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A B S T R A C T

Context: Machine Learning Software Defect Prediction (ML SDP) is a promising method to improve the quality
and minimise the cost of software development.
Objective: We aim to: (1) apropose and develop a Lightweight Alternative to SDP (LA2SDP) that predicts
test failures induced by software defects to allow pinpointing defective software modules thanks to available
mapping of predicted test failures to past defects and corrected modules, (2) preliminary evaluate the proposed
method in a real-world Nokia 5G scenario.
Method: We train machine learning models using test failures that come from confirmed software defects
already available in the Nokia 5G environment. We implement LA2SDP using five supervised ML algorithms,
together with their tuned versions, and use eXplainable AI (XAI) to provide feedback to stakeholders and
initiate quality improvement actions.
Results: We have shown that LA2SDP is feasible in vivo using test failure-to-defect report mapping readily
available within the Nokia 5G system-level test process, achieving good predictive performance. Specifically,
CatBoost Gradient Boosting turned out to perform the best and achieved satisfactory Matthew’s Correlation
Coefficient (MCC) results for our feasibility study.
Conclusions: Our efforts have successfully defined, developed, and validated LA2SDP, using the sliding and
expanding window approaches on an industrial data set.
1. Introduction

Machine learning software defect prediction (ML SDP or SDP for
short) is a highly prospective field of software engineering (SE). Its goal
is to employ specific algorithms to analyse the product (e.g., a portion
of software product metrics) or process (e.g., via process metrics) to
estimate the number of defects in particular areas of the code (regres-
sion) or whether defects exist in those areas (classification) (Madeyski
and Jureczko, 2015). The business potential of such solutions is very
high (see, e.g., Hryszko and Madeyski, 2017, 2018). Still, the pace of
industrial application lags behind academic research in the field, and
there are very few publications on results obtained in vivo (Stradowski
and Madeyski, 2023e,d).

Industrial applications of SDP are rarely reported due to a variety
of reasons. For example, there is a lack of incentives for the industry to
share real-world SDP experience, know-how or intellectual property.
Furthermore, several researchers reported serious weaknesses in the
SZZ (Śliwerski, Zimmermann, Zeller) algorithm (Śliwerski et al., 2005)
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that is typically used in the SDP implementations (Herbold et al., 2022;
Rosa et al., 2023). Namely, Herbold et al. (2022) reported that only half
of the bug-fixing commits determined by SZZ are actually bug-fixing
(see further details in Section 2.2). This is a consequential problem
when the SZZ algorithm is the core component of an in vivo SDP
application. Last but not least, there is a need for extensive mining of
software repositories to collect data just for the sake of SDP, which can
be uneconomical from the company’s perspective.

Thus, in this paper, we present and evaluate in vivo (in Nokia’s
system-level 5G test process environment) LA2SDP, a lightweight alter-
native to ML SDP. Notably, this work was inspired by the conclusions of
a survey conducted by Stradowski and Madeyski (2023c), highlighting
considerable opportunities to improve the quality and minimise the
cost of software testing within the company. Furthermore, a study
by Paterson et al. (2019) states that defect prediction can accurately
identify the modules that are most likely to be buggy.
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In contrast, we aim to predict test cases that will detect software
defects in particular modules to trigger post-analysis and potentially
omit the costs related to retesting in expensive environments. Impor-
tantly, we have not encountered a similar approach that would study
the possibility of analysing high-level test results from a test repository
to be used for SDP instead of prioritising test cases (Catal and Mishra,
2013; Pan et al., 2022). Therefore, we are merging the aspects of test
case selection and prioritisation (TSP) with software defect prediction
(SDP) to open new avenues in software engineering research, address
direct company expectations, as well as extend industry applications.

The presented research is part of a larger, business-driven effort
to gather the challenges (Stradowski and Madeyski, 2023c,b), analyse
existing methods (Stradowski and Madeyski, 2023e,d), and now de-
velop a dedicated solution that satisfies the business requirements of
Nokia. The most important contributions of this industrial study are
highlighted below:

• Use case design of a software defect prediction solution that can
work specifically with system-level test process data to comple-
ment other defect prediction and test case selection and prioriti-
sation mechanisms within the company.

• Proposal of a lightweight alternative to Software Defect Predic-
tion (LA2SDP) to satisfy the expectations (see Section 2.1).

• Industrial data suited for LA2SDP and benchmarked prediction
models with code included in the reproduction
package (Madeyski and Stradowski, 2024).

• Feature importance analysis to support interpreting and commu-
nicating the models to stakeholders and initiating improvement
actions.

• Evaluation and discussion of the obtained results, practitioners’
feedback, and key learnings.

In Section 6, we describe the background of our research and
ighlight its main contributions. In Section 2, we set the business
ontext and describe the Nokia 5G test process. Next, Section 3 explains
he methods used and the models that were built, followed by Section 4
hat contains the analysis of the obtained results. Finally, in Section 5 to
ection 8, we present a discussion, feedback, related work, and derived
onclusions.

. Project context

The main motivation for proposing a new approach is the opportu-
ity to use the available test repository data to implement an additional
oftware defect prediction mechanism in the Nokia 5G quality assur-
nce process. Our research on the profitability of ML SDP shows that
ur solution can bring significant operational savings to the company
return on investment (Stradowski and Madeyski, 2024)). Furthermore,
okia practitioners see it as one of the less-explored possibilities within

he 5G development process (Stradowski and Madeyski, 2023c). Hence,
e proposed LA2SDP, which is relatively easy to build, uses data al-

eady existing within the company, and can have a significant positive
usiness impact.

The challenges faced in the system-level testing of the 5G base
tation (called gNB or gNodeB (The 3rd Generation Partnership Project,
021)) at Nokia have been explored in the survey conducted by Strad-
wski and Madeyski (2023c). Specifically, developing the 5G tech-
ology carries a considerable challenge. The difficulty arises from
everal factors, such as complex propagation characteristics needed for
erformance optimisation, wide frequency spectrum, hugely expensive
ver-the-air (OTA) test environments, complex verification of multiple-
nput multiple-output (MIMO) performance, defined by strict 3GPP
pecification requirements (The 3rd Generation Partnership Project,
021).

Consequently, the Nokia 5G gNB system is a grand and complex
roject, with over 60 million lines of code (LOC) written in C/C++
rogramming language. The gNB consists of tens of components and
 t
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hundreds of modules developed by several major development or-
ganisations, each with hundreds of thousands of dedicated unit and
integration tests. In later phases, the central software build with all
integrated deliveries is undergoing continuous testing in several glob-
ally distributed teams. Each team has its own set of requirements
to validate the software against, as well as a dedicated laboratory
infrastructure of varying complexity and associated maintenance costs.
The test infrastructure can consist of servers with simulators and stubs,
real Nokia gNBs in isolated setups, or massive anechoic chambers with
multiple gNBs to measure signal interference and mobility scenarios. In
our implementation project, LA2SDP is expected to support the existing
effort in the system-level phase, being the last one of many test phases
within the company (Stradowski and Madeyski, 2023b), as it is the most
expensive to operate and thus provides the most extensive opportunities
for savings.

The Nokia test process follows the state-of-the-art and adheres
to accepted standards, briefly introduced below. The company uses
continuous delivery (CD) and continuous integration (CI) to build its
products, emphasising left-shift principles1 and strict phase contain-
ment2 criteria. However, due to the complexity and size of the product,
current phase containment rates are not satisfactory. Therefore, further
quality improvement initiatives are necessary, and any advancement
upon the current baseline brings consequential benefits as each escaped
defect that was not detected in internal testing costs the company tens
of thousands of dollars (Stradowski and Madeyski, 2023c, 2024). The
main three phases of the Nokia test process are described below and
depicted in Fig. 1.

• First, unit-level tests (UT) are under the responsibility of the
development units (DU). Execution within the development units
mainly happens in simulated environments and isolated hardware
elements that integrate and validate basic functionalities before
merging to the central software build.

• Second, entity testing (ET) is executed, after which an automated
mechanism of software promotion builds central build packages
where elements from all development units are integrated, and
the whole system is made operational. This level is executed on
a complete and real gNB system, allowing validation of its core
functionalities.

• Last, a wide plethora of system-level testing (ST) such as continu-
ous integration (CIT), continuous regression (CRT), and continu-
ous delivery regression tests (CDRT) are executed. They contain a
wide scope from new feature verification, stability, configurabil-
ity, through security, to performance and capacity benchmarking.

For the purpose of our case study, together with a group of five
experienced test architects, we have run a feasibility study on the
entire 5G gNB system-level environment (see Fig. 1) in which the de-
signed LA2SDP solution can be validated. System-level testing includes
regression, new features, and benchmark test case categories.

• Regression: By far the most numerous group of test cases, the
purpose of which is to confirm that the legacy functionality works
as it was designed and has not been broken by new code. As
in many software companies (Garousi et al., 2018), the ever-
increasing scope of maintenance testing in Nokia needs to be
carefully managed.

1 An approach where software testing is performed to find defects as early
s possible in the life cycle, where they are cheaper to find and fix than
he later stages (International Organization for Standardization, 2022; Damm
t al., 2006).

2 Defect phase containment measures how many defects were caught before

hey escape into later phases (ISTQB, 2023a).
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Fig. 1. Nokia test process (Stradowski and Madeyski, 2023c), with visualisation of LA2SDP addition.
• New Feature: All new content and resulting new functionali-
ties must be tested to ensure they work as designed by the
requirements. Such cases may range from a simple system re-
configuration to complex field verification scenarios requiring a
close-to-real 5G network environment.

• Benchmark: As system performance is business critical for com-
mercial wireless networks, extensive benchmarking needs to be
executed to ensure that the added content increases the perfor-
mance of the whole system. Such tests are challenging to execute,
evaluate, and troubleshoot. Also, they usually take extended peri-
ods of time, lasting from one hour to several days, to thoroughly
verify system stability. Hence, huge gains can be obtained by
avoiding unnecessary tests with LA2SDP.

2.1. Expectations

For a successful implementation of a business-driven project, there
needs to be a clear definition of the expectations that need to be sat-
isfied (IIBA, 2015; Stradowski and Madeyski, 2023a). Hence, together
with a group of five experienced test architects and quality managers
from Nokia who participated in the project (for further information see
Section 5.5), we defined the following set of high-level expectations for
our feasibility study:

E1: The company wants to have a solution that is comparable to the
performance already reported by other researchers. Shepperd
et al. (2014) found in their thorough analysis of the ML SDP
literature that the mean and median values of Matthew’s correla-
tion coefficient (MCC) are 0.305 and 0.308, respectively. Hence,
we set our target for MCC > 0.3 for this phase of our feasibility
study. Auxiliary performance measures are also expected to be
reported for convenience, transparency, and further literature
comparison.

E2: The company expects the LA2SDP solution to be as cost-efficient
as possible and thus use already existing data and generally
follow the KISS principle (Stellman and Greene, 2014), which
helps to keep the code, design, tests, running times, and docu-
mentation fast and lean.

E3: We want the ML models behind LA2SDP to be taken from the
pool of models that support interpretability, as it is necessary for
further steps of the ML SDP project (Stradowski and Madeyski,
2023a, 2025).

Importantly, we do not aspire to fully satisfy all expectations in
this phase of research. Current efforts are aimed mainly at feasi-
bility and verification of E1 (for prediction effectiveness study see
Section 3). Second, this research also provides baseline data for a
dedicated study related to expectation E2 (analysing cost-efficiency
Stradowski and Madeyski, 2024) and enables possibilities for E3 (in-
terpretability of created models). However, at this project phase, it is
considered enough to prefer the ML models supporting E3 (e.g., Aria
et al., 2021; Konstantinov and Utkin, 2021; Molnar, 2023).
3 
2.2. LA2SDP use case

The primary purpose of software testing is to discover defects and
evaluate the quality of software artefacts. Testing can trigger failures
that are caused by defects in the software and directly find defects
in the test object but also result from environmental and process
issues (ISTQB, 2023b). Accordingly, we propose an alternative to estab-
lished software defect prediction approaches, such as based on software
product or change metrics (Stradowski and Madeyski, 2023d; Madeyski
and Jureczko, 2015), by directly predicting test failures induced by
software defects using historical test repository data (see Fig. 2).

Our system-level use case in Nokia complements an existing testing
process within the company (Fig. 1) where there are vast amounts of
historical data that can be used in different ways. Specifically, we can
filter the test run results to steer the modelling process towards different
outcomes. For example, we can teach the ML algorithms exclusively
on failures with a confirmed cause identified, being software defects
or environmental issues. Teaching the models on such subsets allows
for predicting only test failures induced by software defects, which
allows us to formulate LA2SDP. Alternatively, test run failures con-
firmed as environmental issues can be used to improve the test process
itself, which allows us to formulate a complementary (to LA2SDP)
method that we named the Lightweight Alternative to Test Process
Improvement (LA2TPI).

Also, we can use the entire set to predict test case failure in general,
i.e. Test Failure Prediction (TFP). That said, our current research effort
focuses on the first LA2SDP option, predicting test case failures due to
software defects, as this is the main requirement for the improvement
proposal (see Section 2.1). Moreover, it also opens other research paths
towards more effort-aware defect prediction (Mende and Koschke,
2010; Jing et al., 2024), as the number of predicted failures (and
corresponding requirements) can help distinguish between modules
with high and low defect density.

Obtained predictions that can be compared with the actual test
execution results and detected discrepancies should cause additional
post-analysis of a test case, leading to a discovery of a software defect
in the associated code module. A matching result confirms the actual
test outcome was correct. Consequently, an opposing result can trigger
a test re-execution and post-analysis investigation to check for a false
positive or false negative. Specifically, each discrepancy in the results
has different implications:

• Real test passed, and the prediction shows the test case failed: real
test should be repeated as a possible false negative, where a pass
should be indicative of a false positive in the prediction, while
if the repeated real test does not pass, additional post-analysis
should lead to a discovery of a software defect in the associated
code module.
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Fig. 2. A simplified view to the software defect prediction approaches based on input types.
• Real test failed, and the prediction shows the test case failed:
this situation increases the probability of a software defect in the
associated code module.

• Real test passed, and the prediction shows the test case passed:
aligned results increase the probability of software defects not
existing in the associated code module and lower the possibility
of false positives.

• Real test failed, and the prediction shows the test case passed:
real test should be repeated as a possible false positive, a pass
should be indicative of possible issues with the environment or
defective test automation procedure, indicating a lower chance of
a software defect existing in the associated code module, while if
the repeated real test does not pass, it increases the probability of
a false negative in the prediction.

Analysing test history, which considers test cases that have recently
failed, is closely related to defect prediction (Paterson et al., 2019).
However, in our approach, the model is trained only on confirmed
software defects and does not include environmental issues to make the
gap even smaller. In our database, the failed test instances have been
confirmed as defects by testers, who, after initial analysis, opened a
defect report. Thus, there is considerable added value in using test case
results leading to software defect predictions. Executing the test cases
is hugely expensive, as some more sophisticated 5G test environments
cost millions of EUR to build and maintain (Stradowski and Madeyski,
2023c).

Test cases can also be time-consuming as specific stability sce-
narios take several hours to execute. Therefore, having an additional
verification mechanism for defect prediction can bring considerable
operational savings. Furthermore, based on the model results, we can
temporarily omit low-risk areas without defects, detect false positives
that limit waste, or offer confirmation that discovered faults require a
defect correction.

Also, we have compared our results with the defects that escaped
to the customer in order to evaluate the coverage of the proposed
solution. In our case, the failed test cases due to confirmed software
defects at the studied system level included more than 90% of all
software defects discovered after integration. This way, we effectively
(in more than 90%) address the SDP problem by solving the test failure
prediction problem, which is easier to use as we avoid all of the widely
discussed issues related to the SZZ algorithm (Śliwerski et al., 2005)
and its various implementations. The SZZ algorithm is the de facto
standard for labelling bug-fixing commits and finding inducing changes
for software defect prediction (Herbold et al., 2022). However, recent
research uncovered many problems in different parts of this algorithm.
For example, Herbold et al. (2022) found that about one-quarter of the
links to defects detected by SZZ are wrong due to missed and false
positive links. Furthermore, they reported that due to the combination
of wrong links and mislabelled issues, only about half of the commits
SZZ identifies are actually bug-fixing, and it misses about one-fifth
of all bug-fixing commits. Herbold et al. (2022) also confirmed the
earlier results (Herzig et al., 2013) that for every issue that is correctly
labelled as a bug, there are 0.74 mislabelled bug issues. By employing
LA2SDP, we escape from many problems related to the classic approach
to SDP that require the SZZ algorithm and additional overhead related
to calculating the necessary software metrics.
4 
The tracking mechanism in Nokia was depicted in Table 1. A unique
execution of a test case can pass or fail (‘Test Run’ and respective
‘Test Result,’ as in Table 2). After analysis and debugging, the failed
test cases that end up as corrections in the software are marked with
a resulting ‘Defect Report’. Next, defect reports are tracked to spe-
cific areas of the code that have been corrected (‘SW Module’), the
team responsible for the modified code area (‘Responsible Team’), the
requirement of the product that this functionality satisfies (‘Require-
ment’), and information about the failed ‘Tested Build’ (encoded as
‘Build N’), as well as the build that this test has passed on last time
it was tested ‘Last Passing Build’. Furthermore, we can track all code
changes (‘SW changes’) between the builds done in the area by the team
(‘Responsible Team’) in a version control repository, which narrows
down the changes that have been defective (changes between ‘Build
N’ and ‘Build N-y’). Consequently, putting all this information together
allows tracking of a particular failed test run of a test case to defective
changes (x’ and y’) in the code that has caused this failure. Such a
mechanism can be applied to both real test case execution and machine
learning predictions based on confirmed software defects. Furthermore,
such a method can complement existing ML SDP approaches, making
predictions on code and code change characteristics by addressing the
issue from a black-box test perspective.

Identifying a failed test case does not equal finding a defect, but
models trained on specific observations containing only confirmed
software defects add considerable defect predictive value to the quality
assurance process by offering a secondary verification mechanism to
confirm or challenge test results. Since the test cases and open defect
reports are tracked back to a specific product requirement, and each
team owns a particular software area, we may assume that a predicted
failed test case identifies a software defect in the given requirement.

This approach leads us to a new way, different from Madeyski
and Kawalerowicz (2017), Kawalerowicz and Madeyski (2021) and
Kawalerowicz and Madeyski (2023) that rely on build outcomes, to
instantiate a lightweight alternative to SDP in industrial settings. More-
over, we are merging the aspects of test case selection and prioritisation
(TSP) (Rothermel et al., 2001; Prado Lima and Vergilio, 2020) with ML
SDP. According to Rothermel et al. (2001), there are four objectives of
TSP: increasing the detection rate at the beginning of the regression test
execution, increasing the system code coverage under test, increasing
high-risk fault detection rate, and increasing the probability of reveal-
ing faults related to specific code changes. Our efforts constitute a
deep dive into the fourth aspect by translating aspects of TSP to direct
software defect prediction outcomes. Hence, the LA2SDP process can
be visualised as in Fig. 3.

3. Methodology

We ask three research questions (RQs) in the initial phase of solu-
tion implementation to enable concluding our feasibility study within
the company:

RQ1: Can LA2SDP achieve the expected performance of MCC > 0.3
(E1) with system-level test process data in Nokia 5G, assuming
that we are allowed to use only already existing data (E2) and
models that (according to literature) support interpretability
(E3)?



L. Madeyski and S. Stradowski The Journal of Systems & Software 223 (2025) 112360 
Table 1
Tracking mechanism used to connect failed test cases to software defects.

Test Case Requirement Test run Test result Defect report Resp. team SW module Tested build Last passing build SW changes

TC1 RQ1 Run1 PASS
RQ1 Run2 PASS
RQ1 Run3 FAIL Report1 Team1 SWmodule1 Build N Build N-x x’ changes
RQ1 Run4 PASS

TC2 RQ1 Run1 FAIL Report2 Team2 SWmodule2 Build M Build M-y y’ changes
RQ1 Run2 PASS

TC3 RQ2 Run1 PASS
RQ2 Run2 PASS

TC4 RQ2 Run1 PASS
TC5 RQ3 Run1 FAIL Env. Issue Filter out
Fig. 3. LA2DSP process visualisation.
RQ2: Which learners employed in LA2SDP offer the highest predictive
performance?

RQ3: What are the most important features in already existing data
that can be used, and how can they be interpreted?

Also, we define success as satisfying the predefined requirements (see
Section 2.1). Moreover, we collect feedback on the solution from sub-
ject matter experts in the company as an additional input source for
validation and further improvement possibilities (see Section 5.5).

We started the data definition process by finding a suitable data
set to satisfy our research questions. We gathered the data maintained
in a dedicated test repository (called QC). We did not use the fault
information stored in the fault report repository, as the QC data set was
easier to obtain and analyse (which adheres to our second expectation
E2). Also, as we investigated black-box system-level testing, we did
not consider using software metrics (Li et al., 2018b). The aforemen-
tioned decisions were made together with subject matter experts within
Nokia (four experienced software engineers and two quality managers)
and had a critical impact on the research and its outcomes. When
conducting research in a commercial environment with potentially
important influence on many stakeholders, we wanted to make some
initial inroads and show the value of ML SDP first, as then we would be
5 
better positioned to enhance the solution further based on the feedback
and already the recognised expectation E3.

When considering the 5G software development life cycle (SDLC),
we decided to focus on one of the interim stages of testing on the
central build (see Fig. 1). Therefore, we only predict defects (that
stem from commits) that can be detected at the system level, and at
this point, we do not directly account for the escaped defects to the
customer. Notably, the testing under scrutiny is black-box, meaning
that the tester does not know the code implementation and focuses
only on verification if the desired functionality works as specified in
the requirements, analysing only the input and output states.

3.1. Data set

The data set we use is a collection of historical test process metrics
from the main test case repository for the Nokia 5G quality assurance
process (see Table 2). Overall, it contains almost 800,000 unique results
for more than 100,000 test cases over a period of five and a half months
from the beginning of January 2021 until the middle of June 2021, and
executed into two-week feature builds. This constitutes a considerable
database split by month into six separate files (with names starting with
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Table 2
Data set statistics — count of elements and variable factors.

Data set TEST. RUN.IDa TEST. INSTANCE.IDb EXECUTION. DATEc TEST. PHASEd RELEASEe

QC1 74305 17871 31 61 10
QC2 144051 23137 28 62 10
QC3 145506 23722 31 65 12
QC4 149182 28321 30 72 11
QC5 138262 24957 31 70 11
QC6 64475 16281 30 62 10

Data set AUTOMATION. LEVELf TEST. OBJECTg TEST. ENTITYh ORGANISATIONi TEST. STATUSj

QC1 2 3 3 127 2
QC2 2 3 3 138 2
QC3 2 3 3 135 2
QC4 2 3 3 157 2
QC5 2 3 3 161 2
QC6 2 3 3 157 2

a TEST.RUN.ID — Identification number of the test run.
b TEST.INSTANCE.ID — Identification of the test case.
c EXECUTION.DATE — date of TEST.RUN execution.
d PROGRAM.PHASE — name of the milestone for which the testing contributes.
e RELEASE — name of the software system release for which the testing contributes.
f AUTOMATION.LEVEL — TEST.AUTOMATION.LEVEL is information about whether the test run was automated or manual, and AUTOMA-
TION.LEVEL.FINAL is the target state of the test automation.
g TEST.OBJECT — information if the test run was part of Benchmark, New Feature, or Regression.
h TEST.ENTITY — information if the test run was part of CIT (continuous integration testing), CRT (continuous regression testing), or Manual
(see also Fig. 1).
i ORGANISATION — name of the responsible organisation.

j TEST.STATUS — final state of the test run, and subject of our prediction (based on confirmed software defects).
C). Thus, we can compare the performance of particular learners and
nalyse the differences between the performance of each learner on
ifferent data subsets.

The data was collected automatically from the central Nokia test
epository and contains default features gathered for each test run
ntry by scripts and testers alike. The simple defect-code linking tech-
ique (Mausa et al., 2016) is based on historical defect reports that
re mapped in the test repository to previous failed test runs, and the
elationship between bugs and modules is one-to-one. Here, a crucial
onsideration is the granularity of predictions on the test case, test
nstance, or test run level:

• A test case has the lowest granularity and can run on different
builds and environments and by different teams. A test case is
characterised by a requirement it satisfies and the author. Hence,
in our context, providing test case-level predictions does not bring
sufficient defect prediction value.

• A test instance is a test case assigned to a particular feature
build, characterised by the tester, test line, and environment. Test
instance, as an aggregation of test runs and traced to test cases
assigned to a software build, is much easier for a human to un-
derstand with XAI, but it does not yet enable precise identification
of the software module containing the defect.

• Last, the test run represents the highest granularity, as it reflects
multiple repetitions of the same instance. Hence, it allows the
detection of low-occurrence and utilisation of a wider range of
features to predict which runs will fail.

ach granularity level can be tracked to past software defects and used
or SDP; however, we have chosen the test run as it carries the largest
mount of information in our context, as well as is already mapped
o defect reports and software modules in the repository, avoiding any
dditional pre-processing actions.

There are differences between data sets, e.g., wrt. missing data in
he ‘TEST.ENTITY’ field. Thus, we have attempted to understand the
oot cause, but such occurrences were occasional throughout all time
rames (not only the six we can provide) and were not related to
ata-gathering errors. Such a situation reflects reality and needs to be
onsidered in any industry research. Second, there are no duplicate
ntries in the data sets, and each ‘TEST.RUN.ID’ represents a unique
6 
execution of a test case with unique characteristics (see Table 2). Last,
each of our six data set files is heavily imbalanced, where number of
passed test cases is much greater than the number of failed ones (less
than 5%).

We train the models on data sets only containing failed test cases
confirmed by opened defect reports (see Section 2.2). Naturally, vari-
ables associated with failures (software defects and environmental
issues) were removed from the data sets prior to the training phase.
For data definition, each point consists of three parts (Pradhan et al.,
2020), each described and adjusted to our context:

• Data element or sample: a particular execution of a test instance
(test case assigned to a particular release), as the same test case
can be run over different releases multiple times with varying
outcomes.

• Variables or features: multiple characteristics describing each
execution of the test run: ID, Instance, Date, Phase, Release,
Automation, Type, Entity, Organisation, and Result, as presented
in Table 2.

• Observation or label: in our case, the observation is a single test
run execution result — pass or fail state. In reality, there are
more states that have blocked, postponed, ongoing, and similar
inconclusive outcomes. However, we chose to focus only on the
absolutes, as this is the primary goal of our solution.

Finally, we use and compare two approaches in our study, the ex-
panding window and sliding window approaches, as they help analyse
data in chunks when dealing with large datasets and continuous data
streams. In the expanding window approach, the size of windows grows
while sliding windows remain fixed. Consequently, the expanding win-
dows cover more data as they progress, while sliding windows focus on
the newest segments. For large datasets, as in our case, sliding windows
can be more cost-efficient as fixing the length allows for limiting the
computation time, assuming that the training data are sufficient for
meaningful predictions. Finally, expanding windows are more suitable
for reflecting long-term trends, while sliding windows are suitable for
short-term patterns.

Note: Software companies can possess immense amounts of infor-
mation on their process efficiency. Although the mechanisms to obtain

this information and their structure were not designed with machine
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learning tasks in mind, minimal pre-processing was needed, and the
data presented in the following sections remained the same as the
original values. However, to maintain confidentiality, we show the
results obtained for historical test records (2021), not including the
whole project repository but its selected subsets (it is worth noting
that the predictive modelling on larger data sets generally tends to
lead to better performance measured by MCC). Also, we had to remove
potentially sensitive variables such as test case titles or author names
that have predictive power.

Importantly, correct labels are the most critical information in the
data set from the quality assurance standpoint, so there is high scrutiny
of their correctness, from which we benefit in our approach. Moreover,
a lot of additional features are generated automatically for each row
describing each test instance, creating a vast amount of data that opens
many analytical possibilities suitable for ML techniques from the get-
go. That said, we designed our approach to be lightweight, and better
results can be obtained by focusing more on pre-processing and better
preparation of the data, which we plan to do in the next phases of our
research.

3.2. Tools

We used the mlr3 package in R language as a framework for predic-
tive modelling (including also pre-processing) (Lang et al., 2019) and
DALEX to support interpretability (Biecek, 2018).3 All code and models,
as well as software version information about the OS, R, and loaded R
packages, are available in the Supplementary Material (Madeyski and
Stradowski, 2024).

Note: All calculations were run on MacBook Pro Late 2023 (M3 Max,
48 GB RAM, Mac OS 15.2) and independently verified on Cluster Bem
2 provided by Wrocław Centre for Networking and Supercomputing.

3.3. Learners

We have used the following five supervised learners,4 together with
their tuned versions, supported by the mlr3 framework for our ML SDP
modelling:

• Classification Tree (ct) (Grochtmann and Grimm, 1993),
• Light Gradient-Boosting Machine (lgbm) (Ke et al., 2017),
• CatBoost Gradient Boosting (cb) (Prokhorenkova et al., 2018),
• Random Forest (rf) (Breiman, 2001),
• Naïve Bayes (nb) (Rish, 2001).

The learners were chosen to fulfil the expectation E3, i.e., all used
models support interpretability. Decision trees are very interpretable
as shown by Molnar (2023). Naïve Bayes is also considered to be
an interpretable model because of the independence assumption, as
it is very clear for each feature how much it contributes towards a
certain class prediction as we can interpret the conditional probabil-
ity (Molnar, 2023). Likewise, the rest of the models also fulfil the
expectation of interpretability according to the literature (Aria et al.,
2021; Konstantinov and Utkin, 2021).

Additionally, the selected models suit our data without sophisti-
cated pre-processing steps (apart from simple ones like dealing with
missing data) or creating additional collection mechanisms not already
available within the company (E3). The set of classifiers selected for
benchmarking is considered enough to get prompt and early feedback
on the achievable performance.

3 See also https://dalex.drwhy.ai/.
4 We use the full names of the models, i.e., Classification Tree, Light

radient-Boosting Machine, CatBoost Gradient Boosting, Random Forest, and
aïve Bayes in the text of the paper and respective short names, i.e., ct, lgbm,
b, rf, and nb as they are named in the mlr3 package, in figures and tables

enerated by the tooling.

7 
.4. Performance measures

Our data, as often is the case with real-world applications, are
everely imbalanced. Hence, we need to use proper performance mea-
ure(s). There is ample research on the benefits and risks related
o particular performance metrics in software defect prediction re-
earch (Sokolova and Lapalme, 2009; Rizwan et al., 2019; Shepperd
t al., 2014; Yao and Shepperd, 2021). Taking into account the argu-
ents and recommendations of Shepperd et al. (2014) and Yao and

hepperd (2021), as well as Chicco and Jurman (2023a), we decided
o depend on the main comparisons and conclusions using Matthew’s
orrelation coefficient (MCC). Chicco and Jurman (2023a) concluded
hat MCC (that accounts for the whole confusion matrix, i.e., gener-
tes a high score in its [−1; +1] interval only if the classifier scored
igh for all four quadrants of the confusion matrix) should replace
he widely used ROC AUC as a standard statistic in all the scientific
tudies involving a binary classification. We report the performance
f our models with five additional auxiliary metrics (accuracy, recall,
recision, F-beta, and AUC), as well as a breakdown of particular results
TP — true positives, TN — true negatives, FP — false positives, FN

false negatives), to enable comparison with other studies and give
he readers and Nokia practitioners an even broader understanding
f the obtained results. Importantly, as the outcome of the feedback
essions, the precision metric evolved from the auxiliary metric suite
o the second most important evaluation criterion (see Section 5.5).

. Results

In this section, we analyse our results using two time-based split
pproaches, the expanding and the sliding window. Importantly, both
pproaches can constitute a realistic scenario for the company, and the
se of unlimited access to the entire database opens more possibilities
o achieve better predictive performance.

• The expanding window (Table 3) uses the time-based split of the
data set (QC) where all older sets of data are used for training,
while the latest one serves for testing. The training window length
is growing with each new iteration. We start from window length
two (Task1_3: QC1 to QC2 used for training and QC3 for testing),
and finish with window length five (Task1_6: QC1 to QC5 used
for training and QC6 for testing).

• The sliding window (Table 4) uses a predefined number of sets
as training data and is tested on the latest one. The training set
moves further with each new iteration. We provide the results for
a window length of three (for example, Task2_5: QC2 to QC4 used
for training and QC5 for testing), four (for example, Task2_6: QC2
to QC5 used for training and QC6 for testing), and five (Task1_6:
QC1 to QC5 used for training and QC6 for testing).

We present the full results that were obtained for each learner with
ll measures across all data sets that we could disclose. Although all
ix measures are visible, we use the highlighted MCC and precision
with a ranking in Table 5), as well as focus on the window lengths
f three, four, and six to evaluate which model is best in each scenario.
practical interpretation of our results per learner is presented below.

• CatBoost (cb) demonstrated the best overall performance among
the learners, providing strong performance for both MCC and
precision across multiple tasks, with highest MCC of the entire
study, 0.370 for Task1_5, followed by and 0.342 for Task2_5, and
precision of 0.742 for Task3_6 (it showed high precision across all
larger tasks). However, tuning CatBoost led to a decrease in both
MCC and precision, resulting in the untuned version performing
better (except for MCC for Task1_4 increase from 0.254 to 0.215).
On the other hand, in Task1_5, Tuned CatBoost significantly

outperformed other models with precision of 0.934.

https://dalex.drwhy.ai/
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Table 3
Performance measures for walk-forward validation with expanding window approach (window length from two to five).
Task Model MCC ACC Recall Prec. Fbeta AUC TP TN FP FN

1_3 ct 0.088 0.989 0.134 0.064 0.087 0.559 76 144057 1110 491
1_3 ct.tuned 0.086 0.989 0.134 0.063 0.085 0.571 76 144027 1140 491
1_3 lgbm 0.014 0.994 0.012 0.023 0.016 0.868 7 144869 298 560
1_3 lgbm.tuned 0.015 0.994 0.014 0.024 0.018 0.867 8 144835 332 559
1_3 cb 0.153 0.994 0.134 0.182 0.154 0.860 76 144826 341 491
1_3 cb.tuned 0.202 0.996 0.101 0.413 0.162 0.820 57 145086 81 510
1_3 rf 0.039 0.996 0.005 0.300 0.010 0.829 3 145160 7 564
1_3 rf.tuned 0.105 0.993 0.102 0.115 0.108 0.729 58 144720 447 509
1_3 nb 0.021 0.994 0.016 0.035 0.022 0.557 9 144917 250 558
1_3 nb.tuned 0.103 0.993 0.115 0.100 0.107 0.682 65 144582 585 502
1_4 ct 0.114 0.994 0.101 0.136 0.116 0.616 60 149024 381 535
1_4 ct.tuned 0.134 0.991 0.176 0.109 0.135 0.591 105 148545 860 490
1_4 lgbm 0.186 0.995 0.158 0.226 0.186 0.923 94 149083 322 501
1_4 lgbm.tuned 0.108 0.991 0.145 0.087 0.109 0.929 86 148506 899 509
1_4 cb 0.215 0.994 0.213 0.224 0.218 0.910 127 148964 441 468
1_4 cb.tuned 0.254 0.996 0.175 0.375 0.239 0.915 104 149232 173 491
1_4 rf 0.172 0.996 0.094 0.322 0.146 0.900 56 149287 118 539
1_4 rf.tuned 0.138 0.994 0.118 0.169 0.139 0.849 70 149060 345 525
1_4 nb 0.004 0.996 0.002 0.018 0.003 0.689 1 149351 54 594
1_4 nb.tuned 0.147 0.994 0.128 0.176 0.148 0.844 76 149049 356 519
1_5 ct 0.196 0.996 0.128 0.307 0.180 0.595 61 139245 138 416
1_5 ct.tuned 0.203 0.996 0.136 0.308 0.189 0.590 65 139237 146 412
1_5 lgbm 0.000 0.997 0.000 0.000 0.000 0.949 0 139381 2 477
1_5 lgbm.tuned 0.094 0.996 0.046 0.198 0.075 0.949 22 139294 89 455
1_5 cb 0.370 0.997 0.195 0.705 0.305 0.943 93 139344 39 384
1_5 cb.tuned 0.334 0.997 0.119 0.934 0.212 0.945 57 139379 4 420
1_5 rf 0.279 0.997 0.117 0.667 0.200 0.953 56 139355 28 421
1_5 rf.tuned 0.071 0.988 0.124 0.046 0.067 0.758 59 138167 1216 418
1_5 nb 0.048 0.993 0.055 0.048 0.051 0.711 26 138869 514 451
1_5 nb.tuned 0.235 0.993 0.291 0.195 0.234 0.912 139 138809 574 338
1_6 ct 0.094 0.956 0.022 0.457 0.043 0.511 64 61600 76 2783
1_6 ct.tuned 0.092 0.956 0.023 0.439 0.043 0.512 65 61593 83 2782
1_6 lgbm 0.138 0.957 0.032 0.662 0.060 0.740 90 61630 46 2757
1_6 lgbm.tuned 0.089 0.956 0.017 0.521 0.033 0.720 49 61631 45 2798
1_6 cb 0.123 0.957 0.017 0.959 0.032 0.812 47 61674 2 2800
1_6 cb.tuned 0.107 0.956 0.013 0.947 0.025 0.816 36 61674 2 2811
1_6 rf 0.090 0.956 0.012 0.739 0.024 0.753 34 61664 12 2813
1_6 rf.tuned 0.100 0.956 0.015 0.717 0.030 0.708 43 61659 17 2804
1_6 nb 0.146 0.952 0.082 0.330 0.131 0.712 233 61203 473 2614
1_6 nb.tuned 0.280 0.945 0.276 0.345 0.307 0.828 785 60187 1489 2062
• Random Forest (rf) and its tuned variant also rank highly in
performance. RF achieves one of the highest precision values,
such as 0.981 in Task2_5, alongside an MCC of 0.330 for the same
task. Tuned RF maintains similarly high precision, such as 0.966
in Task2_5, but does not show significant improvements in MCC
compared to its untuned counterpart. While not as consistently
strong as CatBoost in MCC, Random Forest stands out as one of
the most precise learners in this analysis.

• Naïve Bayes (nb) was a reliable performer, with noticeable im-
provements in both MCC and precision when tuned (e.g., Task2_6
where MCC increases from 0.249 to 0.295, outperforming all
other learners on this test set). Nevertheless, its precision val-
ues were generally lower than those of other learners, rarely
exceeding 0.3. Nonetheless, it consistently showed good MCC
compared to weaker learners and showed improvement potential
(the more training data, the better MCC). Notably, we tuned
Naive Bayes despite it being a simple model that often does not
benefit from iterative tuning. However, we found the Laplace
smoothing parameter (laplace) offered by the model really
helpful as a parameter to tune, making the tuned model a reliable
performer overall.

• Light GBM (lgbm) provided moderate MCC and demonstrated
some improvement in precision after tuning, particularly in cer-
tain tasks (e.g., MCC of 0.339 and a precision of 0.886 in
Task2_5). However, its precision remained inconsistent, and its
overall performance was outclassed by more robust models.
8 
• Classification Tree (ct) showed moderately low MCC, with slight
improvements in precision after tuning. However, its overall per-
formance was weak, with both MCC and precision trailing behind
other learners, indicating that it is not working well on our data
sets.

We used the Hyperband multi-fidelity hyperparameter optimisation
algorithm that dynamically allocates increasingly more resources to
promising configurations and terminates low-performing ones (Li et al.,
2018). However, sometimes, the tuned versions of the base models
do not deliver better results. The plausible explanation is that the
time limitation imposed on the search for the best combination of
hyperparameters prevented finding a more effective combination. Due
to the computation time limitations and the lightweight expectation
towards the solution, we did not spend too much time finding the
best combination of hyperparameters for each learner for each task.
However, the LA2SDP software code we developed includes the used
tuning mechanisms and the N_SECS parameter. Hence, adjusting the
time budget should be very easy, and the provided software will be ben-
eficial for wider-scoped studies within the company, as well as made
available in the Supplementary Material (Madeyski and Stradowski,
2024).

We can observe that only the predictions made for QC5 satisfy our
expectation of MCC > 0.3 (with the highest of 0.370), and for QC6 are
close (0.295). CatBoost and Random Forest achieve MCC values above
0.3, showing that this expectation is achievable. CatBoost exceeds
this threshold in tasks like Task1_5 (0.370 for untuned and 0.334 for
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Table 4
Performance measures for walk-forward validation with sliding window approach (window lengths of three and four), without repeating results
from Table 3 (Task1_4, Task1_5, and Task1_6).
Task Model MCC ACC Recall Prec. Fbeta AUC TP TN FP FN

2_5 ct 0.179 0.996 0.126 0.260 0.169 0.569 60 139212 171 417
2_5 ct.tuned 0.158 0.995 0.136 0.190 0.159 0.600 65 139105 278 412
2_5 lgbm 0.092 0.996 0.029 0.292 0.053 0.942 14 139349 34 463
2_5 lgbm.tuned 0.339 0.997 0.130 0.886 0.227 0.930 62 139375 8 415
2_5 cb 0.342 0.997 0.145 0.812 0.246 0.955 69 139367 16 408
2_5 cb.tuned 0.328 0.997 0.117 0.918 0.208 0.928 56 139378 5 421
2_5 rf 0.330 0.997 0.111 0.981 0.200 0.949 53 139382 1 424
2_5 rf.tuned 0.336 0.997 0.117 0.966 0.209 0.792 56 139381 2 421
2_5 nb 0.127 0.942 0.568 0.033 0.063 0.834 271 131510 7873 206
2_5 nb.tuned 0.189 0.958 0.700 0.055 0.103 0.934 334 133696 5687 143
3_6 ct 0.087 0.956 0.021 0.429 0.040 0.510 60 61596 80 2787
3_6 ct.tuned 0.086 0.955 0.021 0.415 0.041 0.511 61 61590 86 2786
3_6 lgbm 0.116 0.956 0.029 0.529 0.055 0.734 82 61603 73 2765
3_6 lgbm.tuned 0.115 0.956 0.028 0.529 0.054 0.701 81 61604 72 2766
3_6 cb 0.105 0.956 0.016 0.742 0.032 0.800 46 61660 16 2801
3_6 cb.tuned 0.055 0.956 0.006 0.593 0.011 0.810 16 61665 11 2831
3_6 rf −0.001 0.956 0.000 0.000 0.000 0.762 0 61675 1 2847
3_6 rf.tuned 0.053 0.956 0.005 0.636 0.010 0.701 14 61668 8 2833
3_6 nb 0.259 0.916 0.389 0.233 0.291 0.728 1108 58025 3651 1739
3_6 nb.tuned 0.276 0.896 0.497 0.210 0.296 0.832 1415 56367 5309 1432
2_6 ct 0.088 0.956 0.021 0.440 0.040 0.510 59 61602 75 2788
2_6 ct.tuned 0.087 0.956 0.021 0.434 0.040 0.510 59 61600 77 2788
2_6 lgbm 0.108 0.955 0.037 0.387 0.067 0.719 104 61512 165 2743
2_6 lgbm.tuned 0.165 0.957 0.041 0.715 0.078 0.683 118 61630 47 2729
2_6 cb 0.150 0.957 0.040 0.620 0.075 0.812 114 61607 70 2733
2_6 cb.tuned 0.139 0.957 0.026 0.802 0.050 0.802 73 61659 18 2774
2_6 rf 0.105 0.956 0.012 0.971 0.024 0.761 34 61676 1 2813
2_6 rf.tuned 0.102 0.956 0.012 0.919 0.024 0.708 34 61674 3 2813
2_6 nb 0.249 0.913 0.386 0.222 0.282 0.712 1100 57812 3865 1747
2_6 nb.tuned 0.295 0.904 0.499 0.230 0.315 0.831 1421 56924 4753 1426
Table 5
Ranking of learners according to their MCC and precision performance on the window length of three, four, and five.
MCC Task1_4 Task2_5 Task3_6 Task1_5 Task2_6 Task1_6 Median Rank

ct 8 7 6 6 9 7 7 6
ct.tuned 7 8 7 5 10 8 7.5 7
lgbm 3 10 3 10 6 3 4.5 3
lgbm.tuned 9 2 4 7 3 10 5.5 5
cb 2 1 5 1 4 4 3 2
cb.tuned 1 5 8 2 5 5 5 4
rf 4 4 10 3 7 9 5.5 5
rf.tuned 6 3 9 8 8 6 7 6
nb 10 9 2 9 2 2 5.5 5
nb.tuned 5 6 1 4 1 1 2.5 1

Precision Task1_4 Task2_5 Task3_6 Task1_5 Task2_6 Task1_6 Median Rank

ct 7 7 6 5 6 7 6.5 5
ct.tuned 8 8 7 4 7 8 7.5 6
lgbm 3 6 5 10 8 5 5.5 4
lgbm.tuned 9 4 4 6 4 6 5 3
cb 4 5 1 2 5 1 3 2
cb.tuned 1 3 3 1 3 2 2.5 1
rf 2 1 10 3 1 3 2.5 1
rf.tuned 6 2 2 9 2 4 3 2
nb 10 10 8 8 9 10 9.5 8
nb.tuned 5 9 9 7 10 9 9 7
tuned) and Task2_5 (0.342 for untuned and 0.328 for tuned). Random
Forest also performs well in Task2_5, with MCC values of 0.330 for
untuned and 0.336 for tuned. Naïve Bayes also performs well in certain
cases, achieving MCC values close to the top learners in some tasks
(particularly on QC6). These results highlight that ensemble models
often excel at capturing complex patterns, and tuning can improve their
performance even further.

However, it is critical to note that, in the commercial introduction,
we are not limited to the six mentioned sets and we use longer win-
dows, which allows much better MCC results. Furthermore, what drives
practitioners’ adoption of ML-based prediction models is precision. If a
tool or model points out a problem, there should be a high certainty
that it indeed needs to be fixed. Several researchers investigated this

challenge (Kharkar et al., 2022; Ismail et al., 2024; Tosun and Bener,

9 
2009). For example, Kharkar et al. (2022) demonstrated that their
models could improve the precision of static analysis by 17.5%, thus
achieving precision 0.787–0.854. In our case, Random Forest and Cat-
Boost trained on sufficiently large data sets are approaching the highest
possible precision (on Task1_6, CatBoost achieved a precision of 0.959,
while on Task2_5 and Task2_6, Random Forest achieved a precision of
0.981 and 0.971, respectively).

Conversely, a situation with mediocre MCC but very high precision
indicates that the models fail to detect many true positives (also visible
by low recall). In a large-scale industry setting like ours, it is not
feasible to do a post-analysis of all results. Hence, we argue that it
is more important to be almost always correct in indicating a failure

(high precision) rather than to have practitioners do excessive work
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in filtering out a vast amount of false positives. However, different
business contexts may require different decisions.

The main implication for our case study, after including in our
analysis also the precision metric, is that the best learner we
identified is:

• CatBoost with consistently high MCC and precision
across multiple tasks, particularly in Task1_5 (MCC of
0.370, precision of 0.705) and Task1_6 (precision of
0.959).

Honourable mentions:

• Random Forest with exceptional precision in Task2_5
and Task2_6 (0.981 and 0.971, respectively), with ac-
ceptable MCC values as well (MCC of 0.330 on Task2_2),
but quite unstable.

• Tuned Naïve Bayes with highest MCC performance
(specifically on Task1_6 with MCC of 0.295 (QC6 was
particularly difficult for all models)); constantly improv-
ing MCC with larger training data, however, with poor
precision across all data sets.

In summary, after considering the relative performance of
analysed learners (Table 5), we selected CatBoost for fur-
ther recommendation for the company as the most consistent
predictor, achieving the best results in terms of MCC and
precision. We also recommend the sliding window approach
as the most suitable for the defined use case implementa-
tion scenario. It is important to note that our expectation of
MCC > 0.3 was not achieved in all instances. However, in
the actual implementation, we will be able to use the entire
database without disclosure limitations (in size and features),
resulting in more consistent and favourable outcomes.

4.1. Calculation time

We have also performed simple measurements of the time used
for computation (on MacBook 2023, see Section 3.2), including both
training and prediction duration, for each learner. Table 6 shows
the differences between the computational efficiency of the machine
learning models (not using their tuned versions, as they are dependant
on parametrisation, especially fixed maximum run times in subsequent
resamplings determined by the built-in mlr3 terminator trm(‘‘run_
time’’)), helping to select appropriate models based on the specific
requirements of training and testing times for specific business contexts.

LightGBM, Classification Tree and Naïve Bayes are the fastest in
terms of training time, making them suitable for scenarios where quick
model updates are needed. Due to the characteristics of Naïve Bayes,
it had the shortest training time but the longest testing time, making it
the third fastest. Then, Random Forest has shorter test times but much
longer training times than the three mentioned learners. However, it is
still much faster than CatBoost, as our best-performing learner needed,
by far, the longest computation time.

The computation time of a learner can be an advantage in time-
critical industry use cases and where real-time data processing is used
to optimise quality assurance. In such cases, there needs to be a balance
between predictive performance and the computation time, depending
on the context and purpose. If the prediction takes a very long, it can be
a significant hindrance in its practical application and have a negative
impact on operational efficiency, cost, and decision-making speed.

Moreover, it can frustrate practitioners if many training iterations have i
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Table 6
The average computation times for each model on all tasks gathered automatically by
the mlr3 framework.

Model Training time [s] Testing time [s] Aggregated time [s]

cb 570.43 0.64 571.07
ct 2.55 0.22 2.77
lgbm 2.06 0.37 2.43
nb 0.85 7.26 8.11
rf 102.08 4.92 107.00

to take place (especially with shorter windows) or if significant human
intervention is necessary (even more so when low precision results in
many false positives). In our case, with such relatively short timespans,
the differences are negligible, and the learner with the best predictive
performance was chosen.

4.2. Interpretability

To satisfy expectation E3, we exercise the opportunity to inter-
pret/explain predictions on our real-world quality assurance process
data from the very beginning of our adoption project (Stradowski and
Madeyski, 2023a). Hence, we deployed an external, posthoc model-
agnostic explainable AI framework DALEX that xrays a model and helps
to explore and explain its behaviour. It was proposed by Biecek (2018)
as a dedicated R package to offer consistent methodology and tools
for model-agnostic explanations, which create numerical and visual
summaries. Also, it allows for comparing multiple models to help
understand their relative performance, which we consider doing in
subsequent phases of our research. Consequently, DALEX can explain
the classifier for a specific single instance of an already created model,
enabling global and local understanding and is, therefore, suitable for
our solution and sufficiently satisfies our goals (see Section 2.1).

Global model explanations (also called global feature importance)
help us understand which features impact the predictions of the Cat-
Boost Gradient Boosting (as the best performing) and Random Forest
(for comparison purposes) models over the aggregated data sets the
most. A convenient way to compute variable importance is to permute
the features (Breiman, 2001). Accordingly, a feature is important if per-
muting the feature causes a large degradation in model performance.
This approach can be applied to any kind of model (i.e., it is model
agnostic), and results are simple to understand.

We illustrate the use of the permutation-based variable-importance
evaluation by applying it to the CatBoost Gradient Boosting and the
Random Forest models on the data set that is composed of the longest
window of Task1_6 (see Fig. 4). The dashed line in each panel of
Fig. 4 shows the loss5 for the full model, being either CatBoost Gradient
Boosting or Random Forest. Features farther to the right are more
important as permuting them produces a higher loss (measured with 1−
𝑀𝐶𝐶). WEEK, TEST.INSTANCE.ID and ORGANISATION are the most
important features for both best models and the order of importance
for the three most important features does not differ.6

The interpretations obtained through DALEX show that while fea-
ture importance varies between models (Fig. 4), the week of execu-
tion, test instance, and organisation are the most impacting predictors.

5 For the purpose of analysis of feature importance in the scenario where
CC is the performance measure of choice, it was necessary to implement
new loss function (1 − 𝑀𝐶𝐶) that is compatible with the chosen primary

erformance measure as DALEX does not provide the loss function based
n MCC (if the performance measure of choice was AUC then DALEX of-
ers the loss function 1 − 𝐴𝑈𝐶). The implementation of the loss function
loss_one_minus_mcc) is included in the reproduction package in the R
cript LA2SDP.R.

6 WEEK (as well as WDAY) is a result of EXECUTION.DATE decomposition

nto more granular features.



L. Madeyski and S. Stradowski The Journal of Systems & Software 223 (2025) 112360 
Fig. 4. Feature Importance for CatBoost Gradient Boosting and the Random Forest model.
Meanwhile, the release, program phase, and automation levels are
negligible. A detailed discussion of particular feature interpretations
is presented in Section 5. Moreover, it is worth emphasising that the
obtained results, backed by domain knowledge, can lead to interesting
improvement opportunities and new quality-oriented projects started
in Nokia (see Section 5 for more details on the improvement actions
A1–A3, and a dedicated article on XAI by Stradowski and Madeyski,
2025).

5. Discussion

The results show that the new approach is feasible, and selected
interpretable learners can achieve satisfying results with MCC (see
E1). Hence, the proposed lightweight solution (LA2SDP) fulfils the
expectations posed in Section 2.1. However, due to the expectation
E2 to keep the solution as simple as possible, LA2SDP also has an
improvement potential that can be explored in subsequent phases of
our research, namely:

• We used a limited number of ML algorithms, and possibly better
results can be obtained by employing even more sophisticated
models or pre-processing steps, as well as training models on
larger data sets.

• Similarly, hyperparameter tuning was performed; however, fur-
ther optimisation with a more extensive computation budget can
be used to improve performance further. We invite the academic
community to achieve better results on our data sets as we
consider doing ourselves in the future.

• We did not conduct an extensive study of feature extraction or
selection (Laradji et al., 2015; Agrawal and Menzies, 2018) as
after making some preliminary inroads, we concluded that time
and memory consumption would be too high and not in line with
the expectations imposed by the company. The features we could
use due to confidentiality requirements were limited, and thus
selecting the most contributing ones was beyond the scope of this
paper. If the solution is to be commercialised and accepted as part
of the standard process, feature selection (if not already supported
internally by employed models) must be considered as available
resources will be much less constrained.
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• Commercial data often suffer from missing samples. Our case is
no different, mainly because the data set contains manually and
automatically entered fields in the test repository. Most of the
models we use can deal with missing data internally. In the case
of Naïve Bayes, some pre-processing steps (feature imputation
for missing data) are required. If the solution is accepted as
part of the standard mode of operation, more sophisticated data
imputation and pre-processing steps would be employed.

• Commercial data are frequently imbalanced. In each of our six
data set files, the number of passed test cases is much greater
than the number of failed ones (usually less than 5% of tests
detect defects). Including mechanisms dealing with class imbal-
ance is an absolute necessity. Class weight mechanisms were
employed when supported by the models, but more sophisticated
sampling algorithms can be considered if the LA2SDP solution is
accepted as part of the standard mode of operation. For now,
due to the class imbalance, our LA2SDP solution employs the
MCC performance measure that considers all four quadrants of the
confusion matrix, which is recommended in such an imbalanced
scenario (Shepperd et al., 2014; Yao and Shepperd, 2021; Chicco
and Jurman, 2023a). Also, MCC can later be used for further
hyperparameter optimisation.

The software development life cycle in Nokia 5G is a very complex
process (see Section 2), and in consequence, the SDP life cycle is sim-
ilarly challenging to manage. Thus, our project impacts a limited area
within a larger ecosystem with numerous relationships, stakeholders,
and requirements that must be thoroughly considered. That said, we
have proposed an idea of how to manage such process complexity and
how to embed SDP in multiple test phases by utilising the multidimen-
sional knapsack problem (Stradowski and Madeyski, 2023b), adhering
to the company expectation that our solution works on system-level
data complementing other already existing SDP and TSP mechanisms
in the quality assurance process.

5.1. Answers to research questions

Below, we provide a detailed interpretation of our results and
answers to the research questions we designed together with Nokia
practitioners (see Section 3).
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5.2. Answer to RQ1

As suggested by Tosun et al. (2011), it is important to decide
how and when a defect prediction model will be used within the
development life cycle. We aimed to understand if built models can be
used with acceptable performance on one of the last phases of the SDLC.
Therefore, our research sought a simple solution (E2) to gain value by
proposing a lightweight alternative to SDP usable on industrial, real-
world system-level test data sets. The proposed LA2SDP and obtained
results showed that even relatively simple ML models can give adequate
prediction results reliably pinpointing where to focus quality assurance
activities thanks to high precision achieved by the best models.

First, despite using various search engines and digital libraries, as
well as conducting systematic mapping study (Stradowski and Madeyski
2023e) and systematic review (Stradowski and Madeyski, 2023d), we
did not find similar studies using test process information for compari-
son. However, we are able to discuss our results in the context of studies
that used similar prediction methods but were set in different contexts
and used different inputs. First, we briefly compared our results with
research by Arrieta et al. (2021), who used machine learning techniques
to build test oracles in an industrial case study on elevator dispatching
systems. The regression learning algorithms of this oracle are trained
by using data from previously tested versions. The results of the five
validated regression learning algorithms show that Regression Tree and
SVM algorithms performed the best with slightly less precision than in
our case (best scenarios achieved results of 0.89). We also compare
our work to the research done by dos Santos and Figueiredo (2020),
who studied the software feature impact on ML SDP performance using
seven different classification algorithms. Apart from a custom-built
Unbiased Search XGBoost algorithm, which turned out to be the best
in the comparative study, Random Forest also proved very effective
using both AUC and F1-score, similar to our case. Also, both research
results demonstrate how a limited set of features can contribute to
acceptable results. Finally, Shepperd et al. (2014) found that the mean
and median MCC values achieved in ML SDP studies are 0.305 and
0.308, respectively.

After analysing five learners (Classification Tree, Light Gradient-
Boosting Machine, CatBoost Gradient Boosting, Random Forest, and
Naïve Bayes), together with their tuned versions, our lightweight pre-
dictive modelling achieved results that can be considered a solid start-
ing point. The best scenarios are aligned with the literature averages;
however, with the advantage of using an approach that does not require
any code metrics or additional software measurement initiatives. In-
stead, we utilise only the already existing historical test repository data.
The best models achieved satisfactory results of MCC > 0.3 (as well as
ery high precision) on some of the evaluated data sets, indicating that
e can positively answer our RQ1.

Answer to RQ1 (Can LA2SDP achieve the expected perfor-
mance of MCC > 0.3 (E1) with system-level test process data
in Nokia 5G, assuming that we are allowed to use only already
existing data (E2) and models that support interpretability
(E3)?): LA2SDP can be applied to the system-level testing
of Nokia 5G (with all the imposed expectations E1, E2, E3
fulfilled — achieving MCC > 0.3, using existing data, and
enabling interpretability).

5.3. Answer to RQ2

To answer our RQ2, we wanted to understand which learner would
ffer the best practical performance.
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• CatBoost turned out to be the best in terms of the overall MCC and
precision results. CatBoost is a relatively new Gradient Boosting
algorithm developed at Yandex that offers an innovative approach
for processing categorical features (Prokhorenkova et al., 2018)
(which appeared helpful due to the categorical features we oper-
ated with). On the other hand, it is essential to note that CatBoost
was also one of the slowest in our computation time comparison.

Also, the honourable mentions go to:

• Random Forest, a learner widely known for its flexibility and
providing acceptable results most of the time, even without hy-
perparameter tuning (Breiman, 2001; Fu et al., 2016). Random
Forest combines the decision tree algorithm with bootstrap aggre-
gation and constructs a large number of decision trees on random
subsets of the training data. It allows the algorithm to learn
complex relationships between the features and the dependent
variable (Breiman, 2001).

• Naïve Bayes, a probabilistic classification algorithm that pre-
dicts the probability of a data point belonging to a particu-
lar class (Rish, 2001). It assumes that the features of a data
point are independent of each other, hence the term ‘‘naive’’. We
have utilised the ‘impute features by sampling from non-missing
training data’ and ‘impute features by their mode’ preprocessing
techniques to mitigate the missing values; however, we presented
only the latter, which gave slightly better results.

Notably, as we found the answer to our RQ1 using MCC, during
the research, we added precision as a secondary metric to choose
which learners performed the best, as it was a direct request from our
participating practitioners (see Section 5.5). Hence, while still using
MCC to compare and benchmark against the set expectations (E1), we
have focused on evaluating both MCC and precision measures to obtain
as useful results as possible. Consequently, some of the models achieved
very high levels of precision (more than 0.9), showing they are well
suited for industry adoption. Furthermore, it is important to reiterate
that we can only publish the results based on a limited set of data,
whereas, in reality, we can expand the windows to find much better
results.

In the current phase of implementation, we ensured, based on
literature (see, e.g., Molnar, 2023; Aria et al., 2021; Konstantinov and
Utkin, 2021; Biecek, 2018), that the models we used should support
the interpretability of the results (E3). We successfully employed the
DALEX package to demonstrate this ability in practice. That said, we
focus more on this aspect in the subsequent phases of the adoption
project (Stradowski and Madeyski, 2025).

Moreover, our approach is consistent with the conclusions of sys-
tematic literature reviews conducted by Durelli et al. (2019), Pandey
et al. (2021), and Pachouly et al. (2022) in terms of established state-
of-the-art practices, and confirms the business potential of ML SDP.
Importantly, our study also shows how relatively straightforward such
implementation can be, even in a complex industrial environment.

Answer to RQ2 (Which learners employed in LA2SDP offer
the highest performance?): CatBoost Gradient Boosting was
the best-performing learner on the analysed data sets.
Thus, considering the consistent MCC and precision metric re-
sults, it can be recommended for commercial implementation.
Furthermore, Random Forest and Tuned Naïve Bayes are also
providing promising outcomes.
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5.4. Answer to RQ3

Finally, we have found answers to RQ3 by performing a feature im-
portance study (Section 4.2). Next, we discussed the findings with our
panel of Nokia experts to evaluate their significance, open opportunities
for new domain expertise and knowledge discovery, and create options
for starting dedicated improvement projects to increase product and
process quality.

There are many benefits to be gained from building-in interpretabil-
ity to the ML SDP solutions, such as transparency and trust, account-
ability and compliance, debugging and improvement, domain expertise,
and new knowledge discovery (Barredo Arrieta et al., 2020). In our
case, the main objective for enabling interpretability for the solution is
the understanding requirement (Carvalho et al., 2019), as we want to
use the results and explanations as an additional output for our users’
benefit. Notably, one of the remaining reasons for the interpretability
problem to remain unsolved is that interpretability is subjective and,
therefore, challenging to measure and compare (Carvalho et al., 2019;
Mohammadkhani et al., 2023). Consequently, the usefulness of under-
standing predictions is domain- and context-specific, and it is necessary
to consider the benefit of the use cases and the added value of each
distinct feature importance insight.

Specific features and their interpretations are provided below (see
also Fig. 4) and have been discussed with the involved practitioners to
design improvement actions (A1–A3):

• EXECUTION.DATE we have split into calendar weeks and days
of the week, creating more predictive information and avoiding
the ones that do not carry any predictive value. Consequently,
the calendar week when the test run was executed emerged as
the most important predictor, significantly more impactful than
RELEASE and PROGRAM PHASE. This shows that continuous
delivery and continuous integration (see also Section 2) work as
designed, and the flow of defects is consistent for each release
happening in cycles rather than big bursts. This also reflects the
shorter cadence of new content being delivered to the central
build based on two-week feature builds. Specifically, we observed
that WEEK indicates a pattern of peaking defects at the beginning
of each feature build entry when new functionalities are starting
to be tested on the system level. This observation opened up a
considerable opportunity for additional action within the com-
pany to steer the test schedules to be more optimal in terms of
the tests for the riskiest areas to be executed first (ISTQB, 2023a)
(A1). Moreover, this finding is especially important when we can
utilise the entire database without any limitations in the final
implementation.

• TEST.INSTANCE.ID is a feature our engineering practitioners per-
ceived as the most crucial in making software defect predictions.
The test instance is a test (procedure description) prepared for
actual execution, with a test assigned to a particular test envi-
ronment and set required execution parameters (i.e., SW build,
tester, external device, customer). It contains all the most critical
information for the engineer to identify the faulty SW module and
gives meaningful inferences on the defect’s location. Therefore,
from a technical point of view, it is an essential feature for
practitioners to enable software defect prediction mechanisms
in our process, especially with the combination of organisation,
test line, and granularity information (see also Section 4.2 for
more information on the granularity of predictions). Importantly,
further analysis of the interpretability information led to uncov-
ering previously unknown relationships between defect-finding
test instances and software module correction patterns. A ded-
icated project was started to investigate the usefulness of this

information to further quality assurance improvements (A2).
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• ORGANISATION turned to be one of the strongest characteris-
tics, which our practitioners also expected as specific organisa-
tions are responsible for different code areas, and some modules
are much more defect-prone than others (Fenton and Ohlsson,
2000). Hence, test teams responsible for the more defect-prone
SW modules fail more cases that are induced by software de-
fects; however, failures due to test incorrectness of environmental
issues (which we filtered out, Section 2.2) are comparable. Sec-
ond, this is an essential consideration for the high-management
stakeholders. ML SDP and XAI results should steer investments
in the organisations’ capacity to maximise defect finding and
help prioritise the limited test resources on the most risky SW
modules (Jiarpakdee et al., 2021). Furthermore, in our process,
test engineers are usually responsible for dedicated test lines,
and crosschecking of organisation and test instances can help
understand why specific test lines cause defect reports much
more frequently than others. Also, this is an important consid-
eration for the particular organisation’s management as it can
steer investments in test infrastructure to maximise phase contain-
ment and efficient hardware utilisation. Namely, we found that
a larger-than-expected number of software modules are executed
for specific configurations, which led to starting another project
to investigate the ramifications (A3).

• TEST.AUTOMATION.LEVEL and AUTOMATION.LEVEL.FINAL of
the analysed test runs had no meaningful influence on the defect
prediction effectiveness. Therefore, a high ratio of automated test
cases to manual test cases did not directly influence defect dis-
covery in particular software modules; however, it adds essential
benefits of test automation on the quality assurance processes in
terms of reliability, cost, and speed (Garousi and Mäntylä, 2016).

Answer to RQ3 (What are the most important features in
already existing data that can be used, and how can they be
interpreted?): The most important features are related to the
week of execution, test instance, and responsible organ-
isation. Furthermore, the discoveries brought new domain
knowledge and process improvement opportunities to the
organisation.

5.5. Feedback

Feedback from experts plays a crucial role in establishing the va-
lidity of the approach within the company. After implementation and
obtaining initial results, we organised feedback sessions with the in-
volved technical staff and management to elicit additional perceptions,
expectations, and challenges for the created solution (Stradowski and
Madeyski, 2023d; Wan et al., 2020).

Consequently, we held three feedback sessions with six participants
located in Poland in the form of a face-to-face focus group. Two test
architects (each with more than six years of experience) and three
test managers (each with more than four years of experience) were
interviewed by a facilitator to guide the discussion and capture opinions
on the solution and process retrospectives. The most important points
raised were the following:

• During the retrospective and post-validation, all involved prac-
titioners unanimously saw the obtained predictions as useful
(confirming the observations by Wan et al., 2020) about the
willingness to adopt defect prediction techniques).

• During the discussion on preliminary results, it was observed that

from a practical standpoint, the precision metric is imperative as
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it shows the proportion of units correctly predicted as defective.
False positives are waste from a cost perspective and are seen as a
detriment to ML tools by software engineers who are asked to act
upon the results (Wan et al., 2020). Hence, we decided to elevate
precision from an auxiliary metric to an important deciding factor
in the selection of the models (on top of MCC).

• As we trained our model only on test cases that fail due to
confirmed software faults (including true negatives and false
negatives, where a tester created a defect report that only after
deeper analysis turned out not to be a real defect), experts saw
value on comparison between predictions and actual test results
for both cases (Section 2.2).

• Also, exploring the second group of failed test cases that were
not confirmed as software defects to predict defects in the test
environment (see Section 2.2) was discussed.

• A business case evaluation from a monetary perspective was done,
showing a positive return on investment (ROI) and satisfying
our expectation E2. Details have been described in a dedicated
publication: Stradowski and Madeyski (2024).

• The specific feature importance values were valuable to practi-
tioners and led to further evaluation under the company’s im-
provement framework. Therefore, not only did the obtained new
insight lead to knowledge discovery, but it also triggered specific
follow-up actions (Stradowski and Madeyski, 2025).

• The management perspective on how to stabilise and treat ML
SDP as a standard practice is important to facilitate the adoption.
Aspects such as competence development, communication, and
innovation, but also effort estimation, maintenance costs, and
technical debt (Sculley et al., 2015), need to be studied further
to accelerate the process.

• From the process perspective, making sure the predictions are
accurate for incoming new data sets is imperative. Hence, the
iterative nature of new data availability defines the need for time-
based data set split and evaluation, being the go-to approach in
the industry (new process visualisation in Fig. 1).

Consequently, after the commercialisation of the solution, the 5G
uality assurance in Nokia is planned to include the ML SDP mechanism
hat is a time-based split to run every two weeks on new data after
ach feature build (Fig. 1). The model predicts failed runs within a
est instance, which are tracked to respective requirements and soft-
are modules for additional analysis. Furthermore, the model can be

ompared with the actual test results of said test cases to detect false
egatives and further tighten phase containment. Second, based on
he confidence of the obtained predictions, test architects can make
ecisions on omitting specific test cases, which, due to the fact that
hey can be very expensive to run (Stradowski and Madeyski, 2024),
an lead to meaningful operational savings in each feature build. In the
ext steps, dedicated product and process quality improvements will be
dded to increase the confidence and trust in the predictions as well as
decision to run the modelling more frequently based on a cost–benefit
nalysis (Stradowski and Madeyski, 2025).

.6. Key lessons and takeaways

During the entire research and implementation effort, we have
arefully documented the lessons learned, takeaway messages, and
ractical advice based on our experience. Below, we summarise the
ost important ones, focusing on increasing knowledge transfer from

ndustry to research.

• A clear understanding of the expectations towards the imple-
mented solutions is critical to a project’s success (IIBA, 2015).
In our ML SDP undertaking, we launched a survey among Nokia
test practitioners to elicit opinions on the challenges within the
current processes and uncover improvement opportunities (Strad-

owski and Madeyski, 2023c). Second, together with our project
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team from the company, we defined and reviewed the set of
clearly defined requirements to enable everyone involved to work
towards common objectives.

• One of the most critical enablers for the introduction of new
technology is profitability (IIBA, 2015). To evaluate the cost-
effectiveness of our solution, we used an abbreviation of the
general cost model (Herbold, 2019) and calculated the return
on investment (ROI) and benefit-cost ratio (BCR) financial ra-
tios to confirm the profitability of our approach. We considered
different periods of operation, varying efficiency of predictions,
and two scenarios (lightweight and heavyweight). As a result,
calculations have shown that the implemented ML SDP can have
a positive monetary impact and be cost-effective in both scenar-
ios, supplying management support (Stradowski and Madeyski,
2024).

• Many ML approaches have been developed and can be used in
vivo (Stradowski and Madeyski, 2023d); however, reliable perfor-
mance metrics need to be used to interpret the results correctly.
Shepperd et al. (2014) and Yao and Shepperd (2021), as well
as Chicco and Jurman (2023a), argue that the main comparisons
and conclusions should rely on MCC and using incorrect metrics
can lead to incorrect decisions. For example, if we would base
the performance assessment of the models on the widely used
accuracy metric, then all of the models could be assessed as
excellent, which is not the case.

• Precision is a key metric to evaluate if the model is good at
avoiding instances wrongly classified as positive, which is an
important factor for practitioners (Wan et al., 2020). On the other
hand, high recall indicates successful identification of most of the
positive instances, and minimising false negatives can be crucial
for tasks where defect leakage is very costly. Hence, comparing
models with the reliable MCC metric but also taking into consid-
eration other metrics based on the context is imperative for in
vivo adoption.

• Advanced learners and techniques such as boosting, feature selec-
tion, or hyperparameter tuning should be considered depending
on the context (Pachouly et al., 2022). However, committing to
highly effective but heavy solutions needs to take root in the
defined requirements, and corresponding investments need to be
justified from the perspective of business needs as computational
efficiency is examined. It is even more crucial to pay attention to
the time and memory efficiency from the beginning as the data
sets used by the company will only be bigger and bigger.

• ML studies are often performed with a predefined amount of
data. However, software defect prediction is an iterative process
of appending new data to create new predictions continuously.
Therefore, a time-based data set split is the appropriate approach
to evaluate the predictive performance and is a critical takeaway
from our case study. Unfortunately, the iterative nature of ML
SDP is rarely explored in the current literature, and long-term
predictive performance still needs more research.

• The most formidable aspect of the project was related to gathering
a suitable data set that allows actionable outcomes. Commercial
companies can possess vast amounts of data that can be used for
ML SDP; however, choosing and obtaining a practical set is not
a trivial task. Domain knowledge and ML expertise need to be
integrated and leveraged to select data that is easily obtainable,
allows accurate predictions of the future, and enables meaningful
use cases that are valuable for practitioners. After many consid-
erations, we decided to use the test repository, where the format
was suitable and minimal pre-processing was needed; however,
downloading data from the repository was very long and required
IT support, as it was not adjusted to handle the big files we
needed for calculations. Nevertheless, we did not need to create
and maintain a database specifically for the sake of ML tasks,

which was very well received by the company stakeholders.
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• We included the interpretability consideration from the beginning
of the study in the set expectations. Consequently, our study
reached a level of interpretability/explainability suitable to the
company’s needs and enabled a specific understanding of domain
expertise and new knowledge discovery. Moreover, we aim to
assess the effectiveness of the explanations in facilitating stake-
holder engagement and designing specific engagement strategies
to further increase the chances of final success and limit the
possible pushback during large-scale deployment.

• Last, close cooperation with technical experts and management
stakeholders was critical to the success of our project. We con-
sulted and reviewed the progress of the implementation at each
major milestone of the work, from requirements through im-
plementation to final cost evaluation. Consequently, close co-
operation with practitioners enabled us to effectively overcome
challenges, manage risks, and increase technical and organisa-
tional impact by synergising domain knowledge with technical
expertise through effective academic collaboration.

. Related work

There are several valuable primary studies that had a significant
mpact on our research efforts. Below, we summarise the main contri-
utions relevant to our work and how they helped our efforts.

• Melo et al. (2019) wrote a practical guide to support finding
change-prone classes, which can help software professionals im-
prove their product quality and steer future code changes. Fur-
thermore, the authors apply the guideline to a case study based
on a commercial data set. The approach consists of two phases:
designing the data set and applying the prediction. In the first
phase, it is necessary to choose the independent and dependent
variables and collect the needed metrics. The application of the
prediction step includes statistical analysis, normalisation, outlier
detection, feature selection, resampling, cross-validation, tuning,
selection of performance metrics, and ensuring reproducibility.
In our study, we have followed a selected subset of these steps,
described in detail in Section 3.

• Rana et al. (2014) created a framework to support the adoption
of ML SDP in the industry. Research highlights factors that need
to be considered during in vivo introduction, such as general
usefulness, reliability, and cost-effectiveness. The publication pro-
vides a comprehensive analysis of aspects rarely explored in
academia, such as perceived barriers and benefits, availability
of tool support, organisational characteristics, or needed compe-
tence ramp-up. The proposed framework influenced our research,
especially in terms of new technology adoption challenges, build-
ing organisational readiness, and definition of requirements.

• Furthermore, we internalised the experience report by
Tantithamthavorn and Hassan (2018) on defect modelling in
practice, as it discusses several valuable recommendations, com-
mon pitfalls, and main challenges that were observed as prac-
titioners attempted to develop SDP models in vivo. We have
faced similar issues in our work, such as the risk of employing
class rebalancing techniques when models are used to guide deci-
sions, different learners providing greatly varied effectiveness, or
replication difficulties due to confidentiality concerns.

• We briefly compared our results with those of Arrieta et al.
(2021). Their study uses five learners on an industrial data set for
elevator dispatching algorithms. The authors propose a custom-
built test oracle to evaluate the overall quality of the system by
analysing the previous versions of the system. As a result, the
accuracy of the proposed test oracle when predicting test results
ranged between 0.79 and 0.87. Although our study is based on
test metrics and we analyse a different set of learners, the overall
methodology is similar and allows for indirect comparison.
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• A second study to which we compare our results is the research
by dos Santos and Figueiredo (2020). We use a similar methodol-
ogy, however, in an industrial environment. The authors aimed to
explore software features of ML SDP in a frequently used data set
with five large open-source Java projects (Eclipse JDT and PDE,
Equinox, Lucene, and Mylyn). Specifically, seven classification al-
gorithms are evaluated using AUC and F1-score measures to select
the best-performing learners. The overall research methodology is
similar and allows comparing predictive performance.

Finally, to our knowledge, no secondary ML SDP studies focus on
business applicability other than the work done by Stradowski and
Madeyski (2023d). This systematic literature review analyses publica-
tions on machine learning software defect prediction validated in vivo,
where the authors identified 32 publications and documented relevant
evidence of methods, features, frameworks, and data sets used in the
industry. However, the analysis also showed a minimal emphasis on
feedback, practical lessons learned, and cost-consciousness within the
reviewed publications, which are vital from a business perspective and
which we have emphasised throughout our study.

7. Threats to validity

Construct validity reflects to what extent the studied operational
measures represent what the researcher has in mind and what is
investigated according to the research questions. While the general
approach for evaluating the models we use has been validated in many
contexts, academic and real-world (Stradowski and Madeyski, 2023d),
there is a range of performance measures to choose from. We decided to
report a range of them to provide a comprehensive view of the results
and to allow easier comparisons with other studies. However, to make
the answer to our RQs more robust, we based our conclusions on the
MCC metric recommended to use in imbalanced scenarios (Shepperd
et al., 2014; Yao and Shepperd, 2021; Chicco and Jurman, 2023a).
Secondly, as the predictors we use are generated automatically as well
as manually by test engineers, they may not reflect the results perfectly.
Also, as there are more test metrics gathered in the Nokia system-level
test process than we considered in this study, other features, including
dynamic ones (e.g., test site metrics), could be used in the next steps.
We have also recognised a relevant construct improvement possibility;
we do not consider test case or defect priorities, which is an attractive
prospect from a business standpoint.

Internal validity concerns examining whether the true causalities of
the outcomes observed in the study are independent variables or other
factors. We applied a time-wise data split to exactly reflect the real-
world scenario. However, we used a limited data set and five learners;
therefore, other data sets and learners can lead to different results,
which need to be further verified in later stages of implementation.
Other threats to the internal validity of this study are possible faults
in the implementation of our approach and in the tools and libraries
we used. Also, we chose to use popular and established tools (e.g., R
language and platform including several R packages like mlr3) to
implement our approach and reviewed our code several times.

External validity concerns the extent to which it is possible to
generalise the findings. As the main focus of the study is a proprietary
industrial data set and process, the generalisability of the results is
limited. Second, we applied our method to only one project within the
data set; we did not draw any conclusions about cross-project defect
prediction potential (Zimmermann et al., 2009), which still should
be further verified. However, our proposed approach, as well as the
key lessons and takeaways, should be relevant and valuable for any
large-scale industrial system where similar test repository data can
be gathered. Finally, we ensure that our results are reproducible by
other researchers (Madeyski and Kitchenham, 2017; Kitchenham et al.,
2020; Lewowski and Madeyski, 2022) by providing all the details (data
sets, code, and results) in the Supplementary Material (Madeyski and
Stradowski, 2024).
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For quantitative analysis, the counterpart to reliability is conclusion
validity (Wohlin et al., 2012), which, in our case, is concerned with
whether the results and outcomes of an experiment support our con-
clusions. First, we have chosen a reliable performance measure (MCC)
that accounts for the entire confusion matrix and gives meaningful
results on imbalanced data. That said, the real-world data set we
could disclose and base this research on is not exhaustive and is an
arbitrarily selected subset by company representatives. Nevertheless,
it was sufficient to build a working solution that allows for an initial
comparison of models. Unfortunately, we have not found any studies
using black-box test metrics for SDP; therefore, comparing our results
with other research conducted in a similar context is challenging. We
analysed and published a data set that was slightly modified from
the original for confidentiality’s sake and ensured the modifications
were random to limit the impact on the derived conclusions. Last, we
paid much attention to keeping a high standard for communication
and documentation (Shepperd et al., 2014; Madeyski and Kitchenham,
2017).

8. Conclusions and future work

Our paper addresses two appealing application prospects of ML SDP.
First, we show how test repository data can be used for the detection of
software defects by filtering the test results to teach the learners only on
test cases that directly lead to defect discovery, besides the established
approaches typically relying on software and process metrics. The
proposed approach limits the need for expensive retesting of test cases
and triggers a post-analysis directly based on the prediction results and
past-defects mapping. Second, we utilise a lightweight application of
ML SDP instead of a classic but more complex solution using an SZZ
algorithm implementation and code mining tools to gather software
product or process metrics (Madeyski and Jureczko, 2015). Thus, we
exercise simplicity in obtaining meaningful industry adoption inroads.

The proposed lightweight alternative to SDP is feasible, utilising the
existing test process data to predict test failures induced by software
defects (named LA2SDP). Not only have we obtained satisfying results
on our test repository data sets from the black-box system-level test-
ing of Nokia 5G gNB, but we have also found the process relatively
straightforward to implement with the mlr3 framework. Specifically,
we have used twelve supervised learners (including tuned versions)
and a time-based data set split with expanding and sliding windows to
build our models. As a result, the CatBoost Gradient Boosting ranked
highest in our evaluations, considering the MCC metric. Moreover,
by incorporating feedback from our participating company experts,
we highlight a very high precision, which has significant practical
consequences in limiting false positives. Consequently, Random Forest
and Tuned Naïve Bayes were also among the best-performing learners
on our data sets. Last, we analysed the variable importance for two of
our models, where the calendar week, test instance, and the responsible
organisation proved to be beneficial predictors from a business point of
view and triggered dedicated quality improvement actions.

In the subsequent steps, we plan to conduct more empirical studies
on larger real-world time-split data sets from Nokia 5G system-level
testing, including defining control limits for predictive performance
sustainability. Also, we consider employing sampling techniques, ad-
ditional learners, further hyperparameter optimisation, and feature
selection/extraction to achieve better predictive performance. Lastly,
we continue to work on the defined improvement actions, as well as
propose new ones based on the following analyses done on company
data. As the results we obtained were sufficient to decide that further
research efforts will be executed within the company to adopt a similar
approach as standard practice and use it commercially. Hence, we
have shown that LA2SDP (Lightweight Alternative to ML SDP) has the
potential to improve the quality assurance processes within Nokia as
well as other companies and large software projects that employ precise
tracking of executed test cases to found software defects, as well as

impacted software modules.
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ppendix A. Supplementary data

All research artefacts required to reproduce the results (code, re-
ults, and data sets from Nokia) are available in the Supplementary
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very R package so that the computational environment can be re-
nstalled on a new machine. Reproducibility is often problematic when
arallelisation of computations is used, and we heavily use paralleli-
ation to speed up computations. To overcome this issue and support
eproducibility, we employed the future package that ensures that all
orkers receive the same pseudo-random number generator streams,

ndependent of the number of workers.7
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