
Preprint: Jarosław Pokropiński, Jakub Gasiorek, Patryk Kramarczyk, and Lech Madeyski, "SZZ Unleashed-RA-C: An
Improved Implementation of the SZZ Algorithm and Empirical Comparison with Existing Open Source Solutions", pp.
181–199. Cham: Springer International Publishing, 2022. DOI: 10.1007/978-3-030-77916-0_7

Preprint: https://madeyski.e-informatyka.pl/download/PokropinskiEtAl22.pdf

SZZ Unleashed-RA-C: An Improved
Implementation of the SZZ Algorithm and
Empirical Comparison with Existing Open
Source Solutions

Jarosław Pokropiński, Jakub Gąsiorek, Patryk Kramarczyk, Lech Madeyski (�)

Abstract SZZ algorithm is one of the most important algorithms in mining software
defects as it allows to create data sets for the sake of software defect prediction. Unfor-
tunately, still very few open source implementations of this algorithm were created.
In recent years two interesting open source implementations of SZZ algorithm have
been created, which are SZZ Unleashed and OpenSZZ. In this paper we compare how
well these implementations perform, as well as propose an improved implementation
named SZZ Unleashed-RA-C. The most important features of the proposed algorithm
and implementation include: ability to identify and handle refactoring changes when
tracing bug-introducing changes (RA functionality), discarding comments and files
based on a regular expression, and last but not least the ability of using GitHub as the
issue tracker.

1 Introduction

Information about the root cause of a bug and when it was introduced are often
missing from issue tracking software. Research in the area of mining software
repositories often relies on detailed bug information. Extending the data stored in
issue trackers could be of a great value both for researchers and software developers.

Jarosław Pokropiński
Wroclaw University of Science and Technology, Poland, e-mail: 236519@student.pwr.edu.pl

Jakub Gąsiorek
Wroclaw University of Science and Technology, Poland, e-mail: 220890@student.pwr.edu.pl

Patryk Kramarczyk
Wroclaw University of Science and Technology, Poland, e-mail: 257413@student.pwr.edu.pl

Lech Madeyski
Wroclaw University of Science and Technology, Poland, e-mail: lech.madeyski@pwr.edu.pl

http://dx.doi.org/10.1007/978-3-030-77916-0_7
https://madeyski.e-informatyka.pl/download/PokropinskiEtAl22.pdf
236519@student.pwr.edu.pl
220890@student.pwr.edu.pl
257413@student.pwr.edu.pl
lech.madeyski@pwr.edu.pl

2 Jarosław Pokropiński, Jakub Gąsiorek, Patryk Kramarczyk, Lech Madeyski (�)

One of the most known algorithms used for identifying bug-inducing changes is
SZZ proposed by Śliwerski et al. (2005). Its main purpose is to extend the bug report
data with commit that first introduced the bug. The SZZ algorithm consists of 2 steps:

• Identification of bug fixing commits using version control system (e.g., git) and
issue tracking software (e.g., Jira).

• Identification of a commit causing the bug.

Researchers often rely on the SZZ algorithm to identify bug-introducing changes.
Unfortunately, only a few of the SZZ implementations are publicly available. Two of
the most popular ones introduced recently are: SZZ Unleashed made by Borg et al.
(2019) and OpenSZZ by Lenarduzzi et al. (2020). It is difficult to say which of these
implementations produces better results based on the research papers alone, so our
aim is to compare them using a validated Defects4J data set specifically prepared for
evaluating SZZ implementations and introduced by Neto et al. (2019).

We attempt to improve one of the available open source SZZ implementations
with our own ideas, as well as ideas from existing literature.

Our contributions in this paper are as follows:

• Literature review of SZZ publications and open source implementations.
• Extracting a list of improvements to the basic SZZ algorithm on a basis of literature

and our own solutions.
• An attempt to propose a new implementation of SZZ algorithm combining

improvement ideas (own and existing in literature).
• Empirical comparison of the found SZZ implementations as well as the new one

on the same data set.

The remainder of this paper is structured as follows. Section 2 contains a brief
overview of the SZZ algorithm, existing implementations found in literature and
evaluation of two open source SZZ implementations. Section 3 describes the ways in
which topics including validation data set preparation and SZZ algorithm performance
evaluation were conducted. In Section 4, we present results of experiments. In
Section 5, we answer given research questions and present threats to their validity.
Finally, in Section 6, we propose further research, while in Section 7, we draw
conclusions.

2 Literature Review

In this section we introduce the SZZ algorithm, discuss and compare existing SZZ
algorithm implementations, and pose research questions.

2. LITERATURE REVIEW 3

2.1 The SZZ Algorithm

The SZZ algorithm is the most commonly used algorithm for finding bug-
introducing changes. Initially, it was developed for the SVN version control system,
but has since evolved for repositories using git.

The algorithm consists of two steps. In the first step, SZZ tries to find a bug fixing
commit, based on references to bug reports or commit messages containing words like
"fix". Modified lines in the source code are then extracted from bug-fixing commits.

Step two is the identification of bug inducing changes. The SZZ algorithm uses
the blame functionality of the version control system to determine all commits that
previously made changes to the same lines of code as bug-fixing commits. These
commits are then labelled as potential bug-introducing commits.

SZZ then determines whether these potential bug-introducing commits can be
ruled out as bug-introducing or not. Each potential bug-introducing candidate has
its commit date compared to the submission date of a corresponding bug report.
All candidates, that took place before the creation of the report are considered as
bug-introducing. If the commit time is after the bug report submission time, then the
candidate is still a suspect, because it could be bug-introducing. This can happen if
the change is a partial fix, or it is inducing another bug.

2.2 Existing SZZ Algorithm Implementations

Researchers developed their own versions of the SZZ algorithm. One of them
is an SZZ implementation proposed by Neto et al. (2018) which is called the
refactoring aware SZZ (RA-SZZ). This implementation introduces ability to identify
and handle refactoring changes when tracing bug-introducing changes. RA-SZZ
was then compared with another implementation named meta-changes aware SZZ
(MA-SZZ) proposed by da Costa et al. (2017) and the original SZZ by Śliwerski et al.
(2005).

Refactoring changes detection is usually based on two tools: RefDiff by Silva et al.
(2020) and RefactoringMiner by Tsantalis et al. (2018). Comparison of these two
tools shows that their precision and recall are similar, with a slight advantage towards
RefactoringMiner. We will try to incorporate detection of refactoring changes by
utilising the more accurate tool which is RefactoringMiner.

Neto et al. (2019) points out that the overall accuracy of SZZ algorithm increases
by 40% if only valid bug-fix lines are used as the input for SZZ.

To the best of our knowledge, the only two open implementations of the SZZ
algorithm referenced from literature are SZZ Unleashed1 by Borg et al. (2019) and
OpenSZZ2 by Lenarduzzi et al. (2020). These two open source SZZ implementations

1 https://github.com/wogscpar/SZZUnleashed

2 https://github.com/clowee/OpenSZZ

https://github.com/wogscpar/SZZUnleashed
https://github.com/clowee/OpenSZZ

4 Jarosław Pokropiński, Jakub Gąsiorek, Patryk Kramarczyk, Lech Madeyski (�)

have concise readme files and an active community (reflected by the amount of
GitHub stars and forks, higher for SZZ Unleashed), compared to other repositories.

2.3 Existing implementations comparison

The ultimate goal of our publication was to choose one of the existing implemen-
tations of the SZZ algorithm and improve it. As mentioned in Section 2.2 there were
two most promising open source implementations. Both of those were tested and the
results were compared.

2.3.1 OpenSZZ project evaluation

The OpenSZZ project can be found in two versions: OpenSZZ as a standard Java
project and a cloud native version with a surrounding docker infrastructure prepared.
The cloud native version was developed after the simple one and has a few differences.
At first, let us focus on the non functional aspect of the project. The primary difference
between the two versions is the architecture. The so called cloud native version is
using the microservices design pattern and the RabbitMQ message broker for the
internal communication. One of the biggest issues with it is the log handling of the
core SZZ service. By default the logs are forwarded to a few files in the container file
system. Unfortunately, for most of the project processing, the used file writer flushes
the data only after most of the processing is done. This results with user not being
able to track most of the progress in the processed project. SZZ algorithms are known
to take a lot of time, especially for highly developed projects. Having any indicator
of whether the application is functional is important, especially in those used for
research purposes. This leads to another problem the OpenSZZ project has. At first,
the project was evaluated with the commons-bcel (this project was presented as an
example in OpenSZZ) and unomi repositories. No issues occurred while running
those. Later the syncope and commons-math projects were run. Unfortunately the
runs were unsuccessful and the very basic logging did not give any indicators as
to what could be the the cause. The application simply dropped its resource usage
and kept running. Further investigation allowed to detect, that the application has
ran out of memory. Increasing the heap size allowed the commons-math to succeed.
12GB allowed syncope to process more data, but was not enough to finish the project
processing. Besides the presented issues, the cloud version was easy to set up and
work with. OpenSZZ encapsulates the whole SZZ process into a single service, which
allows the user to easily start the processing without additional manual steps being
required.

The functional performance of the project was evaluated on commons-bcel and
unomi projects. Initial results show that the algorithm is highly susceptible to
major refactoring commits. Many resulting bug introducing commits were a major
commit changing dozens of thousands lines of code. OpenSZZ also produces pairs

2. LITERATURE REVIEW 5

that do not have any common files changed between them. This can be observed
between 45da20f49abafa125ff4f616e8312b89fbd1f139 (bug introducing commit)
and 4d89da4f52f6ae26a4917ba79259e8c89c67eb77 (bug fixing commit) revisions
in the commons-bcel repository. OpenSZZ attributed the bug introducing change to
src/main/java/org/apache/bcel/classfile/Attribute.java file which was not changed
in the bug introducing commit. Knowing current SZZ algorithm limitations it is
highly unlikely for such a situation to be correctly detected. OpenSZZ has found 249
bug introducers in this repository in 3m30s. After discarding issues that were major
refactoring commits or any other commits that were unsuccessfully matched to at
least ten bug fixing commits this number drops to 24.

2.3.2 SZZ Unleashed project evaluation

Starting with the non functional performance of the SZZ Unleashed implementation
it should be noted that it is separated into a few steps. Each of which needs to be
run manually. The same repositories were processed without any issues on default
settings. We noticed that for bigger projects such as syncope, where the processing
time took hours the job partitioning between threads was not perfect. Often half of
the available threads have finished work within 1-2 hours while others required few
more hours to process all the issues.

Running the commons-bcel repository took 6 minutes and produced 708 bug
introducer and bug fixer pairs. A huge disadvantage of the SZZ Unleashed project is
its output. By default it is a JSON array of arrays containing two strings - commit
hashes. Internally the algorithm recognises the file in which the bug fix is placed
which results in a huge count of duplicates. Another interesting issue that was
noticed is that a single changed line in a change log file (in commons-bcel - it is
called changes.xml) was attributed both to around 80 bug fixing commits and 120
bug inducing ones. Furthermore, the algorithm was susceptible to huge refactoring
commits. Creating a list with a count of bug introducing commits assigned to each
bug fixing commit shows that there are many issues fixing dozens of commits. Such
a case is possible, but highly unlikely to occur. It indicates a higher possibility of
the bug fixing commit being incorrectly matched. SZZ Unleashed often detected
commits containing changes to the comments only. This can be noticed in this pair
from the unomi project 0ffc0814f4ff4288b591407afdb0679358249bc (bug fixing
commit), 1d075ec19850466a355ecffc1dfed2da049e25c9 (bug introducing commit).
After discarding most common invalid bug inducing commits the count of issues
dropped to 458. The same action for bug fixing commits resulted in 468 pairs. After
discarding both, the count dropped to 220 and after removing duplicated pairs that
could not be validated it was equal to 86.

6 Jarosław Pokropiński, Jakub Gąsiorek, Patryk Kramarczyk, Lech Madeyski (�)

2.3.3 OpenSZZ and SZZ Unleashed comparison

The major differences between those two projects are the time and memory
complexity. OpenSZZ is much faster on bigger repositories, but requires much more
memory to process them. OpenSZZ has a friendlier interface for working with it
while SZZ Unleashed requires more manual steps. During this process we had an
opportunity to get familiar with the internal code base of both of them and our
subjective opinion is that the code quality was better in SZZ Unleashed.

Both of the implementations have their constraints and neither of them by
default produces reasonably valid results. There is a lot of room for improvement.
The performed evaluation resulted in the following improvements that could be
implemented:

1. Making SZZ refactoring aware
2. Considering only specified file extensions (ex. ".java").
3. Disregarding deleted lines matching specified pattern.
4. Disregarding fixing and bug-introducing commit pairs if the time between them is

greater than 2 years.
5. Adding GitHub issues support as an issue tracker.

Limiting algorithm to .java files addresses the problem where configuration
files are matched as introducers to fixes that are made in code. Disregarding deleted
lines allows to ignore lines that do not contain bug. We wanted to validate impact of
time between commits on matching bug introducing commits. As was pointed out
in paper by da Costa et al. (2017), it is unlikely, that bug-introducing changes in a
project introduce bugs that took years to be discovered. We tried disregarding fixing
and bug-introducing commit pairs if the time between them is greater than 2 years.
Lastly, to bring SZZ to greater number of projects we proposed to extend existing
implementations by adding support for GitHub issues.

2.4 Research Questions

The aim of this paper is to compare existing SZZ implementations using a validated
data set and build upon and improve the algorithm which produces better results out
of the box. Therefore, we address the following research questions (RQs):

• RQ1: Which of the two open source implementations (OpenSZZ vs SZZ
Unleashed) produces results with higher recall using our data set?
We want to compare this two implementations against the validated Defects4J
data set by Neto et al. (2019). However, we believe that original SZZ Unleashed
contains an error causing the performance to drop significantly which is fixed by
a pull request on GitHub: https://github.com/wogscpar/SZZUnleashed/
pull/32. That is why we have added another sub-RQ:

– RQ1.1: Is the available fix for SZZ Unleashed valid?

https://github.com/wogscpar/SZZUnleashed/pull/32
https://github.com/wogscpar/SZZUnleashed/pull/32

3. METHODS AND MATERIALS 7

• RQ2: How does detecting and discarding refactoring changes influence the
overall recall?
We analyse how does adding RefactoringMiner by Tsantalis et al. (2018) affect
the performance.

• RQ3: How does adding our own proposed improvements affect the recall of
the selected algorithm?
We want to investigate the impact of each individual improvement on the previously
selected SZZ implementation (from RQ1).

3 Methods and Materials

Data set of bugs, as well as the compared SZZ implementations are described in
this section.

3.1 Bug data set

To automate comparison of SZZ algorithms we needed a data set of bugs. We
chose data set published in Neto et al. (2019), as it was created with evaluation of SZZ
algorithms in mind. It consists of data such as bug fixing commit id, bug inducing
commit id, path to bug fix and more. Since tested algorithms use git as version control
system, and given data set also used SVN, we had to modify the data. Two repositories,
commons-math and commons-lang, were migrated from SVN to git so we modified
data set by replacing their SVN revision identifiers with respective git commit hashes.
After that, the only remaining project was jfreechart, which does not use labels in
GitHub issues, so it was removed from the data set. Resulting data set consisted
of five projects: Apache commons-math, Apache commons-lang, mockito, JodaOrg
joda-time and Google closure-compiler with corresponding bug fixing git commit
hash, bug inducing git commit hash, path to bug fix and additional information. In
resulting data set, all repositories were hosted on GitHub. Two repositories: Apache
commons-math and Apache commons-lang used Jira as a issue tracker, while the rest
used GitHub issues.

3.2 SZZ Unleashed and OpenSZZ comparison

To compare OpenSZZ and SZZ Unleashed we cloned their repositories and
followed instructions in their README.md files. To make better comparison, we
modified SZZ Unleashed so its output contained information about path of the fix.
We ran OpenSZZ, and then SZZ Unleashed on Apache commons-math and Apache
commons-lang. After we got results from both SZZ implementations we filtered them,

8 Jarosław Pokropiński, Jakub Gąsiorek, Patryk Kramarczyk, Lech Madeyski (�)

so they held results only for fixes contained in our data set and then we compared their
results with the data set. For each repository and implementation, we counted distinct
results consisting of bug fix, bug introducer and bug fix path that appear both in
results and our data set. With this data we evaluated performance of implementations
using the recall measure.

3.3 Base SZZ algorithm choice

Rodriguez et al. (2018) noticed an issue that most of the researchers studying
topics related to the SZZ algorithm tend to create their own implementation from
scratch. We agree with this statement and wanted to use an existing solution as a base
for our improvements. During the literature review two most promising candidates
were chosen: SZZ Unleashed and OpenSZZ.

This process was started by running both of those implementations on repositories
commons-bcel which by default was used as an example by OpenSZZ and unomi. The
results were later on analysed by a script that compared both of them. The output of
the mentioned script contained information about the count of bug introducer and bug
fixer pairs that both implementations have in common, the counts without duplicates
and the number of results for each of them: both with and without duplicates.

The next step was to perform additional manual validation of results. During this
process we noticed that most of the bug introducers are not valid due to the commits
being major releases or refactorings with dozens of thousands of changed lines that
had no connection to the bug fix. As this concerned most of the commits in results,
we decided to redo the previous steps with those commits filtered out. This resulted
in much clearer output and more readable data.

As for the final decision both the steps mentioned above and those from Section 3.2
were used to determine it.

3.4 Github issues

The bug data set described in Section 3.1 contained only two repositories that were
using JIRA as an issue tracker. This was the main motivation to extend the used SZZ
implementation to allow fetching issues from GitHub issue tracker. An alternative
strategy for fetching issues was developed and attached to the scripts handling the
first stage of the SZZ algorithm.

3. METHODS AND MATERIALS 9

3.5 SZZ improvements implementation

After choosing the base for SZZ implementation we implemented our proposed
improvements:

1. The first improvement (1) was to make SZZ refactoring aware. We used Refactoring
Miner by Tsantalis et al. (2018) to mine repositories for refactorings and ignored
lines that were refactorings while building line mapping graph.

2. The second improvement (2) was to run SZZ only on changes in files that contained
code as opposed to configuration files. We implemented it by using pattern for
files that contained code and ignored all files that did not match it. As we used
Java projects we set pattern to .*\.java.

3. Another improvement (3) was to ignore line deletions that were deletions of
comments while building line mapping graph. To do this we used pattern
\s*\/\/.*|\s**.*|\s*\/*.* and ignored deletions that matched that pat-
tern.

3.6 SZZ improvements comparison

The article introduces a few possible improvements to the SZZ algorithm. Each of
those improvements needs analysis of its performance. For that, we used the data set
prepared in Section 3.1 and formula from Section 3.2.

For the SZZ Unleashed implementation, as the created data set can be considered
the only used source of truth for the validation, we decided to limit the input data for
the bug introducer detection only to those that it contained. This allowed us to get
much smaller processing times and clearer results. An additional advantage was that
the reproducibility of end results has improved. Having done that, the received issues
were used in the second step of the SZZ algorithm. This step was repeated for each
improvement that was developed.

Results were analysed with a formula mentioned above. In addition to that the
processing time was measured. It should be noted that for the SZZ Unleashed it is
smaller due to processing of a limited amount of issues.

It is also worth mentioning that we did not test version that limited SZZ to .java
files because our data set consists only of such files.

3.7 SZZ Unleashed fix impact

During the development an open pull request was noticed in the SZZ Unleashed
GitHub repository. Interestingly, its title contained the fatal bug phrase. The fix
concerned a variable used as a list iterator. The first step of the impact analysis of the
potential bug was estimated by a manual review of the code it related to. Afterwards,

10 Jarosław Pokropiński, Jakub Gąsiorek, Patryk Kramarczyk, Lech Madeyski (�)

the fixed version was run just as others described in Section 3.6. Both those steps
were enough to make a final decision about whether it was valid.

4 Results

Firstly we observed, as seen in Table 1, that all tested implementations produced
bad results for closure-compiler so we omitted them in further experiments. The
issue with this repository concerns the lack of issues from the GitHub issue tracker
that are present in the used data set. Conducted research focuses mostly on the second
step of the SZZ algorithm and this repository produces no data that could be supplied
to it.

Table 1 Closure compiler results

algorithm version repository time matches size data size results

SZZ Unleashed closure-compiler 0s 0 124 0
SZZ Unleashed fixed closure-compiler 0s 0 124 0
SZZ Unleashed-RA closure-compiler 0s 0 124 0
SZZ Unleashed-C closure-compiler 0s 0 124 0
SZZ Unleashed-T closure-compiler 0s 0 124 0

Table 2 SZZ Unleashed and OpenSZZ comparison results

algorithm version repository time matches size data size results

SZZ Unleashed commons-lang 11m 54s 8 64 150
SZZ Unleashed commons-math 15m 55s 28 107 238
OpenSZZ commons-lang 9m 18s 0 64 7
OpenSZZ commons-math 15m 42s 0 107 0

Using data in Table 2, we measured the performance of SZZ Unleashed (8+28
150+238 =

0.0928, i.e., 9.28%) and performance of OpenSZZ (0%) on these two repositories on
the given data set. With these results we decided to use SZZ Unleashed as a base for
improvements.

4.1 SZZ Unleashed fix impact results

To the best of our knowledge, original SZZ Unleashed algorithm contains a bug
described in Section 3.7. A proper analysis was performed to validate its impact.

4. RESULTS 11

Using data in Table 3, we measured that performance of SZZ Unleashed is 8.19%
and performance of SZZ Unleashed with fix is 14.21%.

Table 3 SZZ Unleashed fix impact results

algorithm version repository time matches size data size results

SZZ Unleashed commons-lang 16s 8 64 150
SZZ Unleashed fixed commons-lang 6s 34 64 188
SZZ Unleashed commons-math 20s 28 107 238
SZZ Unleashed fixed commons-math 1m 1s 52 107 357
SZZ Unleashed mockito 3s 5 59 82
SZZ Unleashed fixed mockito 2s 10 59 119
SZZ Unleashed joda-time 1s 3 29 67
SZZ Unleashed fixed joda-time 2s 6 29 54

That result and analysis of the part of the code containing described bug gave
us enough confidence to assume that proposed fix is valid and further tests were
performed on the fixed version.

After performing our research, the proposed fix (https://github.com/
wogscpar/SZZUnleashed/pull/32) was merged into the repository, which means
that our assumptions were correct in the context of the results we have got.

4.2 Proposed improvements impact results

In this section we present the impact of our proposed improvements, which are as
follows:

• Making SZZ refactoring aware (RA) (1).
• Considering only specified file extensions (ex. ".java") (2).
• Disregarding deleted lines matching specified pattern (3).
• Disregarding fixing and bug-introducing commit pairs if the time between them is

greater than 2 years (4).
• Adding GitHub issues support as an issue tracker (5).

https://github.com/wogscpar/SZZUnleashed/pull/32
https://github.com/wogscpar/SZZUnleashed/pull/32

12 Jarosław Pokropiński, Jakub Gąsiorek, Patryk Kramarczyk, Lech Madeyski (�)

Table 4 SZZ Unleashed proposed improvements impact results

algorithm version repository time matches size data size results

SZZ Unleashed fixed commons-lang 6s 34 64 188
SZZ Unleashed-RA commons-lang 40s 34 64 186
SZZ Unleashed-C commons-lang 5s 33 64 114
SZZ Unleashed-T commons-lang 5s 17 64 81
SZZ Unleashed-RA-C commons-lang 33s 33 64 106
SZZ Unleashed fixed commons-math 1m 1s 52 107 357
SZZ Unleashed-RA commons-math 20m 41s 52 107 349
SZZ Unleashed-C commons-math 1m 39s 52 107 308
SZZ Unleashed-T commons-math 49s 40 107 266
SZZ Unleashed-RA-C commons-math 20m 59s 52 107 302
SZZ Unleashed fixed mockito 2s 10 59 119
SZZ Unleashed-RA mockito 45s 10 59 277
SZZ Unleashed-C mockito 45s 10 59 265
SZZ Unleashed-T mockito 43s 5 59 176
SZZ Unleashed-RA-C mockito 44s 10 59 251
SZZ Unleashed fixed joda-time 2s 6 29 54
SZZ Unleashed-RA joda-time 9s 6 29 54
SZZ Unleashed-C joda-time 2s 6 29 47
SZZ Unleashed-T joda-time 2s 0 29 30
SZZ Unleashed-RA-C joda-time 6s 6 29 47

where:
SZZ Unleashed fixed - SZZ Unleashed with the fix applied,
SZZ Unleashed-RA - "Refactoring Aware" version of SZZ Unleashed with Refactor-
ingMiner added,
SZZ Unleashed-C - SZZ Unleashed version disregarding deleted lines which are
comments. The C letter stands for comments. SZZ Unleashed-T - SZZ Unleashed
version disregarding fixing and bug-introducing commit pairs if the time (T) between
them is greater than 2 years,
SZZ Unleashed-RA-C - version containing both RefactoringMiner and disregarding
deleted lines matching specified pattern.

Table 4 shows the performance of the base version of SZZ Unleashed with fix is
14.21% on 4 repositories. Our proposed improvements affect the results as follows:

• SZZ Unleashed-RA - 14.41% performance,
• SZZ Unleashed-C - 17.75% performance,
• SZZ Unleashed-T - 13.66% performance,
• SZZ Unleashed-RA-C - 18.20% performance.

5. DISCUSSION 13

5 Discussion

We received no results for any of the SZZ implementation for closure-compiler.
That situation seems to be caused in the first phase of the SZZ algorithm and might
suggest that GitHub implementation of this phase should be improved. It is worth
mentioning that this result would be useful when improving the first phase of the
algorithm. Since we did not implement such improvements as it was the only project
with issues and others using GitHub as issue tracker did return valid results, we
decided that those results bring little to comparison and we omitted them in further
experiments.

RQ1: Which of the two open source implementations (OpenSZZ, SZZ Un-
leashed) produces better results?

Answer to RQ1
While comparing SZZ Unleashed and OpenSZZ we observed that for bug

fixes in our data set OpenSZZ generated only 7 results for commons-lang
and none for commons-math, while all results were incorrect which led to its
performance being evaluated at 0%. Performance of SZZ Unleashed was 9.28%
so its performance is better than OpenSZZ. It is worth mentioning, that there is a
large space for improvement.

RQ1.1: Is the available fix for SZZ Unleashed valid?

Answer to RQ1.1
Version of SZZ Unleashed with fix performed about 1.74 times better which

is a concrete proof that the fix is valid.

RQ2: How does detecting and discarding refactoring changes influence the
overall performance?

Answer to RQ2
Adding information about refactoring changes caused the performance of

the algorithm to increase from 11.65% to 11.79%. However this comes with a
disadvantage of RefactoringMiner only being able to detect refactoring of Java
projects, which limits us to those type of projects in the future.

14 Jarosław Pokropiński, Jakub Gąsiorek, Patryk Kramarczyk, Lech Madeyski (�)

RQ3: How does adding our own proposed improvements affect performance
of the selected algorithm?

Answer to RQ3
Results show that our proposed improvements on their own positively affect

the performance, apart from the only case of the SZZ Unleashed-T version,
which caused the performance to drop. Overall, the best performing version of
the algorithm was SZZ Unleashed-C, which discards lines matching specified
pattern. It caused the performance to increase from 11.65% to 13.89%. However,
combining two versions - SZZ Unleashed-RA and SZZ Unleashed-C - led to even
greater improvements, with the performance of SZZ Unleashed-RA-C increased
to 14.16%.

5.1 Threats to validity

Neto et al. (2019) created data set using bugs from Defects4J (Just et al., 2014)
database. Defects4J maintainers create this database with strict rules for each bug.
Each bug in database has the following properties:

1. Issue filed in the corresponding issue tracker, and issue tracker identifier mentioned
in the fixing commit message.

2. Fixed in a single commit.
3. Minimised: the Defects4J maintainers manually pruned out irrelevant changes in

the commit (e.g., refactorings or feature additions).
4. Fixed by modifying the source code (as opposed to configuration files, documen-

tation, or test files).
5. A triggering test exists that failed before the fix and passes after the fix – the test

failure is not random or dependent on the test execution order.

Due to the above mentioned constrains, experiments on this data set may give
results not reflecting the real world conditions. Another threat to validity of this
research is the number of projects available in our data set. Since closure-compiler
was omitted in the experiments, we ended up with only four repositories and the
OpenSZZ was evaluated (in automated way) only on two projects as it is only
compatible with JIRA issue tracker.

As one of our proposed improvements was to include only specified file extensions
in the process of detecting the bug introducing commits, we have performed our
experiments only on Java projects and "*.java" files. The addition of RefactoringMiner
also limits us to Java projects only. It is possible to run the algorithm on other projects,
by not using the RefactoringMiner and running the program without the "-fp" flag,
which excludes files based on specified file pattern, but it has not been tested.

8. APPENDIX: RESEARCH REPRODUCTION 15

6 Future research

One of the limitations of the improved version is the GitHub issue fetcher. It is
possible that the lack of direct interpretation of the id, which is a number, might affect
the output of bug fixing commits detection. The issue id has the same format as the
one of a GitHub pull request. Merging a pull request usually creates a commit with
message containing its id and matching the regular expression used for detecting bug
fixing commits by issue id: "#ID".

SZZ uses annotation graphs, which (as claimed by Williams and Spacco (2008a))
are imprecise at tracking lines across large hunks of modified lines. One possible
solution to this issue would be to replace them with line-number mappings proposed
by the same authors (Williams and Spacco (2008b)).

To better evaluate the SZZ implementations we would need a bigger data set of
bugs containing code that is not limited to Java only.

What is also worth exploring is the time between bug-fixing and bug-introducing
commits and finding a perfect time frame, where the results are still valid, and no
correct pairs are rejected.

7 Conclusions

The publication presents improved versions of the SZZ Unleashed algorithm
including the most promising SZZ Unleashed-RA-C. Few of the most important
features are: refactoring awareness (RA functionality), discarding comments and files
based on a regular expression and the possibility of using GitHub as the issue tracker.
Those changes result in a much better performance compared to the base version.
Nevertheless, there is still a large space for improvement. The paper introducing the
original SZZ algorithm (Śliwerski et al., 2005) received a huge number of citations
and was awarded as the most influential paper at MSR conference in 2015. Hence,
we believe that the improved version would provide benefits for many researchers.

8 Appendix: Research reproduction

This section presents steps required to reproduce the presented research. Details,
code and data are available at https://github.com/pwr-pbrwio/PBR20M1/
blob/master/reproduction.md.

8.1 Dependencies installation

Dependencies include:

https://github.com/pwr-pbrwio/PBR20M1/blob/master/reproduction.md
https://github.com/pwr-pbrwio/PBR20M1/blob/master/reproduction.md

16 Jarosław Pokropiński, Jakub Gąsiorek, Patryk Kramarczyk, Lech Madeyski (�)

• git
• java 8
• python 3

8.1.1 Dependencies installation on windows and macos

Download and install dependencies:

1. git: https://git-scm.com/
2. java:https://www.oracle.com/java/technologies/javase-jre8-downloads.
html

3. python: https://www.python.org/

8.1.2 Dependencies installation on linux

1. sudo apt update
2. sudo apt install git
3. sudo apt-get install openjdk-8-jre
4. sudo apt-get install python3

8.2 Steps to reproduce

Requirements:
You will need a GitHub personal access token (https://help.github.com/en/

github/authenticating-to-github/creating-a-personal-access-token).
Place it in Scripts/token.txt. It is used for projects using GitHub as issue tracker.

8.2.1 SZZUnleashed: with and without improvements

On windows replace python3 with python and pip3 with pip.

1. Prepare SZZ:
1 git clone https://github.com/pwr-pbrwio/PBR20M1
2 cd PBR20M1
3 pip3 install -r requirements.txt
4 cd ..
5

2. Get repository from data set (example of commons-lang):
1 mkdir commons-lang
2 cd commons-lang
3 git clone https://github.com/apache/commons-lang.git
4

https://git-scm.com/
https://www.oracle.com/java/technologies/javase-jre8-downloads.html
https://www.oracle.com/java/technologies/javase-jre8-downloads.html
https://www.python.org/
https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token
https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token

8. APPENDIX: RESEARCH REPRODUCTION 17

3. Download project issues (filtered with data set)
If you are using Jira as the issue tracker:

1 python3 ../PBR20M1/Scripts/getNetoIssues.py --owner "apache"
--repo "commons-lang" --tag "lang" --repoPath "./commons-lang
" --jira "issues.apache.org/jira"

2

If you are using GitHub as the issue tracker (e.g., for mockito):
1 python3 ../PBR20M1/Scripts/getNetoIssues.py --owner "mockito"

--repo "mockito" --repoPath "./mockito" --fetchStrategy
github

2

4. Run the SZZ algorithm:
1 java -jar "../PBR20M1/Scripts/unleashed/szz.jar" -i ".temp/

issue_list.json" -r "./commons-lang" -d=3 -fix -ra -up -mt -
fp

2

Where flags -fix -ra -up -mt -fp are optional: -fix enables fix -ra runs SZZ with
refactoring awareness -up removes comments -mt limits time between commits to
2 years -fp limits SZZ to .java files

5. Get results:
1 python3 ../PBR20M1/Scripts/measurePos.py --repoName="commons-

lang"
2

8.2.2 OpenSZZ

Dependency requirements – the following software is required:

• docker
• docker-compose

Usage:

1. Clone the OpenSZZ repo (https://github.com/clowee/OpenSZZ-Cloud-Native).
2. Publication was prepared on version 533b4911710753e76c78c02c02ca10707a74e05b.

Make sure the correct version is used.
3. Increase the heap size by adding the JVM_OPTS environmental variable to the web

service in the docker-compose.yml file. Note that using docker on windows or
linux might require increasing the total memory assigned to docker in the docker
settings. Example:

1 web:
2 build: ./core
3 ports:
4 - "${PORTRANGE_FROM}-${PORTRANGE_TO}:8080"
5 networks:

https://github.com/clowee/OpenSZZ-Cloud-Native

18 Jarosław Pokropiński, Jakub Gąsiorek, Patryk Kramarczyk, Lech Madeyski (�)

6 - spring-cloud-network
7 depends_on:
8 - rabbitmq
9 volumes:

10 - /var/run/docker.sock:/var/run/docker.sock
11 environment:
12 - JVM_OPTS=-Xmx12g -Xms12g -XX:MaxPermSize=1024m
13

4. Follow the OpenSZZ readme file (https://github.com/clowee/OpenSZZ-Cloud-Native)
for instructions on starting the application and running repositories.

5. Rename results to BugInducingCommits.csv.
6. Analyse results:

1 python3 ../PBR20M1/Scripts/openSzzAcc.py --repoName="commons-
lang"

2

References

Borg M, Svensson O, Berg K, Hansson D (2019) SZZ unleashed: an open imple-
mentation of the SZZ algorithm-featuring example usage in a study of just-in-time
bug prediction for the Jenkins project. In: Proceedings of the 3rd ACM SIGSOFT
International Workshop on Machine Learning Techniques for Software Quality
Evaluation, pp 7–12

da Costa DA, McIntosh S, Shang W, Kulesza U, Coelho R, Hassan AE (2017) A
Framework for Evaluating the Results of the SZZ Approach for Identifying Bug-
Introducing Changes. IEEE Transactions on Software Engineering 43(7):641–657

Just R, Jalali D, Ernst MD (2014) Defects4J: A database of existing faults to
enable controlled testing studies for Java programs. In: Proceedings of the 2014
International Symposium on Software Testing and Analysis, pp 437–440

Lenarduzzi V, Palomba F, Taibi D, Tamburri D (2020) OpenSZZ: A Free, Open-
Source, Web-Accessible Implementation of the SZZ Algorithm

Neto EC, da Costa DA, Kulesza U (2018) The impact of refactoring changes on the
SZZ algorithm: An empirical study. In: 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER), pp 380–390

Neto EC, da Costa DA, Kulesza U (2019) Revisiting and Improving SZZ Implemen-
tations. In: 2019 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), IEEE, pp 1–12

Rodriguez G, Robles G, Gonzalez-Barahona J (2018) Reproducibility and Credibility
in Empirical Software Engineering: A Case Study based on a Systematic Literature
Review of the use of the SZZ algorithm. Information and Software Technology
DOI 10.1016/j.infsof.2018.03.009

Silva D, Silva J, De Souza Santos GJ, Terra R, Valente MTO (2020) RefDiff 2.0:
A Multi-language Refactoring Detection Tool. IEEE Transactions on Software
Engineering pp 1–1, DOI 10.1109/TSE.2020.2968072

https://github.com/clowee/OpenSZZ-Cloud-Native

References 19

Śliwerski J, Zimmermann T, Zeller A (2005) When do changes induce fixes? ACM
sigsoft software engineering notes 30(4):1–5

Tsantalis N, Mansouri M, Eshkevari LM, Mazinanian D, Dig D (2018) Accurate and
Efficient Refactoring Detection in Commit History. In: Proceedings of the 40th
International Conference on Software Engineering, ACM, New York, NY, USA,
ICSE ’18, pp 483–494, DOI 10.1145/3180155.3180206, URL http://doi.acm.
org/10.1145/3180155.3180206

Williams C, Spacco J (2008a) SZZ Revisited: Verifying When Changes Induce Fixes.
In: Proceedings of the 2008 Workshop on Defects in Large Software Systems,
Association for Computing Machinery, New York, NY, USA, DEFECTS ’08,
p 32–36, DOI 10.1145/1390817.1390826, URL https://doi.org/10.1145/
1390817.1390826

Williams CC, Spacco JW (2008b) Branching and Merging in the Repository. In:
Proceedings of the 2008 International Working Conference on Mining Soft-
ware Repositories, Association for Computing Machinery, New York, NY, USA,
MSR ’08, p 19–22, DOI 10.1145/1370750.1370754, URL https://doi.org/
10.1145/1370750.1370754

http://doi.acm.org/10.1145/3180155.3180206
http://doi.acm.org/10.1145/3180155.3180206
https://doi.org/10.1145/1390817.1390826
https://doi.org/10.1145/1390817.1390826
https://doi.org/10.1145/1370750.1370754
https://doi.org/10.1145/1370750.1370754

	SZZ Unleashed-RA-C: An Improved Implementation of the SZZ Algorithm and Empirical Comparison with Existing Open Source Solutions
	Jarosław Pokropiński, Jakub Gąsiorek, Patryk Kramarczyk, Lech Madeyski ('014)
	Introduction
	Literature Review
	The SZZ Algorithm
	Existing SZZ Algorithm Implementations
	Existing implementations comparison
	Research Questions

	Methods and Materials
	Bug data set
	SZZ Unleashed and OpenSZZ comparison
	Base SZZ algorithm choice
	Github issues
	SZZ improvements implementation
	SZZ improvements comparison
	SZZ Unleashed fix impact

	Results
	SZZ Unleashed fix impact results
	Proposed improvements impact results

	Discussion
	Threats to validity

	Future research
	Conclusions
	Appendix: Research reproduction
	Dependencies installation
	Steps to reproduce

	References
	References

