
Quang Vu Nguyen and Lech Madeyski, Intelligent Information and Database Systems: 8th Asian Confer-
ence, ACIIDS 2016, Da Nang, Vietnam, March 14-16, 2016, Proceedings, Part I, vol. 9621 of Lecture
Notes in Artificial Intelligence, ch. Higher Order Mutation Testing to Drive Development of New Test
Cases: An Empirical Comparison of Three Strategies, pp. 235–244. Springer, 2016. DOI: 10.1007/978-3-
662-49381-6_23 (URL: http://dx.doi.org/10.1007/978-3-662-49381-6_23, Draft: http://madeyski.e-
informatyka.pl/download/NguyenMadeyski16.pdf).

Higher order mutation testing to drive development of
new test cases: an empirical comparison of three

strategies

Quang Vu Nguyen, Lech Madeyski

{Quang.vu.nguyen; Lech.Madeyski}@pwr.edu.pl
Faculty of Computer Science and Management, Wroclaw University of Technology,

Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

Abstract. Mutation testing, which includes first order mutation (FOM) testing
and higher order mutation (HOM) testing, appeared as a powerful and effective
technique to evaluate the quality of test suites. The live mutants, which cannot
be killed by the given test suite, make up a significant part of generated mutants
and may drive the development of new test cases. Generating live higher order
mutants (HOMs) able to drive development of new test cases is considered in
this paper. We apply multi-objective optimization algorithms based on our pro-
posed objectives and fitness functions to generate higher order mutants using
three strategies: HOMT1 (HOMs generated from all first order mutants),
HOMT2 (HOMs generated from killed first order mutants) and HOMT3
(HOMs generated from not-easy-to-kill first order mutants). We then use muta-
tion score indicator to evaluate, which of the three approaches is better suited to
drive development of new test cases and, as a result, to improve the software
quality.

Keywords. Mutation testing; Higher Order Mutation testing; Live mutants;
Equivalent mutants; Multi-objective optimization algorithm.

1 Introduction

In 1970s, a fault-based technique was introduced by DeMillo et al. [1] and Hamlet [2]
as a way to measure the effectiveness of test suites, called mutation testing (first order
mutation testing). Mutants are the different versions of an original program generated
by inserting, via a mutation operator, only one semantic change (or fault) into the
original program. Mutation operators depend on programming languages, but there
are some traditionally used mutation operators, e.g., deletion of a statement, replace-
ment of Boolean expressions, replacement of arithmetic, replacement of a variable.
Given set of test cases (TCs) is executed on the original program and all its mutants.

Quang Vu Nguyen and Lech Madeyski, Intelligent Information and Database Systems: 8th Asian Confer-
ence, ACIIDS 2016, Da Nang, Vietnam, March 14-16, 2016, Proceedings, Part I, vol. 9621 of Lecture
Notes in Artificial Intelligence, ch. Higher Order Mutation Testing to Drive Development of New Test
Cases: An Empirical Comparison of Three Strategies, pp. 235–244. Springer, 2016. DOI: 10.1007/978-3-
662-49381-6_23 (URL: http://dx.doi.org/10.1007/978-3-662-49381-6_23, Draft: http://madeyski.e-
informatyka.pl/download/NguyenMadeyski16.pdf).

If output result of mutant is different than the output result of original program, with
any test case (TC), we say that the mutant is killed. In other words, the test case kills
mutant. If a mutant was killed by all of given TCs, it is named “Easy to kill”.

 Conversely, if output results of mutant and original program are the same with all
test cases, the mutant is called “live” or “not killed”. In this case, none of the test
cases in the given set of test cases can kill the mutant. This could be for two reasons:
(1) The given set of test cases is “not good enough” to detect the difference between
the original program and its mutants; it drives developers to create new test cases able
to kill live mutants. (2) The mutant is an equivalent mutant; it means that the mutant
has the same semantic meaning as the original program and there is no test case able
to kill the mutant.

The equivalent mutant problem (EMP) is one of the crucial problems in mutation
testing [4, 7, 12]. This is one of the reasons why mutation testing is not yet widely
adopted in practice. A lot of approaches have been proposed for overcoming the EMP
(and the mutation testing’s problems in general) including second order mutation
testing [7, 8, 9, 10, 11] or higher order mutation testing [3, 4, 5, 6] in general. Higher
order mutation testing is an idea presented by Jia and Harman [3] and in a manifesto
by Harman et al. [4]. This promising idea offers solutions to overcome the limitations
of traditional mutation testing. Mutants can be classified into two types: First Order
Mutants (FOMs) and Higher Order Mutants (HOMs). The first are used in traditional
mutation testing and generated by applying mutation operators only once in each
mutant. The second are used in higher order mutation testing and constructed by in-
serting two or more changes per mutant.

Mutation score (or mutation adequacy) was defined as the ratio of the number of
killed mutants to the number of non-equivalent mutants [13]. The number or non-
equivalent mutants is a difference between total number of generated mutants and
number of equivalent mutants.

Mutation score indicator (MSI) is another quantitative measure of the quality of
test cases. Different from MS, MSI was defined as the ratio of killed mutants to all
generated mutants [7, 14, 15, 16, 17]. MSI lies between 0 and 1. If MSI is 0, all gen-
erated mutants are live mutants. If MSI is 1, all mutants are killed. Ignoring equiva-
lent mutants means that we accept the lower bound on mutation score. In addition, in
fact many mutation operators can produce equivalent mutants of the same behaviour
as the original program, while detection of equivalent mutants often involves addi-
tional human effort.

Live mutant problem includes equivalent mutants and non-equivalent mutants,
which could be killed by adding high quality TCs. So, existing live mutants can drive
development of new high quality TCs. Development of new high quality TCs de-
creases the number of live mutants due to new TCs able to kill some non-equivalent
live mutants. New high quality TCs have a positive impact on software quality. Our
goal is to investigate which strategy to generate HOMs gives more opportunities to

Quang Vu Nguyen and Lech Madeyski, Intelligent Information and Database Systems: 8th Asian Confer-
ence, ACIIDS 2016, Da Nang, Vietnam, March 14-16, 2016, Proceedings, Part I, vol. 9621 of Lecture
Notes in Artificial Intelligence, ch. Higher Order Mutation Testing to Drive Development of New Test
Cases: An Empirical Comparison of Three Strategies, pp. 235–244. Springer, 2016. DOI: 10.1007/978-3-
662-49381-6_23 (URL: http://dx.doi.org/10.1007/978-3-662-49381-6_23, Draft: http://madeyski.e-
informatyka.pl/download/NguyenMadeyski16.pdf).

drive development of high quality TCs. Three considered strategies are: 1) HOMT1 -
HOMs generated from all first order mutants, 2) HOMT2 - HOMs generated from
killed first order mutants and 3) HOMT3 - HOMs generated from not-easy-to-kill first
order mutants.

In this paper, we apply three multi-objective optimization algorithms – NSGAII,
NSGAIII and eMOEA (Epsilon-MOEA) – to generate HOMs based on our objectives
and fitness functions. We use mutation score indicator (MSI) as the indicator of use-
fulness of higher order mutation in driving development of TCs. Furthermore, HOMs
simulate faults, which require more than one change to correct them. This kind of
faults, represented by HOMs, is even more realistic than faults represented by FOMs.
For example, Purushothaman and Perry [23] found that there is less than 4 percent
probability that a one-line change will introduce a fault in the code. Hence, HOMs
complement FOMs and enhance realism of mutation testing giving opportunity to
simulate more realistic faults and create test cases able to spot these kind of faults.
Also the number of equivalent mutants in each of the strategies (FOMT, HOMT1,
HOMT2 and HOMT3) would be different. Hence, our dependent variable (MSI) is
indeed an approximate measure of how useful each of the strategies can be in driving
TCs development.

The rest of the paper is organized as follows. Section 2 includes our objectives and
fitness function, which are applied to multi-objective optimization algorithms. Section
3 presents the experimental procedure, the proposed multi-objective optimization
algorithms and real-world projects under test. Section 4 shows results of the empirical
evaluation. Section 5 discusses threats to validity, while the last section presents con-
clusions and proposition of future works.

2 Objectives and fitness functions

Based on the idea “number of test cases (TCs) which can kill HOMs is as small as
possible”, we have proposed objectives and fitness functions [29], which we will
apply in the different multi-objective optimization algorithms to generate HOMs.
Some notations are explained below (See Figure 1):

H: a HOM, constructed from FOMs: F1 and F2
T: The given set of test cases
TF1⊂T: Set of test cases that kill FOM1
TF2⊂T: Set of test cases that kill FOM2
TH⊂T: Set of test cases that kill H

Quang Vu Nguyen and Lech Madeyski, Intelligent Information and Database Systems: 8th Asian Confer-
ence, ACIIDS 2016, Da Nang, Vietnam, March 14-16, 2016, Proceedings, Part I, vol. 9621 of Lecture
Notes in Artificial Intelligence, ch. Higher Order Mutation Testing to Drive Development of New Test
Cases: An Empirical Comparison of Three Strategies, pp. 235–244. Springer, 2016. DOI: 10.1007/978-3-
662-49381-6_23 (URL: http://dx.doi.org/10.1007/978-3-662-49381-6_23, Draft: http://madeyski.e-
informatyka.pl/download/NguyenMadeyski16.pdf).

Fig. 1. The combination of sets of TCs

A⊂TH: Set of test cases that can kill H and all its constituent FOMs.
B⊂TH: Set of test cases that kill H but cannot kill any its constituent FOMs.
C⊂TH: Set of test cases that kill H and can kill FOM1 or FOM2.
The Figure 1 showed that the set of TCs that kills a HOM can be divided into 3

subsets:
- The first is the subset that can kill HOM and all its constituent FOMs (subset A)
- The second is the subset that kills HOM and can kill FOM1 or FOM2 (subset C)
- The third is the subset that only kills HOM and cannot kill any FOMs (subset B)
From that, we have proposed objectives and their fitness functions [29] (see Equa-

tions below) to apply multi-objective optimization algorithms to construct HOMs as
follows:

Objective 1: Minimize the number of TCs that kill HOM and also kill all its con-
stituent FOMs (The fitness function is fitness(OB1) in Equation 1).

Objective 2: Minimize the number of TCs that kill HOM but cannot kill any their
constituent FOMs (The fitness function is fitness(OB2) in Equation 2).

Objective 3: Minimize the number of TCs that kill HOM and can kill FOM1 or
FOM2 (The fitness function is fitness(OB3) in Equation 3).

T

TTT
H

FFHOBfitness
#

)(#
)1(21∩∩
= (1)

T
TTT

H

FFHOBfitness
#

))(\(#
)2(21∪= (2)

Quang Vu Nguyen and Lech Madeyski, Intelligent Information and Database Systems: 8th Asian Confer-
ence, ACIIDS 2016, Da Nang, Vietnam, March 14-16, 2016, Proceedings, Part I, vol. 9621 of Lecture
Notes in Artificial Intelligence, ch. Higher Order Mutation Testing to Drive Development of New Test
Cases: An Empirical Comparison of Three Strategies, pp. 235–244. Springer, 2016. DOI: 10.1007/978-3-
662-49381-6_23 (URL: http://dx.doi.org/10.1007/978-3-662-49381-6_23, Draft: http://madeyski.e-
informatyka.pl/download/NguyenMadeyski16.pdf).

T

TTTTT
H

FFFFHOBfitness
#

))(\))(((#
)3(2121 ∩∪∩
= (3)

)(#

#
)(

21 TT
T

FF

HHfitness
∪

= (4)

The values of fitness(OB1), fitness(OB2) and fitness(OB3) lie between 0 and 1. In
addition, we also have proposed the fitness(H) function (Equation 4) which is used to
evaluate a HOM whether it is harder to kill than its constituent FOMs or not. If the
number of TCs that can kill HOM is smaller than the number of TCs that can kill its
FOMs, HOM is called harder to kill than its constituent FOMs.

3 Experiment planning and execution

The aim of our experiment was to answer the research question: How to combine
FOMs to create hard to kill HOMs (well suited to evaluate the quality of test cases
and drive their development)?

3.1 Supporting tool

We use Judy tool [17, 7] to conduct the empirical studies. Judy
(http://www.mutationtesting.org/) is a mutation testing tool for Java programs. It sup-
ports large set of mutation operators, as well as HOM generation, HOM execution and
mutation analysis.

3.2 Multi-objective optimization algorithms

NSGA-II is the second version of the Non-dominated Sorting Genetic Algorithm that
was proposed by Deb et al. [18] for solving non-convex and non-smooth single and
multi-objective optimization problems. Its main features are: it uses an elitist princi-
ple; it emphasizes non-dominated solutions; and it uses an explicit diversity preserv-
ing mechanism. NSGA-III is the extension of NSGA-II which is based on the supply
of a set of reference points and demonstrated its working in 3 to 15-objective optimi-
zation problems [19]. The εMOEA (eMOEA) is a steady state multi-objective evolu-
tionary algorithm that co-evolves both an evolutionary algorithm population and an
archive population by randomly mating individuals from the population and the ar-
chive to generate new solutions [20, 21].

Quang Vu Nguyen and Lech Madeyski, Intelligent Information and Database Systems: 8th Asian Confer-
ence, ACIIDS 2016, Da Nang, Vietnam, March 14-16, 2016, Proceedings, Part I, vol. 9621 of Lecture
Notes in Artificial Intelligence, ch. Higher Order Mutation Testing to Drive Development of New Test
Cases: An Empirical Comparison of Three Strategies, pp. 235–244. Springer, 2016. DOI: 10.1007/978-3-
662-49381-6_23 (URL: http://dx.doi.org/10.1007/978-3-662-49381-6_23, Draft: http://madeyski.e-
informatyka.pl/download/NguyenMadeyski16.pdf).

3.3 Projects under test (PUT)

In our empirical study we use five real-world, open source projects (see Table 1)
which were downloaded from the SourceForge website (http://sourceforge.net). Table
1 shows the projects selected for the experiment along with their number of classes
(NOC), lines of code (LOC) and number of given test cases (#TCs).

Table 1. Projects under test

Project NOC LOC #TCs
BeanBin 72 5925 68
Barbecue 57 23996 190
JWBF 51 13572 305
CommonsChain 1.2 103 13410 17
CommonsValidiator 1.4.1 144 25422 66

3.4 Experimental procedure

For each project under test, we ran the process, which was described in following
experimental procedure, 5 times. HOMs were generated in three ways. Firstly, HOMs
were created by combining FOMs from the set of all generated FOMs. And second
one, delete first live FOMs from set of generated FOMs, then create HOMs by com-
bining FOMs from the set of killed FOMs. And the last, first delete all of easy to kill
FOMs, which were killed by all of given TCs, from set of generated FOMs, then cre-
ate HOMs by combining FOMs from the set of not-easy-to-kill FOMs Then we calcu-
lated the average value of each program for each algorithm. We set out the experi-
mental procedure as follows:

for each software under test do
Generate all possible FOMs by applying the set of Judy
mutation operators
Count and save MSI of first order mutation testing
Set objectives and fitness functions
 for each multi-objective optimization algorithm do
 - set populationSize =100
 - set maxMutationOrder =15
 - from set of all FOMs, generate and evaluate HOMs,
guided by objectives and fitness functions
 - count and save MSI of higher order mutation testing
 - delete the live FOMs from set of all generated FOMs

Quang Vu Nguyen and Lech Madeyski, Intelligent Information and Database Systems: 8th Asian Confer-
ence, ACIIDS 2016, Da Nang, Vietnam, March 14-16, 2016, Proceedings, Part I, vol. 9621 of Lecture
Notes in Artificial Intelligence, ch. Higher Order Mutation Testing to Drive Development of New Test
Cases: An Empirical Comparison of Three Strategies, pp. 235–244. Springer, 2016. DOI: 10.1007/978-3-
662-49381-6_23 (URL: http://dx.doi.org/10.1007/978-3-662-49381-6_23, Draft: http://madeyski.e-
informatyka.pl/download/NguyenMadeyski16.pdf).

 - from set of remaining-FOMs, generate and evaluate
HOMs, guided by objectives and fitness functions
 - count and save MSI of higher order mutation testing
 - delete the easy-to-kill FOMs from set of all gener-
ated FOMs
 - from set of remaining-FOMs, generate and evaluate
HOMs, guided by objectives and fitness functions
 - count and save MSI of higher order mutation testing

 end
end

4 Results and analysis

Results were shown in Table 2. FOMT is implementation of first order mutation test-
ing. HOMT1 is the implementation of higher order mutation testing where HOMs are
generated on a basis of all FOMs. HOMT2 is the implementation of higher order mu-
tation testing where HOMs are generated on a basis of killed FOMs. HOMT3 is the
implementation of higher order mutation testing where HOMs are generated on a
basis of not-easy-to-kill FOMs.

Table 2. The mean value of MSI for each project under test (%)

Project Under
Test (PUT)

Strategy

Barbecue BeanBin Commons
Chain

Commons
Validator JWBF

FOMT 15.79 15.11 42.65 47.10 12.96

HOMT
1

NSGAII 70.59 36.32 89.92 92.41 94.54
NSGAIII 69.67 43.04 84.38 92.31 91.30
eMOEA 69.19 41.04 87.55 93.15 91.20

HOMT
2

NSGAII 100 100 100 100 100
NSGAIII 100 100 100 100 100
eMOEA 96.15 100 100 99.31 100

HOMT
3

NSGAII 64.01 62.11 40.12 83.93 77.78
NSGAIII 54.23 59.23 50.28 86.05 80.00
eMOEA 73.59 69.42 49.67 87.76 90.91

The results presented in Table 2 indicate that the given sets of TCs of PUTs have

lower MSI in first order mutation testing. It means that there are many live FOMs and

Quang Vu Nguyen and Lech Madeyski, Intelligent Information and Database Systems: 8th Asian Confer-
ence, ACIIDS 2016, Da Nang, Vietnam, March 14-16, 2016, Proceedings, Part I, vol. 9621 of Lecture
Notes in Artificial Intelligence, ch. Higher Order Mutation Testing to Drive Development of New Test
Cases: An Empirical Comparison of Three Strategies, pp. 235–244. Springer, 2016. DOI: 10.1007/978-3-
662-49381-6_23 (URL: http://dx.doi.org/10.1007/978-3-662-49381-6_23, Draft: http://madeyski.e-
informatyka.pl/download/NguyenMadeyski16.pdf).

the given sets of TCs are not good enough to detect the difference between original
program and their mutants and, therefore, need to be improved following the results
of mutation analysis based on the FOMT strategy. The numbers of live FOMs makes
up from 52% to 87% of generated mutants. Only a small number of FOMs were killed
by the given sets of TCs. In the case of live FOMs, we have to check whether the live
FOMs are equivalent mutants or not, but it often involves additional human effort. If
mutants are not equivalent, developers or testers create new TCs and check whether
they are able to kill live FOMs. If live FOMs are equivalent mutants, TCs, which can
kill them, do not exist.

The most striking result is that the HOMT2 strategy appeared to be useless as it
gives a false impression that TCs are of high quality (MSI is equal or close to 100%)
and the usefulness of HOMT2 is strongly limited, i.e., opportunities of test case im-
provement guided by results of HOMT2 mutation analysis are rare if any. Almost all
of higher degree mutants, which were constructed by combining the killed FOMs, are
also killed. This indicates that, combining first order killed mutants to create higher
degree mutants is not a good way to evaluate and improve the quality of given set of
test cases because the generated HOMs are easy to kill.

The HOMT1 and HOMT3 strategies seem to be better and offer more opportunities
to improve the quality of given set of test cases, as MSI (and the number of killed
mutants) decreased in comparison to HOMT2.

The experimental results indicated that, we should not use first order live mutants
to create difficult (but possible) to kill higher order mutants. And using not-easy-to-
kill mutants to generate higher order mutants is a promising method, which could be
applied to the area of higher order mutation testing to evaluate and improve the quali-
ty of given set of TCs.

5 Threats to validity

Equivalent mutants constitute a threat to validity because the ratio of equivalent
mutants in each strategy is unknown, while the problem of detecting equivalence
between two mutants is an undecidable problem [7]. Furthermore, using five selected
projects under test (PUTs) may not be representative of all Java programs in general
and therefore, the results of the study may not be generalizable to all Java programs.
Additionally the number of evaluated strategies is limited and, we think that further
investigations would allow proposing new strategies for generating difficult (but pos-
sible) to kill higher order mutants. Applying other multi-objective optimization algo-
rithms as well as the large PUTs is also needed to improve the obtained results.

Quang Vu Nguyen and Lech Madeyski, Intelligent Information and Database Systems: 8th Asian Confer-
ence, ACIIDS 2016, Da Nang, Vietnam, March 14-16, 2016, Proceedings, Part I, vol. 9621 of Lecture
Notes in Artificial Intelligence, ch. Higher Order Mutation Testing to Drive Development of New Test
Cases: An Empirical Comparison of Three Strategies, pp. 235–244. Springer, 2016. DOI: 10.1007/978-3-
662-49381-6_23 (URL: http://dx.doi.org/10.1007/978-3-662-49381-6_23, Draft: http://madeyski.e-
informatyka.pl/download/NguyenMadeyski16.pdf).

6 Conclusions and future work

We applied our objectives and fitness functions to multi-objective optimization algo-
rithms for constructing HOMs from the set of generated FOMs in three ways. In the
first one, we used all of the FOMs, in the second one, we used the FOMs, which were
killed by at least one TC, while in the third one, we used not-easy-to-kill FOMs. The
results indicated that applying multi-objective optimization in the area of higher order
mutation testing to generate HOMs could be an interesting complementary approach
to FOMT, but the strategy of selecting FOMs to build HOMs is of great importance.
The strategy one should absolutely avoid is to build HOMs on a basis of killed FOMs
(i.e., HOMT2). The alternative strategies HOMT1 and HOMT3, where HOMs are
built on a basis of all FOMs give better results. The obtained results suggest the direc-
tion of further investigation, which could be a strategy where HOMs are build, for
example, on a basis of live FOMs and/or HOMs of lower degree.

Applying multi-objective optimization algorithms to generate higher order mu-
tants is a promising way for overcoming the limitations of mutation testing [5, 22]. In
our previous work [22], the results of our experiment indicated that our approach is
able to reduce the generated HOMs compared with FOMs as well as is useful in con-
structing higher order mutants. In this paper, we shed additional light on usefulness of
higher order mutation strategies to drive development of new, high quality test cases.

In further research, we will investigate how process metrics [24, 25], based on
development of test cases, combined with product metrics [26], based on mutation
testing, can improve software defect prediction models we build in collaboration with
our industrial partners [27, 28].

References

1. DeMillo, R.A., Lipton R.J., Sayward, F.G.: Hints on test data selection: help for
the practicing programmer. IEEE Computer 11 (4), 34–41 (1978)

2. Hamlet, R.G.: Testing programs with the aid of a compiler. IEEE Transactions on
Software Engineering SE-3 (4), 279–290 (1977)

3. Jia, Y., Harman, M.: Higher order mutation testing. Information and Software
Technology 51, 1379–1393 (2009)

4. Harman, M., Jia, Y., Langdon, W. B.: A Manifesto for Higher Order Mutation
Testing. In: Third International Conf. on Software Testing, Verification, and Val-
idation Workshops, (2010)

5. Langdon, W.B., Harman, M., Jia, Y.: Efficient multi-objective higher order muta-
tion testing with genetic programming. Journal of Systems and Software 83
(2010)

Quang Vu Nguyen and Lech Madeyski, Intelligent Information and Database Systems: 8th Asian Confer-
ence, ACIIDS 2016, Da Nang, Vietnam, March 14-16, 2016, Proceedings, Part I, vol. 9621 of Lecture
Notes in Artificial Intelligence, ch. Higher Order Mutation Testing to Drive Development of New Test
Cases: An Empirical Comparison of Three Strategies, pp. 235–244. Springer, 2016. DOI: 10.1007/978-3-
662-49381-6_23 (URL: http://dx.doi.org/10.1007/978-3-662-49381-6_23, Draft: http://madeyski.e-
informatyka.pl/download/NguyenMadeyski16.pdf).

6. Jia, Y., and Harman, M.: Constructing Subtle Faults Using Higher Order Muta-
tion Testing. In: Proc. Eighth Int’l Working Conf. Source Code Analysis and Ma-
nipulation (2008)

7. Madeyski, L., Orzeszyna, W., Torkar, R., Józala, M.: Overcoming the Equivalent
Mutant Problem: A Systematic Literature Review and a Comparative Experiment
of Second Order Mutation. IEEE Transactions on Software Engineering, 40 (1),
pp. 23-42, 2014. DOI: 10.1109/TSE.2013.44

8. Mresa, E.S., Bottaci, L.: Efficiency of mutation operators and selective mutation
strategies: An empirical study. Software Testing, Verification and Reliability 9
(4) 205-232 (1999)

9. Papadakis, M., Malevris, N.: An empirical evaluation of the first and second or-
der mutation testing strategies. In: Proceedings of the 2010 Third International
Conference on Software Testing, Verification, and Validation Workshops, ser.
ICSTW’10, IEEE Computer Society, pp. 90–99 (2010)

10. Vincenzi, A.M.R., Nakagawa, E.Y., Maldonado, J.C., Delamaro, M.E., Romero,
R.A.F: Bayesian-learning based guidelines to determine equivalent mutants. In-
ternational Journal of Software Engineering and Knowledge Engineering, 12 (6),
675–690 (2002)

11. Polo, M., Piattini, M., Garcia-Rodriguez, I.: Decreasing the Cost of Mutation
Testing with Second-Order Mutants. Software Testing, Verification, and Reliabil-
ity 19 (2), 111-131 (2008)

12. Nguyen, Q.V., Madeyski, L.: Problems of Mutation Testing and Higher Order
Mutation Testing. In Do, T. and Le Thi, H. A. and Nguyen, N. T. (eds.)
OCCSAMA 2014, Advanced Computational Methods for Knowledge Engineer-
ing, Advances in Intelligent Systems and Computing, vol. 282, pp. 157-172,
Springer (2014). DOI: 10.1007/978-3-319-06569-4_12

13. Zhu, H., Hall, P.A.V., May, J.H.R.: Software Unit Test Coverage and Adequacy.
ACM Computing Surveys 29 (4), 366-427 (1997)

14. Madeyski, L.: On the effects of pair programming on thoroughness and fault-
finding effectiveness of unit tests. In: Muench, J. and Abrahamsson, P. (eds.)
PROFES 2007, LNCS (Lecture Notes in Computer Science), vol. 4589, pp. 207-
221. Springer, Heidelberg (2007). DOI: 10.1007/978-3-540-73460-4_20

15. Madeyski, L., The impact of pair programming on thoroughness and fault detec-
tion effectiveness of unit tests suites. Software Process: Improvement and Prac-
tice, 13 (3), 281-295 (2008). DOI: 10.1002/spip.382

16. Madeyski, L., The impact of test-first programming on branch coverage and mu-
tation score indicator of unit tests: An experiment. Information and Software
Technology, 52 (2), 169-184 (2010). DOI: 10.1016/j.infsof.2009.08.007

17. Madeyski, L., Radyk, N.: Judy - a mutation testing tool for Java. IET Software
4 (1), 32-42 (2010). DOI: 10.1049/iet-sen.2008.0038

Quang Vu Nguyen and Lech Madeyski, Intelligent Information and Database Systems: 8th Asian Confer-
ence, ACIIDS 2016, Da Nang, Vietnam, March 14-16, 2016, Proceedings, Part I, vol. 9621 of Lecture
Notes in Artificial Intelligence, ch. Higher Order Mutation Testing to Drive Development of New Test
Cases: An Empirical Comparison of Three Strategies, pp. 235–244. Springer, 2016. DOI: 10.1007/978-3-
662-49381-6_23 (URL: http://dx.doi.org/10.1007/978-3-662-49381-6_23, Draft: http://madeyski.e-
informatyka.pl/download/NguyenMadeyski16.pdf).

18. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multi objec-
tive Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 6 (2), 182-197 (2002).

19. Deb, K., Jain, H., An Evolutionary Many-Objective Optimization Algorithm Us-
ing Reference-Point-Based Nondominated Sorting Approach, Part I: Solving
Problems With Box Constraints, IEEE Transactions on Evolutionary Computa-
tion, 18 (4), 577-601 (2014).

20. Kollat, J.B., Reed, P.M., The Value of Online Adaptive Search: A Performance
Comparison of NSGAII, ε-NSGAII and ε-MOEA, Carlos A. Coello Coello, Artu-
ro Hernández Aguirre, Eckart Zitzler (Eds.), Evolutionary Multi-Criterion Opti-
mization, Third International Conference, EMO 2005 Guanajuato, Mexico,
March 9-11, 2005.

21. Deb, K., Mohan, M., Mishra, S., A Fast Multi-objective Evolutionary Algorithm
for Finding Well-Spread Pareto-Optimal Solutions. KenGAL, Report No.
2003002. Indian Institute of Technology, Kanpur, India, 2003.

22. Nguyen, Q.V., Madeyski, L.: Searching for Strongly Subsuming Higher Order
Mutants by Applying Multi-objective Optimization Algorithm. In: Le Thi, H.A.,
Nguyen, N.T., Do, T.V. (eds.) Advanced Computational Methods for Knowledge
Engineering, Advances in Intelligent Systems and Computing, vol. 358, pp. 391-
402. Springer (2015). DOI: 10.1007/978-3-319-17996-4_35

23. Purushothaman, R., Perry, D.E.: Toward Understanding the Rhetoric of small
source code changes. IEEE Transactions on Software Engineering 31(6), 511-526
(2005).

24. Madeyski, L., Jureczko, M.: Which process metrics can significantly improve de-
fect prediction models? An empirical study. Software Quality Journal 23(3), 393-
422 (2015). DOI: 10.1007/s11219-014-9241-7

25. Jureczko, M., Madeyski, L.: A review of process metrics in defect prediction
studies. Metody Informatyki Stosowanej 30(5), 133-145 (2011).
http://madeyski.e-informatyka.pl/download/Madeyski11.pdf

26. Jureczko, M., Madeyski, L.: Towards identifying software project clusters with
regard to defect prediction. In: Proceedings of the 6th International Conference on
Predictive Models in Software Engineering (PROMISE '10). ACM, New York,
NY, USA, , Article 9, 9:1-9:10. DOI: 10.1145/1868328.1868342

27. Madeyski, L., Majchrzak, M.: Software Measurement and Defect Prediction with
DePress Extensible Framework. Foundations of Computing and Decision Scienc-
es 39 (4), 249-270 (2014). DOI: 10.2478/fcds-2014-0014

28. Hryszko J., Madeyski, L.: Bottlenecks in software defect prediction implementa-
tion in industrial projects. Foundations of Computing and Decision Sciences 40
(1), 17-33 (2015). DOI: 10.1515/fcds-2015-0002

29. Nguyen, Q.V., Madeyski, L.: Empirical evaluation of multi-objective optimiza-
tion algorithms searching for higher order mutants. Cybernetics and Systems: An

Quang Vu Nguyen and Lech Madeyski, Intelligent Information and Database Systems: 8th Asian Confer-
ence, ACIIDS 2016, Da Nang, Vietnam, March 14-16, 2016, Proceedings, Part I, vol. 9621 of Lecture
Notes in Artificial Intelligence, ch. Higher Order Mutation Testing to Drive Development of New Test
Cases: An Empirical Comparison of Three Strategies, pp. 235–244. Springer, 2016. DOI: 10.1007/978-3-
662-49381-6_23 (URL: http://dx.doi.org/10.1007/978-3-662-49381-6_23, Draft: http://madeyski.e-
informatyka.pl/download/NguyenMadeyski16.pdf).

International Journal, (2016) (accepted). DOI: 10.1080/01969722.2016.1128763
URL: http://madeyski.e-informatyka.pl/download/NguyenMadeyski16CS.pdf

