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Abstract

Context : Despite a large amount of literature on Software Defect Prediction (SDP), its industrial applications
are rarely reported and validated in vivo.
Objective: We aim to: 1) propose and develop a Lightweight Alternative to SDP (LA2SDP) that predicts
test failures induced by software defects to allow pinpointing defective software modules thanks to available
mapping of predicted test failures to past defects and corrected modules, 2) preliminary evaluate the proposed
method in a real-world Nokia 5G scenario.
Method : We train machine learning models using test failures that come from confirmed software defects
already available in the Nokia 5G environment. We implement LA2SDP using five purposely simple supervised
ML algorithms and use eXplainable AI (XAI) to give feedback to stakeholders and initiate quality improvement
actions.
Results: We have shown that LA2SDP is feasible in vivo using test failure to defect report mapping readily
available within the Nokia 5G system-level test process, achieving good predictive performance. Specifically,
CatBoost and Random Forest performed the best and achieved MCC 0.673− 0.874 in the repeated 10-fold
cross-validation scenario and 0.815− 0.820 in the time-based scenario.
Conclusions : Our efforts have successfully defined and validated LA2SDP, enhancing the Nokia 5G system-level
test process in vivo.
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1. Introduction

Machine learning software defect prediction (ML SDP or SDP for short) is a promising field of software
engineering (SE). Its goal is to employ specific algorithms to analyse the product (e.g., a portion of software
product metrics) or process (e.g., via process metrics) to estimate the number of defects in particular areas
of the code (regression) or whether defects exist in those areas (classification) [1]. The business potential of
such solutions is very high (see, e.g., [2, 3]). Still, the pace of industrial application lags behind academic
research in the field, and there are very few publications on results obtained in vivo [4, 5].

Industrial applications of SDP are rarely reported due to a variety of reasons. For example, there is a
lack of incentives for the industry to share real-world SDP experience, know-how or intellectual property.
Furthermore, several researchers reported serious weaknesses in the SZZ (Śliwerski, Zimmermann, Zeller)
algorithm [6] that is typically used in the SDP implementations [7, 8]. Namely, Herbold et al. [7] reported
that only half of the bug-fixing commits determined by SZZ are actually bug-fixing (see further details
in Section 3.2). This is a consequential problem when the SZZ algorithm is the core component of an in vivo
SDP application. Last but not least, there is a need for extensive mining of software repositories to collect
data just for the sake of SDP, which can be uneconomical from the company’s perspective.

Thus, in this paper, we present and evaluate in vivo (in Nokia’s system-level 5G test process environment)
LA2SDP, a lightweight alternative to ML SDP. Notably, this work was inspired by the conclusions of a
survey conducted by Stradowski and Madeyski [9], highlighting considerable opportunities to improve the
quality and minimise the cost of software testing within the company. Furthermore, a study by Paterson
et al. [10] states that defect prediction can accurately identify the modules that are most likely to be buggy
In contrast, we aim to predict test cases that will detect software defects in particular modules to trigger
post-analysis and potentially omit the costs related to retesting in expensive environments. Importantly,
we have not encountered a similar approach that would study the possibility of analysing high-level test
results from a test repository to be used for SDP instead of prioritising test cases ([11, 12]). Therefore, we
are merging the aspects of test case selection and prioritisation (TSP) with software defect prediction (SDP)
to open new avenues in software engineering research, address direct company expectations, as well as extend
industry applications.

The presented research is part of a larger, business-driven effort to gather the challenges [9, 13], analyse
existing methods [4, 5], and now develop a dedicated solution that satisfies the business requirements of
Nokia. The most important contributions of this industrial study are highlighted below:

• Use case design of a software defect prediction solution that can work specifically with system-level
test process data to complement other defect prediction and test case selection and prioritisation
mechanisms within the company.

• Proposal of a lightweight alternative to Software Defect Prediction (LA2SDP) to satisfy the expectations
(see Section 3.1).

• Industrial data suited for LA2SDP and benchmarked prediction models with code included in the
reproduction package [14].

• Feature importance analysis to support interpreting and communicating the models to stakeholders
and initiating improvement actions.

• Evaluation and discussion of the obtained results and practitioners’ feedback.

In Section 2, we describe the background of our research and highlight its main contributions. In Section 3,
we set the business context and describe the Nokia 5G test process. Next, Section 4 explains the methods
used and the models that were built, followed by Section 5 that contains the analysis of the obtained results.
Finally, in Sections 6 and 7 we present a discussion on the derived conclusions.

2. Related work

With our business-driven systematic literature review [5] we found several valuable primary studies that
had big impact on our research efforts:
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• Melo et al. [15] wrote a practical guide to support finding change-prone classes, which can help software
professionals improve their product quality and steer future code changes. Furthermore, the authors
apply the guideline to a case study based on a commercial data set. The approach consists of two
phases: designing the data set and applying the prediction. In the first phase, it is necessary to
choose the independent and dependent variables and collect the needed metrics. The application
of the prediction step includes statistical analysis, normalisation, outlier detection, feature selection,
resampling, cross-validation, tuning, selection of performance metrics, and ensuring reproducibility. In
our study, we have followed a selected subset of these steps, described in detail in Section 4.

• Rana et al. [16] created a framework to support the adoption of ML SDP in the industry. Research
highlights factors that need to be considered during in vivo introduction, such as general usefulness,
reliability, and cost-effectiveness. The publication provides a comprehensive analysis of aspects rarely
explored in academia, such as perceived barriers and benefits, availability of tool support, organisational
characteristics, or needed competence ramp-up. The proposed framework influenced our research,
especially in terms of new technology adoption challenges, building organisational readiness, and
requirements definition.

• Furthermore, we internalised the experience report by Tantithamthavorn and Hassan [17] on defect
modelling in practice, as it discusses several valuable recommendations, common pitfalls, and main
challenges that were observed as practitioners attempted to develop SDP models in vivo. We have faced
similar issues in our work, such as the risk of employing class rebalancing techniques when models are
used to guide decisions, different learners providing greatly varied effectiveness, or replication difficulties
due to confidentiality concerns.

• We compare our results with those of Malhotra and Sharma [18]. Their study uses 14 learners on
Apache Click and Apache Rave data sets. It uses a filter-based correlation feature selection method to
identify the most impacting predictors based on the area under the curve (AUC) performance measure.
Next, Friedman-Nemenyi post hoc analysis is used to compare the results statistically. Although our
study is based on test metrics and we do not apply as many learners, the overall methodology is similar
and allows for indirect comparison.

• A second study to which we compare our results is the research by dos Santos and Figueiredo [19].
We use a similar methodology; however, in an industrial environment. The authors aimed to explore
software features of ML SDP in a frequently used data set with five large open-source Java projects
(Eclipse JDT and PDE, Equinox, Lucene, and Mylyn). Specifically, seven classification algorithms are
evaluated using AUC and F1-score measures to select the best-performing learners.

To our knowledge, no secondary ML SDP studies focus on business applicability other than the work done
by Stradowski and Madeyski [5]. This systematic literature review analyses publications on machine learning
software defect prediction validated in vivo, where the authors identified 32 publications and documented
relevant evidence of methods, features, frameworks, and data sets used in the industry. However, performed
analysis also showed a minimal emphasis on feedback, practical lessons learned, and cost-consciousness within
the reviewed publications, which are vital from a business perspective.

3. Project context

The challenges faced in the system-level testing of the 5G base station (called gNB or gNodeB [20]) at
Nokia have been explored in the survey conducted by Stradowski and Madeyski [9]. Specifically, developing
the 5G technology carries a considerable challenge. The difficulty arises from several factors, such as complex
propagation characteristics needed for performance optimisation, wide frequency spectrum, hugely expensive
over-the-air (OTA) test environments, complex verification of multiple-input multiple-output (MIMO)
performance, defined by strict 3GPP specification requirements [20].

Consequently, the Nokia 5G gNB system is a grand and complex project, with over 60 million lines
of code (LOC) written in C/C++ programming language. The gNB consists of tens of components and
hundreds of modules developed by several major development organisations, each with hundreds of thousands
of dedicated unit and integration tests. In later phases, the central software build with all integrated
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deliveries is undergoing continuous testing in several globally distributed teams. Each team has its own set
of requirements to validate the software against, as well as a dedicated laboratory infrastructure of varying
complexity and associated maintenance costs. The test infrastructure can consist of servers with simulators
and stubs, real Nokia gNBs in isolated setups, or massive anechoic chambers with multiple gNBs to measure
signal interference and mobility scenarios. In our implementation project, LA2SDP is expected to support
the existing effort in the system-level phase, being the last one of many test phases within the company [13],
as it is the most expensive to operate and thus provides the most extensive opportunities for savings.

The Nokia test process follows the state-of-the-art and adheres to accepted standards, briefly introduced
below. The company uses continuous delivery (CD) and continuous integration (CI) to build its products,
emphasising left-shift principles1 and strict phase containment2 criteria. However, due to the complexity
and size of the product, current phase containment rates are not satisfactory. Therefore, further quality
improvement initiatives are necessary, and any advancement upon the current baseline brings consequential
benefits as each escaped defect that was not detected in internal testing costs the company tens of thousands of
dollars [9, 24]. The main three phases of the Nokia test process are described below and depicted in Figure 1:

• First, unit-level tests (UT) are under the responsibility of the development units (DU). Execution within
the development units mainly happens in simulated environments and isolated hardware elements that
integrate and validate basic functionalities before merging to the central software build.

• Second, entity testing (ET) is executed, after which an automated mechanism of software promotion
builds central build packages where elements from all development units are integrated, and the whole
system is made operational. This level is executed on a complete and real gNB system, allowing
validation of its core functionalities.

• Last, a wide plethora of system-level testing (ST) such as continuous integration (CIT), continuous
regression (CRT), and continuous delivery regression tests (CDRT) are executed. They contain a wide
scope from new feature verification, stability, configurability, through security, to performance and
capacity benchmarking.

Figure 1: Nokia test process [9], with visualization of LA2SDP addition.

For the purpose of our case study, together with a group of five experienced test architects, we have
run a feasibility study on the entire 5G gNB system-level environment (see Figure 1) in which the designed
LA2SDP solution can be validated. System-level testing embraces regression, new features, and benchmark
test case categories.

• Regression: By far the most numerous group of test cases, the purpose of which is to confirm that
the legacy functionality works as it was designed and has not been broken by new code. As in many

1An approach where software testing is performed to find defects as early as possible in the life cycle, where they are cheaper
to find and fix than the later stages [21, 22].

2Defect phase containment measures how many defects were caught before they escape into later phases [23].
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software companies [25], the ever-increasing scope of maintenance testing in Nokia needs to be carefully
managed.

• New Feature: All new content and resulting new functionalities must be tested to ensure they work as
designed by the requirements. Such cases may range from a simple system reconfiguration to complex
field verification scenarios requiring a close-to-real 5G network environment.

• Benchmark: As system performance is business critical for commercial wireless networks, extensive
benchmarking needs to be executed to ensure that the added content increases the performance of the
whole system. Such tests are challenging to execute, evaluate, and troubleshoot. Also, they usually take
extended periods of time, lasting from one hour to several days, to thoroughly verify system stability.
Hence, huge gains can be obtained by avoiding unnecessary tests with LA2SDP.

3.1. Expectations
For a successful implementation of a business-driven project, there needs to be a clear definition of the

expectations that need to be satisfied [26, 27]. Hence, together with a group of five experienced test architects
and quality managers from Nokia who participated in the project (see also Section 6.2), we defined the
following set of high-level expectations for the final solution:

E1: The company wants to have a solution that is better than the average solution already reported by
researchers. Shepperd et al. [28] found in their thorough analysis of ML SDP literature that the median
and mean values of MCC are 0.305 and 0.308, respectively. The target was raised to MCC>0.5 to
be on the safe side in case of fluctuating characteristics of the analysed projects/data sets. Auxiliary
performance measures are also expected to be reported for convenience and transparency.

E2: We expect the LA2SDP solution to be as cost-efficient as possible and thus use already existing data and
generally follow the KISS principle [29], which helps to keep the code, design, tests, and documentation
fast and lean.

E3: We expect the ML models behind LA2SDP to be taken from the pool of models that support
interpretability. It may be necessary during further steps of the ML SDP project [27].

Importantly, we do not aim to satisfy all expectations fully in this phase of research. Current efforts
are aimed mainly at feasibility and verification of E1 (for prediction effectiveness study see Section 4).
Second, this research also provides baseline data for a dedicated study related to expectation E2 (analysing
cost-efficiency [24]) and enables possibilities for E3 (interpretability of created models). However, at this
project phase, it is considered enough to prefer the ML models supporting E3 (e.g., [30, 31, 32]).

3.2. LA2SDP use case
The primary purpose of software testing is to discover defects and evaluate the quality of software artefacts.

Testing can trigger failures that are caused by defects in the software and can directly find defects in the test
object, but also result from environmental and process issues [33]. Test run results can be categorised into
four types:

• True positive (TP): a test result where a defect is reported, and a defect actually exists in the test
object.

• True negative (TN): a test result where a defect is not reported and no such defect actually exists in
the test object.

• False positive (FP): a test result where a defect is reported although no such defect actually exists in
the test object.

• False negative (FN): a test result which fails to identify the presence of a defect that is actually present
in the test object.

Our system-level use case in Nokia complements an existing testing process within the company (Figure 1)
where vast amounts of historical data exist and can be utilised in different ways. Specifically, we can filter the
test run results to steer the modelling process towards different outcomes. For example, we can teach the ML
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algorithms exclusively on failures with a confirmed cause identified, being software defects or environmental
issues. Teaching the models on such subsets allows for predicting only test failures induced by software
defects, which allows us to formulate LA2SDP. Alternatively, test run failures confirmed as environmental
issues can be used to improve the test process itself, which allows us to formulate a complementary (to
LA2SDP) method that we named the Lightweight Alternative to Test Process Improvement (LA2TPI).

Also, we can use the entire set to predict test case failure in general, i.e. Test Failure Prediction (TFP).
That said, our current research effort focuses on the first LA2SDP option, predicting test case failures due to
software defects, as this is the main requirement for the improvement proposal (see Section 3.1). Moreover,
it also opens other research paths towards more effort-aware defect prediction [34, 35], as the number of
predicted failures (and corresponding requirements) can help distinguish between modules with high and low
defect density.

Obtained predictions that can be compared with the actual test execution results and detected discrepancies
should cause additional post-analysis of a test case, leading to a discovery of a software defect in the associated
code module. A matching result confirms the actual test outcome was correct. Consequently, an opposing
result can trigger a test re-execution and post-analysis investigation to check for a false positive or false
negative. Specifically, each discrepancy in the results has different implications:

• Real test passed, and the prediction shows the test case failed: real test should be repeated as a
possible false negative, where a pass should be indicative of a false positive in the prediction, while if
the repeated real test does not pass, additional post-analysis should lead to a discovery of a software
defect in the associated code module.

• Real test failed, and the prediction shows the test case failed: this situation increases the probability of
a software defect in the associated code module.

• Real test passed, and the prediction shows the test case passed: aligned results increase the probability
of software defects not existing in the associated code module and lower the possibility of false positives.

• Real test failed, and the prediction shows the test case passed: real test should be repeated as a possible
false positive, a pass should be indicative of possible issues with the environment or defective test
automation procedure, indicating a lower chance of a software defect existing in the associated code
module, while if the repeated real test does not pass, it increases the probability of a false negative in
the prediction.

Analysing test history, which considers test cases that have recently failed, is closely related to defect
prediction [10]. However, in our approach, the model is trained only on confirmed software defects and does
not include environmental issues to make the gap even smaller. In our database, the failed test instances
have been confirmed as defects by testers, who, after initial analysis, opened a defect report. Thus, there is
considerable added value in using test case results leading to software defect predictions. Executing the test
cases is hugely expensive, as some more sophisticated 5G test environments cost millions of EUR to build
and maintain [9].

Test cases can also be time-consuming as specific stability scenarios take several hours to execute. Therefore,
having an additional verification mechanism for defect prediction can bring considerable operational savings.
Furthermore, based on the model results, we can temporarily omit low-risk areas not containing any defects,
detect false positives limiting waste, or offer confirmation that discovered faults require a defect correction.

Also, we have compared our results with the defects that escaped to the customer in order to evaluate the
coverage of the proposed solution. In our case, the failed test cases due to confirmed software defects at the
studied system-level included more than 90% of all software defects discovered after integration. This way,
we effectively (in more than 90%) address the SDP problem by solving the test failure prediction problem,
which is easier to use as we avoid all of the widely discussed issues related to the SZZ algorithm [6] and
its various implementations. The SZZ algorithm is the de facto standard for labelling bug-fixing commits
and finding inducing changes for software defect prediction [7]. However, recent research uncovered many
problems in different parts of this algorithm. For example, Herbold et al. [7] found that about one-quarter of
the links to defects detected by SZZ are wrong due to missed and false positive links. Furthermore, they
reported that due to the combination of wrong links and mislabelled issues, only about half of the commits
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SZZ identifies are actually bug-fixing, and it misses about one-fifth of all bug-fixing commits. Herbold et al.
[7] also confirmed the earlier results [36] that for every issue that is correctly labelled as a bug, there are
0.74 mislabelled bug issues. By employing LA2SDP, we escape from many problems related to the classic
approach to SDP that require the SZZ algorithm and additional overhead related to calculating the necessary
software metrics.

The tracking mechanism in Nokia was depicted in Table 1. A unique execution of a test case can pass or
fail (’Test Run’ and respective ’Test Result,’ as in Table 2). After analysis and debugging, the failed test cases
that end up as corrections in the software are marked with a resulting ’Defect Report’. Next, defect reports
are tracked to specific areas of the code that have been corrected (’SW Module’), the team responsible for
the modified code area (’Responsible Team’), the requirement of the product that this functionality satisfies
(’Requirement’), and information about the failed ’Tested Build’ (encoded as ’Build N’), as well as the build
that this test has passed on last time it was tested ’Last Passing Build’. Furthermore, we can track all code
changes (’SW changes’) between the builds done in the area by the team (’Responsible Team’) in a version
control repository, which narrows down the changes that have been defective (changes between ’Build N’ and
’Build N-y’). Consequently, putting all this information together allows tracking of a particular failed test
run of a test case to defective changes (x’ and y’) in the code that has caused this failure. Such a mechanism
can be applied to both real test case execution and machine learning predictions based on confirmed software
defects. Furthermore, such a method can complement existing ML SDP approaches, making predictions on
code and code change characteristics, by addressing the issue also from a black-box test perspective.

Test
Case

Require-
ment

Test
Run

Test
Result

Defect
Report

Resp.
Team

SW
Module

Tested
Build

Last Pass-
ing Build

SW
Changes

TC1 RQ1 Run1 PASS
RQ1 Run2 PASS
RQ1 Run3 FAIL Report1 Team1 SWmodule1 Build N Build N-x x’ changes
RQ1 Run4 PASS

TC2 RQ1 Run1 FAIL Report2 Team2 SWmodule2 Build M Build M-y y’ changes
RQ1 Run2 PASS

TC3 RQ2 Run1 PASS
RQ2 Run2 PASS

TC4 RQ2 Run1 PASS
TC5 RQ3 Run1 FAIL Env. Issue Filter out

Table 1: Tracking mechanism used to connect failed test cases to software defects.

Identifying a failed test case does not equal finding a defect, but models trained on specific observations
containing only confirmed software defects add considerable defect predictive value to the quality assurance
process by offering a secondary verification mechanism to confirm or challenge test results. Since the test
cases and open defect reports are tracked back to a specific product requirement, and each team owns a
particular software area, we may assume that a predicted failed test case identifies a software defect in the
given requirement.

This approach leads us to a new way, different from [37, 38, 39] that rely on build outcomes, to instantiate
a lightweight alternative to SDP in industrial settings. Moreover, we are merging the aspects of test case
selection and prioritisation (TSP) [40, 41] with ML SDP. According to Rothermel et al. [40], there are four
objectives of TCP: increasing the detection rate at the beginning of the regression test execution, increasing
the system code coverage under test, increasing high-risk fault detection rate, and increasing the probability
of revealing faults related to specific code changes. Our efforts constitute a deep dive into the fourth aspect
by translating aspects of TCP to direct software defect prediction outcomes. Hence, the LA2SDP process
can be visualised as in Figure 2

Having outlined the context, company expectations, the specifics of the use case, we reiterate the
terminology that will be used to describe the research details and outcomes:

• Test failure, as defined by International Software Testing Qualifications Board [33], is a deviation of
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Figure 2: LA2DSP process visualisation.

the component or system from its expected delivery, service or result. A failure can be triggered by
different reasons, such as defective software, hardware, or the test itself. However, we focus only on
failures that were triggered by a software failure that is reported as a defect report and mapped in the
test repository to the failed test run.

• Test data is a subset of process metrics that are an output of the testing process and are stored in a test
repository. A wide plethora of features can be used, and ours are described in Section 3.2. Based on
this data, we can predict test runs that will fail due to existing software defects, further using existing
mapping mechanisms to impacted modules.

• Software defect prediction, is a predictive process of identifying modules that are defect prone. Ac-
cordingly, our aim is to predict test failures induced by software defects [42] and then to use existing
mapping of past test failures to defect reports and impacted software modules to trigger a post-analysis
and avoid expensive retesting. Hence, contrary to TSP, we do not aim to schedule test cases for
execution in order to increase their effectiveness [40].

Hence, our alternative to established software defect prediction approaches by predicting test failures
induced by software defects can be visualised as in Figure 3.

Figure 3: A simplified view to the software defect prediction approaches based on input types.
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4. Methodology

We ask three research questions (RQ) in the initial phase of solution implementation:

RQ1: Can LA2SDP work with system-level test process data in Nokia 5G with expected per-
formance (E1), assuming that we are allowed to use only already existing data (E2) and
models that (according to literature) support interpretability (E3)3?

RQ2: Which learner employed in LA2SDP offers the highest performance in terms of MCC?
RQ3: What are the most important features in already existing data, and how can they be

interpreted?

Also, we define success as satisfying the predefined requirements (see Section 3.1). Moreover, we collect
feedback on the solution from subject matter experts in the company as an additional input source for
validation and further improvement possibilities (see Section 6.2).

We started the data definition process by finding a suitable data set to satisfy our research questions. We
gathered the data maintained in a dedicated test repository (called QC). We did not use the fault information
stored in the fault report repository, as the QC data set was easier to obtain and analyse (which adheres to
our second expectation E2). Also, as we investigated black-box system-level testing, we did not consider using
software metrics [43]. The aforementioned decisions were made together with subject matter experts within
Nokia and had a critical impact on the research and its outcomes (four experienced software engineers and
two quality managers). When conducting research in a commercial environment with potentially important
influence on many stakeholders, we wanted to make some initial inroads and show the value of ML SDP first,
as then we would be better positioned to enhance the solution further based on the feedback and already the
recognised expectation E3.

When considering the 5G software development life cycle (SDLC), we decided to focus on one of the
interim stages of testing on the central build (see Figure 1).

Therefore, we only predict defects (that stem from commits) that can be detected at the system level,
and at this point, we do not directly account for the escaped defects to the customer. Notably, the testing
under scrutiny is black-box, meaning that the tester does not know the code implementation and focuses
only on verification if the desired functionality works as specified, analysing only the input and output states.

4.1. Data set
The data set we use is a collection of historical test process metrics from the main test case repository for

the Nokia 5G quality assurance process (see Table 2). Overall, it consists of almost 800,000 unique results for
more than 100,000 test cases over a period of five and a half months from the beginning of January 2021 until
the middle of June 2021, and executed into two-week feature builds. This constitutes a considerable database
split by month into six separate files. This approach allowed us to compare the performance of particular
learners and to analyse the differences between the performance of each learner on different data subsets.

The data was collected automatically from the central Nokia test repository and contains default features
gathered for each test run entry by scripts and testers alike. The simple defect-code linking technique [44] is
based on historical defect reports that are mapped in the test repository to previous failed test runs, and
the relationship between bugs and modules is one-to-one. Here, a crucial consideration is the granularity of
predictions on the test case, test instance, or test run level:

• A test case has the lowest granularity and can run on different builds and environments and by different
teams. A test case is characterised by a requirement it satisfies and the author. Hence, in our context,
providing test case-level predictions does not bring sufficient defect prediction value.

• A test instance is a test case assigned to a particular feature build, characterised by the tester, test
line, and environment. Test instance, as an aggregation of test runs and traced to test cases assigned
to a software build, is much easier for a human to understand with XAI, but it does not yet enable
precise identification of the software module containing the defect.

3See Section 3.1 for expectations E1, E2, and E3.
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• Last, the test run represents the highest granularity, as it reflects multiple repetitions of the same
instance. Hence, it allows the detection of low-occurrence and utilisation of a wider range of features to
predict which runs will fail.

Each granularity level can be tracked to past software defects and used for SDP; however, we have chosen
the test run as it carries the largest amount of information in our context, as well as is already mapped to
defect reports and software modules in the repository, avoiding any additional pre-processing actions.

Data
set

TEST.
RUN.ID1

TEST.
INSTANCE.ID2

EXECUTION.
DATE3

TEST.
PHASE4

RELEASE5

QC1 74305 17871 31 61 10
QC2 144051 23137 28 62 10
QC3 145506 23722 31 65 12
QC4 149182 28321 30 72 11
QC5 138262 24957 31 70 11
QC6 64475 16281 30 62 10

Data
set

AUTOMATION.
LEVEL6

TEST.
OBJECT7

TEST.
ENTITY8

ORGANI-
SATION9

TEST.
STATUS10

QC1 2 3 3 127 2
QC2 2 3 3 138 2
QC3 2 3 3 135 2
QC4 2 3 3 157 2
QC5 2 3 3 161 2
QC6 2 3 3 157 2

1 TEST.RUN.ID - Identification number of the test run.
2 TEST.INSTANCE.ID - Identification of the test case.
3 EXECUTION.DATE - date of TEST.RUN execution.
4 PROGRAM.PHASE - name of the milestone for which the testing contributes.
5 RELEASE - name of the software system release for which the testing contributes.
6 AUTOMATION.LEVEL - TEST.AUTOMATION.LEVEL is information about whether the test run was

automated or manual, and AUTOMATION.LEVEL.FINAL is the target state of the test automation.
7 TEST.OBJECT - information if the test run was part of Benchmark, New Feature, or Regression.
8 TEST.ENTITY - information if the test run was part of CIT (continuous integration testing), CRT (continuous

regression testing), or Manual (see also Figure 1).
9 ORGANISATION - name of the responsible organisation.
10 TEST.STATUS - final state of the test run, and subject of our prediction (based on confirmed software defects).

Table 2: Data set statistics - count of elements and variable factors.

Software companies can possess immense amounts of information on their process efficiency. Although
the mechanisms to obtain this information and their structure were not designed with machine learning tasks
in mind, minimal pre-processing was needed.

There are differences between data sets, e.g., wrt. missing data in the ’TEST.ENTITY’ field. Thus, we
have attempted to understand the root cause, but such occurrences were occasional throughout all time
frames (not only the six we can provide) and it was not related to data-gathering errors.

Such a situation reflects reality and needs to be considered in any research in industry. Second, there are
no duplicate entries in the data sets, and each ’TEST.RUN.ID’ represents a unique execution of a test case
with unique characteristics (see Table 2). Last, each of our six data set files is heavily imbalanced, where
number of passed test cases is much greater than the number of failed ones (less than 5%).

We train the models on data sets containing failed test cases confirmed by opened defect reports
(see Section 3.2). Naturally, variables associated with failures (software defects and environmental issues)
were removed from the data sets prior to the training phase. For data definition, each point consists of three
parts [45], each described and adjusted to our context:
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• Data element or sample: a particular execution of a test instance (test case assigned to a particular
release), as the same test case can be run over different releases multiple times with varying outcomes.

• Variables or features: multiple characteristics describing each execution of the test run: ID, Instance,
Date, Phase, Release, Automation, Type, Entity, Organisation, and Result, as presented in Table 2.

• Observation or label: in our case, the observation is a single test run execution result — pass or fail
state. In reality, there are more states, such as blocked, postponed, ongoing, and similar inconclusive
outcomes. However, we chose to focus only on the absolutes, as this is the primary goal of our solution.

Being the advocates of reproducible research in software engineering [46, 47, 48], we invite other researchers
and practitioners to build upon the industry-relevant data [49, 50]. It would streamline the uptake of the
presented ideas and solutions and encourage other researchers and practitioners to share their ideas for
improvement and adaptations to specific characteristics of other companies and contexts.

Note: Data presented in the following sections have remained the same as the original values. However, to
maintain confidentiality, we show the results obtained for historical test records (2021), not including the
whole project repository but its selected subsets. Also, we had to remove potentially sensitive variables like
test case titles or author names. Hence, the presented results can be perceived as underestimating results
that could be achieved if the aforementioned actions were not taken.

4.2. Tools
We used the mlr3 package in R language as a framework for predictive modelling (including also pre-

processing) [51] and DALEX to support interpretability [52]4. All code and models, as well as software version
information about the OS, R, and loaded R packages are available in the Supplementary Material [14].

Note: All calculations were run on MacBook Pro Late 2023 (M3 Max, 48 GB RAM, Mac OS 14.3.1) and
independently verified on Cluster Bem 2 provided by Wroclaw Centre for Networking and Supercomputing.

4.3. Learners
We have used the following supervised learners for our ML SDP modelling5

• Classification Tree (rpart) [53]
• Random Forest (ranger) [54]
• Naïve Bayes (naive_bayes) [55]
• Light Gradient-Boosting Machine (lightgbm) [56]
• CatBoost Gradient Boosting (catboost) [57]

The learners were chosen to fulfil the expectation E3, i.e., all used models support interpretability. Decision
trees are very interpretable as shown by Molnar [32]. Naïve Bayes is also considered to be an interpretable
model because of the independence assumption, as it is very clear for each feature how much it contributes
towards a certain class prediction as we can interpret the conditional probability [32]. Likewise, the rest of
the models also fulfil the expectation of interpretability according to the literature [30, 31].

Additionally, the selected models suit our data without major pre-processing or creating additional
collection mechanisms not already available within the company (E3). The set of classifiers selected for
benchmarking is considered enough to get prompt and early feedback on the achievable MCC level.

We planned to use 10-fold cross-validation (CV) resampling, as recommended in various studies, e.g., [58,
59], but to provide even more reliable results, we decided to use five times repeated 10-fold CV resampling,
as well as time-based data set split where the QCdata_6 was used as the test set, while the earlier data
sets (QCdata_1...QCdata_5) were used for training. In the case of five times repeated 10-fold CV the
performance measures reported in Table 3 are averaged over the fifty runs (see further explanation of needed
exact calculations [60] in related mlr3 documentation6).

4See also https://dalex.drwhy.ai/.
5We will use the full names of the models, i.e., Classification Tree, Random Forest, Naïve Bayes, Light Gradient-Boosting

Machine, CatBoost Gradient Boosting, and related short names, i.e., rpart, ranger, naive_bayes, lightgbm, and catboost,
respectively, as they are named in the mlr3 package used to build models) interchangeably in the paper.

6https://mlr3.mlr-org.com/reference/resample.html
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4.4. Performance measures
Our data, as often is the case with real-world applications, are severely imbalanced. Hence, we need to

use proper performance measure(s). There is ample research on the benefits and risks related to particular
performance metrics in software defect prediction research [61, 62, 28, 63]. Taking into account the arguments
and recommendations of Shepperd et al. [28], Yao et al. [63], as well as Chicco and Jurman [64], we decided
to depend on the main comparisons and conclusions using Matthew’s correlation coefficient MCC. Chicco
and Jurman [64] concluded that MCC (that accounts for the whole confusion matrix, i.e., generates a high
score in its [−1;+1] interval only if the classifier scored high for all four quadrants of the confusion matrix)
should replace the widely used ROC AUC as a standard statistic in all the scientific studies involving a
binary classification. We decided to report the performance of our models with five additional auxiliary
metrics only to enable comparison with other studies and give the readers and Nokia practitioners an even
broader understanding of the obtained results.

5. Results

In this section, we analyse the results and conduct statistical analysis based on the MCC values. We run
the global Friedman test with follow-up pairwise Nemenyi post hoc tests to verify whether the results are
statistically different [65]. We comply with the recommendations by Kitchenham et al. [66] and used the
probability of superiority p̂ non-parametric effect size measures the probability of superiority (p̂), as well
as Cliff’s delta (d). The range of p̂ values is between 0 and 1, with 0.5 indicating stochastic equality and 1
indicating that the first group’s results dominate those of the second, while Cliff’s d ranges from -1 to 1,
with 0 indicating stochastic equality, and 1 indicating that the first group’s results dominate those of the
second [67].

The averaged results (using five times repeated 10-fold CV) of each learner on each of the six data sets,
as well as the results for the time-based split of the whole data set (QC_All) where the first five data sets
were used for training, while the newest data set (QCdata_6) served as the test set, are shown in Table 3.

Importantly, such an approach constitutes a realistic scenario for the company. Next, we present the
mean ranks over all data sets in Table 4. Our results show good modelling performance of our lightweight
approach (see E1 in Section 3.1), with the best models having MCC between 0.673 and 0.874 in the repeated
10-fold CV scenario, while in the time-based scenario the best models achieved between 0.815 (ranger)
and 0.820 (catboost). Second, catboost and ranger, which is a fast implementation of Random Forest,
were consistently among the two best classifiers, followed by lightgbm, rpart, and lastly naive_bayes (see
also Figure 4, for the results of repeated cross-validation over all data sets, as well as Figure 5, for the results
of the time-based split of the data set). Considering all data sets and all reported performance measures,
catboost was the best in the case of MCC, ACC, Recall, and Fbeta (i.e., F-measure), while ranger was
the best in the case of AUC and Precision (see Table 4). This is a testament to the importance of selecting
a performance metric that fits the problem, as different results can be obtained depending on the chosen
performance calculation method [63, 64]. MCC boxplots for each learner per data set (see Figure 6) show
that while the results differ depending on the data set (despite being taken from the same project but in
different time frames), the best-performing models, catboost and ranger, performed well on each data set.

Global Friedman statistical test allows us to conclude that MCC significantly differed between ML
algorithms over all the tasks (χ2 = 22.93, df = 4, p = 0.00013), so we can proceed with the post hoc tests.

Further information on the MCC performance of the models can be visualised by critical difference
diagram [65] (see Figure 7), where classifiers on the left are ranked the best, while those on the right are the
worst. The thick horizontal lines connect learners that are not significantly different in ranked performance,
so we may conclude that, based on MCC, catboost is significantly better than naive_bayes and rpart, but
not significantly better than ranger and lightgbm, while ranger is significantly better than naive_bayes,
but not significantly better than the others.

Pairwise comparisons of MCC using Nemenyi-Wilcoxon-Wilcox all-pairs test for a two-way balanced
complete block design (see Table 5) tell us that catboost and ranger are significantly different from the
naive_bayes. Comparing catboost with naive_bayes and ranger with naive_bayes, the post hoc test
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task learner MCC AUC ACC Recall Prec. Fbeta

QC_1 rpart 0.707 0.843 0.961 0.673 0.787 0.725
QC_1 ranger 0.834 0.993 0.978 0.758 0.941 0.840
QC_1 naive_bayes 0.315 0.843 0.817 0.649 0.240 0.350
QC_1 lightgbm 0.812 0.987 0.975 0.775 0.879 0.823
QC_1 catboost 0.857 0.991 0.981 0.832 0.905 0.867
QC_2 rpart 0.738 0.827 0.996 0.618 0.888 0.727
QC_2 ranger 0.850 0.995 0.998 0.767 0.946 0.847
QC_2 naive_bayes 0.338 0.946 0.965 0.754 0.161 0.265
QC_2 lightgbm 0.842 0.993 0.997 0.830 0.857 0.843
QC_2 catboost 0.874 0.994 0.998 0.817 0.938 0.872
QC_3 rpart 0.507 0.717 0.997 0.388 0.670 0.488
QC_3 ranger 0.774 0.990 0.999 0.608 0.988 0.751
QC_3 naive_bayes 0.221 0.953 0.972 0.665 0.078 0.139
QC_3 lightgbm 0.598 0.924 0.997 0.557 0.651 0.594
QC_3 catboost 0.750 0.987 0.998 0.625 0.904 0.737
QC_4 rpart 0.339 0.672 0.996 0.252 0.472 0.321
QC_4 ranger 0.712 0.986 0.998 0.526 0.971 0.680
QC_4 naive_bayes 0.172 0.941 0.959 0.628 0.052 0.095
QC_4 lightgbm 0.387 0.854 0.996 0.356 0.438 0.382
QC_4 catboost 0.666 0.985 0.998 0.554 0.810 0.653
QC_5 rpart 0.327 0.638 0.997 0.257 0.427 0.317
QC_5 ranger 0.546 0.989 0.998 0.392 0.773 0.515
QC_5 naive_bayes 0.214 0.959 0.964 0.811 0.060 0.112
QC_5 lightgbm 0.482 0.912 0.997 0.462 0.531 0.472
QC_5 catboost 0.673 0.986 0.998 0.561 0.815 0.660
QC_6 rpart 0.595 0.775 0.970 0.525 0.708 0.603
QC_6 ranger 0.795 0.991 0.984 0.690 0.934 0.793
QC_6 naive_bayes 0.391 0.853 0.916 0.633 0.289 0.397
QC_6 lightgbm 0.765 0.986 0.982 0.691 0.867 0.769
QC_6 catboost 0.806 0.987 0.985 0.747 0.887 0.811

QC_All rpart 0.523 0.827 0.988 0.421 0.663 0.515
QC_All ranger 0.815 0.997 0.995 0.712 0.938 0.809
QC_All naive_bayes 0.200 0.848 0.900 0.594 0.087 0.152
QC_All lightgbm 0.659 0.988 0.991 0.539 0.817 0.649
QC_All catboost 0.820 0.992 0.995 0.764 0.885 0.820

Table 3: Averaged results for each learner on each data set QC_1...QC_6 (using five times repeated 10-fold
CV) and the results for the time-based split of the whole data set (QC_All) where the first five data sets
were used for training, while the last data set (QCdata_6) served as the test set.

yields a p = 0.00057 and p = 0.00242, respectively (see Table 5). Hence, in both cases, the difference is
statistically significant, while non-parametric effect sizes p̂ and Cliff’s d are between 0.997 and 1.0, i.e., are
considered large effect sizes according to [67]. Furthermore, the post hoc test yields a p = 0.02875 for the
comparison of catboost with rpart (see Table 5), while effect sizes (p̂ = 0.885 and Cliff’s d = 0.770) are
considered large effect sizes as well [67].

The comparison of catboost with ranger, i.e., two best classifiers on our data sets, shows that the
difference is not statistically significant with p = 0.996, while the effect sizes p̂ = 0.543 and Cliff’s d = 0.086
are considered to be small effect sizes [67]. Hence, there is little to discern between both models; thus, both
can be recommended.

For reference, we include exemplary benchmark results using the receiver operating characteristic (ROC)
curve with confidence bounds for one of our data sets (QCdata_1), as well as ROC for the whole data set
(QCdata_All where we used time-based split and QCdata_6 as the test set) in Figure 8, where we can
observe the plotting of the true positive rate (TPR) against the false positive rate (FPR) at various threshold
settings for each classifier.
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learner_id MCC AUC ACC Recall Prec. Fbeta

catboost 1.333 2.000 1.333 1.667 1.833 1.333
ranger 1.667 1.000 1.667 3.167 1.167 1.667
lightgbm 3.000 3.500 3.333 2.667 3.500 3.000
rpart 4.000 4.833 3.667 4.833 3.500 4.000
naive_bayes 5.000 3.667 5.000 2.667 5.000 5.000

Table 4: Mean rank of learners per measure

rpart ranger naive_bayes lightgbm

ranger 0.07872 - - -
naive_bayes 0.80900 0.00242 - -
lightgbm 0.80900 0.58823 0.18304 -
catboost 0.02875 0.99621 0.00057 0.35857

Table 5: Pairwise comparisons of MCC using Nemenyi-Wilcoxon-Wilcox all-pairs test for a two-way balanced
complete block design (p-value adjustment method: single-step).

More figures (also for other data sets) are available in the Supplementary Material [14].
We have also measured the time used for computation (on MacBook 2023, see Section 4.2), including

both training and prediction duration, by each learner. Table 6 shows that rpart was the fastest, followed
by lightgbm, naive_bayes, and then ranger and catboost. Thus, Light Gradient-Boosting (lightgbm)
offers a good trade-off between speed and prediction performance, being less than two times slower than
Classification Tree, while much faster than Random Forest (that was 39 times slower) and CatBoost (255
times slower), as the best-performing learners (catboost and ranger) needed longer computation times.
Also, despite there is no statistically significant difference in predictive performance between those two
learners, ranger was much faster, which might be an advantage in time-critical industry use cases.

learner_id aggregated time [s]

rpart 1.58
lightgbm 2.82
naive_bayes 5.00
ranger 110.15
catboost 719.17

Table 6: The aggregated times (including train and predict phases) for each model are based on the statistics
gathered by mlr3.

5.1. Enabling interpretability
To satisfy expectation E3, we exercise the opportunity to interpret/explain predictions on our real-world

quality assurance process data from the very beginning of our adoption project [27]. Hence, we deployed an
external, posthoc model-agnostic explainable AI framework DALEX that xrays a model and helps to explore
and explain its behaviour. It was proposed by Biecek [52] as a dedicated R package to offer consistent
methodology and tools for model-agnostic explanations, which create numerical and visual summaries. Also,
it allows for comparing multiple models to help understand their relative performance, which we consider to
do in subsequent phases of our research. Consequently, DALEX can explain the classifier for a specific single
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Figure 4: Boxplot (including mean marked as ♢) for
MCC
across all tasks (data sets) using five times repeated
10-fold
CV.

QCdata_All

cla
ss
if.r
pa
rt

cla
ss
if.r
an
ge
r

cla
ss
if.n
aiv
e_
ba
ye
s

cla
ss
if.l
igh
tgb
m

cla
ss
if.c
atb
oo
st

0.2

0.4

0.6

0.8

M
C
C

Figure 5: MCC for the time-based split where the first
five data sets were used for training, while the last data
set (QCdata_6) served as the test set.

instance of an already created model, enabling global and local understanding and is, therefore, suitable for
our solution and sufficiently satisfies our goals (see Section 3.1).

Global model explanations (also called global feature importance) help us understand which features are
most impacting in driving the predictions of the catboost and ranger models over the aggregated data sets.
A convenient way to compute variable importance is to permute the features [54]. Accordingly, a feature is
important if permuting the feature causes a large degradation in model performance. This approach can be
applied to any kind of model (i.e., it is model agnostic), and results are simple to understand.

We illustrate the use of the permutation-based variable-importance evaluation by applying it to the
ranger (RF) and the catboost model on the data set that is composed of all analysed data sets (see Figure 9).
The dashed line in each panel of Figure 9 shows the loss7 for the full model, being either the ranger (RF)
or the catboost. Features farther to the right are more important as permuting them produces a higher
loss (measured with 1−MCC). While EXECUTION.DATA, TEST.RUN.ID, TEST.INSTANCE.ID and
ORGANISATION are the most important features for both best models, the order of importance differs8.
Furthermore, the importance of the most important features decreases much less in the case of the ranger
model than in the case of catboost.

The interpretations obtained through DALEX show that while feature importance varies between models
(Figure 9), the test run, execution date, test instance, and organisation are the most impacting predictors.
Meanwhile, the release, program phase, and automation levels are negligible. A detailed discussion of particular

7For the purpose of analysis of feature importance in the scenario where MCC is the performance measure of choice, it was
necessary to implement a new loss function (1−MCC) that is compatible with the chosen primary performance measure as
DALEX does not provide the loss function based on MCC (if the performance measure of choice was AUC then DALEX offers the
loss function 1−AUC). The implementation of the loss function (loss_one_minus_mcc) is included in the reproduction package
in the R script MadeyskiStradowski.R.

8It is also worth mentioning that an optional decomposition of EXECUTION.DATE into YEAR, QUARTER, MONTH,
WEEK, MDAY (day of the month), and WDAY (day of the week) had a negligible effect on MCC.
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Figure 6: Benchmark results for each learner per data set using MCC boxplots.

Figure 7: Critical difference diagram for MCC.

feature interpretations is presented in Section 6. Moreover, it is worth emphasising that the obtained results,
backed by domain knowledge, can led to interesting improvement opportunities and new quality-oriented
projects started in Nokia (see Section 6 for improvements A1-A3).

6. Discussion

The results show that the new approach is feasible and selected interpretable learners can achieve satisfying
results with MCC much higher than the preliminary set threshold (see E1). Hence, the proposed lightweight
solution (LA2SDP) fulfils the expectations posed in Section 3.1. However, due to the expectation E2 to keep
the solution as simple as possible, LA2SDP also has a high improvement potential that can be explored in
subsequent phases of our research, namely:
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(a) ’QCdata_1’ (b) ’QCdata_All’

Figure 8: Benchmark ROC with confidence bounds for ’QCdata_1’ and ’QCdata_All’

• We used relatively simple ML algorithms, and possibly better results can be obtained by employing
more sophisticated models or pre-processing steps, as well as training models on larger data sets.

• Similarly, hyperparameter tuning was not performed and thus, optimisation with a more extensive
computation budget can be used to improve performance further. We invite the academic community
to achieve better results on our data sets as we consider doing ourselves in the future.

• We did not conduct an extensive study of feature extraction or selection [68, 69]. The features we could
use due to confidentiality requirements were limited, and selecting the most contributing ones was not
part of our success criteria. If the solution is to be commercialised and accepted as part of the standard
process, feature selection (if not already supported internally by employed models) must be considered.

• Commercial data often suffer from missing samples. Our case is no different, mainly because the data
set contains manually and automatically entered fields in the test repository. Missing entries have been
omitted in calculations during the pre-processing phase; nevertheless, information carried by incomplete
observations could have had predictive value [70, 71]. Hence, if the solution is accepted as part of the
standard mode of operation, data imputation steps would be employed for new models that cannot
account for missing values.

• Commercial data are frequently imbalanced. In each of our six data set files, the number of passed
test cases is much greater than the number of failed ones (usually less than 5% of tests detect defects).
Including mechanisms dealing with class imbalance is an absolute necessity. Class weight mechanisms
were employed when supported by the models, but more sophisticated sampling algorithms can be
considered if the LA2SDP solution is accepted as part of the standard mode of operation. For now, due
to the class imbalance, our LA2SDP solution employs the MCC performance measure that considers all
four quadrants of the confusion matrix, which is recommended in such an imbalanced scenario [28, 63, 64].
Also, MCC can later be used for hyperparameter optimisation.

The software development life cycle in Nokia 5G is a very complex process (see Section 3), and in
consequence, the SDP life cycle is similarly challenging to manage. Thus, our project impacts a limited
area within a larger ecosystem with numerous relationships, stakeholders, and requirements that must be
thoroughly considered. That said, we have proposed an idea of how to manage such process complexity
and how to embed SDP in multiple test phases by utilising the multidimensional knapsack problem [13],
adhering to the company expectation that our solution works on system-level data complementing other
already existing SDP and TSP mechanisms in the quality assurance process.
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Figure 9: Feature Importance for the ranger (RF) and the catboost model

6.1. Answers to research questions
As suggested by Tosun et al. [72], it is important to decide how and when a defect prediction model

will be used within the development life cycle. We aimed to understand if built models can be used with
acceptable performance on one of the last phases of the SDLC. Therefore, our research sought a simple
solution (E2) to gain value by proposing a lightweight alternative to SDP usable on industrial, real-world
system-level test data sets. The proposed LA2SDP and obtained results showed that even relatively simple
ML models can give adequate prediction results.

Despite using only five learners (Classification Tree, Random Forest, Naïve Bayes, Light Gradient-Boosting
Machine, and CatBoost) for our lightweight predictive modelling, we achieved results that can be considered
a solid starting point. The best models achieved satisfactory averaged results of MCC (0.673-0.874) on six
data sets in the repeated CV scenario, and MCC (0.815-0.820) in the time-based scenario (with AUC close
to 1), showing that the answer to our RQ1 is positive.

Answer to RQ1 (Can LA2SDP be applied to the system-level testing of Nokia 5G with MCC>0.5
(E1) assuming that we are allowed to use only already existing data (E2) and models that (according
to literature) support interpretability (E3)?): LA2SDP can be applied to the system-level
testing of Nokia 5G (with all the imposed expectations E1, E2, E3 fulfilled — achieving MCC>0.5,
using existing data, and enabling interpretability).

To answer our RQ2, we wanted to understand which learner would offer the best performance in terms
of MCC. We conducted statistical tests and calculated robust effect sizes to derive meaningful conclusions.
Consequently, CatBoost and Random Forest turned out to be the best in terms of MCC, followed by Light
Gradient Boosting, offering an interesting trade-off between speed and prediction performance. The results
should not be unexpected as Random Forest is a learner widely known for its flexibility and providing
excellent results most of the time, even without hyperparameter tuning [54, 73]. Random Forest combines
the decision tree algorithm with bootstrap aggregation and constructs a large number of decision trees on
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random subsets of the training data. It allows the algorithm to learn complex relationships between the
features and the dependent variable [54]. Second, we found that CatBoost also offered great results without
hyperparameter tuning. CatBoost is a relatively new Gradient Boosting algorithm developed at Yandex that
offers an innovative approach for processing categorical features [57] (which appeared helpful due to the
categorical features we operated with). On the other hand, it is essential to note that CatBoost and Random
Forest were also the slowest in our comparison.

Answer to RQ2 (Which learner employed in LA2SDP offers the highest performance in terms
of MCC?): CatBoost Gradient Boosting (catboost) and Random Forest (ranger) were
the best-performing learners in terms of MCC on all analysed data sets. Statistical
analysis shows that there is little to discern between both models; thus, both can be recommended for
commercial implementation. Furthermore, catboost is significantly better than naive_bayes and
rpart, but not ranger and lightgbm, while ranger is significantly better than naive_bayes, but
not other classifiers.

In the described phase of implementation, we ensured, based on literature (see, e.g., [32, 30, 31]), that the
models we used should support the interpretability of the results (see E3 in Section 3.1). Furthermore, we
successfully employed the DALEX package to demonstrate this ability in practice. That said, we focus more
on this aspect in the subsequent phases of the adoption project [74].

Despite using various search engines and digital libraries, as well as conducting systematic mapping
study [4] and systematic review [5], we did not find similar studies using test process information for
comparison. However, we are able to discuss our results in the context of two studies that used similar
prediction methods but were set in different contexts and used different inputs. First, we briefly compared
our results with research by Malhotra and Sharma [18], despite the study being based on object-oriented
metrics, whereas we use test repository data. Overall, in our case, the predictive capability using AUC was
much higher than in the compared study, where the results averaged around 0.6 (the best results for different
data sets were between 0.6-0.805), while in our case, it is as much as 0.92 on average and at least 0.986 for
each data set in the case of the best models (see Table 3). The final ranking by Malhotra and Sharma [18]
was also different, where Naïve Bayes turned out to be better than Random Forest.

We also compare our work to the research done by dos Santos and Figueiredo [19], which studies the
software features impact on ML SDP performance using seven different classification algorithms and two
measures on Java-based data sets. Apart from a custom-built Unbiased Search XGBoost algorithm, which
turned out to be the best in all studies, Random Forest also proved very effective using both AUC and
F1-score, similar to our case. Similarly, both research results demonstrate how a limited set of features can
contribute to high AUC results.

Moreover, our approach is consistent with the conclusions of systematic literature reviews conducted
by Durelli et al. [75], Pandey et al. [76], and Pachouly et al. [77] in terms of established state-of-the-art
practices, and confirms the business potential of ML SDP. Importantly, our study also shows how relatively
straightforward such implementation can be even in a complex industrial environment.

Finally, we have found answers to the last RQ when performing a feature importance study (Section 5.1).
Next, we discussed the findings with our panel of Nokia experts to evaluate their significance, open op-
portunities for new domain expertise and knowledge discovery, and create options for starting dedicated
improvement projects to increase product and process quality.

Answer to RQ3 (What are the most important features in already existing data, and how can they
be interpreted?): The most important features are related to the test run, execution date, test
instance, and responsible organisation. Furthermore, the discoveries brought new domain
knowledge and process improvement opportunities to the organisation.

There are many benefits to be gained from building-in interpretability potential to the ML SDP solutions,
such as transparency and trust, accountability and compliance, debugging and improvement, domain expertise,
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and new knowledge discovery [78]. In our case, the main objective for enabling interpretability for the solution
is the understanding requirement [79], as we want to use the results and explanations as an additional output
for our users’ benefit. Notably, one of the remaining reasons for the interpretability problem to remain
unsolved is that interpretability is subjective and, therefore, challenging to measure and compare [79, 80].
Consequently, the usefulness of understanding predictions is domain- and context-specific, and it is necessary
to consider the benefit of the use cases and the added value of each distinct feature importance insight.

Specific features and their interpretations are provided below (see also Figure 9) and have been discussed
with the involved practitioners to design improvement actions (A1-A3):

• TEST.RUN.ID emerged as the highest influencing feature on the predictive performance, which
came as a surprise to our participants. It is an internal counter for test runs in the test repository;
however, after a deeper analysis of how the IDs are assigned, we now understand that it reflects all
other essential features: date of creation and execution, test instance, and the responsible organisation.
Therefore, despite the relative importance, we decided not to base any further action on this particular
feature at this time.

• EXECUTION.DATE, meaning the date when the test run is executed, emerged as the second most
important predictor. Furthermore, it has a significantly more impact than RELEASE and PROGRAM
PHASE (result). This shows that continuous delivery and continuous integration (see also Section 3)
work as designed, and the flow of defects is constant, rather than in bursts. This reflects the shorter
cadence of new content being delivered to the central build based on two-week feature builds. On
the other hand, there is a pattern of peaking defects at the beginning of each feature build entry
when new functionalities are starting to be tested on the system level. This opened up a considerable
opportunity to additionally steer the test schedules to be more optimal in terms of most risky tests
executed first [23] (A1).

• TEST.INSTANCE.ID is a feature our engineering practitioners perceived as the most crucial in
making software defect predictions. The test instance is a test (procedure description) prepared for
actual execution, with a test assigned to a particular test environment and set required execution
parameters (i.e., SW build, tester, external device). It contains all the most critical information
for the engineer to identify the faulty SW module and gives meaningful inferences on the defect’s
location. Therefore, from a technical point of view, it is an essential feature for practitioners to enable
software defect prediction mechanisms in our process, especially with the combination of organisation,
test line, and granularity information (see also Section 5.1 for more information on the granularity
of predictions). Importantly, further analysis of the interpretability information led to uncovering
previously unknown relationships between defect-finding test instances and software module correction
patterns. A dedicated project was started to investigate the usefulness of this information to further
quality assurance improvements (A2).

• ORGANISATION turned to be one of the strongest characteristics, which our practitioners also
expected as specific organisations are responsible for different code areas, and some modules are much
more defect-prone than others [81]. Hence, test teams responsible for the more defect-prone SW
modules fail more cases that are induced by software defects; however, failures due to test incorrectness
of environmental issues (which we filtered out, Section 3.2) are comparable. Second, this is an
essential consideration for the high-management stakeholders. ML SDP and XAI results should steer
investments in the organisations’ capacity to maximise defect finding and help prioritise the limited
test resources on the most risky SW modules [82]. Furthermore, in our process, test engineers are
usually responsible for dedicated test lines, and crosschecking of organisation and test instances can help
understand why specific test lines cause defect reports much more frequently than others. Also, this is
an important consideration for the particular organisation’s management as it can steer investments in
test infrastructure to maximise phase containment and efficient hardware utilisation. Namely, we found
that a larger-than-expected number of software modules are executed for specific configurations, which
led to starting another project to investigate the ramifications (A3).

• TEST.AUTOMATION.LEVEL and AUTOMATION.LEVEL.FINAL of the analysed test runs
had no meaningful influence on the defect prediction effectiveness. Therefore, a high ratio of automated
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test cases to manual test cases did not directly influence defect discovery in particular software modules;
however, it adds essential benefits of test automation on the quality assurance processes in terms of
reliability, cost, and speed [83].

6.2. Feedback
Feedback from experts plays a crucial role in establishing the validity of the approach within the company.

After implementation and obtaining initial results, we organised a feedback session with the involved
technical staff and management to elicit additional perceptions, expectations, and challenges for the created
solution [84, 5]. As mentioned in Section 3.1, five experienced test architects and quality managers from
Nokia who participated in the project were interviewed over a series of retrospective meetings. The most
important points were the following:

• During the retrospective and post-validation, all involved practitioners unanimously saw the obtained
predictions as useful (confirming the observations by Wan et al. [84]).

• As we trained our model only on test cases that fail due to confirmed software faults (including true
negatives and false negatives, where a tester created a defect report that only after deeper analysis
turned out not to be a real defect), experts saw value on comparison between predictions and actual
test results for both cases (Section 3.2).

• Also, exploring the second group of failed test cases that were not confirmed as software defects to
predict defects in the test environment (see Section 3.2) was discussed.

• A business case evaluation from a monetary perspective was done, showing a positive Return on
Investment (ROI). Details have been described in a dedicated publication: Stradowski and Madeyski
[24].

• The specific feature importance values were valuable to practitioners and led to further evaluation
under the company’s improvement framework. Therefore, not only did the obtained new insight lead
to knowledge discovery, but it also triggered specific follow-up actions [74].

• The management perspective on how to stabilise and treat ML SDP as a standard practice is important
to facilitate the adoption. Aspects such as competence development, communication, and innovation,
but also effort estimation, maintenance costs, and technical debt [85], need to be studied further to
accelerate the process.

• From the process perspective, making sure the predictions are accurate for incoming new data sets is
imperative. Hence, the iterative nature of new data availability defines the need for time-based data set
split and evaluation, being the go-to approach in the industry (see also the new process visualisation
in Figure 1).

Consequently, after the commercialisation of the solution, the 5G quality assurance in Nokia is planned
to include the ML SDP mechanism that is time-based split to run every two weeks on new data, after each
feature build (Figure 1). The model predicts failed runs of a test instance,’ which are tracked to respective
requirements and software modules for additional analysis. Furthermore, the model can be compared with the
actual test results of said test cases to detect false negatives and further tighten phase containment. Second,
based on the confidence of the obtained predictions, test architects can make decisions on omitting specific test
cases, which, due to the fact that they can be very expensive to run [24], can lead to meaningful operational
savings in each feature build. In the next steps, dedicated product and process quality improvements will be
added to increase the confidence and trust in the predictions as well as a decision to run the modelling more
frequently based on a cost-benefit analysis [74].

6.3. Threats to validity
Construct validity reflects to what extent the studied operational measures represent what the researcher

has in mind and what is investigated according to the research questions. While the general approach we use
has been validated in many contexts, academic and real-world [5], there is a range of performance measures
to choose from. We decided to report a range of them to provide a comprehensive view of the results and to
allow easier comparisons with other studies. However, to make the answer to our RQs more robust, we based
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our conclusions on the MCC metric recommended to use in imbalanced scenarios [28, 63, 64]. Secondly, as
the predictors we use are generated automatically as well as manually by test engineers, they may not reflect
the results perfectly. Also, as there are more test metrics gathered in the Nokia system-level test process
than we considered in this study, other features, including dynamic ones (e.g., test site metrics), could be
used in the next steps. We have also recognised a relevant construct improvement possibility; we do not
consider test case or defect priorities, which is desired from a business standpoint.

External validity concerns the extent to which it is possible to generalise the findings. As the main focus
of the study is a proprietary industrial data set and process, the generalisability of the results is limited.
Second, we applied our method to only one project within the data set; we did not draw any conclusions
about cross-project defect prediction potential [86], which still should be further verified. However, our
findings and proposed approach should be relevant and valuable for any large-scale industrial system where
similar test repository data can be gathered. Reliability is concerned with the extent to which the data and
the analysis depend on the specific researchers. Notably, SDP studies are prone to researcher bias, as shown
by Shepperd et al. [28]. Hence, we ensure that our results are reproducible by other researchers [46, 47, 48]
by providing all details (data sets, code, and results) in the Supplementary Material [14].

For quantitative analysis, the counterpart to reliability is conclusion validity [87], which, in our case, is
concerned with the relationship between the machine learning model and the chosen performance measure
(MCC). We applied both time-based data set split, as well as five times repeated 10-fold cross-validation,
instead of classic 10-fold cross-validation as recommended by Kohavi [58], Bowes et al. [59], to obtain
reliable conclusions. We also conducted statistical tests and calculated robust non-parametric effect sizes
following the guidelines by Kitchenham et al. [66, 67]. Unfortunately, we have not found any studies using
black-box test metrics for SDP; therefore, comparing our results with other research conducted in a similar
context is challenging. We analysed and published a data set that was slightly modified from the original for
confidentiality’s sake and ensured the modifications were random to limit the impact on the derived conclusions.
Last, we paid much attention to keeping a high standard for communication and documentation [28, 46].

7. Conclusions and future work

Our paper addresses two appealing application prospects of ML SDP. First, we show how test repository
data can be used for the detection of software defects by filtering the test results to teach the learners only
on test cases that directly lead to defect discovery, besides the established approaches typically relying on
software and process metrics. The proposed approach limits the need for expensive retesting of test cases
and triggers a post-analysis directly based on the prediction results and past-defects mapping. Second, we
utilise a lightweight application of ML SDP instead of a classic but more complex solution using an SZZ
algorithm implementation and code mining tools to gather software product or process metrics [1]. Thus, we
exercise simplicity in obtaining meaningful industry adoption inroads.

Consequently, the proposed lightweight alternative to SDP was successful, utilising the existing test
process data to predict test failures induced by software defects (named LA2SDP). Not only have we obtained
satisfying results on all test repository data sets from the black-box system-level testing of Nokia 5G gNB,
but we have also found the process relatively straightforward to implement with the mlr3 ML framework. We
have used five supervised learners, a time-based data set split and five times repeated 10-fold cross-validation,
and six performance measures to build our models. The CatBoost Gradient Boosting and Random Forest
algorithms ranked the highest in our evaluations, followed by the Light Gradient-Boosting Machine (being
also much faster than the aforementioned best algorithms), Classification Tree, and Naïve Bayes (the best
models achieved satisfactory results of MCC between 0.673 and 0.874). Furthermore, we analysed the variable
importance for our models, where the date, test instance, and organisation proved to be beneficial predictors
from a business standpoint and triggered dedicated quality improvement actions.

In the subsequent steps, we plan to conduct more empirical studies on additional real-world time-split data
sets from Nokia 5G system-level testing, as well as consider employing additional learners, hyperparameter
optimisation, and feature selection/extraction to achieve even better performance. Nevertheless, the results
we obtained were sufficient to decide that further research efforts will be executed within the company to
adopt a similar approach as standard practice and use it commercially. Accordingly, we have shown that
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LA2SDP (Lightweight Alternative to ML SDP) has the potential to improve the quality assurance processes
within Nokia as well as other companies and large software projects that employ precise tracking of executed
test cases to found software defects, as well as software modules that contained them.
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Appendix A. Supplementary material

All research artefacts required to reproduce the results (code, results, and data sets from Nokia) are
available in the Supplementary Material [14]. At the start of the R script, MadeyskiStradowski.R, we run
set.seed(123) and use the R package renv 1.0.3 to manage package versions. In the Supplementary
Material, we also include our lockfile (renv.lock) recording metadata about every R package so that the
computational environment can be re-installed on a new machine. Reproducibility is often problematic
when parallelisation of computations is used, and we heavily use parallelisation to speed up computations.
To overcome this issue and support reproducibility, we employed the future package that ensures that all
workers receive the same pseudo-random number generator streams, independent of the number of workers9.
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