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Abstract. The goal of higher order mutation testing is to improve mu-
tation testing effectiveness in particular and test effectiveness in general.
There are different approaches which have been proposed in the area of
second order mutation testing and higher order mutation testing with
mutants order ranging from 2 to 70. Unfortunately, the empirical evi-
dence on the relationship between the order of mutation testing and the
desired properties of generated mutants is scarce except the conviction
that the number of generated mutants could grow exponentially with
the order of mutation testing. In this paper, we present the study of
finding the relationships between the order of mutation testing and the
properties of mutants in terms of number of generated high quality and
reasonable mutants as well as generated live mutants. Our approach in-
cludes higher order mutants classification, objective functions and fitness
functions to classify and identify generated higher order mutants. We use
four multi-objective optimization algorithms for constructing higher or-
der mutants. Obtained empirical results indicate that 5 is a relevant
highest order in higher order mutation testing.

Keywords: Mutation Testing, Higher Order Mutation, Higher Order
Mutants, Multi-objective optimization algorithm.

1 Introduction

Mutation testing has been considered as one of the most effective techniques for
evaluating the quality of given sets of test data which are used in software testing.
The technique is applied to assess the quality of given sets of test cases (TCs)
based on their ability of detecting the differences between program under test
(PUT) and its mutants [1,2]. The mutants are different PUT versions, which are
produced by syntactically altering the source code of the PUT. The syntactic
changes are called mutation operators. After executing the given set of test
cases on the original program (PUT) and each of its mutants, mutation testing
evaluates the quality of test cases by mutation score (MS) or mutation score
indicator (MSI). MS is defined as the ratio of killed mutants to the differences
of all generated mutants and equivalent mutants [1,2]. While MSI is the ratio of
killed mutants to all generated mutants [9,10,11,12].
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Many approaches (e.g., selective mutation, sampling mutation and weak mu-
tation) have been proposed to overcome limitations of mutation testing [6,14].
Higher order mutation testing, an idea of Jia and Harman in 2009 [5,3], is one
of the most promising solutions. Instead of using only one simple change as
the traditional mutation testing [1,2], higher order mutation testing uses more
complex changes to generate mutants by applying two or more mutation opera-
tors. An n-order mutant is created by n mutation operators, for example, it can
be generated by combining n first order mutants. Hence, higher order mutants
reflect more realistic complex faults and can be harder to kill than first order
mutants [5,3,8,4]. Strongly subsuming higher order mutants (HOMs) [5,3] can be
used to replace all of n constituent first order mutants (FOMs). This is not only
without loss of test effectiveness but potentially can reduce the cost of mutation
testing execution by reducing the number of generated mutants.

Equivalent mutant is the one that has the same semantic meaning as the
original program and thus cannot be detected any test suite [1,2]. Higher order
mutation testing can also be helpful to overcome equivalent mutants problem
(EMP) [12] which is a serious, long-standing problem of mutation testing.

In this paper, our research focuses on finding the “relevant highest order” of
higher order mutants based on the relationships between the order of mutation
testing and the properties of mutants. We apply multi-objective optimization al-
gorithms to search for valuable HOMs and investigate the relationships between
the order of mutation testing and the properties of mutants in term of ability
for constructing high quality and reasonable HOMs, as well as generating live
HOMs. High quality and reasonable HOM, one of 11 HOM types that were clas-
sified by us [15,16], is a HOM which is harder to kill than any constituent FOMs
and is only killed by the subset of the intersection of set of test cases that kill
each constituent FOM. This definition is the same as the definition of Strongly
subsuming and coupled HOM in the classification by Harman et al. [5,3] which
we extended. Live mutants are the mutants which cannot be killed by the given
test suite but could be killed by new quality TCs [17]. In this case, we have to
create new TCs to improve the fault detection effectiveness of the existing set
of TCs.

The rest of the paper is organized as follows. Section 2 is the overview of
the proposed approaches in higher order mutation testing. Section 3 presents
the experiment goals, the multi-objective optimization algorithms and imple-
mentation details. Section 4 includes the results to answer the posed research
questions. The last section includes the conclusions and further work.

2 Related work

Second order mutation testing is a specific case of higher order mutation testing.
According to results of works on second order mutation testing, not only at least
50% of mutants were reduced [19,18,12] without loss of effectiveness of testing,
but also the number of equivalent mutants can be reduced (i.e. the reduction in
the mean percentage of equivalent mutants passes from about 18.66% of total of
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FOMs to about 5% of total of HOMs [19] or the mean reduction of equivalent
HOMs is about 50% compared with FOMs [12]) and generated second order
mutants can be harder to kill than first order mutants [12][19][18][7].

In 2009, Jia and Harman [5][3] defined a new paradigm for mutation testing—
higher order mutation testing—and the rules to classify HOMs. They then used
search-based optimization algorithms to find and evaluate the proportion of sub-
suming, as well as strongly subsuming HOMs to all generated HOMs. Their ex-
periments showed approximately 15% of all found Subsuming HOMs are strongly
subsuming HOMs and they also indicated that finding such HOMs may not be
too difficult. The highest order of their experiment is 9 and they summarized that
“the highest order mutants may find application in attempts to reduce mutation
effort because they subsume the largest number of FOMs” [3].

Langdon et al. [8] suggested inserting “semantically close” faults instead of
inserting “syntactically close” faults to the original program under test in or-
der to produce better mutants. Their opinions are based on the claim of Pu-
rushothaman and Perry [20], who indicated that a modification made to fix one
real fault needs several source code changes. From analysis of the relationship
between syntax and semantics, Langdon et al. [8] introduced two objectives,
small semantic distance and minimum syntactic changes, which were applied us-
ing NSGA-II multi-objective optimization algorithm. Their goal is to find higher
order mutants that represent more realistic complex faults and are harder to kill.
The highest order of their experiment is 70 and the number of mutants grows
exponentially with order.

Omar et al. [17] presented the approach using search-based algorithms for
finding subtle HOMs with a new objective function to identify subtle HOMs.
They defined subtle HOMs as HOMs that are not killed by a given set of test
cases but can be killed by other new test cases. They set up different maximum
orders for each algorithm. For example, 25 is the maximum HOM degree for
Random Search Algorithm and 15 is the maximum HOM degree for Genetic
Algorithm. Their results indicate that the ability in finding subtle HOMs of
lower degrees or higher degrees belongs to different algorithms [17].

In our previous work [15,16], with 15 being the highest considered degree of
mutants, we used multi-objective optimization algorithms for finding valuable
high quality and reasonable HOMs (strongly subsuming and coupled HOMs)
based not only on a new classification of HOMs but also new objective and fitness
functions. The results indicated that our approach can be useful in searching for
available high quality and reasonable HOMs, and among them, eNSGA-II is
one of the best algorithms. In this paper we use the classification of HOMs, as
well as objective and fitness functions proposed by us [15,16]. There are eleven
categories of HOMs (see Table 1) and they are identified on a basis of the values
of 4 fitness functions [15][16].

Table 1: Eleven categories of HOMs (see [16] for details)

Name HOM is
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H1 Live (potentially equivalent) Mutant (TH is null)
H2 Non-Quality, Un-Reasonable and With New TCs
H3 Non-Quality, Un-Reasonable and With Mixed TCs
H4 Non-Quality, Reasonable and With New TCs
H5 Non-Quality, Reasonable and With Mixed TCs
H6 Non-Quality, Reasonable and With Old TCs
H7 High quality and Reasonable
H8 Quality, Reasonable and With Mixed TCs
H9 Quality, Reasonable and With Old TCs
H10 Quality, Un-Reasonable and With Old TCs
H11 Quality, Un-Reasonable and With Mixed TCs

H1 category describes live (and potentially equivalent) mutants, which cannot
be killed by the given set of test cases.

3 Experiment goals and set up

3.1 Goals

The study will answer the research questions posed as follows:
RQ1. What are the ratios of number of HOMs in the identified mutant

categories (H1-H11) to all generated HOMs for different orders?
By means of this question, we want to obtain the number of generated HOMs

in the identified mutant categories. A number of generated HOMs will be col-
lected and classified according to the kind of HOMs and according to the order
of HOMs.

RQ2. What are the ratios of high quality and reasonable HOMs (H7) to all
generated HOMs for different orders?

This question is, in fact, a part of the previous research question focused on
a kind of mutants being of special interest. The aim is to obtain the frequency
of generating high quality and reasonable HOMs (H7). Such mutants not only
reflect harder to kill, realistic, complex faults but also could be used to replace
all of its constituent FOMs.

RQ3. What are the ratios of “live (potentially equivalent) mutants” (H1) to
all generated HOMs for different orders?

Answering this question may shed some light while trying to find the relevant
highest order of mutation testing.

3.2 Experimental units and material

In this study we use the same mutation testing tool for Java called Judy, includ-
ing also multi-objective optimization algorithms for searching HOMs, and three
different projects under test for this study as in our previous works [15,16].
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Judy1 [12,13] mutation testing tool for Java not only provide the large set of
mutation operators but also has build-in support for HOMs generation, higher
order mutation testing execution and mutation analysis.

Four multi-objective optimization algorithms (NSGA-II, eNSGA-II, NSGA-
III and eMOEA) are implemented to produce and evaluate HOMs based on our
objective and fitness functions [16].

In our empirical study, we use three projects under test (PUT) [16], which
are real-world software projects. Table 2 shows lines of code (LOC), number of
classes (NOC) and number of given test cases (NOT) of the three selected open
source projects.

Table 2: Software projects under test

Project Under Test (PUT) LOC NOC NOT

BeanBin2 5925 72 68
Barbecue3 23996 57 190
JWBF (Java Wiki Bot Framework)4 13572 51 305

3.3 Approach

We set out the experimental procedure as follows (for each software, we run each
algorithm 3 times, after then we calculate the average numbers to evaluate):

f o r each so f tware under t e s t do
f o r each a lgor i thm do

loop 3 t imes
. generate a l l p o s s i b l e FOMs by apply ing
the s e t o f Judy mutation ope ra to r s
. s e t o b j e c t i v e and f i t n e s s f unc t i on s
f o r each multi−ob j e c t i v e opt imiza t i on a lgor i thm do

. s e t popu la t i onS i z e =100

. s e t maxMutationOrder =15

. from se t o f FOMs, generate and eva luate HOMs,
guided by ob j e c t i v e s and f i t n e s s f unc t i on s
. c a l c u l a t e the numbers to answer RQs

end f o r
end loop
. c a l c u l a t e the mean va lue s

end f o r
end f o r

1 http://www.mutationtesting.org/
2 http://beanbin.sourceforge.net
3 http://barbecue.sourceforge.net
4 http://jwbf.sourceforge.net
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4 Results and analysis

The maximum mutation order in our experiment is 15. Differences in the source
code of the three SUTs resulted in some variations in mutation operators finally
used to generate HOMs [15][16].

Answer to RQ1
To answer this question, we calculate the ratios of number of HOMs in each of

the identified mutant categories (H1-H11) to all generated HOMs (see Table 3),
as well as the ratios of number of HOMs of a particular order (2-15) to all
generated HOMs (see Table 4).

Table 3: The ratios of number of HOMs in the identified mutant cate-
gories to all generated HOMs [%]

HOMs eMOEA NSGAII eNSGAII NSGAIII

H1 35.58 34.16 37.61 34.26
H2 0.06 0.06 0 0.14
H3 5.11 6.72 4.18 6.28
H4 4.32 3.66 6.89 4.81
H5 0.33 0.59 0 0.2
H6 46.45 46.11 38.46 45.41
H7 3.68 4.12 6.18 3.62
H8 0.06 0 0 0
H9 0.26 0.45 0.71 0.4
H10 3.54 3.53 4.75 4.16
H11 0.59 0.59 1.18 0.73

Table 4: The ratios of number of HOMs of a particular order (2-15) to
all generated HOMs [%]

Order eMOEA NSGAII eNSGAII NSGAIII

2 11.65 12.57 9.34 12.18
3 15.67 14.70 14.12 14.82
4 14.69 16.11 14.01 14.94
5 13.57 15.08 14.73 12.56
6 11.07 8.93 7.44 9.39
7 7.81 6.93 7.08 8.53
8 5.96 5.57 3.34 5.22
9 4.13 4.47 5.28 4.31
10 3.60 4.08 3.13 3.51
11 2.10 2.52 5.14 3.37
12 3.01 3.55 5.03 2.84
13 2.81 1.49 4.67 3.31
14 1.63 2.19 3.47 2.38
15 2.30 1.81 3.22 2.64



Title Suppressed Due to Excessive Length 7

The ratios of number of HOMs in the identified mutant categories to all
generated HOMs are similar for four algorithms, see also Figure 1.

Fig. 1. The ratios of number of (H1-H11) to all generated HOMs [%]

The mean ratio of H1 mutants to all HOMs is around 35% and the ratio
of high quality and reasonable HOMs to all HOM is from 3.68% to 6.42%. H1
mutants in this case are live mutants, which cannot be killed by the given test
suite but could be killed by some other new quality TCs [17]. We need further
investigation to evaluate whether the HOMs are really equivalent mutants or
not. It includes creating the new quality TCs to detect the difference between
PUT and its non-equivalent mutants which belong to the set of live mutants.

A high number of H6 (see Table 3 and Figure 1) shows that there are many
generated HOMs which are more difficult to be killed than FOMs and only be
killed by TCs belonging to the union of sets of TCs that can kill their constituent
FOMs, except the TCs that can kill simultaneously all their constituents. The
ratio of total of reasonable HOMs (H4-H9) to all of generated HOMs is fairly
high, over 55% of total generated HOMs. This indicates that we can find the
mutants that are harder to kill and more realistic (reflecting real, complex faults)
than FOMs by applying multi-objectives optimization algorithm. Approximately
9% of reasonable HOMs (H4-H9) are classified as high quality and reasonable
HOMs (H7). This number is high because the ratio of all reasonable HOMs to
all generated HOMs is quite a large.

Table 4 describes the ratios of generated HOMs of a particular order to all
of generated HOMs. The results indicated that generally for lower orders the
number of generated HOMs is larger than for higher orders, for all of our four
search-based algorithms.

Answer to RQ2
High quality and reasonable HOMs (H7) are the HOMs which are more

realistic complex faults and harder to kill than any FOMs [16,15]. In addition,
using them to replace all of its constituent FOMs leads to reducing testing costs
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without loss of test effectiveness. Obtained empirical results show that we can
find high quality and reasonable HOMs from the 2nd-order to the 5th. For the
6th-order, as well as for higher orders, generated high quality and reasonable
HOMs are rare. There is lack of high quality and reasonable HOMs in many
cases (see Table 5). As a result, we may conclude that higher order mutation up
to the 5-th order can be rewarding wrt. searching for high quality and reasonable
HOMs (H7) by applying multi-objective optimization algorithms.

Table 5: The mean ratios of H7 to all generated HOMs per order [%]

Order 2 3 4 5 6 7 8 9 10 11 12 13 14 15

eMOEA 11.80 6.27 5.76 1.88 0.53 0.00 0.99 0.00 1.64 0.00 0.00 0.00 0.00 0.00
NSGAII 14.37 7.53 3.98 2.19 0.65 0.84 0.00 1.30 0.00 0.00 0.00 0.00 0.00 0.00
eNSGAII 20.38 11.96 8.46 4.88 0.00 0.00 0.00 0.00 0.00 0.00 2.14 0.00 0.00 0.00
NSGAIII 13.05 6.69 3.98 1.11 0.00 0.70 0.00 1.38 0.00 0.00 0.00 0.00 0.00 0.00

Answer to RQ3
Table 6 shows the mean ratios of live (and potentially equivalent) mutants

(H1) to all produced HOMs according to orders. The number of H1 mutants
is quite large–22 to 55% of the generated HOMs. Live mutants include non-
equivalent mutants and equivalent mutants. Non-equivalent mutants can be
killed by some new quality TCs. Equivalent mutants are really same-semantic-
meaning versions of the original program under test and cannot be killed by any
test suite. In this case, we need a further investigation to evaluate whether live
mutants are equivalent or not (a thorough review of the possible approaches and
their classification is presented by Madeyski et al. [12]). This leads to creating
new high quality TCs to improve the fault detection effectiveness of the existing
set of test cases.

Table 6: The mean ratios of H1 to all generated HOMs per order [%]

Order 2 3 4 5 6 7 8 9 10 11 12 13 14 15

eMOEA 59.53 41.41 33.07 22.75 25.40 35.26 32.01 36.67 27.32 37.38 30.72 37.06 36.14 40.17
NSGAII 50.54 43.59 32.53 26.13 28.91 29.97 38.33 27.39 33.33 30.77 27.32 35.06 26.55 32.26
eNSGAII 58.85 50.13 26.41 22.68 22.71 30.46 35.48 40.82 42.53 53.85 42.86 46.15 41.24 36.67
NSGAIII 48.45 42.24 28.82 29.54 23.89 33.26 26.62 27.65 41.24 37.06 48.95 22.16 35.83 30.08

FINDING: 5 is a relevant highest order in higher order mutation testing as
the ratio of high quality and reasonable HOMs (H7) to total number of HOMs
(generated using multi-objective optimization algorithms) is high for orders be-
tween 2 and 5. This ratio is low, close to zero, for orders higher than 5, while
the ratio of live (and potentially equivalent) mutants to total number of HOMs
is large for every order (see Figure 2).
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Fig. 2. The ratios of H1 and H7 to all generated HOMs per order [%]

5 Conclusions and future work

In this paper, we have investigated the relationships between the order of muta-
tion testing and the properties of generated higher order mutants. We evaluated
the results on a basis of generated different kinds of HOMs (H1-H11), especially
the number of generated high-quality-reasonable HOMs (H7) and the number
of generated live HOMs (H1). The empirical results indicated that 5 can be a
relevant highest order in higher order mutation testing.

Using only three selected projects under test (PUTs) may not be a represen-
tative sample of all Java programs in general and therefore, the results of the
study may not be generalizable to all Java programs as well as other program-
ming language. Hence further research is recommended. Nevertheless, we believe
that this study is a step towards unveiling the relationship between the order
of mutation testing and the properties of generated mutants represented by our
classification of higher order mutants.
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