Envy in this research is treated as a method-

level smell, because the data set for it was gathered on a
per-method basis. In the subject literature, Feature Envy
is sometimes also treated as a class-level smell. Concep-
tually, Feature Envy is related to methods that use op-
erations from external classes more often than their own
operations. Feature Envy detection performance results
for DS1 are shown in Figure 2, while detailed data tables
are available in the data appendix included in the repro-
duction package. Analysis was not performed on DS2 due
to a heavy imbalance (20 samples of smelly code and 2394
samples of non-smelly code).

Figure 2: Feature Envy (DS1)

The performance metrics achieved for Feature Envy are
by far the lowest among the code smells analyzed. They
are also fairly uniform, with a large overlap between most
of the techniques (in terms of MCC) and little variance for
each technique.

The best performance for DS1 was achieved by the
FDA classifier with a median MCC value of 0.31. In terms
of other performance metrics, the F-score values follow the
same pattern as MCC. Precision is uniformly low for all
methods, with the highest median value of 0.26, but the
median value of recall in case of Naive Bayes is 0.71, which
is 0.13 (over 22%) more than the second best algorithm
in terms of recall – FDA. In fact, Naive Bayes classifier
focuses on recall so much that it visibly affects not only
precision (lowest median of all algorithms – 0.12) but also
accuracy (median for Naive Bayes – 0.71, median for the
second-worst algorithm – KNN – 0.87).

In the case of Feature Envy detection, MCC was signif-
icantly different for different machine learning algorithms

(H(7) = 781.06, p-value < 2.2 × 10−16). The Nemenyi
post hoc test with the chi-square approximation yields a
p-value < 2.2×10−16 for all comparisons with FDA, except
MDA (where the p-value was 8.9×10−7) and Random For-
est (where the p-value was 2.2× 10−5). The value of p̂ for
all pairwise comparisons with FDA is at least 0.847, which
(according to Kitchenham et al. [65]) is considered a large
effect size. This confirms that in the case of Feature Envy
detection, for DS1, the FDA algorithm achieves the best
results in terms of MCC.

The number of positive samples for this code smell is
very low, which may be the reason why the performance
metrics are so low (compared to other code smells). This
can be interpreted as a problem with data gathering, but
since the data were gathered using the same flow for all
code smells, this may also be an indicator that Feature
Envy is either not a common problem in modern software
projects (at least in the eyes of the software engineers in-
volved in code smell reviews) or that it substantially differs
from other analyzed smells. We were unable to conduct
follow-up interviews with the reviewers to decide whether
this is the case, so we decided that it remains a problem
to be solved in the future.

4.2. Long Method
Long Method is a smell at the method level. Con-

trary to its name, it is associated not only with methods
that are too long (span over too many lines), but also with
ones that perform too many actions and have too many re-
sponsibilities or are too complex – these properties usually
correlate with size. Long Method detection performance
results for DS1 are shown in Figure 3 and for DS2 in Fig-
ure 4, while detailed data tables are available in the data
appendix included in the reproduction package.

Performance metrics achieved for Long Method are the
highest among the code smells analyzed. They are also
uniform both between algorithms – there is less than 10%
difference between the best and worst algorithm for each
data set (in terms of median MCC) – and also for multi-
ple iterations of a single algorithm. There is also a large
overlap between algorithms when it comes to results.

Generally, it seems easier to separate classes in DS2
than in DS1. The best performance was achieved by the
Random Forest classifier, with a median MCC value greater
than 0.80 for DS2 and greater than 0.75 for DS1.

In terms of other performance metrics, the values of
the F-score follow the same pattern as MCC. An inter-
esting case is DS1 – MCC values of both Naive Bayes
and Random Forest algorithms are very similar (highest
of the algorithms analyzed), but there is a huge differ-
ence in terms of precision and recall – Naive Bayes al-
gorithm has by far the highest precision (with minimum
above maximum for any other algorithm) and lowest re-
call (with maximum overlapping only with minimum for
KNN), while Random Forest has median precision slightly
above others (save Naive Bayes) and median recall in the

7

Figure 3: Long Method (DS1)

middle of the pack, with a lot of overlap with other meth-
ods in both cases. In the case of DS2, such an effect cannot
be observed.

In the case of Long Method detection, MCC was signif-
icantly different for different machine learning algorithms,
i.e., (H(7) = 724.12, p-value < 2.2×10−16) for DS1, while
(H(7) = 531.62, p-value < 2.2× 10−16) for DS2. For DS1,
the Nemenyi post hoc test with the chi-square approxi-
mation produces a p-value < 2.2 × 10−16 for all compar-
isons with Random Forest, apart from FDA (where the
p-value was 2.5×107) and Naive Bayes (where the p-value
was 0.7695). The nonparametric effect size p̂ is at least
0.799 in case of comparisions of Random Forest with all
other algorithms, which (according to [65]) is considered
a large effect size. For DS2, the situation is similar. The
Nemenyi post hoc test with the chi-square approximation
yields a p-value < 2.2 × 10−16 for all comparisons with
Random Forest, apart from FDA (where the p-value was
0.00012), CTree (where the p-value was 1.3e − 14), and
KNN (where the p-value was 4.4× 10−16). The nonpara-
metric effect size p̂ is at least 0.866 in case of compari-
sions of Random Forest with all other algorithms, which
(according to [65]) is considered a large effect size. This
confirms that in the case of Long Method detection, both
for DS1 and DS2, the Random Forest algorithm achieves
the best results in terms of MCC.

MDA seems to be the least stable algorithm, with a
number of low-precision models affecting its overall range
of results.

Figure 4: Long Method (DS2)

4.3. Blob
Blob is a class-level smell. Its meaning is similar to

the meaning of Long Method – it represents long, com-
plex, and contrived fragments of code that are hard to un-
derstand for developers. There are several smells closely
related to Blob (God Class, Large Class, Brain Class),
which share most of the properties with Blob, perhaps with
slightly different focus. They are all included in MLCQ
under the "Blob" label. Blob and its sibling smells are
the most researched code smells according to a recent re-
view [20]. Blob detection performance results are shown
for DS1 in Figure 5 and DS2 in Figure 6, while detailed
data tables are presented in the data appendix included in
the reproduction package.

Generally, it seems marginally easier to separate classes
in DS1 than in DS2. The best performance for DS1 was
achieved by the Random Forest Classifier with a median
MCC value of 0.51. In the case of DS2, the best perfor-
mance was achieved by the FDA and MDA classifiers, with
a median MCC value of 0.46.

Blob is a smell with fairly uniform performance with
regard to MCC, F-score, and precision, but substantially
varying when it comes to recall, with high variability for
each method and big overlap between methods, especially
in the case of DS2. The FDA classifier achieved a partic-
ularly high recall, in the case of DS1 reaching 0.88. While
there are several outliers below this value, it is worth not-
ing that the upper three quartiles cover only values be-
tween 0.88 and 0.90, which is a remarkably stable result.
The algorithm with the second recall value, CTree, had a
median recall of 0.84 with the upper three quartiles be-
tween 0.84 and 0.87. All other medians are below 0.80.

8

Figure 5: Blob (DS1)

For the same data set, the highest precision was achieved
in case of Naive Bayes - a median of 0.53 with the next
algorithm – Random Forest – reaching a median value of
0.47.

In case of Blob detection, MCC was significantly differ-
ent for different machine learning algorithms, i.e., (H(7) =
810.43, p-value < 2.2 × 10−16) for DS1, while (H(7) =
715.17, p-value < 2.2 × 10−16) for DS2. For DS1, the
Nemenyi post hoc test with the chi-square approximation
produces a p-value < 2.2× 10−16 for all comparisons with
Random Forest, apart from FDA (where the p-value was
0.1769) and CTree (where the p-value was 4.0 × 10−10).
The nonparametric effect size p̂ is at least 0.965 in case of
comparisions of Random Forest with all other algorithms,
which (according to [65]) is considered a large effect size.
This confirms that in the case of Blob detection, for DS1,
the Random Forest algorithm achieves the best results in
terms of MCC. For DS2, the Nemenyi post hoc test with
the chi-square approximation yields a p-value < 2.2×10−16

for all comparisons with FDA, except MDA (where the p-
value was 0.99874), Random Forest (where the p-value was
0.53945), and KNN (where the p-value was 6.1 × 10−4).
The nonparametric effect size p̂ is at least 0.798 in case of
comparisions of Random Forest with CTree, KNN, kSVM,
libSVM, Naïve Bayes, which (according to [65]) is consid-
ered a large effect size, whilst in comparisions of FDA with
Random Forest p̂ = 0.667 and MDA p̂ = 0.556, which are
considered medium-to-large and small effect size, respec-
tively. This confirms that in the case of Blob detection,
for DS2, the FDA algorithm achieves the best results in
terms of MCC, while MDA is the second.

Figure 6: Blob (DS2)

4.4. Data Class
Data Class is a particularly interesting smell, since,

despite including it in the original list of code smells, it
is not universally considered harmful. On the contrary,
Data Classes are a typical pattern when it comes to data
transfer or persistence even in object-oriented program-
ming. Indeed, Data Class is only viewed as a problem in
the object-oriented paradigm when acting as a domain ob-
ject. We will not discuss here whether using Data Class is
the right design choice, and instead we will focus on the
reviews provided by experts. Please note that even if using
a Data Class is justified, it is still marked as a Data Class
in the data set.

Detection of Data Class using the metrics that we had
access to is by no means straightforward. The perfor-
mance results of the Data Class detection are shown for
DS1 in Figure 7 and for DS2 in Figure 8, while detailed
data tables are presented in the data appendix included in
the reproduction package.

The differences between various methods’ performance
results in Data Class detection are the biggest in the study.

Generally, it seems easier to separate classes in DS1
than in DS2. The best performance for both DS1 and
DS2 was achieved by the Random Forest classifier, with a
median MCC value of 0.57 for DS1 and 0.53 for DS2.

The performance results for Data Class are generally
consistent for multiple iterations of the same algorithm
(except for recall for KNN for both data sets, Random For-
est for DS1 and FDA for DS2). However, they do vary
substantially between algorithms. Naive Bayes has the
worst recall results in the case of DS1 (median of 0.38,
compared to next algorithm – 0.74 for kSVM). This is par-

9

Figure 7: Data Class (DS1)

ticularly surprising considering that for DS2 median recall
for Naive Bayes is the highest of all methods – 0.80 (on
the other hand, precision is very low – 0.19 – making the
results in terms of both F-score and MCC worst out of the
compared algorithms). The highest precision is achieved
by Random Forest for both DS1 and DS2 – 0.55 and 0.51,
respectively.

In the case of Data Class detection, MCC was signifi-
cantly different for different machine learning algorithms,
i.e., (H(7) = 909.77, p-value < 2.2×10−16) for DS1, while
(H(7) = 828.85, p-value < 2.2× 10−16) for DS2. For DS1,
the Nemenyi post hoc test with the chi-square approxima-
tion produces a p-value < 2.2× 10−16 for all comparisons
with Random Forest, apart from FDA (where the p-value
was 0.0536) and CTree (where the p-value was 1.3×10−8).
The nonparametric effect size p̂ is greater than 0.999 in the
case of comparisons of Random Forest with all other al-
gorithms, which (according to [65]) is considered a large
effect size. For DS2, the Nemenyi post hoc test with the
chi-square approximation produces a p-value < 2.2×10−16

for all comparisons with Random Forest, apart from FDA
(where the p-value was 0.047), and libSVM (where the p-
value was 4.4 × 10−16). The nonparametric effect size p̂
is at least 0.960 in case of comparisions of Random Forest
with all other algorithms, which (according to [65]) is con-
sidered a large effect size. This confirms that in the case
of Data Class detection, both for DS1 and DS2, the Ran-
dom Forest algorithm achieves the best results in terms of
MCC.

Figure 8: Data Class (DS2)

5. Discussion

In two of the three compared cases (Blob and Data
Class), a better performance was achieved with respect
to the median MCC in the case of DS1 (Figure 5, Fig-
ure 7) than in the case of DS2 (Figure 6, Figure 8). In
the case of the third, Long Method, better median MCC
was achieved for DS2 (Figure 4) than for DS1 (Figure 3).
This does not give a conclusive answer regarding whether
developers perceive "code smelliness" as a binary param-
eter or a continuum. In fact, this may even vary between
smells and developers, e.g., a claim in [51] is made that
for Blob and Data Class the main variation is between
minor/none and critical/major severities, while for Long
Method and Feature Envy no such grouping was identified.
This subject requires further research involving software
developers. This will be relevant for both researchers and
practitioners who aim to create data sets of code smells,
as it would give them guidelines on whether to expect de-
velopers to rank "smelliness" of the code on a scale or as
a binary attribute (or whether different strategies should
be employed for different smells).

5.1. RQ1: which machine learning algorithms are best used
for detection of code smells?

To decide which algorithm is the best for detecting code
smells, we have to take into account the performance for
all smells and all data sets. We decided to create a rank-
ing of methods and then recommend the top ones. In this
study, we rank on the basis of the median MCC achieved
by the algorithm. The complete ranking is presented in Ta-
ble A.4. For each code smell and data set, we rank the

10

methods for their performance (median MCC) – for each
data set, a method gets assigned a number of points equal
to the number of methods that performed worse than it
on the given data set. Finally, we sum the points for each
method, performing a de facto Borda count voting.

A winner in this setup is the Random Forest algorithm
with a total score of 45, closely followed by the FDA al-
gorithm with a total score of 43. In every analyzed case,
one of those algorithms performed best, and both were
in the top three for every analyzed case. Of course, if
the desired characteristics differ from what we assumed
(e.g., the goal is to reduce false positives, even at the ex-
pense of false negatives), the best choice may be different.
However, if using an F-score specifically, the top three re-
sults are the same (although with slightly different scores),
as shown in Table A.5. A Friedman test performed on
the MCC result yields a p-value below 10−4 which sug-
gests that those results come from more than one distri-
bution. However, a post hoc Nemenyi test between all
pairs yields only six pairs for which the p-value is below
0.05: FDA-KNN, FDA-kSVM, FDA-Naive Bayes, Ran-
dom Forest-KNN, Random Forest-kSVM, Random Forest-
Naive Bayes. The nonparametric effect size p̂ is at least
0.918 in case of comparisons of Random Forest with all
algorithms except FDA, for which the value is 0.633. All
other comparisons with FDA also have an effect size of at
least 0.918. This can be interpreted as a large dominance
of Random Forest and FDA over all other algorithms and
a medium dominance of Random Forest over FDA.

We observed that in the case of our research, using
F-score instead of MCC would not affect the qualitative
output of the study – while the exact values would differ,
those two metrics follow a similar distribution for all an-
alyzed cases. Detailed differences are shown in Table A.6
– the largest difference in ranking is two places in three
cases. The overall ranking would change only in spots
4-7, where differences between methods are minimal any-
way. Although this result does not invalidate the general
recommendation of Shepperd et al. and Yao and Shep-
perd [15, 16] to use performance metrics that account for
all four quadrants of the confusion matrix, we agree with,
it is a suggestion that, in the particular area of code smell
detection, previous research that relied on F-score is likely
to achieve comparable results in terms of MCC.

In most cases, the best machine learning techniques are
able to achieve MCC values that correspond to moderate
to strong correlation with the actual existence of a code
smell. While, in general, the choice of an algorithm has
to be done on a case-by-case basis, Random Forest and
FDA algorithms have consistently achieved top results in
terms of median MCC and median F-score and can be
recommended as a starting point for further research.

Although Random Forest and FDA achieved the best
overall results, in many cases other methods have achieved
comparable results, often overlapping. Such uniformity
cannot be attributed to algorithm-specific shortcomings,
as a wide range of types of algorithms was analyzed–including

tree-based, analytic, instance-based, SVM and statistical.
It may be that different samples are classified correctly by
different types of classifiers, which would mean that the
results may be further improved by using classifier ensem-
bles, but according to preliminary results (this research
is still ongoing), using ensembles is unlikely to introduce
a substantial difference in classification performance (the
more so that Random Forrest is already a kind of ensem-
ble model). This observation led us to believe that it is
unlikely that the use of other machine learning algorithms
alone would yield substantially different results. The con-
sequence of this conclusion is that, to improve the perfor-
mance of the classifiers, new attributes should be added
to the samples. Those attributes should be new code met-
rics – while other areas of research on software engineer-
ing (e.g., research on defect prediction) also use process
metrics, we claim that these are also unlikely to strongly
improve the performance of code smell detection. The
reason for that is the process used for data set creation
– while code smell severities are assigned by domain ex-
perts in [14], those experts are not affiliated with reviewed
projects in any way. In fact, in most cases they see the re-
viewed code for the first time – thus, they were not able to
use any process metrics for their assessment. Determining
which specific code metrics would improve performance
the most is subject to further research. It is possible that
less typical features (related to properties such as code
styling, variable/function naming, and indentation) may
positively affect models’ results. Some work in this area
has been done in [36], where neural embeddings are used
as predictors with promising results, but this research is
still in its early stage.

5.2. RQ2: how do our results compare to results that other
researchers were able to achieve on the MLCQ data
set?

We were not able to compare our results with other
code smell detection tools, because existing tools (such as
JDeodorant [66, 67] or JSpIRIT [68]) are focused on im-
proving developers’ performance, not on large-scale stud-
ies. As such, those tools work as IDE plugins. Since
MLCQ is composed from over 500 projects, it is not feasi-
ble to manually import to an IDE and analyze all of them.

There are two papers that we know of that attempt to
solve the same problem – detect code smells – using the
same MLCQ data set and machine learning techniques [51]
and [36]. Results of [36] are directly comparable to ours on
DS1, while results of [51] are not, since the authors of [51]
focused on the effect of the severity cut-off threshold on
precision and accuracy, while we focused on performance,
particularly MCC, of various machine learning techniques
on fixed, two data splits into binary classes.

The main reason for incomparability is different data
preprocessing: we decided to first assign a higher median
severity to each sample and then split into DS1 and DS2,
while the authors of [51] decided to use a different severity

11

aggregation technique, based on a weighted mean of all
severities.

Since it is important to establish a common baseline,
we decided to replicate the aggregation technique presented
in [51] to verify that our results match. It is important
since we use a slightly different set of predictors, thus it is
possible that we have no access to some relevant informa-
tion. This is particularly important since one of the con-
clusions of RQ1 is that additional predictors are needed.

Replication was done only by training ten Random For-
est models for each data point. The replication was run
twice – once when hyperparameters were optimized for the
best value of MCC, and the second time when they were
optimized for best value of precision. We present only re-
sults optimized for MCC but results of the run optimized
for precision are not much different. The authors of [51]
decided to analyze only Blob and Data Class, thus only
those are included in the replication.

The reproduction was executed using the same work-
flow as our original research with three exceptions:

1. sample aggregation was done using a sum instead of
median,

2. thresholding into positive/negative class was done
based on the sum and not on the median,

3. in one of the runs (200 models) we optimize hyper-
parameters for precision, not for MCC.

We trained a total of 400 models (200 for Data Class
and 200 for Blob). The results are shown in Figures 9
and 10, while detailed performance data are presented in
the data appendix included in the reproduction package.

Figure 9: Blob, Random Forest (reproduction)

Figure 10: Data Class, Random Forest (reproduction)

Overall, we have not been able to reproduce the results
shown in [51]. With a threshold above 2.0, the learning
process was getting unstable due to the small number of
positive samples (17 for Blob at 2.25, 6 for Blob at 2.50,
29 for Data Class at 2.25, 18 for Data Class at 2.50), thus
this area is not shown on Figure 9 and Figure 10.

In the area analyzed, our results, compared to the orig-
inal results shown in [51], are worse in terms of preci-
sion (accuracy is not a valid metric for imbalanced data
sets, so we will not discuss it). Assuming that the results
of [51] are valid, the most likely explanation is that the
Understand [69] metrics are much more informative with
regard to code smell detection than the CODEBEAT met-
rics (both Understand and CODEBEAT are commercial
offerings). A list of more than 100 metrics provided by
Understand, together with their definitions, is available
online7. On the other hand, the list of metrics provided
by CODEBEAT is much smaller – there are a total of 28
metrics, which are briefly discussed in Table A.7.

The research described in [36] was also concerned only
with Long Method and Blob (called God Class there). We
present their results and compare them to the median Ran-
dom Forest result on DS1 (column ∆RF) in Table 2 (only
F-scores are included).

As presented in Table 2, results achieved by our Ran-
dom Forest classifier achieved higher results in terms of F
score compared to the approaches used in [36].

7See https://support.scitools.com/support/solutions/
articles/70000582223-what-metrics-does-understand-have-

12

https://support.scitools.com/support/solutions/articles/70000582223-what-metrics-does-understand-have-
https://support.scitools.com/support/solutions/articles/70000582223-what-metrics-does-understand-have-

Method Smell F-score ∆RF

ML_code2vec Long Method 0.24 -0.53
H_metrics Long Method 0.48 -0.29

ML_code2seq Long Method 0.55 -0.22
ML_metrics_votes Long Method 0.63 -0.14

ML_metrics Long Method 0.67 -0.10
ML_CuBERT Long Method 0.75 -0.02
ML_code2vec Blob 0.26 -0.31

H_metrics Blob 0.41 -0.16
ML_code2seq Blob 0.49 -0.08

ML_metrics_votes Blob 0.51 -0.06
ML_metrics Blob 0.52 -0.05

ML_CuBERT Blob 0.53 -0.04

Table 2: Results achieved in [36] and their comparison to median results of Random Forest from the current study

5.3. RQ3: how do our results compare to the results that
other researchers were able to achieve (regardless of
the data set)?

Our study, like other studies discussed in Section 5.2,
uses the MLCQ data set as the source of truth. However,
there are many other data sets used in the scientific lit-
erature, often used only in a single study. The problems
with this approach are discussed in Section 3.5 and in more
detail in [19].

Here, we only discuss papers that report detection of
at least one of the following four code smells: Blob (or
God Class/Large Class/Brain Class), Data Class, Feature
Envy and Long Method (or Brain Method), and use Java
projects for that. Although those results are not directly
comparable, we include them here to present the reader
with the range of results that may be expected in this sort
of research. We also want to show that selecting a data set
is a critical aspect for code smell detection, and the domain
will face challenges until the data acquisition procedures
are not agreed upon.

In Table 3, we gathered some of the results published
by other researchers in recent years. We extracted the
value of the F1 metric (MCC was frequently unavailable,
and we decided it is preferable to provide a comparable
metric to all results), and only included results from pa-
pers that reported it. If the values presented in the table
were universally considered valid, the detection problem
would already be solved in 2015, when the best value of
F1 for each smell exceeds 0.95. Presented results are only
example results from the last few years. The point of pre-
senting those is not to make a complete review, but to give
the reader a perspective on how big the differences can be.
Interestingly, the performance results do not appear to
correlate with the publication time, since the oldest paper
in Table 3 ([9]) is also the one that presents the highest
(or second-highest for some smells) performance results.

However, later research on the same smells using the
same algorithms and similar sets of predictors (predictors
are not included in Table 3, but the algorithms predom-
inantly used code metrics as their input data) show that

those results are not stable across data sets. This was
pointed out in [24] and was also an inspiration for creating
MLCQ [14].

5.4. Study implications
Machine learning algorithm performance—results

of our research clearly show that Random Forest is the al-
gorithm that performs best overall. This is not surprising,
as this algorithm is commonly considered one of the best
and is widely used to estimate the ceiling. However, inter-
estingly, Flexible Discriminant Analysis (FDA) performs
not much worse. To our knowledge [20], this is the first
paper on code smell detection that includes the FDA al-
gorithm, and, considering the results, we believe that this
may be a promising path to follow.

MCC vs F-score—despite the fact that the F-score
omits one quadrant of the confusion matrix and, theoreti-
cally speaking, the results may differ substantially between
F-score and MCC, in our research we have shown that in
the area of code smell detection, the actual differences are
minimal and using any of those metrics will lead to similar
conclusions.

Performance boundaries—while the research com-
munity struggles to achieve the best possible performance
metrics, it is not obvious what those maximum values
are. Considering that the agreement between developers
on what constitutes code smell is not very high [45], addi-
tional research is needed to estimate the achievable target
performance.

Missing predictors—our results suggest that the main
factor that can improve the detection results are additional
code metrics. These may be metrics from the Understand
tool or new ones (e.g., ones that include meaning of vari-
able names), but changes in machine learning algorithms
alone are unlikely to substantially affect the results.

Open source tools—both this paper and [51] use
predictors calculated by commercial tools (CODEBEAT
in our case, Understand in case of [51]). This poses a
threat to the reproducibility of these studies, since other

13

Reference Year Smell Algorithm F1 Dataset source
[9] 2015 Data Class Random Forest 0.989 [9]
[9] 2015 Data Class Naïve Bayes 0.980 [9]
[9] 2015 Data Class SVM 0.71 [9]
[9] 2015 Data Class J48 0.987 [9]
[70] 2019 Data Class GA 0.65-0.89 [70]
[70] 2019 Data Class PEA 0.72-0.90 [70]
[70] 2019 Data Class MOGP 0.65-0.89 [70]
[70] 2019 Data Class SP-J48 0.70-0.90 [70]
[9] 2015 Blob Random Forest 0.980 [9]
[9] 2015 Blob Naïve Bayes 0.981 [9]
[9] 2015 Blob SVM 0.959 [9]
[9] 2015 Blob J48 0.980 [9]
[41] 2019 Blob Naïve Bayes 0.41 [71]
[41] 2019 Blob Rules (DÉCOR) 0.16 [71]
[33] 2019 Blob Deep Learning 0.223 [33]
[70] 2019 Blob GA 0.90-1.00 [70]
[70] 2019 Blob PEA 0.99-1.00 [70]
[70] 2019 Blob MOGP 0.94-1.00 [70]
[70] 2019 Blob SP-J48 1.00 [70]
[72] 2020 Blob GBM 0.843 [33]
[72] 2020 Blob Random Forest 0.847 [33]
[72] 2020 Blob KNN 0.725 [33]
[72] 2020 Blob Naïve Bayes 0.547 [33]
[9] 2015 Feature Envy Random Forest 0.973 [9]
[9] 2015 Feature Envy Naïve Bayes 0.936 [9]
[9] 2015 Feature Envy SVM 0.941 [9]
[9] 2015 Feature Envy J48 0.970 [9]
[70] 2019 Feature Envy GA 0.45-0.80 [70]
[70] 2019 Feature Envy PEA 0.91-1.00 [70]
[70] 2019 Feature Envy MOGP 0.49-0.89 [70]
[70] 2019 Feature Envy SP-J48 1.00 [70]
[33] 2019 Feature Envy Deep Learning 0.519 [33]
[72] 2020 Feature Envy GBM 0.146 [33]
[72] 2020 Feature Envy Random Forest 0.300 [33]
[72] 2020 Feature Envy KNN 0.044 [33]
[72] 2020 Feature Envy Naïve Bayes 0.005 [33]
[9] 2015 Long Method Random Forest 0.996 [9]
[9] 2015 Long Method Naïve Bayes 0.984 [9]
[9] 2015 Long Method SVM 0.976 [9]
[9] 2015 Long Method J48 0.993 [9]
[41] 2019 Long Method Naïve Bayes 0.23 [71]
[41] 2019 Long Method Rules (DÉCOR) 0.44 [71]
[33] 2019 Long Method Deep Learning 0.555 [33]
[72] 2020 Long Method GBM 0.242 [33]
[72] 2020 Long Method Random Forest 0.225 [33]
[72] 2020 Long Method KNN 0.084 [33]
[72] 2020 Long Method Naïve Bayes 0.196 [33]

Table 3: Results achieved by other researchers

14

researchers may have trouble acquiring those tools. To al-
leviate this risk, we provide descriptions of those metrics.
Although we think this is acceptable as a step in an ex-
ploratory study, we also believe that metrics that prove
to be useful should be ported to open-source tools, such
as PMD8 or JavaMetrics9. PMD out-of-the-box is able to
calculate over a dozen metrics; JavaMetrics offers several
dozen metrics. As such, they could be extended during
each study (separately by each researcher), which could
decrease reproducibility of the results. Understand itself
is capable of calculating more than 100 metrics, and the re-
sults of this study suggest that some of them deliver value.
Researchers should identify which ones and port them to
open source tools so that they could be used by a wider
community.

Data sets—as shown in Section 5.3, the results for
the same algorithms and similar sets of predictors can
vary greatly. This variability is attributed to the data
selection process, which is not yet standardized in the re-
search community. Lack of standarization may be caused
by vague definitions of code smells and lack of agreement
between experts on what constitutes a smell. Although
earlier literature suggests that code smells are a useful con-
cept [73, 74], perhaps it would be more efficient to infer
them from defect data sets (as structural defect predic-
tors), rather than to rely on developers’ understanding.

5.5. Threats to validity
To analyze threats to the validity of our study, we fol-

low the classification of threats given by Wohlin [75] and
discuss the internal and external validity of the study.

5.5.1. Internal validity
The whole analysis presented in this study was auto-

mated. It is always possible that an important defect exists
somewhere in the relevant source code. Nowadays, this is
even more likely, since not only our code is relevant to the
results but also code of all libraries that are used in the
study. Of course, we cannot guarantee their correctness.
However, we used well-known and tested machine learning
libraries in a very mature environment. We believe that
this minimizes the likelihood of a library error that is rel-
evant for the results, but since this possibility cannot be
rejected, in the reproduction package, we provide a full list
of dependencies and their versions, including both a list of
R packages and a list of operating system packages that
were installed when performing calculations.

We also reviewed our code several times, but the pos-
sibility of it containing defects cannot be excluded. To aid
researchers who wish to reproduce this study, we published
the whole source code together with the results. Each ar-
tifact used in the study can be downloaded from an online
appendix described in Section 3.6.

8https://pmd.github.io/
9https://github.com/LechMadeyski/JavaMetrics

A likely problem with some of the algorithms – par-
ticularly Naïve Bayes – is their assumption about inde-
pendent predictors. In our study, this criterion was not
fulfilled (as proven by high correlation yield by a post hoc
analysis of predictors), so solutions that do not have em-
bedded resilience to this sort of problems may be improved
by feature engineering.

5.5.2. External validity
The models described in this study were built from

reviews created by a group of engineers with more or less
similar professional backgrounds, using a single set of open
source Java projects. We do not claim that these tech-
niques are transferable outside the realm of open-source
Java projects. Indeed, we do not even claim that the smells
themselves are transferable. Further research is needed to
decide on that. This study has simply set the bounds on
performance of machine learning models that use product
metrics as predictors for samples obtained by a wide group
of engineers, as there are studies showing low agreement
on what constitutes a code smell [76, 45].

6. Conclusions

Our study shows that Random Forest is the best algo-
rithm overall to detect code smells in Java source code –
performance measure that it was able to achieve was the
best in five our of seven experiments. In all cases, the dif-
ference was statistically significant, with large effect size
in four of those cases. Flexible Discriminant Analysis was
the second algorithm which performed very well and con-
sistently achieved performance in top three algorithms.

Overall, the degree to which we are able to detect a
code smell varies substantially depending on the smell it-
self – we are able to detect Long Method with high confi-
dence, Blob and Data Class with medium confidence and
Feature Envy with low confidence. For all cases, the algo-
rithms performed better than random guessing.

It should be noted that using F-score instead of MCC
would not affect the conclusions, as it appeared that these
two metrics follow a similar distribution for all the cases
analyzed. This means that although MCC is generally
a recommended performance measure (see [15, 16]), this
does not necessarily invalidate conclusions based on F-
score, widely used, especially but not only in older publi-
cations.

We were able to achieve an F-score higher than that
presented in [36], that used the same data set and sever-
ity preprocessing, although [36] used very advanced algo-
rithms, including the CuBERT model. On the other hand,
we were not able to replicate the results from [51], espe-
cially with higher severity thresholds, perhaps due to the
lower number of metrics used.

We have shown that results achieved on different data
sets cannot be reasonably compared – results achieved by
researchers when they use different data sets can range

15

https://pmd.github.io/
https://github.com/LechMadeyski/JavaMetrics

from 0.005 to 0.936, even for the same algorithm (Naïve
Bayes for Feature Envy). Until a widely accepted bench-
mark data set is established, the performance of the meth-
ods should only be compared when applied to the same
data set(s).

With baseline results established in this study, there
are two main directions for further research: first, improv-
ing code smell detection results. It seems that the most
promising way to achieve that is to increase the number of
software metrics available to the model, for example, with
metrics calculated by the Understand [69] tool. Second, a
benchmark should be developed that would allow practical
evaluation of code smell models, since the goal is not to
reduce the number of code smells per se, but to decrease
the number of defects in software and/or decrease over-
all maintenance effort, evaluation of models should take
this into account. In particular, we would like to evalu-
ate whether detection models trained on MLCQ can pos-
itively affect the performance of defect prediction models
or maintenance effort prediction models.

CRediT authorship contribution statement

Lech Madeyski: Conceptualization, Methodology, Soft-
ware, Validation, Formal analysis, Investigation, Writing
– original draft, Writing - review & editing, Supervision,
Funding acquisition. Tomasz Lewowski: Methodology,
Software, Validation, Formal analysis, Investigation, Data
curation, Writing – original draft, Writing - review & edit-
ing, Visualization.

Declaration of competing interest

This research was carried out in collaboration with
code quest sp. z o.o. The authors declare that they have
no known competing financial interests or personal rela-
tionships that could have appeared to influence the work
reported in this paper.

Data availability

Reproduction package (including data and code) is dis-
cussed in detail in Section 3.6.

Acknowledgement

This work has been partially carried out as part of
the research and development project POIR.01.01.01-00-
0792/16 supported by the National Centre for Research
and Development (NCBiR), and the research internship of
Lech Madeyski at BTH. The authors thank Tomasz Ko-
rzeniowski and Marek Skrajnowski from code quest sp.
z o.o. for all of the support, comments, and feedback from
the real-world software engineering environment.

References

[1] H. Krasner, The cost of poor software quality in the US:
A 2020 report, 2021. URL: https://www.it-cisq.org/pdf/
CPSQ-2020-report.pdf.

[2] T. Bakota, P. Hegedűs, G. Ladányi, P. Körtvélyesi, R. Ferenc,
T. Gyimóthy, A cost model based on software maintainabil-
ity, in: 2012 28th IEEE International Conference on Soft-
ware Maintenance (ICSM), 2012 28th IEEE International Con-
ference on Software Maintenance (ICSM), 2012, pp. 316–325.
doi:10.1109/ICSM.2012.6405288.

[3] A. Endres, An analysis of errors and their causes in system
programs, IEEE Transactions on Software Engineering 1 (1975)
140–149. doi:10.1109/TSE.1975.6312834.

[4] C. Ebert, M. Bundschuh, R. Dumke, A. Schmietendorf, Defect
Detection and Quality Improvement, Best Practices in Software
Measurement: How to use metrics to improve project and pro-
cess performance, Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2005, pp. 133–156. doi:10.1007/3-540-26734-4_9.

[5] Z. Li, N. Madhavji, S. Murtaza, M. Gittens, A. Miranskyy,
D. Godwin, E. Cialini, Characteristics of multiple-component
defects and architectural hotspots: A large system case study,
Empirical Software Engineering 16 (2011) 667–702. doi:10.
1007/s10664-011-9155-y.

[6] T. D. Oyetoyan, D. S. Cruzes, R. Conradi, A study of cyclic
dependencies on defect profile of software components, Journal
of Systems and Software 86 (2013) 3162–3182. doi:10.1016/j.
jss.2013.07.039.

[7] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactor-
ing: Improving the Design of Existing Code, Addison-Wesley,
Boston, MA, USA, 1999.

[8] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1995.

[9] F. A. Fontana, M. V. Mäntylä, M. Zanoni, A. Marino, Com-
paring and experimenting machine learning techniques for code
smell detection, Empirical Software Engineering 21 (2016)
1143–1191. doi:10.1007/s10664-015-9378-4.

[10] N. Moha, Y.-G. Gueheneuc, L. Duchien, A.-F. Le Meur, Decor:
A method for the specification and detection of code and design
smells, IEEE Transactions on Software Engineering 36 (2010)
20–36. doi:10.1109/TSE.2009.50.

[11] F. Palomba, Textual Analysis for Code Smell Detection, in:
Proceedings - International Conference on Software Engineer-
ing, volume 2, 2015, pp. 769–771. doi:10.1109/ICSE.2015.244.

[12] S.-J. Lee, L. Lo, Y.-C. Chen, S.-M. Shen, Co-changing code
volume prediction through association rule mining and linear
regression model, Expert Systems with Applications 45 (2016)
185–194. doi:10.1016/j.eswa.2015.09.023.

[13] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lu-
cia, D. Poshyvanyk, Detecting bad smells in source code using
change history information, in: 2013 28th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE
2013 - Proceedings, 2013, pp. 268–278. doi:10.1109/ASE.2013.
6693086.

[14] L. Madeyski, T. Lewowski, MLCQ: Industry-Relevant Code
Smell Data Set, in: Proceedings of the Evaluation and Assess-
ment in Software Engineering, EASE ’20, Proceedings of the
Evaluation and Assessment in Software Engineering, Associa-
tion for Computing Machinery, New York, NY, USA, 2020, p.
342–347. doi:10.1145/3383219.3383264.

[15] M. Shepperd, D. Bowes, T. Hall, Researcher Bias: The Use of
Machine Learning in Software Defect Prediction, IEEE Transac-
tions in Software Engineering 40 (2014) 603–616. doi:10.1109/
TSE.2014.2322358.

[16] J. Yao, M. Shepperd, The impact of using biased performance
metrics on software defect prediction research, Information and
Software Technology 139 (2021) 106664. doi:10.1016/j.infsof.
2021.106664.

[17] L. Madeyski, B. Kitchenham, Would wider adoption of repro-
ducible research be beneficial for empirical software engineering

16

https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf
https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf
http://dx.doi.org/10.1109/ICSM.2012.6405288
http://dx.doi.org/10.1109/TSE.1975.6312834
http://dx.doi.org/10.1007/3-540-26734-4_9
http://dx.doi.org/10.1007/s10664-011-9155-y
http://dx.doi.org/10.1007/s10664-011-9155-y
http://dx.doi.org/10.1016/j.jss.2013.07.039
http://dx.doi.org/10.1016/j.jss.2013.07.039
http://dx.doi.org/10.1007/s10664-015-9378-4
http://dx.doi.org/10.1109/TSE.2009.50
http://dx.doi.org/10.1109/ICSE.2015.244
http://dx.doi.org/10.1016/j.eswa.2015.09.023
http://dx.doi.org/10.1109/ASE.2013.6693086
http://dx.doi.org/10.1109/ASE.2013.6693086
http://dx.doi.org/10.1145/3383219.3383264
http://dx.doi.org/10.1109/TSE.2014.2322358
http://dx.doi.org/10.1109/TSE.2014.2322358
http://dx.doi.org/10.1016/j.infsof.2021.106664
http://dx.doi.org/10.1016/j.infsof.2021.106664

research?, Journal of Intelligent & Fuzzy Systems 32 (2017)
1509–1521. doi:10.3233/JIFS-169146.

[18] B. Kitchenham, L. Madeyski, P. Brereton, Meta-analysis for
Families of Experiments in Software Engineering: A System-
atic Review and Reproducibility and Validity Assessment, Em-
pirical Software Engineering 25 (2020) 353–401. doi:10.1007/
s10664-019-09747-0.

[19] T. Lewowski, L. Madeyski, How far are we from reproducible
research on code smell detection? a systematic literature re-
view, Information and Software Technology 144 (2022) 106783.
doi:10.1016/j.infsof.2021.106783.

[20] T. Lewowski, L. Madeyski, Code Smells Detection Using Ar-
tificial Intelligence Techniques: A Business-Driven Systematic
Review, Developments in Information & Knowledge Manage-
ment for Business Applications : Volume 3, Springer Inter-
national Publishing, Cham, 2022, pp. 285–319. doi:10.1007/
978-3-030-77916-0_12.

[21] A. Al-Shaaby, H. Aljamaan, M. Alshayeb, Bad Smell Detection
Using Machine Learning Techniques: A Systematic Literature
Review, Arabian Journal for Science and Engineering 45 (2020)
2341–2369. doi:10.1007/s13369-019-04311-w.

[22] M. I. Azeem, F. Palomba, L. Shi, Q. Wang, Machine learning
techniques for code smell detection: A systematic literature re-
view and meta-analysis, Information and Software Technology
108 (2019) 115 – 138. doi:10.1016/j.infsof.2018.12.009.

[23] G. Rasool, Z. Arshad, A review of code smell mining techniques,
Journal of Software: Evolution and Process 27 (2015) 867–895.
doi:10.1002/smr.1737.

[24] F. Caram, B. R. de Oliveira Rodrigues, A. Campanelli,
F. Silva Parreiras, Machine learning techniques for code smells
detection: A systematic mapping study, International Journal
of Software Engineering and Knowledge Engineering 29 (2019)
285–316. doi:10.1142/S021819401950013X.

[25] J. A. M. Santos, J. B. Rocha-Junior, L. C. L. Prates, R. S.
do Nascimento, M. F. Freitas, M. G. de Mendonça, A systematic
review on the code smell effect, Journal of Systems and Software
144 (2018) 450 – 477. doi:10.1016/j.jss.2018.07.035.

[26] E. V. d. P. Sobrinho, A. De Lucia, M. d. A. Maia, A systematic
literature review on bad smells–5 w’s: Which, when, what, who,
where, IEEE Transactions on Software Engineering 47 (2021)
17–66. doi:10.1109/TSE.2018.2880977.

[27] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, A. De
Lucia, Detecting code smells using machine learning techniques:
Are we there yet?, in: 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER),
2018, pp. 612–621. doi:10.1109/SANER.2018.8330266.

[28] M. Mhawish, Predicting code smells and analysis of predic-
tions: Using machine learning techniques and software metrics,
Journal of Computer Science and Technology Vol. 35 (2020)
1428–1445. doi:10.1007/s11390-020-0323-7.

[29] F. Khomh, S. Vaucher, Y.-G. Guéehéeneuc, H. Sahraoui, A
Bayesian Approach for the Detection of Code and Design
Smells, in: Proceedings - International Conference on Qual-
ity Software, 2009, pp. 305–314. doi:10.1109/QSIC.2009.47.

[30] J. Yu, C. Mao, X. Ye, A novel tree-based neural network for
android code smells detection, in: 2021 IEEE 21st International
Conference on Software Quality, Reliability and Security (QRS),
2021, pp. 738–748. doi:10.1109/QRS54544.2021.00083.

[31] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshy-
vanyk, A. De Lucia, Mining version histories for detecting code
smells, IEEE Transactions on Software Engineering 41 (2015)
462–489. doi:10.1109/TSE.2014.2372760.

[32] H. Liu, Z. Xu, Y. Zou, Deep learning based feature envy de-
tection, in: ASE 2018 - Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering,
2018, pp. 385–396. doi:10.1145/3238147.3238166.

[33] H. Liu, J. Jin, Z. Xu, Y. Bu, Y. Zou, L. Zhang, Deep learning
based code smell detection, IEEE Transactions on Software
Engineering (2019). doi:10.1109/TSE.2019.2936376.

[34] M. Hadj-Kacem, N. Bouassida, Deep Representation Learning
for Code Smells Detection using Variational Auto-Encoder, in:

Proceedings of the International Joint Conference on Neural
Networks, volume 2019-July, 2019. doi:10.1109/IJCNN.2019.
8851854.

[35] T. Lin, X. Fu, F. Chen, L. Li, A novel approach for code
smells detection based on deep leaning, in: B. Chen, X. Huang
(Eds.), Applied Cryptography in Computer and Communica-
tions, Applied Cryptography in Computer and Communica-
tions, Springer International Publishing, Cham, 2021, pp. 171–
174.

[36] A. Kovačević, J. Slivka, D. Vidaković, K.-G. Grujić, N. Luburić,
S. Prokić, G. Sladić, Automatic detection of long method
and god class code smells through neural source code embed-
dings, Expert Systems with Applications 204 (2022) 117607.
doi:https://doi.org/10.1016/j.eswa.2022.117607.

[37] H. Liu, Q. Liu, Z. Niu, Y. Liu, Dynamic and automatic
feedback-based threshold adaptation for code smell detection,
IEEE Transactions on Software Engineering 42 (2016) 544–558.
doi:10.1109/TSE.2015.2503740.

[38] Y. Guo, C. Seaman, N. Zazworka, F. Shull, Domain-specific
tailoring of code smells: An empirical study, in: Proceedings
of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 2, ICSE ’10, Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering
- Volume 2, Association for Computing Machinery, New York,
NY, USA, 2010, p. 167–170. doi:10.1145/1810295.1810321.

[39] F. Arcelli Fontana, V. Ferme, M. Zanoni, A. Yamashita, Auto-
matic Metric Thresholds Derivation for Code Smell Detection,
in: 2015 IEEE/ACM 6th International Workshop on Emerg-
ing Trends in Software Metrics, 2015, pp. 44–53. doi:10.1109/
WETSoM.2015.14.

[40] S. Boutaib, M. Elarbi, S. Bechikh, F. Palomba, L. B. Said, A
possibilistic evolutionary approach to handle the uncertainty of
software metrics thresholds in code smells detection, in: 2021
IEEE 21st International Conference on Software Quality, Reli-
ability and Security (QRS), 2021 IEEE 21st International Con-
ference on Software Quality, Reliability and Security (QRS),
2021, pp. 574–585. doi:10.1109/QRS54544.2021.00068.

[41] F. Pecorelli, F. Palomba, D. Di Nucci, A. De Lucia, Com-
paring heuristic and machine learning approaches for metric-
based code smell detection, in: 2019 IEEE/ACM 27th Inter-
national Conference on Program Comprehension (ICPC), 2019
IEEE/ACM 27th International Conference on Program Com-
prehension (ICPC), 2019, pp. 93–104. doi:10.1109/ICPC.2019.
00023.

[42] N. Sae-Lim, S. Hayashi, M. Saeki, How do developers select and
prioritize code smells? a preliminary study, in: 2017 IEEE In-
ternational Conference on Software Maintenance and Evolution
(ICSME), 2017, pp. 484–488. doi:10.1109/ICSME.2017.66.

[43] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
Do they really smell bad? a study on developers’ perception
of bad code smells, in: 2014 IEEE International Conference
on Software Maintenance and Evolution, 2014, pp. 101–110.
doi:10.1109/ICSME.2014.32.

[44] T. Saika, E. Choi, N. Yoshida, S. Haruna, K. Inoue, Do de-
velopers focus on severe code smells?, in: 2016 IEEE 23rd In-
ternational Conference on Software Analysis, Evolution, and
Reengineering (SANER), volume 4, 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengi-
neering (SANER), 2016, pp. 1–3. doi:10.1109/SANER.2016.117.

[45] M. Hozano, N. Antunes, B. Fonseca, E. Costa, Evaluat-
ing the Accuracy of Machine Learning Algorithms on Detect-
ing Code Smells for Different Developers, in: Proceedings
of the 19th International Conference on Enterprise Informa-
tion Systems - Volume 2: ICEIS„ INSTICC, Proceedings of
the 19th International Conference on Enterprise Information
Systems - Volume 2: ICEIS, SciTePress, 2017, pp. 474–482.
doi:10.5220/0006338804740482.

[46] F. Arcelli Fontana, M. Zanoni, Code smell severity classification
using machine learning techniques, Knowledge-Based Systems
128 (2017) 43 – 58. URL: https://doi.org/10.1016/j.knosys.
2017.04.014. doi:10.1016/j.knosys.2017.04.014.

17

http://dx.doi.org/10.3233/JIFS-169146
http://dx.doi.org/10.1007/s10664-019-09747-0
http://dx.doi.org/10.1007/s10664-019-09747-0
http://dx.doi.org/10.1016/j.infsof.2021.106783
http://dx.doi.org/10.1007/978-3-030-77916-0_12
http://dx.doi.org/10.1007/978-3-030-77916-0_12
http://dx.doi.org/10.1007/s13369-019-04311-w
http://dx.doi.org/10.1016/j.infsof.2018.12.009
http://dx.doi.org/10.1002/smr.1737
http://dx.doi.org/10.1142/S021819401950013X
http://dx.doi.org/10.1016/j.jss.2018.07.035
http://dx.doi.org/10.1109/TSE.2018.2880977
http://dx.doi.org/10.1109/SANER.2018.8330266
http://dx.doi.org/10.1007/s11390-020-0323-7
http://dx.doi.org/10.1109/QSIC.2009.47
http://dx.doi.org/10.1109/QRS54544.2021.00083
http://dx.doi.org/10.1109/TSE.2014.2372760
http://dx.doi.org/10.1145/3238147.3238166
http://dx.doi.org/10.1109/TSE.2019.2936376
http://dx.doi.org/10.1109/IJCNN.2019.8851854
http://dx.doi.org/10.1109/IJCNN.2019.8851854
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2022.117607
http://dx.doi.org/10.1109/TSE.2015.2503740
http://dx.doi.org/10.1145/1810295.1810321
http://dx.doi.org/10.1109/WETSoM.2015.14
http://dx.doi.org/10.1109/WETSoM.2015.14
http://dx.doi.org/10.1109/QRS54544.2021.00068
http://dx.doi.org/10.1109/ICPC.2019.00023
http://dx.doi.org/10.1109/ICPC.2019.00023
http://dx.doi.org/10.1109/ICSME.2017.66
http://dx.doi.org/10.1109/ICSME.2014.32
http://dx.doi.org/10.1109/SANER.2016.117
http://dx.doi.org/10.5220/0006338804740482
https://doi.org/10.1016/j.knosys.2017.04.014
https://doi.org/10.1016/j.knosys.2017.04.014
http://dx.doi.org/10.1016/j.knosys.2017.04.014

[47] F. Pecorelli, F. Palomba, F. Khomh, A. De Lucia, Developer-
driven code smell prioritization, Association for Computing Ma-
chinery, New York, NY, USA, 2020. URL: https://doi.org/
10.1145/3379597.3387457. doi:10.1145/3379597.3387457.

[48] D. Taibi, A. Janes, V. Lenarduzzi, How developers per-
ceive smells in source code: A replicated study, Informa-
tion and Software Technology 92 (2017) 223–235. URL:
https://www.sciencedirect.com/science/article/pii/
S0950584916304128. doi:https://doi.org/10.1016/j.infsof.
2017.08.008.

[49] H. Grodzicka, A. Ziobrowski, Z. Łakomiak, M. Kawa,
L. Madeyski, Code Smell Prediction Employing Ma-
chine Learning Meets Emerging Java Language Constructs,
in: A. Poniszewska-Marańda, N. Kryvinska, S. Jarząbek,
L. Madeyski (Eds.), Data-Centric Business and Applications:
Towards Software Development (Volume 4), volume 40 of book
series Lecture Notes on Data Engineering and Communications
Technologies, Springer International Publishing, Cham, 2020,
pp. 137–167. doi:10.1007/978-3-030-34706-2_8.

[50] T. Lewowski, L. Madeyski, Creating Evolving Project Data
Sets in Software Engineering, in: S. Jarzabek, A. Poniszewska-
Marańda, L. Madeyski (Eds.), Integrating Research and Prac-
tice in Software Engineering, volume 851 of Studies in Compu-
tational Intelligence, Springer, Cham, 2020, pp. 1–14. doi:10.
1007/978-3-030-26574-8_1.

[51] C. Soomlek, J. van Rijn, M. Bonsangue, Automatic Human-
Like Detection of Code Smells, Discovery Science, Springer In-
ternational Publishing, Cham, 2021, pp. 19–28. doi:10.1007/
978-3-030-88942-5_2.

[52] M. Gradišnik, T. Beranič, S. Karakatič, G. Mausaš, Adapt-
ing god class thresholds for software defect prediction: A case
study, in: 2019 42nd International Convention on Informa-
tion and Communication Technology, Electronics and Micro-
electronics (MIPRO), 2019 42nd International Convention on
Information and Communication Technology, Electronics and
Microelectronics (MIPRO), 2019, pp. 1537–1542. doi:10.23919/
MIPRO.2019.8757009.

[53] B. Soltanifar, S. Akbarinasaji, B. Caglayan, A. B. Bener,
A. Filiz, B. M. Kramer, Software analytics in practice: A
defect prediction model using code smells, in: Proceedings
of the 20th International Database Engineering & Applica-
tions Symposium, IDEAS ’16, Proceedings of the 20th Interna-
tional Database Engineering & Applications Symposium, Asso-
ciation for Computing Machinery, New York, NY, USA, 2016,
p. 148–155. doi:10.1145/2938503.2938553.

[54] G. Chandrashekar, F. Sahin, A survey on feature selection
methods, Computers & Electrical Engineering 40 (2014) 16–28.
doi:10.1016/j.compeleceng.2013.11.024, 40th-year commem-
orative issue.

[55] L. Madeyski, M. Jureczko, Which Process Metrics Can Sig-
nificantly Improve Defect Prediction Models? An Empir-
ical Study, Software Quality Journal 23 (2015) 393–422.
URL: https://doi.org/10.1007/s11219-014-9241-7. doi:10.
1007/s11219-014-9241-7.

[56] S. Fu, B. Shen, Code bad smell detection through evolutionary
data mining, in: 2015 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM),
2015, pp. 1–9. doi:10.1109/ESEM.2015.7321194.

[57] B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter,
E. Studerus, G. Casalicchio, Z. M. Jones, mlr: Machine learn-
ing in r, Journal of Machine Learning Research 17 (2016) 1–5.
URL: https://jmlr.org/papers/v17/15-066.html.

[58] T. Hothorn, A. Zeileis, partykit: A modular toolkit for re-
cursive partytioning in r, Journal of Machine Learning Re-
search 16 (2015) 3905–3909. URL: http://jmlr.org/papers/
v16/hothorn15a.html.

[59] S. Milborrow. Derived from mda:mars by T. Hastie and R. Tib-
shirani., earth: Multivariate Adaptive Regression Splines, 2011.
URL: http://CRAN.R-project.org/package=earth, r package.

[60] F. Leisch, K. Hornik, B. D. Ripley, B. Narasimhan, mda: Mix-
ture and Flexible Discriminant Analysis, 2020. URL: https:

//CRAN.R-project.org/package=mda, r package version 0.5-2.
[61] K. Hechenbichler, K. Schliep, Weighted k-nearest-neighbor tech-

niques and ordinal classification, 2004. doi:10.5285/ubm/epub.
1769.

[62] A. Karatzoglou, A. Smola, K. Hornik, A. Zeileis, kernlab –
an S4 package for kernel methods in R, Journal of Statistical
Software 11 (2004) 1–20. doi:10.18637/jss.v011.i09.

[63] D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, F. Leisch,
e1071: Misc Functions of the Department of Statistics, Proba-
bility Theory Group (Formerly: E1071), TU Wien, 2021. URL:
https://CRAN.R-project.org/package=e1071, r package ver-
sion 1.7-9.

[64] A. Liaw, M. Wiener, Classification and regression by random-
forest, R News 2 (2002) 18–22. URL: https://CRAN.R-project.
org/doc/Rnews/.

[65] B. Kitchenham, L. Madeyski, D. Budgen, J. Keung, P. Brereton,
S. Charters, S. Gibbs, A. Pohthong, Robust Statistical Methods
for Empirical Software Engineering, Empirical Software Engi-
neering 22 (2017) 579–630. URL: https://doi.org/10.1007/
s10664-016-9437-5. doi:10.1007/s10664-016-9437-5.

[66] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, Jdeodorant: Iden-
tification and removal of feature envy bad smells, in: 2007
IEEE International Conference on Software Maintenance, 2007,
pp. 519–520. doi:10.1109/ICSM.2007.4362679.

[67] M. Fokaefs, N. Tsantalis, E. Stroulia, A. Chatzigeorgiou,
Jdeodorant: identification and application of extract class refac-
torings, in: 2011 33rd International Conference on Software En-
gineering (ICSE), 2011, pp. 1037–1039. doi:10.1145/1985793.
1985989.

[68] S. Vidal, H. Vazquez, J. A. Diaz-Pace, C. Marcos, A. Garcia,
W. Oizumi, Jspirit: a flexible tool for the analysis of code
smells, in: 2015 34th International Conference of the Chilean
Computer Science Society (SCCC), 2015, pp. 1–6. doi:10.1109/
SCCC.2015.7416572.

[69] SciTools, Understand by SciTools, https://www.scitools.
com/, 2022. Accessed: 2022-04-13.

[70] A. Kaur, S. Jain, S. Goel, SP-J48: a novel optimization
and machine-learning-based approach for solving complex prob-
lems: special application in software engineering for detect-
ing code smells, Neural Computing and Applications (2019).
doi:10.1007/s00521-019-04175-z.

[71] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto,
A. Lucia, On the diffuseness and the impact on maintainability
of code smells: a large scale empirical investigation, 2018, pp.
482–482. doi:10.1145/3180155.3182532.

[72] D. Cruz, A. Santana, E. Figueiredo, Detecting bad smells with
machine learning algorithms: An empirical study, in: Proceed-
ings of the 3rd International Conference on Technical Debt,
TechDebt ’20, Association for Computing Machinery, New
York, NY, USA, 2020, p. 31–40. doi:10.1145/3387906.3388618.

[73] P. Piotrowski, L. Madeyski, Software Defect Prediction Us-
ing Bad Code Smells: A Systematic Literature Review, Data-
Centric Business and Applications: Towards Software Devel-
opment (Volume 4), Springer International Publishing, Cham,
2020, pp. 77–99. doi:10.1007/978-3-030-34706-2_5.

[74] D. Bán, R. Ferenc, Recognizing antipatterns and analyzing their
effects on software maintainability, in: Computational Science
and Its Applications – ICCSA 2014, Computational Science
and Its Applications – ICCSA 2014, Cham, 2014, pp. 337–352.
doi:10.1007/978-3-319-09156-3_25.

[75] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,
A. Wessln, Experimentation in Software Engineering, Springer
Publishing Company, Incorporated, 2012.

[76] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
Do they really smell bad? a study on developers’ perception of
bad code smells, in: 2014 IEEE International Conference on
Software Maintenance and Evolution, 2014 IEEE International
Conference on Software Maintenance and Evolution, 2014, pp.
101–110. doi:10.1109/ICSME.2014.32.

18

https://doi.org/10.1145/3379597.3387457
https://doi.org/10.1145/3379597.3387457
http://dx.doi.org/10.1145/3379597.3387457
https://www.sciencedirect.com/science/article/pii/S0950584916304128
https://www.sciencedirect.com/science/article/pii/S0950584916304128
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2017.08.008
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2017.08.008
http://dx.doi.org/10.1007/978-3-030-34706-2_8
http://dx.doi.org/10.1007/978-3-030-26574-8_1
http://dx.doi.org/10.1007/978-3-030-26574-8_1
http://dx.doi.org/10.1007/978-3-030-88942-5_2
http://dx.doi.org/10.1007/978-3-030-88942-5_2
http://dx.doi.org/10.23919/MIPRO.2019.8757009
http://dx.doi.org/10.23919/MIPRO.2019.8757009
http://dx.doi.org/10.1145/2938503.2938553
http://dx.doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/10.1109/ESEM.2015.7321194
https://jmlr.org/papers/v17/15-066.html
http://jmlr.org/papers/v16/hothorn15a.html
http://jmlr.org/papers/v16/hothorn15a.html
http://CRAN.R-project.org/package=earth
https://CRAN.R-project.org/package=mda
https://CRAN.R-project.org/package=mda
http://dx.doi.org/10.5285/ubm/epub.1769
http://dx.doi.org/10.5285/ubm/epub.1769
http://dx.doi.org/10.18637/jss.v011.i09
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.1007/s10664-016-9437-5
https://doi.org/10.1007/s10664-016-9437-5
http://dx.doi.org/10.1007/s10664-016-9437-5
http://dx.doi.org/10.1109/ICSM.2007.4362679
http://dx.doi.org/10.1145/1985793.1985989
http://dx.doi.org/10.1145/1985793.1985989
http://dx.doi.org/10.1109/SCCC.2015.7416572
http://dx.doi.org/10.1109/SCCC.2015.7416572
https://www.scitools.com/
https://www.scitools.com/
http://dx.doi.org/10.1007/s00521-019-04175-z
http://dx.doi.org/10.1145/3180155.3182532
http://dx.doi.org/10.1145/3387906.3388618
http://dx.doi.org/10.1007/978-3-030-34706-2_5
http://dx.doi.org/10.1007/978-3-319-09156-3_25
http://dx.doi.org/10.1109/ICSME.2014.32

Appendix A.

This appendix includes ranking tables Tables A.4 to A.6
useful for selecting the best overall machine learning al-

gorithm for code smell detection. Detailed results, data
tables, source code, and data sheet are available in an ex-
ternal appendix. The appendixcan be downloaded from
Zenodo at https://doi.org/10.5281/zenodo.7319860

19

https://doi.org/10.5281/zenodo.7319860

Smell DS CTree FDA KNN kSVM libSVM MDA Naïve Bayes Random Forest
Blob DS1 5 6 1 3 4 0 2 7
Blob DS2 3 7 4 0 2 6 1 5

Data Class DS1 5 6 2 3 4 1 0 7
Data Class DS2 4 6 1 2 5 3 0 7

Long Method DS1 4 5 0 3 1 2 6 7
Long Method DS2 4 6 5 3 1 2 0 7
Feature Envy DS1 6 7 2 0 3 4 1 5

Total - 31 43 15 14 20 18 10 45

Table A.4: Ranking of machine algorithms for each of code smell data sets (based on median MCC) - higher is better

Smell DS CTree FDA KNN kSVM libSVM MDA Naïve Bayes Random Forest
Blob DS1 5 6 1 4 3 0 2 7
Blob DS2 3 5 4 0 2 7 1 6

Data Class DS1 5 6 2 4 3 1 0 7
Data Class DS2 5 6 1 3 4 2 0 7

Long Method DS1 3 5 1 2 0 4 6 7
Long Method DS2 4 6 5 3 1 2 0 7
Feature Envy DS1 4 7 2 1 3 5 0 6

Total - 29 41 16 17 16 21 9 47

Table A.5: Ranking of machine algorithms for each of code smell data sets (based on median F-score) - higher is better

Smell DS CTree FDA KNN kSVM libSVM MDA Naïve Bayes Random Forest Swaps
Blob DS1 0 0 0 -1 1 0 0 0 1
Blob DS2 0 2 0 0 0 -1 0 -1 2

Data Class DS1 0 0 0 -1 1 0 0 0 1
Data Class DS2 -1 0 0 -1 1 1 0 0 2

Long Method DS1 1 0 -1 1 1 -2 0 0 3
Long Method DS2 0 0 0 0 0 0 0 0 0
Feature Envy DS1 2 0 0 -1 0 -1 1 -1 3

Total - 2 2 -1 -3 4 -3 1 -2 -

Table A.6: Differences in ranking of machine algorithms for each of code smell data sets between ranking based on MCC and ranking based
on F-score

20

Name Description

ABC_SIZE Assignment Branch Condition size
ARITY Number of method arguments
BLOCK_NESTING Maximum block nesting
CYCLO Cyclomatic complexity
LINES_OF_CODE Number of lines of code, excluding comments and whitespaces
FUNCTIONS Total number of methods in a class
INSTANCE_VARIABLES Number of fields in a class
METHODS Number of non-static methods in a class
CHILDREN Number of classes that extend/implement class/interface
DEPTH Total inheritance depth
USES Number of references to the class
USED_BY Number of other classes that reference the class
TREE_IMPURITY Density of inter-class connections
INSTABILITY USED

USED+USED_BY

ATTRIBUTES Number of non-static fields
ACCESSORS Number of getters
MUTATORS Number of setters
NOT_ACCESSORS_OR_MUTATORS METHODS −ACCESSORS −MUTATORS
METHODS_WEIGHTED Sum of CYCLO values for all non-static methods
NOT_ACCESSORS_OR_MUTATORS_WEIGHTED Sum of CYCLO values for non-static methods that are

neither getters nor setters
AVERAGE_METHODS_COMPLEXITY Average CYCLO value for non-static methods
AVERAGE_NOT_ACCESSOR_OR_MUTATOR_ Average CYCLO value for non-static methods that are
METHOD_COMPLEXITY neither getters nor setters

Table A.7: Description of metrics provided by CODEBEAT. Metrics are calculated from a single codebase.

Name Description

AMW Average method weight
ATFD Access to foreign data
CBO Coupling between objects
CYCLO Cyclomatic complexity
DIT Depth of inheritance tree
FANOUT Number of called classes
LCOM5 Lack of cohesion in methods
LOC Lines of code
LOCNAMM Lines of code without accessors or mutators
NCSS Non-commenting source statements
NLV Number of local variables
NMO Number of methods overridden
NOA Number of attributes
NOAM Number of accessort methods
NOC Number of children
NOCM Number of constructor methods
NOFA Number of final attributes
NOM Number of methods
NOMNAMM Number of nont accessor or mutator methods
NONFNSA Number of non-final and non-static attributes
NONFNSM Number of final and non-static methods
NOP Number of parameters
NOPA Number of public attributes
NOPM Number of private methods
NOPRA Number of protected attributes
NOPVA Number of private attributes
NOS Number of statements
NPATH n-path complexity
TCC Tight class cohesion
WMC Weighted methods count
WMCNAMM Weighted methods count of non accessor or mutator methods
MOC Weight of class

Table A.8: Description of metrics provided by PMD

21

	Introduction
	Related work
	Method
	Data set
	Predictors
	Severities
	Algorithms
	Performance metrics
	Reproduction package

	Results
	Feature Envy
	Long Method
	Blob
	Data Class

	Discussion
	RQ1: which machine learning algorithms are best used for detection of code smells?
	RQ2: how do our results compare to results that other researchers were able to achieve on the MLCQ data set?
	RQ3: how do our results compare to the results that other researchers were able to achieve (regardless of the data set)?
	Study implications
	Threats to validity
	Internal validity
	External validity

	Conclusions
	

