An online appendix for the paper
"MLCQ: Industry-relevant code smell data set”
by Madeyski and Lewowski
(MLCQ: Datasheet)

Tomasz Lewowski? Lech Madeyskif
February 13, 2020

1 Data set descriptors

1.1 Data set identity

Data set of code smells and reviewers’ experience survey.

1.2 Data set identification code

The data set on Zenodo is available using https://doi.org/10.5281/zenodo.
3590101 upon acceptance of the related data paper. This DOI will always
resolve to the newest version of the data set. The data set will be available in
the subsequent version of the reproducer R package on CRAN as well [2].

1.3 Data set description

1.3.1 Originators

The research was initiated as part of NCBR POIR 01.01.01-00-0792/16 research
grant.

1.3.2 Abstract

This data set contains samples from software projects together with review
done by developer that states whether the sample represents a given code smell
severity, ranging from none to critical. There are nearly 15 000 samples of 4

*Faculty of Computer Science and Management, Wroclaw University of Science and Tech-
nology, ORCiD: 0000-0003-4897-1263, email: tomasz.lewowski@pwr.edu.pl

TFaculty of Computer Science and Management, Wroclaw University of Science and Tech-
nology, ORCiD: 0000-0003-3907-3357, email: lech.madeyski@pwr.edu.pl

https://doi.org/10.5281/zenodo.3590101
https://doi.org/10.5281/zenodo.3590101

code smells in total, acquired by 26 reviewers. The data set contains also surveys
filled in by the reviewers that describe their experience in detail. There are 20
surveys, 6 reviewers did not complete the survey.

1.4 Key words

Code smells, Bad smells, Java, Software Engineering, Data set

2 Code smell data description

2.1 Site description

Participants were reviewing code smells at their own pace and in their own
habitats, without any external supervision. Decision if and when to review
code samples was entirely up to the reviewer.

2.2 Sampling design

Code samples were generated from Java projects selected from GitHub. Used
project data set is described in [I]. We did not apply any manual filters and all
samples from all 792 projects were used.

In total we gathered 14739 reviews of 4770 code samples, 8040 reviews of
classes (2340 distinct classes from 437 projects) and 6699 reviews of functions
(2430 functions from 426 projects). Reviews were done by 26 developers, 20 of
which have completed the survey described in Section [5.2

Sample selection was not uniform during data acquisition, and there were
four phases. In the first two phases, we sampled from 678278 classes and 5101141
functions from 792 projects (standard deviation for number of samples was 15738
samples), while in the last two - from 552750 classes and 2297722 functions from
785 projects:

1. The first 2175 samples (date range: 27.03.2019-02.04.2019) were selected
when there was a defect in selection query, and only 1 sample from each
hundred could have been selected. Nevertheless, they were still selected
randomly, but from a smaller population, and inserted randomly into
database—therefore we decided to leave those as potentially valuable sam-
ples.

2. The next 2648 samples (date range: 03.04.2019-12.04.2019) were selected
randomly from all available.

3. The next 4801 samples (date range: 13.04.2019-25.07.2019) were selected
randomly from all samples longer than 4 linesﬂ This was the only filtering
rule, and it was only removing most trivial functions and classes. This
filter was suggested by code reviewers and the aim was not to waste the

lincluding opening and closing braces

precious time of developers and to better focus their effort on reviewing
potentially smelly code samples.

4. The last 5115 samples (date range: 26.07.2019-13.09.2019) were selected
to perform a crosscheck—only from samples already graded to a severity
higher than 'none’. Samples selected from crosscheck were those that had
only 1 review or 2 reviews with different severities. A developer could not
crosscheck his own grade.

2.3 Research methods

2.3.1 Instrumentation

A new tool was developed specifically to address the need of creating this data
set. This tool was running on AWS cloud and, as of today, is not published. It
was used to generate all samples from selected projects and later on to select
samples for review.

2.3.2 Legal requirements

This research might have been concerned with two types of laws:

e privacy—to address any possible issues here we anonymize the data before
publishing,

e copyright—we received agreement from the funding company and use only
open source projects with permissive licenses

3 Data set status

3.1 Status
3.1.1 Latest update
Last survey completed 05.07.2019,

Last code sample reviewed 13.09.2019.

3.1.2 Latest archive date
The data set was archived on 13.02.2020.

3.1.3 Data verification

CSV and XLSX file SHA-256 checksums:

MLCQCodeSmellDevelopersSurvey.csv
a19c¢80b405cbe77499cal74e4a0048ab9ffeb9af731a15809e38d1a95871238¢

MLCQCodeSmellDevelopersSurvey.xlsx
5bc9c15109f08501538d896536bd93ca252d9cdbi8f81b1£3913e03cf3d3e7d6

MLCQCodeSmellSamples.csv
8e05db55150a984f0b08ab211f5f612374790ea918ba08afc290cf122b63551b

MLCQCodeSmellSamples.xlsx
18cee0ce663094badfb818dc7a3df492002247elcach47e68cbe5883a8bdfdea

3.2 Accessibility
3.2.1 Storage information

The data set is primarily stored on Zenodo for the purpose of review. It will be
available from the r-reproducer R package [2] on CRAN upon acceptance of
the data paper [3].

3.2.2 Contact persons
Tomasz Lewowski ORCiD: 0000-0003-4897-1263, email: tomasz.lewowski@pwr.edu.pl

Lech Madeyski ORCiD: 0000-0003-3907-3357, email: lech.madeyski@pwr.edu.pl

3.2.3 Copyright restrictions

You may use this data set for any research needed, assuming you will add proper
attribution to the data set and cite the related data paper.

4 Code smells data set structural description

4.1 Data set file
4.1.1 Identity

Code samples together with reviews for specific code smells linked with review-
ers.

4.1.2 Files
CSYV file name MLCQCodeSmellSamples.csv

XLSX file name MLCQCodeSmellSamples.xlsx

4.1.3 Size
Number of reviews 14739
Number of reviewed smells 4

Number of reviewers 26

Number of reviews with 'none’ severity 11448
Number of reviews with minor’ severity 1787
Number of reviews with 'major’ severity 1129

Number of reviews with ’critical’ severity 375

Table 1: Number of reviews per severity per smell

Code smell #reviews #critical #major #minor Hnone
Blob 4019 127 312 535 3045
Data Class 4021 146 401 510 2964
Long Method 3362 78 274 454 2556
Feature Envy 3337 24 142 288 2883

4.1.4 Format and storage mode

CSV file in UTF-8 encoding. Fields are separated by semicolons. We also
include an XSLX (Office Open XML) file with the same data.

4.2 Variable information

Each of the records (reviewed samples) contains the following information:

id a numeric identifier of the review,

reviewer_id a numeric identifier of the reviewer,

smell a name of the code smell (Blob, Data Class, Feature Envy, Long Method),
severity severity of the code smell (critical, major, minor, and none),

review_timestamp date and time (millisecond precision) when the sample
was acquired,

type whether the reviewed code sample is a class or a function,

code_name a fully qualified name of the code sample — format: Package.ClassName[# FunctionName
(e.g., org.eclipse.swt.widgets. Menu#tset Location intlint), in case of con-
structors and static methods a dot is used instead of a hash.

repository a git url of the repository,

commit_hash SHA checksum of repository revision that the sample was ac-
quired at,

path path in the repository that can be used to retrieve the sample,

argl

start_line line in the file in which the sample starts,
end_line line in the file in which the sample ends,

is_from_industry_relevant_project denotes whether source project was clas-
sified as industry-relevant in [I],

link a link that can be used to view the sample in a browser.

5 Survey data set structural descriptors

5.1 Data set file
5.1.1 Identity

Survey results from code smell reviewers

5.1.2 Files

CSYV file name MLCQCodeSmellDevelopersSurvey.csv

XLSX file name MLCQCodeSmellDevelopersSurvey.xlsx

5.1.3 Size

20 records, 55 questions each. The survey contained 59 questions. Four of them
were related to acquisition of required agreements and contact information, thus
were removed from the final data set. In section [5.2| we present questions and
possible answers (for multi-choice questions). All questions were optional and
participant could decide to skip any of them. Every question with a possible
”other” answer accepted also a text input describing what exactly does ”other”
mean.

5.1.4 Format

CSV file in UTF-8 encoding. Fields are separated by commas. We also include
an XSLX (Office Open XML) file with the same data.

5.1.5 Acquisition

The data was acquired using Typeforrrﬂ system for online surveys. Then it was
exported using Typeform built-in export facilities.

Awww.typeform.com|

5.2

1.

10.
11.
12.

Questions

Which is the highest level of formal education that you graduated?

e Secondary school (or lower)

e Bachelor of Science (BSc) / Bachelor of Engineering (BEng)
e Other Bachelor-level

Master of Science (MSc) / Master of Engineering (MEng)
Other Master-level

Doctoral (Ph.D.) or higher

. How long professional experience (in any profession) do you have? (jA;YB;M)

How long do you code? (Please include also coding for fun)

How long professional experience in software development do you have?
(Please include programming, testing, administration, management etc.)

How long professional experience in programming do you have?

How long professional experience in programming in object-oriented paradigm
do you have?

How long professional experience in programming in functional paradigm
do you have?

How long professional experience in programming in JVM-based languages
do you have?

How long professional experience in programming in Java do you have?
In which country did you spend most of your programming career?
Which company are you currently working for?
Which programming languages did you use throughout your career?

e Assembly

e C

o C++

o CH#

e Clojure

¢ COBOL

e Delphi

e Elixir

e Erlang

Go

Groovy
Haskell
Java
JavaScript
Kotlin
Matlab
Objective-C
Perl

PHP
Python

R

Ruby

Scala
Smalltalk
SQL

Swift
TypeScript
Rust

Visual Basic
Visual Basic .NET
Other

13. Which of those tools did you ever use?

A compiler

A linter

Model checker

Proof assistant

A static analysis tool (e.g., FindBugs)
A defect prediction tool

Fuzzer

Mutation tester

14. Which of those industries did you work in?

Banking / Finance

Telecommunication

e Retail

e Gaming

e Entertainment
e Medicine

e Manufacturing
e Government
e Academia

e Food

e Automotive

e Consulting

e Other

15. Which of those roles have you held throughout your professional career?

e Junior Software Developer/Engineer

e Software Developer/Engineer

e Senior/Lead Software Developer/Engineer
e Data Scientist

e Project Manager

e Other management role

e Designer

e Business Analyst / Requirements Engineer
e Software Tester

e Hardware Tester

e Operations Engineer / System Administrator
o Architect

e Other

16. Which of those are your current roles?

e Student - Bachelor level

e Student - Master level

e Student - PhD level

e Junior Software Developer/Engineer

o Software Developer/Engineer

o Senior/Lead Software Developer/Engineer
e Data Scientist

e Project Manager

e Other management role

e Designer

e Business Analyst / Requirements Engineer

e Software Tester

e Hardware Tester

e Operations Engineer / System Administrator
o Architect

e Lecturer

17. When were you last involved in programming activities (in any program-
ming language)?

I am still involved in them

In the last year

e A year or two ago

Somewhere between two and five years ago

More than five years ago

18. Did you work in projects of following sizes (counting all people involved,
not only developers)
e >1 MLoC or >50 people
e >250 kLoC or > 20 people
>100 kLoC or > 10 people
e >50 kLoC or >5 people

e >1 person

e 1 person
19. How long does an average project you work on take?

Less than 6 months

Between 6 months and 1 year

Between 1 and 3 years

e Over 3 years
20. Do you write code as a hobby?

e Yes
e No

21. Do you prefer to work in the office or remotely?

e In the office

10

e Remotely

e Doesn’t matter
22. Do you contribute to open source projects?

e Yes, I write code or documentation

Yes, I create issues

Yes, I'm involved in forums/discussions
No, I don’t
e Other

23. Which of those programming paradigms do you use during programming?

Procedural

Object-oriented

Functional

Logical
e Other
24. When you choose a language for new project, which reasons do you take
into consideration?
e Availability of libraries
e Your own skillset
e Skillsets of your team
e Toolchain complexity
e Tool availability (e.g., static analysis, security checks etc.)
e Current industry trends
e Community support

e Learning curve
e Other

25. Are you familiar with the concept of code reviews?

e Yes, I know about them and use them
e Yes, I know about them but do not use them

e Not really
26. How long have you been conducting regular code reviews for your peers?

e I don’t conduct code reviews
e Less than half a year

e Between half a year and two years

11

e More than two years
27. Code in which of those languages would you feel comfortable reviewing?

e Assembly
e C

o CH++

o CH#

e Clojure

e COBOL

e Delphi

o Elixir

e Erlang

e Go

o Groovy

e Haskell

o Java

e JavaScript
e Kotlin

e Matlab

e Objective-C
e Perl

e PHP

e Python

e R

e Ruby

e Scala

e Smalltalk
e SQL

o Swift

e TypeScript
e Rust

e Visual Basic
e Visual Basic .NET
e Other

28. Are you familiar with the concept of code smells?

12

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

e Yes, I know what they are

e Somewhat - I heard about them and maybe used some tools, but
never dug deeper

e Not really - I heard about them, but never cared much
e Not at all

Which of the following code smells do you believe you can recognize?

e Blob / God Class

e Long Method

e Data Class

e Feature Envy

e Blue Box

e Inappropriate Intimacy
e Shotgun Surgery

e Swiss Army Knife

Do you use names of code smells (Blob, Shotgun Surgery etc.) during
discussions with your peers?

Do you feel that code smells in traditional sense (Feature Envy, Blob,
Shotgun Surgery) make the code less maintainable?

e Definitely, that’s why the concept was invented
e I’d assume so, but in my experience I hardly ever find this a problem

e Not really, there are many worse problems in the code

How big problem is Blob (1 - not at all, 5 - significant)? Please don’t
answer if you’re not familiar with this code smell

How big problem is Data Class (1 - not at all, 5 - significant)? Please
don’t answer if you're not familiar with this code smell

How big problem is Feature Envy (1 - not at all, 5 - significant)? Please
don’t answer if you’re not familiar with this code smell

How big problem is Long Method (1 - not at all, 5 - significant)? Please
don’t answer if you’re not familiar with this code smell

How big problem is Shotgun Surgery (1 - not at all, 5 - significant)? Please
don’t answer if you're not familiar with this code smell

How big problem is Inappropriate Intimacy (1 - not at all, 5 - significant)?
Please don’t answer if you're not familiar with this code smell

How big problem is Refused Bequest (1 - not at all, 5 - significant)? Please
don’t answer if you’re not familiar with this code smell

13

39. Do you feel that a catalogue of code smells may be something useful to

you?

Yes, I'd gladly use it
Not sure, maybe I'd take a glance or two

Not really, I don’t like this quasi-formal approach

40. Do you feel that concept of code smell can be transferred between pro-
gramming languages?

Not at all
Only between very similar languages
In a family of languages, with minor adjustments

Yes, but it may no longer be meaningful

41. Which factors do you believe are relevant when assessing if a given code
fragment is a code smell?

Its complexity

Its change proneness

Its heterogenity

Language conventions and restrictions
Its size

Project conventions and restrictions
Its age

How well it is tested

Its dependencies

Other

42. What is your opinion about the concept of code smells?

This is a useful concept, that simplifies talking about a problem, but
we should not stick to predefined names

It’s perfect
It’s just noise

The concept itself is useful, but it’s an oversimplification (e.g. doesn’t
include industry and other project-specific needs)

43. What is the biggest problem you encounter in code written by other peo-

ple?

44. What is the biggest problem you encounter in your code after some time?

14

45. Which problem is the most frustrating one that you encounter during
programming?

46. What are the biggest problems in code that you encounter?

e Rigid structures (hard to adapt when requirements change)
e Functional defects

e Fragile structures (changing very often)

e Cascading changes

e Untested code

e Code not adhering to common style

e Undocumented code

e Other

47. Which quality assurance techniques do you perceive as useful?

e Unit testing

o Integration/system testing

e Mutation testing

e Performance testing

e Linting

e Static analysis (e.g. model checking, symbolic execution)
e Program proving

o Fuzzing

e Code review

e Other

48. Which quality assurance techniques do you use in your daily work?

e Unit testing

e Integration/system testing

e Mutation testing

e Performance testing

e Linting

e Static analysis (e.g. model checking, symbolic execution)
e Program proving

o Fuzzing

e Code review

e Other

15

49. Which elements should, in your opinion, be part of code review?

e Verification of correctness of test cases

e Manual application execution

e Code style checking

e Checking for forbidden patterns (e.g. linters)
e Manual change correctness assessment

e Checking for typical code smells

e Other

50. Do you believe that reviews contribute to code quality?
e Yes, positively
e Yes, negatively
e No

51. Which of the following should be provided by automatic static analysis
tool?

Code style checking

Checking for forbidden patterns (e.g. linters)

Checking for common high-level antipatterns

Defect prediction
e Other

52. How important is customization for static analysis?

e Critical, I always customize rules and often change them

e Quite important in the beginning, but once best practices for lan-
guage and organization are settled, they don’t change much

e Not very important - the rules should be given by the toolmaker and
only modified rarely

53. How do you feel about current state-of-the-art static analysis tools?

They’re great
They could be better

They provide only basic features

They’re worthless

e [don’t use any
54. What do you believe to be the biggest problem of static analysis tools?

e Too many false positives

16

Too obvious problems

e Most useful errors are raised by compiler anyway
e Too long execution

e Too resource-consuming

55. Please describe your earlier experience with static analysis and linting
tools

References

[1] Tomasz Lewowski and Lech Madeyski. Creating Evolving Project Data
Sets in Software Engineering. In Stanislaw Jarzabek, Aneta Poniszewska-
Maranda, and Lech Madeyski, editors, Integrating Research and Practice in
Software Engineering, volume 851 of Studies in Computational Intelligence,
pages 1-14. Springer, Cham, 2020.

[2] Lech Madeyski, Barbara Kitchenham, and Tomasz Lewowski. repro-
ducer: Reproduce Statistical Analyses and Meta-Analyses, 2020. R package
(http://CRAN.R-project.org/package=reproducer).

[3] Lech Madeyski and Tomasz Lewowski. MLCQ: Industry-relevant code smell
data set. (submitted).

17

	Data set descriptors
	Data set identity
	Data set identification code
	Data set description
	Originators
	Abstract

	Key words

	Code smell data description
	Site description
	Sampling design
	Research methods
	Instrumentation
	Legal requirements

	Data set status
	Status
	Latest update
	Latest archive date
	Data verification

	Accessibility
	Storage information
	Contact persons
	Copyright restrictions

	Code smells data set structural description
	Data set file
	Identity
	Files
	Size
	Format and storage mode

	Variable information

	Survey data set structural descriptors
	Data set file
	Identity
	Files
	Size
	Format
	Acquisition

	Questions

