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Abstract. First order mutation testing is used to evaluate the quality of a given set of test cases by 

inserting single changes into the program under test to produce first order mutants (FOMs) of the original 

program, and then checking whether tests are good enough to detect the artificially injected defects or not. 

However mutation testing is not yet widely used due to the problems of a large number of generated 

mutants and limited realism of introduced changes that not necessarily reflect real software defects. 

Furthermore, many of generated mutants are equivalent, i.e., keep the program semantics unchanged and 

thus cannot be detected by any test suite. Higher order mutation testing has been coined as a promising 

solution for overcoming the above mentioned limitations of first order mutation testing. In particular, 

finding strongly subsuming higher order mutants (SSHOMs), which are able to replace all of its 

constituent FOMs without scarifying test effectiveness and, simultaneously, able to reflect complex, real 

defects, which require more than one change to correct them, is considered an important research 

challenge we focus on. The contribution of this paper embraces a new, extended classification of higher 

order mutants (HOMs) to cover all cases of generated HOMs, and fitness functions and empirical 

comparison of four different multi-objective optimization algorithms to generate, evaluate HOMs as well 

as search for valuable high quality and reasonable HOMs (strongly subsuming and coupled HOMs) and 

10 other ten types of HOMs. The main goal of this paper is to assert the effect of applying multi-objective 

optimization algorithms in the area of higher order mutation testing, and at the same time to assert the 

correctness of the proposed HOMs classification, objectives and fitness functions. Our experimental 

results show that the total number of generated HOMs is smaller (about 70%) in comparison to FOMs, 

while the mean ratio of reasonable HOMs (subsuming HOMs) to all found HOMs is over 56% and the 

mean ratio of high quality and reasonable HOMs (strongly subsuming and coupled HOMs) to all found 

reasonable HOMs (subsuming HOMs) is fairly high (around 8.74%). 
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INTRODUCTION 

There are many optimization problems, which have more than one objective function and the objective functions are 

conflicting, to some extent, preventing simultaneously the simple optimization of each objective. Multi-objective 

optimization algorithms, which have been used for solving optimization problems and making the decisions that satisfy 

multiple optimized objectives, are successful methods. In this paper, we investigate applying multi-objective 

optimization algorithms to search for HOMs, which are able to improve the quality of first order mutation testing.  

The first order mutation testing, originally proposed in 1970s by DeMillo et al. (1978) and Hamlet (1977), has been 

introduced as a technique to assess the quality of test cases. Mutation testing is used to evaluate the fault detection 

capability of the test suits by inserting changes into the original program to generate mutations, and then checking 

whether the given set of test cases is good enough to detect the difference between original program and its mutants or 

not. Mutants are the different versions of an original program generated by inserting, via a mutation operator, only one 

semantic change (or fault) into the original program.  If a test case distinguishes between the mutant and the original 

program, it is said to kill the mutant. In other words, the mutant is killed by the test case. Conversely, a mutant is said to 

be “alive” if no test case detects the injected fault. One of the limitations of the first order mutation testing is a large 

number of generated mutants, while most of them are simple and easy to detect and do not denote realistic faults 

(Nguyen and Madeyski 2014, Purushothaman and Perry 2005). Subsequent serious problem of mutation testing is the 

generation of many, useless equivalent mutants (Harman et al. 2010, Madeyski et al. 2014, Nguyen and Madeyski 2014, 

Papadakis et al. 2015). The main goal of higher order mutation testing, which was first proposed in 2009 by Jia and 

Harman, is to generate higher order mutants (HOMs) that can be used to improve the effectiveness of mutation testing. 

HOMs are the mutants generated by combining two or more first order mutants. Jia and Harman (2009) (also 

Harman et al. (2010)) introduced six types of generated HOMs on the basis of two rules: 

Rule 1: If a HOM is harder to kill than its constituent first order mutants (FOMs) then it is called a “Subsuming 

HOM”, otherwise it is a “Non-Subsuming HOM”. Subsuming HOMs can be divided into two groups: “Strongly 

Subsuming HOM” if a set of test cases (TCs) which kills HOM is a subset of the intersection of the sets of TCs which 

kill FOMs, otherwise it is a “Weakly Subsuming HOM”.  

Rule 2: A HOM is called “Coupled HOM” if a set of TCs that kills its constituent FOMs also contains cases that kill 

HOM. Otherwise, it is called “De-coupled HOM”. 

Assume that h is a HOM constructed from FOMs f1,…,fn, T is the set of all given test cases, Th is the subset of T that 

kills the HOM h, while T1,…,Tn are the subsets of T that kill the constituent FOMs f1,…,fn respectively. On the basis of 

the aforementioned rules, Jia and Harman (2009) defined six types of HOMs: 
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Strongly Subsuming and Coupled HOM is harder to kill than any constituent FOMs and only be killed by subsets of 

the intersection of sets of test cases that kill each constituent FOM. As suggested by Jia and Harman (2009), Strongly 

Subsuming and Coupled HOM can be used to replace all of its constituent FOMs without loss of test effectiveness. 

Therefore, finding Strongly Subsuming and Coupled HOMs can help us improve the effectiveness of mutation testing 

process. 

Still there is little research in the field of applying multi-objective optimization algorithms to search for Strongly 

Subsuming and Coupled HOMs, although this is a promising approach. There are three papers by Harman et al. (2010) 

and Langdon et al. (2009, 2010), which focused on multi-objective higher order mutation testing with genetic 

programming. They used only one multi-objective optimization algorithm, NSGAII, to search for higher order mutants 

which are both hard to kill and realistic.  

The contribution of this paper is to propose a new classification of HOMs to cover all of available cases of generated 

HOMs. We also propose new objectives and fitness functions as well as perform an empirical evaluation of four 

different multi-objective optimization algorithms for constructing HOMs and finding valuable strongly subsuming and 

coupled HOMs (named “high quality and reasonable HOMs” in our HOMs classification). We apply four multi-

objective optimization algorithms - eMOEA (Epsilon-MOEA), NSGAII, eNSGAII (Epsilon-NSGAII), NSGAIII - to 

search for valuable high quality and reasonable HOMs for three given Java open source projects. We not only compare 
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the effectiveness of the four proposed algorithms in term of their ability to find high quality and reasonable HOMs but 

also analyze the number of categories of HOMs generated. 

The rest of the paper is organized as follows.  The second section presents the landscape of the reported research on 

mutation testing and higher order mutation testing. The third section includes our approach for classification and 

identifying HOMs based on new, proposed by us objectives and fitness function. The fourth section presents the 

experimental goals, the proposed multi-objective optimization algorithms and implementation details. The fifth section 

shows results of the empirical evaluation required to answer the posed research questions. The sixth section presents the 

discussion of our approach and results, while threats to validity are discussed in seventh section. The last section 

presents conclusions and proposition of future works. 

BACKGROUND 

First order mutation testing (traditional mutation testing (MT)) (DeMillo et al. 1978, Hamlet 1977) is a highly 

automated and useful technique for evaluating the fault-finding effectiveness (Madeyski 2007, 2008, 2010b) of tests and 

many researchers are now involved in mutation testing research. However, there are three main challenges (Harman et 

al. 2010, Madeyski et al. 2014, Nguyen and Madeyski 2014): a large number of mutants (this also leads to a very high 

computational cost); realism of generated mutants; and equivalent mutant problem (Madeyski et al. 2014, Papadakis et 

al. 2015). That is also one of the reasons why mutation testing is not yet widely adopted in practice. A lot of approaches 

have been proposed for overcoming the MT’s problems (Nguyen and Madeyski 2014) including second order mutation 

testing (Madeyski et al. 2014, Papadakis and Malevris 2010, Polo et al. 2008, Kintis et al. 2010) or higher order 

mutation testing (Jia and Harman 2008, 2009, Harman et al. 2010, Langdon et al. 2010) in general. 

Higher order mutation testing is an idea presented by Jia and Harman (2009) and in a manifesto by Harman et al. 

(2010). This promising idea offers solutions to overcome the limitations of traditional mutation testing. Mutants can be 

classified into two types: First Order Mutants (FOMs) and Higher Order Mutants (HOMs). The first are used in 

traditional mutation testing and generated by applying mutation operators only once in each mutant. The second are 

used in higher order mutation testing and constructed by inserting two or more changes per mutant. 

According to research results of second order mutation testing (Madeyski et al. 2014,Papadakis and Malevris 2010, 

Kintis et al. 2010, Polo et al. 2008), not only about 50% mutants were reduced without loss of effectiveness of testing 

(Madeyski et al. 2014, Papadakis and Malevris 2010, Polo et al. 2008), but also the number of equivalent mutants can 

be reduced (i.e., the reduction in the mean percentage of equivalent mutants passes from about 18.66% of total of FOMs 

to about 5% of total of HOMs (Polo et al. 2008) or the second order mutation testing significantly reduced the number 

of equivalent mutants in comparison to the first order mutation, while the size of the effect was medium (Madeyski et 
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al. 2014)) and generated second order mutants (SOMs) can be harder to kill than first order mutants (Madeyski et al. 

2014, Papadakis and Malevris 2010, Kintis et al. 2010, Polo et al. 2008). 

In 2010, Jia and Harman introduced some approaches to find Subsuming HOMs, Strongly Subsuming HOMs and 

other types of HOMs (see first Section) by using the following algorithms: Greedy, Genetic and Hill-Climbing. Their 

experiments showed approximately 15% of all found Subsuming HOMs were Strongly Subsuming HOMs and they also 

indicated that finding Strongly Subsuming HOMs may not be too difficult. 

Based on the claim of Purushothaman and Perry (2005) which indicated that a modification made to fix one real 

fault needs several source code changes, Langdon et al. (2009) believed that most of the generated FOMs are simple 

and do not denote realistic faults. In order to produce better mutants, they suggested inserting “semantically close” 

faults instead of inserting “syntactically close” faults to the original program under test. They applied NSGA-II, a multi-

objective optimization algorithm, with genetic programming in the area of higher order mutation testing and the results 

demonstrated that this approach is able to find higher order mutants that represent more realistic complex faults and 

harder to kill. 

In this paper, we propose not only a new classification of HOMs but also new objectives and fitness functions. And 

based on that, our research focuses on applying and comparing the effectiveness of four different multi-objective 

optimization algorithms to search for valuable high quality and reasonable HOMs with our HOMs classification as well 

as our objectives and fitness functions. Our main goal is to assert the effect of searching high quality and reasonable 

HOMs applying multi-objective optimization algorithms, and at the same time to assert the correctness of the proposed 

HOMs classification, objectives and fitness functions in the next Section. 

AN APPROACH FOR HOMS CLASSIFICATION, OBJECTIVES AND FITNESS FUNCTIONS 

Our investigation is to propose an approach for constructing HOMs in order to reduce the number of generated mutants 

as well as to increase realism of mutants. The constructed HOMs should be more realistic (reflect real faults) and harder 

to kill than any constituent FOMs. It means that the number of TCs, which can kill HOMs, is as small as possible. 

Based on the idea “number of TCs which can kill HOMs is as small as possible”, we propose a HOMs classification, 

objectives functions and fitness functions which we will apply to the different multi-objective optimization algorithms 

to identify and search for HOMs, especially strongly subsuming and coupled HOMs (named “high quality and 

reasonable HOMs” in our HOMs classification). Each high quality and reasonable HOM represents an optimal solution 

that we want to find out.  
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HOMs classification 

The idea of new HOMs classification approach is based on the combination of a set of test cases, which kill HOM, and 

sets of TCs, which kill its constituent FOMs. For the sake of simplicity, we use a second order mutant to illustrate our 

method for HOMs classification. The notations are explained below (See Figure 1): 

H: a HOM, constructed from FOMs: F1 and F2 

T: The given set of test cases 

TF1⊂T: Set of test cases that kill FOM1  

TF2⊂T: Set of test cases that kill FOM2 

TH⊂T: Set of test cases that kill H 

 

Figure 1. The combination of sets of TCs 

A⊂TH: Set of test cases that can kill H and all its constituent FOMs. 

B⊂TH: Set of test cases that kill H but cannot kill any its constituent FOMs. 

C⊂TH: Set of test cases that kill H and can kill FOM1 or FOM2. 

In the proposed classification of higher order mutants of Harman et al. (2009, 2010), they mentioned “Subsuming 

HOM” with meaning the set of TCs which kills HOM is smaller than the set of TCs which kills constituent FOMs, in 

other words HOM is harder to kill than FOMs. By contrast, “Non-Subsuming HOM” is easier to kill than FOMs. They 

also defined that, if a set of TCs that kills its constituent FOMs also contains cases that kill HOM then the HOM is 

called “Coupled HOM”, otherwise it is called “De-coupled HOM” (Jia and Harman 2009, Harman et al. 2010). Based 

on that, they classified HOMs into 6 groups (see First Section). However, they did not mention the cases as follows: 

Case 1: The set of TCs, which can kill the HOM (TH), is a subset of the set of TCs, which can kill FOM1 or FOM2. 

It means that, B is an empty set, TH includes only A and C. 

Case 2: The set of TCs, which can kill the HOM, has some TCs that belong to the set of TCs, which can kill FOM1 

or FOM2 but not both, while other TCs do not belong to the aforementioned set. It means that A is an empty set, TH 

includes only B and C. 
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We extend the proposed classification of higher order mutants of Harman et al. (2009, 2010) by proposing our new 

rules in order to cover all of available cases of generated HOMs. The categories of HOMs are named on a basis of the 

new rules below (Rule 3, 4, 5, 6 and 7), and are illustrated Table 1. The (*) notation is used in this paper in order to show 

the names that were defined by Harman et al. (2009, 2010). 

Rule 3: If set of test cases A⊂TH (see Figure 1), which can kill a HOM and all its constituent FOMs, is not empty 

then HOM is called a “quality HOM”, otherwise it is a “non-quality HOM”. In case A⊂TH is a not empty set while both 

B and C are empty, HOM is called a “high quality HOM”. 

Rule 4: If a HOM is harder to kill than its constituent FOMs then it is a “reasonable HOM” (subsuming HOM(*)), 

otherwise it is a “un-reasonable HOM” (non-subsuming HOM(*)). 

Rule 5: A HOM, which is killed by a set of TCs that can kill FOM1 or FOM2, is called “HOM With Old Test 

Cases”. In case the aforementioned set of TCs is a subset of A (see Figure 1), it is “high quality and reasonable HOM” 

(Strongly Subsuming and Coupled HOM(*)). 

Rule 6: A HOM, which is killed by a set of TCs that cannot kill any their constituent FOMs (this set of TCs ⊂ B, 

see Figure 1), is called “HOM With New Test Cases”. 

Rule 7: A HOM, which is killed by a set of TCs which has some TCs ⊂ B and some others TCs ⊂ A or ⊂ C (see 

Figure 1), is called “HOM With Mixed Test Cases”. 

Table 1. Eleven categories of HOMs based on the combination of sets of testcaces. 

Case Illustration HOM is 

H1 

 

Equivalent Mutant(*) (TH is null) 

H2 

 

Non-Quality, Un-Reasonable and With 

New TCs. 

TH		is	null 

	 	TF1 TF2 

	 TH 

	 	TF1 TF2 
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H3 

 

Non-Quality, Un-Reasonable and With 

Mixed TCs. 

H4 

 

Non-Quality, Reasonable and With New 

TCs. 

H5 

 

Non-Quality, Reasonable and With 

Mixed TCs. 

H6 

 

Non-Quality, Reasonable and With Old 

TCs. 

H7 

 

High quality and Reasonable 

(Strongly Subsuming and Coupled(*)) 

	 	
TF1 TF2 

	 TH 

	TH 

	 	TF1 TF2 

	 	
TF1 TF2 

	 TH 

	 	
TF1 TF2 

TH	 
TH=	(TF1∪TF2)\(TF1∩TF2) 

	 	TF1 TF2 	

TH 
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H8 

 

Quality, Reasonable and With Mixed 

TCs. 

H9 

 

Quality, Reasonable and With Old TCs. 

H10 

 

Quality, Un-Reasonable and With Old 

TCs. 

H11 

 

Quality, Un-Reasonable and With 

Mixed TCs. 

 

Objectives and fitness functions 

As we mentioned above, we want to search for the HOMs, especially High quality and Reasonable HOMs (strongly 

subsuming and coupled HOMs(*)), which are killed by as small as possible set of TCs. Therefore, we focus on the set of 

TCs, which can kill HOMs and its subsets. The Figure 1 shows that the set of TCs that kills a HOM can be divided into 

3 subsets: 

	 	
TF1 TF2 

	 TH 

	 	

TF1 TF2 

	 TH 

	 	TF1 TF2 

TH 

TH=	TF1∪TF2 

	 	
TF
1 

TF
2 

	

T
H 
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- The first is the subset that can kill HOM and all its constituent FOMs (subset A) 

- The second is the subset that kills HOM and can kill FOM1 or FOM2 (subset C) 

- The third is the subset that only kills HOM and cannot kill any FOMs (subset B) 

HOM is called a High quality and Reasonable HOM when the subsets B, C are simultaneously empty and subset A 

is not empty. In this case, the number of TCs (subset A) that can kill High quality and Reasonable HOM is as small as 

possible. If all of 3 subsets are empty, HOM is equivalent HOM. If A and C are empty, B is not empty, we call “HOM 

With New Test Cases”. By contrast, if B is empty but A and C are not empty, we call “HOM With Old Test Cases”. If 

B is not empty and at least one of A or C is not empty, we call “HOM With Mixed Test Cases”. 

From that, we propose objectives and fitness functions (see equations below) to apply multi-objective optimization 

algorithms for searching high quality and reasonable HOMs (as well as other types of HOMs) as follows: 

Objective 1: Minimize the number of TCs that kill HOM and also kill all its constituent FOMs (The fitness function 

is fitness(OB1) in Equation 1). 

Objective 2: Minimize the number of TCs that kill HOM but cannot kill any their constituent FOMs (The fitness 

function is fitness(OB2) in Equation 2). 

Objective 3: Minimize the number of TCs that kill HOM and can kill FOM1 or FOM2 (The fitness function is 

fitness(OB3) in Equation 3). 

 
T

TTT
H

FFHOBfitness
#

)(#
)1( 21∩∩
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TTT
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∪
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The values of fitness(OB1), fitness(OB2) and fitness(OB3) lie between 0 and 1. In addition, we also propose the 

fitness(H) function (Equation 4) for the objective “HOM is harder to kill than its constituent FOMs”. The fitness(H) is 

used to evaluate a HOM whether it is a “reasonable HOM” or “un-reasonable HOM”. The value of fitness(H) can be 

divided into 3 groups: If fitness(H)=0, HOM is a equivalent mutants; If 0<fitness(H)<1, HOM is a reasonable HOM; If 

fitness(H)>=1, HOM is a un-reasonable HOM. Generated HOMs are identified on a basis of the values as shown in 

Table 2. V1, V2, V3 and V4 are the values of fitness(OB1), fitness(OB2), fitness(OB3) and fitness(H) respectively. 
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Table 2. Identilfy HOMs based on the values of fitness functions. 

Case V1 V2 V3 V4 HOM is 

H1 0 0 0 0 Equivalent Mutant(*) (TH is null) 

H2 0 1 0 >=1 Non-Quality, Un-Reasonable and With New 

TCs. 

H3 0 0<V2<1 0<V3<1 >=1 Non-Quality, Un-Reasonable and With Mixed 

TCs. 

H4 0 1 0 0<V4<1 Non-Quality, Reasonable and With New TCs. 

H5 0 0<V2<1 0<V3<1 0<V4<1 Non-Quality, Reasonable and With Mixed TCs. 

H6 0 0 1 0<V4<1 Non-Quality, Reasonable and With Old TCs. 

H7 0<V1<=1 0 0 0<V4<1 High quality and Reasonable 

(Strongly Subsuming and Coupled(*)) 

H8 0<V1<=1 0<V2<1 0<=V3<1 0<V4<1 Quality, Reasonable and With Mixed TCs. 

H9 0<V1<=1 0 0<V3<1 0<V4<1 Quality, Reasonable and With Old TCs. 

H10 0<V1<=1 0 0<V3<1 1 Quality, Un-Reasonable and With Old TCs. 

H11 0<V1<=1 0<V2<1 0<=V3<1 >=1 Quality, Un-Reasonable and With Mixed TCs. 

 

EXPERIMENT PLANNING AND EXECUTION 

Goals 

We pose the following research questions (RQ) that the study will answer: 

RQ1: How popular are mutants in the identified mutant categories (H1-H11)? 

In this paper, we introduce a new HOMs classification and applied multi-objective optimization algorithms to 

generate higher order mutants. The goal of RQ1 is to investigate the number (distribution) of HOMs in the identified 

mutant categories. 

RQ2: What are the proportions of “not good” HOMs that were generated? 

“Not good” HOMs mean Non-quality and Un-reasonable HOMs (H2 and H3), which are Non-quality HOMs and 

easier to kill than their constituent FOMs. This question allows us to evaluate the proportions of Non-quality and Un-

reasonable HOMs (H2 and H3), which were generated. 

RQ3: Which multi-objective optimization algorithms are better suitable for searching high quality and reasonable 

HOMs and to avoid equivalent mutants? 
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We use RQ3 to evaluate the ability of proposed four multi-objective optimization algorithms in term of not only the 

number of generated high quality and reasonable HOMs but also the number of generated equivalent mutants for each 

algorithm. 

Multi-objectives optimization algorithms 

We perform an empirical evaluation of multi-objective optimization algorithms, guided by the aforementioned fitness 

functions, searching for high quality and reasonable HOMs based on the proposed HOMs classification. 

NSGA-II is the second version of the Non-dominated Sorting Genetic Algorithm that was proposed by Deb et al. 

(2002) for solving non-convex and non-smooth single and multi-objective optimization problems. Its main features are: 

it uses an elitist principle; it emphasizes non-dominated solutions; and it uses an explicit diversity preserving 

mechanism. NSGA-III is the extension of NSGA-II which is based on the supply of a set of reference points and 

demonstrated its working in three to 15-objective optimization problems (Deb et al. 2014). The εNSGA-II (eNSGA_II) 

extends NSGA-II’s concepts by adding ε-dominance, adaptive population sizing, and self-termination to minimize the 

need for parameter calibration. ε-dominance is a concept where by a user is able to specify the precision with which he 

wants to obtain the Pareto-optimal solutions to a multi-objective problem, in essence giving him the ability to assign a 

relative importance to each objective (Adekanmbi et al. 2014, Kollat and Reed 2005). The εMOEA (eMOEA) is a 

steady state multi-objective evolutionary algorithm that co-evolves both an evolutionary algorithm population and an 

archive population by randomly mating individuals from the population and the archive to generate new solutions 

(Kollat and Reed 2005, Deb et al. 2003). 

Supporting tool 

Judy (Madeyski et al. 2014, Madeyski and Radyk 2010) is a mutation testing tool for Java. It supports large set of 

mutation operators, as well as HOM generation, HOM execution and mutation analysis. The list of some mutation 

operators available in Judy (Madeyski et al. 2014, Madeyski and Radyk 2010) is presented in Table 3. 

Table 3. Java mutation operators available in Judy 

AIR AIR_Add 

AIR_Div 

AIR_LeftOperand 

AIR_Mul 

AIR_Rem 

AIR_RightOperand 

AIR_Sub 

Replaces basic binary arithmetic instructions with ADD 

Replaces basic binary arithmetic instructions with DIV 

Replaces basic binary arithmetic instructions with their left operands 

Replaces basic binary arithmetic instructions with MUL 

Replaces basic binary arithmetic instructions with REM 

Replaces basic binary arithmetic instructions with their right operands 

Replaces basic binary arithmetic instructions with SUB 

JIR JIR_Ifeq 

JIR_Ifge 

Replaces jump instructions with IFEQ (IF_ICMPEQ, IF_ACMPEQ) 

Replaces jump instructions with IFGE (IFICMPGE) 
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JIR_Ifgt 

JIR_Ifle 

JIR_Iflt 

JIR_Ifne 

JIR_Ifnull 

Replaces jump instructions with IFGT (IF_ICMPGT) 

Replaces jump instructions with IFLE (IF_ICMPLE) 

Replaces jump instructions with IFLT (IF_ICMPLT) 

Replaces jump instructions with IFNE (IF_ICMPNE, IF_ACMPNE) 

Replaces jump instruction IFNULL with IFNONNULL and vice-versa 

LIR LIR_And 

LIR_LeftOperand 

LIR_OrReplaces 

LIR_RightOperand 

LIR_Xor 

Replaces binary logical instructions with AND 

Replaces binary logical instructions with their left operands 

Replace binary logical instructions with OR 

Replaces binary logical instructions with their right operands 

Replaces binary logical instructions with XOR 

SIR SIR_LeftOperand 

SIR_Shl 

SIR_Shr 

SIR_Ushr 

Replaces shift instructions with their left operands 

Replaces shift instructions with SHL 

Replaces shift instructions with SHR 

Replaces shift instructions with USHR 

Inheritance IOD 

IOP 

IOR 

IPC 

ISD 

ISI 

Deletes overriding method 

Relocates calls to overridden method 

Renames overridden method 

Deletes super constructor call 

Deletes super keyword before fields and methods calls 

Inserts super keyword before fields and methods calls 

Polymorphism OAC 

OMD 

OMR 

PLD 

PNC 

PPD 

PRV 

Changes order or number of arguments in method invocations 

Deletes overloading method declarations, one at a time 

Changes overloading method 

Changes local variable type to super class of original type 

Calls new with child class type 

Changes parameter type to super class of original type 

Changes operands of reference assignment 

Java-Specific 

Features 

EAM 

EMM 

EOA 

EOC 

JDC 

JID 

JTD 

JTI 

Changes an access or method name to other compatible access or method names 

Changes a modifier method name to other compatible modifier method names 

Replaces reference assignment with content assignment (clone) and vice-versa 

Replaces reference comparison with content comparison (equals) and vice-versa 

Deletes the implemented default constructor 

Deletes field initialization 

Deletes this keyword when field has the same name as parameter 

Inserts this keyword when field has the same name as parameter 

Jumble-Based Arithmetics 

Jumps 

Returns 

Mutates arithmetic instructions 

Mutates conditional instructions 

Mutates return values 
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Increments Mutates increments 

 

Software under test (SUT) 

In our empirical study, we use three real-world, open source projects (see Table 4). There is one small project and two 

larger ones in term of lines of code. Table 4 shows the projects selected for the experiment along with their number of 

classes (NOC), lines of code (LOC) and number of given test cases. 

Table 4. Software under test 

Project NOC LOC # Test cases 

BeanBin (http://beanbin.sourceforge.net) 72 5925 68 

Barbecue (http://barbecue.sourceforge.net) 57 23996 190 

JWBF (http://jwbf.sourceforge.net) 51 13572 305 

 

BeanBin is a tool to make persisting EJB (Enterprise JavaBeans) 3.0 entity beans easier. 

Barbecue is a library that provides the means to create barcodes for Java applications. 

JWBF(Java Wiki Bot Framework) is a library to maintain Wikis like Wikipedia based on MediaWiki and provides 

methods to connect, modify and read collections of articles, to help created wiki bot. 

Approach 

We use Judy mutation testing tool for Java (Madeyski et al. 2014, Madeyski and Radyk 2010) to generate and evaluate 

FOMs and HOMs with the same full set of mutation operators of Judy (see Table 3) for the three software projects 

under test. The four applied multi-objective optimization algorithms for producing HOMs base on the MOEA 

Framework (http://www.moeaframework.org). We set out the experimental procedure as follows: 

for each software under test do 

- generate all possible FOMs by applying the set of Judy mutation 

operators 

- set objectives and fitness functions 

 for each multi-objective optimization algorithm do 

  - set populationSize =100 

  - set maxMutationOrder =15 

- from set of FOMs, generate, evaluate HOMs, find as many high 

quality and reasonable HOMs as possible, guided by objective 

functions and fitness function 
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- count the percentage of categories of HOMs 

- count the percentage of Non-Quality and Un-Reasonable HOMs 

- count the percentage of high quality and reasonable HOMs within 

the reasonable HOMs 

 end 

end 

RESULTS AND ANALYSIS 

Differences in the source code of the three SUT projects resulted in some variations in mutation operators finally used 

to generate HOMs (see Table 5). 

Table 5. Mutation operators used 

Project Operators 

BeanBin JIR_Ifle;JIR_Ifeq;JIR_Iflt;JIR_Ifne;JIR_Ifge;JIR_Iflt;JIR_Ifnull; 

AIR_Div;AIR_LeftOperand;AIR_RightOperand;AIR_Rem;AIR_Mul; 

EAM;EOC;PLD;CCE;LSF;REV;ISI;JTD;JTI;OAC;DUL; 

Barbecue JIR_Ifge;JIR_Ifeq;JIR_Ifgt;JIR_Ifne;JIR_Iflt;JIR_Ifle;JIR_Ifnull; 

AIR_Add;AIR_Div;AIR_Sub;AIR_LeftOperand;AIR_RightOperand; 

AIR_Mul;AIR_Rem;JTI;JTD;JID;JDC;EAM;OAC;EOC;FBD;IPC;EGE;EMM;CCE;LSF;REV; 

JWBF JIR_Ifge;JIR_Ifeq;JIR_Ifgt;JIR_Ifne;JIR_Iflt;JIR_Ifle; 

EAM;EOA;JTD;JTI;JID;PRV;OAC;PLD; 

 

The mean value of mutation score indicator (MSI) for each project under test after higher order mutation testing is 

presented in Table 6. MSI, is the ratio of killed mutants to all generated mutants (Madeyski 2007, 2008, 2010b, 

Madeyski et al. 2014, Madeyski and Radyk 2010). MSI is a quantitative measure of the quality of test cases. It is 

different from mutation score (MS) that was defined as the ratio of killed mutants to difference of all generated mutants 

and equivalent mutants (DeMillo et al. 1978, Hamlet 1977). JWBF is a project with the highest MSI. It means that 

JWBF is a project, which has higher quality set of test cases than the other analyzed SUTs. While the numbers of live 

mutants of Barbecue and BeanBin projects are about 30%  and 57%. This leads the given sets of test cases of Barbecue 

and BeanBin projects need to improve the quality in term of fault detection. 

Table 6. The mean value of MSI for each project under test (%) 

Project Barbecue BeanBin JWBF 



This	is	an	Accepted	Manuscript	of	an	article	published	on	09	Feb	2016	by	Taylor	&	Francis	Group	in	
Cybernetic	and	Systems,	Vol.	47,	Iss.	1-2	(2016),	p.	48-68,	available	online:	
http://dx.doi.org/10.1080/01969722.2016.1128763	

MSI 69.24 43.09 92.28 

 

Answer to RQ1 

Table 7 shows the numbers of generated FOMs of projects under test (PUTs), while Table 8 presents the number of 

total generated HOMs as well as numbers of HOMs in each category (defined in third Section) in different PUTs using 

multi-objective optimization algorithms with the proposed objectives and fitness functions. 

Table 7. The mean number of generated FOMs 

Project Barbecue BeanBin JWBF 

Number of FOMs 3084 1330 1482 

 

	

Table 8. Number of generated HOMs of 11 categories  

Pro. 
eMOEA NSGAII eNSGAII NSGAIII 

Bar Bean JWBF Bar Bean JWBF Bar Bean JWBF Bar Bean JWBF 

HOMs 886 424 216 891 402 238 379 338 123 887 398 230 

H1 274 250 19 251 259 13 129 176 11 272 227 20 

H2 0 1 0 1 0 0 0 0 0 2 0 0 

H3 69 6 3 90 7 6 31 2 2 88 3 4 

H4 11 55 0 18 38 0 0 58 0 16 57 0 

H5 5 0 0 9 0 0 0 0 0 3 0 0 

H6 472 68 169 458 55 193 174 58 91 448 69 171 

H7 37 13 6 44 15 4 31 14 7 30 15 10 

H8 1 0 0 0 0 0 0 0 0 0 0 0 

H9 1 1 2 5 0 2 3 0 3 4 0 2 

H10 8 30 16 9 28 17 3 30 7 15 27 21 

H11 8 0 1 6 0 3 8 0 2 9 0 2 

 

The first step of our experimental procedure is to generate all possible FOMs, and our purpose is to compare the 

number of generated FOMs with the number of generated HOMs. From the set of FOMs, HOMs were generated and 

evaluated by applying multi-objective optimization algorithms, guided by objectives and fitness functions. According to 

the results which are presented in Table 7 and Table 8, the number of generated HOMs was reduced at least 70% 

compared with the produced first order mutants. Reduction number of generated mutants leads to reduction the cost of 

execution of mutation testing. 
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The results presented in Figure 2 indicate that the majority of generated HOMs are H1 (equivalent mutants) and H6 

(Non-Quality, Reasonable and With Old TCs.). A high number of H6 shows that there are many generated HOMs 

which are more difficult to be killed than FOMs and only be killed by TCs belonging to the union of sets of TCs that 

can kill their constituent FOMs, except the TCs that can kill simultaneously all their constituents (The mutants of H6 

only be killed by the TCs belonging to set C, see Figure 1 in Third section). The mean proportion of H7 in total of 

generated HOMs is similar to H3, H4 and H10, around from 4% to 5.7%, whilst the numbers of H2, H5, H8, H9 and 

H11 are very small. Even only one H8 was generated in our experiment. 

 

Figure 2. The mean proportion of 11 categories of HOMs in total of HOMs(%) 

Answer to RQ2 

RQ2 is aimed to evaluate percentage of Non-quality, Un-reasonable HOMs (H2 and H3). These HOMs are “not good” 

because they are the HOMs which are easier to kill than their constituent FOMs and have no any test case which can 

kill them and simultaneously all their constituent FOMs. Our results indicate that the percentage of these HOMs is not 

large. The mean percentages of Non-quality, Un-reasonable HOMs corresponding to the Barbecue, BeanBin and JWBF 

projects are around 8.97%, 1.14%, 2.13% respectively (see Figure 3).  
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Figure 3. The mean proportion of Non-quality, Un-reasonable HOMs (H2 and H3) and other HOMs (%) to all 

generated HOMs 

Answer to RQ3 

The ratio of reasonable HOMs (H4-H9) to total generated HOMs is fairly high, over 56% of total generated HOMs (see 

Table 9). This indicates that we can find the mutants that are harder to kill and more realistic (reflecting real, complex 

faults) than FOMs by applying multi-objectives optimization algorithm.  

Table 9. The ratios of Reasonable HOMs and Equivalent HOMs to generated HOMs 

Algorithm % Reasonable HOMs % Equivalent HOMs 

eMOEA 57.91 32.89 

NSGA-II 56.80 32.69 

eNSGA-II 58.49 31.68 

NSGA-III 57.16 32.13 

 

Figure 4 shows the percentage of high quality and reasonable HOMs (H7) compared with total generated HOMs and 

the number of reasonable HOMs. The algorithm eNSGA-II is the best for searching for high quality and reasonable 

HOMs. Approximately 11% of reasonable HOMs, which were found by eNSGA-II algorithm, are classified as high 

quality and reasonable HOMs. According to the results of four applied algorithms, the mean ratio of high quality and 

reasonable HOMs to all found reasonable HOMs is about 8.74%. This number is high because the proportion of all 

reasonable HOMs to all generated HOMs is a large number, over 56% (see Table 9). Hence, we believe that high 

quality and reasonable HOMs are not too hard to find and therefore HOMs which are constructed by applying multi-
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objective optimization algorithm, especially high quality and reasonable HOMs, can be used to replace the set of their 

constituent FOMs without lost of test effectiveness. 

 

Figure 4. The ratios of H7 to total HOMs and Reasonable HOMs (%) 

DISCUSSION 

Our works based on the idea of application of multi-objective higher order mutation testing of Harman et al. (Jia and 

Harman 2008, 2009, Harman et al. 2010, Langdon et al. 2009, 2010). Although this is a promising approach, to the best 

of our knowledge, still there is little research in the field of applying multi-objective optimization algorithms in the field 

of higher order mutation testing. There are three papers, which were published by Harman et al. 2010, Langdon et al. 

2009 and 2010, focused on multi-objective higher order mutation testing with genetic programming. However, they 

used only one multi-objective optimization algorithm, NSGAII, to search for higher order mutants which are both hard 

to kill and realistic. According to their results, the number of equivalent mutants falls rapidly but the number of mutants 

grows exponentially in order with the number of changes made. 

We have proposed not only a new classification of HOMs based on the combination of a set of test cases (TCs), 

which kills HOM and sets of TCs which kill constituent FOMs but also new objectives and fitness functions, which are 

applied to multi-objective optimization algorithms for constructing HOMs. Our HOM classification can cover all of the 

available cases of generated HOMs, some of which were not mentioned in the classification of HOMs of Jia and 

Harman (2009) and Harman et al. (2010). In our proposed objective functions, we focus on constructing the HOMs, 

which are killed by as small sets of TCs as possible. It leads to reduce the number of generated HOMs. From that, we 

have investigated applying our proposing to multi-objective optimization algorithms for finding high quality and 

reasonable (strongly subsuming and coupled(*)) HOMs. Our main goal, similar to other authors, is to carry out 

investigation and to propose the approach, which can be used to construct the difficulties to kill and more realistic 

HOMs, especially high quality and reasonable HOMs, as well as reduce the number of generated higher order mutants 

in particular. Hence, it could be used to improve the mutation testing effectiveness in general. 

We have used a personal computer with Intel® Core ™ i5-2410M CPU@2.30GHz and 4GB RAM to run our 

experiment. The mean time for running mutation testing for Barbecue, BeanBin and JWBF projects (for each project, 
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we ran 5 algorithms) is 112.8 seconds, 32 seconds and 33 seconds. The time includes generation, evaluation, 

compilation and execution. The results of our experiment have indicated that the number of total generated HOMs was 

reduced at least 70% compared with FOMs.  It means that our approach can be used to overcome the first limitation of 

the traditional mutation testing. This limitation is a large number of mutants and this also leads to have a very high 

execution cost. We have also indicated that it is not too hard to find high quality and reasonable HOMs which are both 

harder to kill and more realistic than FOMs. They can be used to replace the set of their constituent FOMs without loss 

of test effectiveness. In addition to this, we have reported a low number of “not good” HOMs - the HOMs which are 

easier to kill than their constituent FOMs and the set of test cases which kill these HOMs cannot kill simultaneously 

their constituent FOMs. 

However the number of equivalent HOMs in our experiment is still large. In this case, we need further more 

researches to evaluate whether the HOMs are really equivalent mutants or not. There may exist some HOMs that are not 

killed by the given set of TCs but can be killed by some other new TCs (Omar et al. 2013). In this case, we have to 

create new TCs to improve the fault detection effectiveness of the existing set of TCs. 

We believe that we have exposed one of the promising approaches in the area of higher order mutation testing (the 

genuine idea by Jia and Harman (2009) and Harman et al. (2010)). Classifying and identifying HOMs by values of our 

objective and fitness functions which we apply in multi-objective optimization algorithms for finding valuable high 

quality and reasonable HOMs are useful in mutation testing. 

THREATS TO VALIDITY 

There is always a set of threats to the validity of the results. We identified some threats to the validity following the 

guidelines by Wohlin et al. (2012) and Madeyski (2010a). 

We identify some threats to the validity, which we will discuss in this section. A threat to external validity is that 

the selected subject programs may not be representative of Java programs in general, and therefore, the results of the 

study may not be generalizable to all Java programs. However, the selected SUTs are different in functionality. 

Furthermore, their size is comparable to or bigger than many of SUTs used in previous empirical studies by the 

mutation testing research community. 

Another threat to external validity stems from the mutation operators that were used to generate mutants. Using 

different tools that implement different mutation operators to generate mutants can lead to different results including 

different distribution of HOMs. However, the set of mutation operators supported by Judy (Madeyski et al. 2014) is 

rather wide in comparison to sets analyzed in other empirical studies investigating higher order mutation. Albeit, one 

may want to extend the set even further. 
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A threat to internal validity stems from the quality and the coverage of test cases. There is a possibility of getting 

different results if test suites of higher and lower quality or coverage were used.  

A threat to construct validity stems from the correctness of the implementation of Judy and the manual 

identification of equivalent mutants, which is a non-trivial and time-consuming activity (Madeyski et al. 2014 ). 

CONCLUSIONS AND FUTURE WORK 

Based on our classification of HOMs as well as our objective and the fitness functions, we apply four different multi-

objective optimization algorithms to search for high quality and reasonable HOMs (strongly subsuming and coupled 

HOMs(*)) and ten other types of HOMs. In our investigation, the main goal is to reduce the number of generated 

mutants and to find the high quality and reasonable HOMs. The results of our experiment indicate that our approach is 

able to reduce the generated HOMs compared with FOMs. Besides, the results also indicate that our approach could be 

useful in searching for available high quality and reasonable HOMs because all of four proposed algorithms, guided by 

our objective functions and fitness functions, found high quality and reasonable HOMs. 

The number of equivalent HOMs is still large. In this case, equivalent HOMs cannot be killed by any test cases of 

the given set of test cases T (see second Section). It means that they could be killed by some test cases that do not 

belong to T. So, in the future, further research is needed for improving our approach to assess whether HOMs are 

equivalent or not. In addition, we will apply the other search-based algorithms based on our proposed objective and 

fitness functions for comparing the effectiveness of different algorithms for high quality and reasonable HOMs. 
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