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Abstract—This experience paper describes thirteen consider-
ations for implementing machine learning software defect pre-
diction (ML SDP) in vivo. Specifically, we provide the following
report on the ground of the most important observations and
lessons learned gathered during a large-scale research effort
and introduction of ML SDP to the system-level testing quality
assurance process of one of the leading telecommunication
vendors in the world — Nokia. We adhere to a holistic and logical
progression based on the principles of the business analysis body
of knowledge: from identifying the need and setting requirements,
through designing and implementing the solution, to profitability
analysis, stakeholder management, and handover. Conversely, for
many years, industry adoption has not kept up the pace of
academic achievements in the field, despite promising potential
to improve quality and decrease the cost of software products for
many companies worldwide. Therefore, discussed considerations
hopefully help researchers and practitioners bridge the gaps
between academia and industry.

Index Terms—machine learning, software defect prediction,
Nokia 5G, industry introduction, experience paper

I. INTRODUCTION

Machine learning software defect prediction (ML SDP)
has inspired academics and allured practitioners for over two
decades [1], [2]. Despite having considerable commercial
potential, in vivo applications have lagged behind academic
research. The main reasons for such inadequacy have been
identified as the divergent focus of academia and industry [3],
practical futility of building defect prediction models using
defect history [4], scarcity of available publications on costs
and lessons learned [5], and many more [6]. Consequently,
a sizable effort still needs to be put into developing ML
SDP solutions to gain deserved recognition and prove their
commercial value. Yet, with experience reports like this one,
achieving the goal of widespread ML SDP solutions becomes
considerably more feasible.

The recommendations presented below are based on our
own experience and originate from an introduction of ML SDP
to the context of system-level testing in the Nokia 5G product.
The conducted survey initiating the project is described in a
dedicated paper [7], followed by the implementation details [8]
and a preceding industry challenge definition [9].

The practical significance of the discussed observations and
conclusions was validated in a real industry context [10].
Particularly, our research example aims to complement the
existing system-level test practices with additional ML SDP
mechanisms within an extensive and complex software quality
assurance process for cutting-edge wireless communication
technology development in a software powerhouse. Impor-
tantly, Nokia practitioners are constantly looking for new
opportunities to increase the quality and lower the costs of
the software development life cycle (SDLC). We gathered our
observations during one of such improvement projects aimed
to enhance standard test practices in the company with an
additional ML SDP mechanism to help direct test resources
to the most defect-prone areas and consequently decrease the
number of defects escaping to the customer.

Specifically, the 5G gNB system [11] is a grand and
complex project with more than 60 million lines of code
written in C/C++ language. Secondly, the developed product is
challenging to test due to strict functional and non-functional
requirements, thousands of potential software and hardware
configurations, and the complexity of test environments and in-
frastructure. To overcome resulting difficulties, Nokia adheres
to agile principles and state-of-the-art test processes, using the
continuous development, integration, test, and delivery (CDIT)
concept to develop its products [12] (see also Figure 1).
The CDIT approach allows thousands of software engineers
worldwide to add even the smallest increments to the main
software line simultaneously. The entire test process is split
into distinct phases based on the progress of component or
system integration, similar to many other large-scale software
products [13]. The following experience report focuses on
the final phase - the entire, complete system and specific
functionalities working end-to-end.

The underlying case study aimed to design, implement,
and analyze the effectiveness of Machine Learning Software
Defect Prediction in a real-world Nokia 5G system-level test
environment. The analyzed data set is a collection of historical
test process metrics from the test case repository for the
Nokia 5G quality assurance process, containing almost 800000
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unique results for more than 100000 test cases over five
and a half months. Five relatively simple supervised machine
learning algorithms were implemented to compare software
defect prediction capability (using repeated 10-fold cross-
validation) based on historical test process metrics. Due to the
class imbalance problem, the Matthews Correlation Coefficient
(MCC) was used for reliable performance measurements [14]–
[16]. After completing a set of empirical evaluations using the
R1 language and mlr3 package2, the best-performing solution
was selected and compared with similar studies conducted in
vivo. As a result, CatBoost and Random Forest performed
the best in all tasks, followed by Light Gradient-Boosting
Machine, Classification Tree, and Naı̈ve Bayes. Even without
tuning, CatBoost and Random Forest achieved satisfactory
results, with differences that are not statistically significant;
hence both models were recommended. Consequently, the
study has successfully proven that software defects can be
accurately predicted in vivo using limited data readily available
within the Nokia 5G system-level test process, even using rel-
atively simple learners and without resorting to sophisticated
performance enhancement methods.

As the project progressed, we developed a report on made
headways and encountered challenges. Furthermore, our ob-
servations are complemented by feedback from a selected
group of Nokia experts and reflect the discussions observed
during the planning, execution, and conclusion of the project.
Thus, our experience report reflects practitioners’ perspectives
to help others achieve similar results in other commercial
contexts.

Moreover, for the overall project progression, we have
followed the global standard of the business analysis body of
knowledge [17]. Lessons learned [18], guidelines, and instruc-
tions are essential for practitioners to establish confidence and
help build initial inroads [19], [20]. Thus, we aim to bridge
the identified gaps, make discussed mechanisms and practices
widely available, and ease further adoption within the industry.
Consequently, this publication provides a sequenced guideline
regarding thirteen consecutive considerations each practitioner
should account for when planning to introduce ML SDP in an
industrial environment.

The paper is organized into four sections. Section I intro-
duces the researched subject and context. Section II describes
the thirteen considerations derived from our hands-on expe-
rience. Section III illustrates the importance of highlighted
challenges and how they were prioritized in our specific
context. Next, Section IV provides the identified threats to
validity. Last, Section V offers the summary and conclusion.

II. CONSIDERATIONS

Below we describe the thirteen most impacting observations,
lessons learned, and risks identified during our academic
research efforts and industry introduction experience. Second,
they constitute a comprehensive step-by-step progression and a

1https://www.r-project.org/
2https://mlr3.mlr-org.com/

holistic checklist that will increase the chances for success for
similar ML SDP introductions. Third, the resulting discussion
was reviewed together with practitioners participating in build-
ing the framework and developing a final commercial solution
(to improve the quality and decrease the cost of system-level
testing of Nokia’s 5G gNB product), up to the point of a
commercial implementation decision within the company.

The proposed checklist consists of thirteen steps provided
below:

1) Collect requirements and set appropriate goals.
2) Build upon solid theoretical and practical foundations.
3) Consider the entire SDLC.
4) Conduct technology assessment and introduction.
5) Conduct risk analysis.
6) Choose appropriate data set.
7) Choose appropriate tooling.
8) Apply appropriate learners and performance metrics.
9) Build for interpretability.

10) Prepare a cost evaluation.
11) Manage stakeholders.
12) Plan for long-term evolution.
13) Plan project closure.

Consideration 1)

Collect requirements and set appropriate goals.

First and foremost, any business endeavor should start with
gathering requirements [17]. A clear understanding of the
stakeholder expectations the planned change must satisfy is
critical to the project’s success. If not done correctly, there
is a high probability that the project deliverables will not
meet the requirements and effectively end in failure. When
the requirements are gathered and understood, only then the
correct and precise goals can be defined by the project team.
Goal setting is essential in any business project to provide
a clear direction and purpose [17]. Moreover, clearly defined
goals enable everyone involved in the project to work towards
common objectives and allow progress to be tracked and
measured against specified success criteria.

Preceding the ML SDP introduction, a widespread survey
was launched among test practitioners within the company to
elicit opinions on the current challenges within the system-
level test process and to uncover further improvement oppor-
tunities [7]. As a result, 312 out of 2935 (10.63%) invited
Nokia practitioners (representing management and software
engineering functions from eight countries) have completed
the questionnaire. Obtained results show that the same three
challenges are seen as the most important and urgent: customer
scenario testing, performance testing, and competence ramp-
up. Accordingly, the challenges seen as the most difficult to
solve were low occurrence failures, hidden feature depen-
dencies, and hardware configuration-specific problems. The
survey has also shown that defect prediction models are not
widely used. Based on the analysis of the results by the
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company practitioners, the following high-level goals have
been defined:

• The proposed solution must not disrupt the already ex-
isting quality assurance processes.

• Defect prediction efficiency must be on an acceptable
level (not necessarily super high, but good enough).

• Built framework should utilize existing data and should
be fully automated.

• There are no immediate timeline requirements for the
project.

• Cost-effectiveness is important (positive return on invest-
ment (ROI)).

• Prediction modelling needs to allow interpretability.

Gathering requirements and setting proper goals is critical to
the success of any business endeavor. By carefully defining and
considering what is to be achieved, the project team can ensure
that the project is correctly set up from the outset and does
not diverge to unnecessary activities or change the business
priorities.

Consideration 2)

Build upon solid theoretical and practical foundations.

Theoretical preparation before starting a project is important
for several reasons: it helps to define the scope and goals
of the project correctly, helps to ensure that the team has a
thorough understanding of the problem they are trying to solve,
enables effective planning by providing the information needed
to create a detailed project plan, and improves overall decision-
making. Consequently, exhaustive theoretical preparation helps
ensure the project is well-planned and well-executed. Sec-
ondly, it helps the research community to validate shared
results [21].

For our theoretical preparation, we have used the rapid
review [22] to adapt the regular review process to fit software
engineering practitioners’ constraints. It helped to streamline
knowledge transfer and provided decision-making support.
Consequently, we have concluded several comprehensive lit-
erature reviews to understand the spectrum of possibilities and
limitations for our implementation project (specifically, in the
context of requirements and goals defined in Consideration 1)).
Despite the overall scarcity of published research on ML
SDP in vivo, there is a handful of valuable and practice-
oriented papers having a tremendous impact on our research
and underlying in vivo implementation. Second, reviewed
studies allowed us to build the most considerable contribution
of our work — a holistic end-to-end guideline describing
the main aspects of ML SDP introduction in vivo. Lastly,
appropriate theoretical preparation will also help hand over
the final solution after integration into the standard quality
assurance process within the company (Consideration 13)).

Specifically, the most impacting related works in terms of
experience reports focusing on specific aspects of the process
were highlighted below:

• Rana et al. [23] provide a framework for adopting ma-
chine learning for software defect prediction in the indus-
try. The resulting paper focuses on the adoption process
steps and lessons related to technology acceptance.

• Tantithamthavorn and Hassan [24] published an expe-
rience report on defect modeling during in vivo intro-
duction. Their work describes encountered pitfalls and
challenges based on their vast experience in the field.

• Melo et al. [25] developed a practical guide to support
predicting change-prone classes based on a commercial
software case study. The paper focuses mainly on the
technical aspects of the introduction.

Second, it is worth underlining the importance of publi-
cations offering critiques of ML SDP practices that uncover
concerns and research gaps to be closed. The works described
below helped us make our considerations more complete and
reliable:

• Fenton and Neil [26] offer a compelling critique of SDP
models. The work raises awareness of model imperfec-
tions and risks related to the relationship between defects
and failures. Importantly, the authors recommend using
holistic, well-understood models instead of customized
ones.

• Lanza et al. [4] describe considerable concerns towards
SDP in terms of missing industrial practice impact of the
academic achievements in the field, scalability difficul-
ties, and cast doubt on evaluating approaches based on
historical data.

• Garousi and Felderer [3] discuss different priorities and
areas of focus between industry and academia. Depicted
discrepancies cause difficulties in transitioning new solu-
tions to commercial contexts and highlight relevant issues
that must be mitigated to improve collaboration.

Last, there are several valuable secondary research efforts
aggregating observations from numerous results in the field:

• Durelli et al. [27] published a systematic mapping study
on machine learning applied to software testing. Authors
identify the most frequently used test case generation,
refinement, and evaluation algorithms.

• Pachouly et al. [28] published a systematic literature
review on software defect prediction using artificial in-
telligence and analyzed the most commonly used data
sets, validation methods, approaches, and tools.

• Stradowski and Madeyski [5] conducted a business-driven
systematic literature review on industrial applications of
software defect prediction using machine learning. They
derived valuable conclusions on used methods, features,
frameworks, data sets, costs, and learnings.

Consideration 3)

Consider the entire SDLC.

Considering the entire process perspective is another crucial
aspect of introducing software quality assurance improve-
ments. Large-scale software development requires scaling

3



methodologies to manage efficiently [13], and testing with a
single-layered verification effort is rarely possible for grand
products. However, most ML SDP studies are executed on
singular test phases, and considering the whole software
development life cycle (SDLC) is seldom explored [5], [9].

Suppose the implemented ML SDP solution proves to
be successful and cost-effective. In that case, an adequately
planned introduction can extend to all of the test phases
within the life cycle, providing even more substantial saving
potential to the company. When targeting lower-level phases,
utilizing ML SDP with code metrics and code review can
be sufficient [29], [30]. On higher levels, black-box test
repository data can be used to enable test case selection and
prioritization [31]. Consequently, each ML SDP instance will
have its own characteristics, benefits, and inherent difficulties
to plan for and overcome. On the other hand, each instance can
benefit from the predictions of the previous phases. Moreover,
the end goal can be a dedicated solution optimizing the overall
predictions to accommodate the capacity and efficiency of
particular phases in finding defects of different types.

Nokia uses continuous development, integration, and testing
as the software development process in which applications
are built continually throughout the entire life cycle [32].
Specifically, the goal is to continuously evaluate software
quality on many levels of testing, providing feedback as
quickly as possible, detecting more defects, and enabling
faster deliveries at lower costs. Figure 1 shows the high-
level visualization of the test process in the company. As a
long-term aspiration, the ML SDP should work on all levels,
provide individual predictions considering specific parameters
and the interim capacity of particular test environments, and
synergize in building general defect models for the entire
product. Incorporating the holistic approach early in the project
can save time and effort in future ML SDP implementations.

Fig. 1. High-level visualization of Nokia test process.

Consideration 4)

Conduct technology assessment and introduction.

The goal of the technology readiness level assessment
(TRL)3 is to optimize preparation for a new technology change
within the company [33].

In the case of our system-level testing of 5G in Nokia,
the new process that will be introduced aims to supplement
the current quality assurance methods by introducing machine
learning software defect prediction technology. Consequently,
we have built an analysis and description of all nine TRL
steps, provided evidence for each, and created a specific
progression plan and a precise timeline for our ML SDP
solution introduction. Noteworthy steps were the following:

• TRL 1: Basic principle observed - thorough theoretical
preparation as described in Consideration 2).

• TRL 2: Technology concept formulated - consideration of
the context and defining requirements and goals as in
Consideration 1).

• TRL 5: Technology validated in a relevant environment -
lightweight working solution to make initial inroads.

• TRL 6: Technology demonstrated in a relevant environ-
ment - a working pilot solution finalized by a demo
showcase with main stakeholders.

• TRL 8: System complete and qualified - fully working
and tested solution (currently ongoing).

Furthermore, our work in this aspect was greatly influenced
by a publication by Rana et al. [23], providing a framework for
adopting machine learning software defect prediction in the in-
dustry. First, the authors argue that an insufficient understand-
ing of factors relevant to industrial practitioners is one of the
main reasons for the low adoption of ML SDP in vivo. Second,
Rana et al. develop a framework for explaining the adoption
of ML for SDP in the industry based on the technology
acceptance model and technology adoption frameworks. Third,
they describe the characteristics of ML (perceived benefits,
barriers, and tool availability), organizational characteristics
(need and importance, satisfaction, familiarity with ML, and
competence), and external environment (adoption in other
industries and competition). Last, the paper also provides com-
pelling instructions on how to use the proposed framework.

Naturally, a different method can be used to ease the new
technology adoption within an existing ecosystem; however,
executing appropriate project planning and change manage-
ment tools that explicitly support introducing new methods,
processes, and competencies is imperative [17].

Consideration 5)

Manage risks.

Risk assessment is the process of identifying and evaluating
potential hazards that might endanger the success of a project,
as well as analyzing what mitigations can be triggered when
the hazard occurs. There are ample methods and techniques
aimed to support the process [17]; however, we have built

3https://www.nasa.gov/directorates/heo/scan/engineering/technology/
technology readiness level
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our risk management framework in accordance with ISO
31000:20184 guidelines. We also depict an excerpt of our
analysis in Table I.

TABLE I
EXAMPLE RISK ANALYSIS.

Risk# Risk Impact Probability Risk Response
name (3-1) (4-1) value

Risk 1 Lack of available
resources

3 4 12 Mitigate

Risk 2 Lack of needed
competence

2 2 4 Avoid

Risk 3 No visible
containment gain

3 1 3 Avoid

Risk 4 Tooling and license
unavailability

3 1 3 Mitigate

Risk 5 Organizational
changes

2 2 4 Accept

Risk 6 Resistance among
practitioners

3 3 9 Transfer

Risk 7 Loss of critical
data

3 1 3 Avoid

We evaluated each risk in terms of impact and probability.
The resulting scores can be multiplied to calculate the risk
value used to prioritize the effort being committed to response
actions (we planned four response types to the risks: avoid,
mitigate, accept, or transfer). Secondly, after the analysis,
items must be monitored throughout the project duration.
As time progresses, new developments may shed light on
unknown risks or change their probability or impact on the
project’s success.

Notably, the initial risk identification and assessment effort
can result in a preemptive actions list - tasks that are worth
executing as soon as possible to mitigate future hazards. In
our case, four actions emerged for instant execution. First, a
potential lack of resources needs to be immediately planned
into the project by gaining commitment from management
and sponsors. Second, utilizing transformation managers and
submitting the project to official improvement frameworks to
gain additional support and buy-in. Third, the launch of an
awareness and competence ramp-up campaign on ML needs
to be started as soon as possible. Last, research data needs to
be regularly backed up on online servers.

One might consider a more lightweight or heavier approach
based on the criticality of the business context for the im-
plementation. Also, our risk examples are not exhaustive and
are highly dependent on the project ecosystem. Nevertheless,
the process enables better decisions and increases the project’s
chances of final success.

Consideration 6)

Choose appropriate data set.

Commercial companies can possess vast amounts of data
that can be used for ML SDP. Regarding the entire SDLC
(as in Consideration 3)), predictors for each test phase can
be built on different data sets. Furthermore, each can be more

4https://www.iso.org/standard/65694.html

effective when using specific features that need to be carefully
selected [34].

The data we plan to gather and utilize will determine
many aspects of the implementation. For example, conducting
feature selection on the data set is important to optimize the
process and increase prediction performance. Also, commer-
cial data often suffer from missing samples, especially if the
data set contains manually entered fields in the repository.
Nonetheless, information carried by the observations with
missing values can have predictive value [35] and needs to be
planned for accordingly. Moreover, commercial data are often
imbalanced [36] and noisy [37] and thus must be handled
appropriately.

As mentioned, the data set we use is a collection of
historical test process metrics gathered automatically from the
main test case repository for the Nokia 5G quality assurance
process, consisting of approximately 8000000 unique results
of 100000 test cases executed over five and a half months from
January 2021 until June 2021. Data were split by month into
six separate files, allowing comparison of particular learners’
effectiveness and the analysis of the differences between
learners on different data subsets. However, as typical for
industry data, there are considerable differences in the data
quality between sets, which needs to be analyzed. Secondly,
the data was a combination of both automatically and manually
generated, creating unexpected inconsistencies. Therefore, a
decision was made by the practitioners that all missing or
incomplete entries have to be omitted during pre-processing.
Last, as often is the case with real-world applications, the sets
were severely imbalanced, which needs to be accounted for
by how performance is measured (see Consideration 8)).

Hence, one of the most important aspects is planning for
automation. Automated ML enables the process of gathering
the data, pre-processing, simulation, and presenting the result
to be acted upon to be fully automated [38]. Therefore, for
online code metrics, change metrics, and software fault report
repository to serve as real-time features, we need to plan
accordingly and consider the limitations of interfaces towards
the data repositories (for example, Jira5 or Jenkins6).

Moreover, many additional concepts are expanding the
opportunities to use ML SDP in different circumstances that
can be considered — just-in-time (JIT) defect prediction [39],
cross-project defect prediction (CPDP) [40], cross-company
defect prediction (CCDP) [41] in homogeneous and heteroge-
neous defect prediction contexts (HDP) [42].

The most important breakthrough for each endeavor is to
connect the data set with a use case. Naturally, we cannot
freely select from all the possibilities in all circumstances,
and project context, including stakeholders and confidentiality,
can severely predetermine and limit options. Nevertheless, the
outcome of the data set selection is very influential as it
will determine tooling (Consideration 7)), learners (Consid-
eration 8)), and interpretability (Consideration 9)).

5https://www.atlassian.com/software/jira
6https://www.jenkins.io/
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Consideration 7)

Choose appropriate tooling.

Choosing the framework to use for solution introduction in
vivo needs to be based on the requirements and goals defined
in Consideration 1). Identifying what we want to accomplish
with the software tools we deploy will dictate the choice of
the available software options. Tools that offer the required
features need to be identified and compared to make a list of
potential opportunities. Practitioners need to consider licensing
options and available budget. Also, they need to evaluate the
user interfaces and needs on how the data and models will
be presented. Finally, we can compare the technology used in
the tool with in-house competence availability. For example,
if a company employs Python developers, using Python may
be an obvious choice considering how widespread and helpful
Python frameworks and libraries are.

Another essential factor to consider is the compatibility of
the ML framework with existing data repositories within the
company. Automated interfaces for data gathering to existing
tools as described in Consideration 6)) need to be utilized or
developed from scratch. Importantly, licensing and other legal
aspects of the used framework and obtained results must be
carefully verified.

Many options became available as machine learning gained
in popularity over the last years, all with specific advantages
and limitations, e.g.:

• R7 is a programming language for data analysis and
machine learning. Specifically, this framework was used
(together with the mlr3 universe8) in the underlying re-
search as it provided an object-oriented, unified interface
to a wide range of ML models offered by a plethora of
other useful R packages.

• TensorFlow9 is an open-source machine learning library
developed by Google, popular for its ease of use and
flexibility.

• Keras10 is a high-level neural networks API written in
Python, designed to enable fast experimentation with
deep neural networks.

• PyTorch11 is a machine learning library developed by
Facebook, popular for its dynamic computational graph
and ease of use.

• Scikit-learn12 is a popular machine-learning library for
Python, designed to be simple and efficient, making it
easy to use for both beginners and experts.

• Weka13 is an open-source machine learning tool written
in Java.

7https://www.r-project.org/
8https://mlr3.mlr-org.com/
9https://www.tensorflow.org/
10https://keras.io/
11https://pytorch.org/
12https://scikit-learn.org/
13https://www.weka.io/

• Microsoft Azure ML Studio14 is a cloud computing plat-
form that provides many services for machine learning
applications.

• Finally, there are several custom tools built by researchers
to satisfy specific study requirements. A business-driven
systematic literature review by Stradowski and Madeyski
provides an analysis of such solutions [5].

Alternatively, a dedicated solution can be built (insourced or
outsourced). However, considering the high quality of already
available frameworks, good reasons need to exist for building
something new. Creating customized solutions can cause high
development costs, uncertainty of outcome, lack of dedicated
support, or difficulties in scaling. On the other hand, custom
ML SDP tooling may be specifically designed to meet the
organization’s current needs precisely and may give a better
predictive performance [43]. Consequently, pros and cons need
to be evaluated to make a data-driven decision.

In the underlying study, although an insourced solution
was initially considered, the participating software developers
decided on using the R language based on the results of a
successful pilot and agreed project goals (Consideration 1)).
Testers, as users of the solution, found the prediction models
relatively easy to use and commented that the essential aspect
is the ability to act upon the results. Last, management repre-
sentatives appreciated the fact that no additional cost apart
from man-hours was necessary to implement the solution,
confirming that cost consideration remains crucial in industry
adoption efforts [5], [44].

Consideration 8)

Apply appropriate learners and performance metrics.

Many ML techniques have been conceived [28], [45],
each with different prediction effectiveness based on the
circumstance. Notably, it is also claimed that no universal
model could be applied to all data sets to develop effective
solutions, as in the ”no free lunch” (NFL) theorems [46].
Therefore, we advise employing various classifiers to select
the best-performing ones for used data sets. Specifically, the
most popular methods used in industry research are Linear
Regression, Naive Bayes, Logistic Regression, Decision Trees,
Support Vector Machine, K-Nearest Neighbor, and Random
Forest [5]. Furthermore, different classifiers can find different
defects that can be used to benefit the final test coverage [30].

Significantly, selection should be based on reliable per-
formance metrics. There are many performance measures;
however, considering the arguments and recommendations
of Shepperd et al. [14], [15], as well as Chicco and Ju-
rman [16], the main comparisons and conclusions should
rely on Matthew’s Correlation Coefficient (MCC). That said,
assuming that the calculation of additional measures bears a
minimal cost in most off-the-shelf frameworks, it is advisable
to gather more metrics as it provides opportunities for further

14https://ml.azure.com/
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insight and understanding of the models. Specifically, a reli-
able dependency between any metric and costing is yet to be
established [47].

Also, additional techniques such as normalization, outlier
detection, feature selection, re-sampling and cross-validation,
hyperparameter tuning, boosting, ensuring reproducibility, and
conducting statistical analyses need to be considered depend-
ing on the context [28]. Before committing to highly effective
but also very complex solutions such as deep learning [48],
alignment with the solution requirements (Consideration 1)) is
advised. Finally, chosen learners will impact the interpretabil-
ity potential of built models (Consideration 9)).

In the underlying study, five relatively simple supervised
machine learning algorithms were implemented and compared
using repeated 10-fold cross-validation with the software
defect prediction performance measured by the Matthews
Correlation Coefficient (MCC) due to the data class imbal-
ance. Results have shown that CatBoost and Random Forest
performed the best in all executed tasks, followed by Light
Gradient-Boosting Machine, Classification Tree, and Naı̈ve
Bayes. Importantly, even without tuning, CatBoost and Ran-
dom Forest achieved satisfactory results, with differences that
are not statistically significant. Consequently, both models
were recommended, as they have successfully proven that
software defects can be accurately predicted in vivo using
limited data readily available within the Nokia 5G system-
level test process.

Consideration 9)

Build for interpretability.

We advise the principle of limited trust towards any ma-
chine learning predictions, especially in business-critical con-
texts. Predictive technology can analyze vastly more extensive
amounts of data than any human could, but it may also
lack aspects like experience, ethics, or intuition. Therefore,
it should be used cautiously and not relied upon completely
in all circumstances. However, implementing explainable or
interpretable AI/ML and human-in-the-loop (HITL) capabili-
ties can considerably improve the usefulness or effectiveness
of implemented solutions, as well as the chances of final
project success [49], [50]. Also, several reasons can influence
decisions behind building-in interpretability [51] potential to
the ML SDP solutions:

• Transparency and trust - models that explain their pre-
dictions or decisions can help build trust in the model’s
effectiveness and decision-making process. This is espe-
cially important in safety-critical domains.

• Accountability and compliance - ensuring compliance
with regulations and ethical standards is of critical im-
portance. For example, the European Union’s General
Data Protection Regulation (GDPR)15 includes a ”right

15https://gdpr.eu/what-is-gdpr/

to explanation” that requires organizations to explain
automated decisions that impact any individual.

• Debugging and improvement - interpretable models can
help identify and correct errors or biases in the model.
Consequently, it can also improve the effectiveness and
reliability of the model, as well as help ensure that it is
making decisions based on the intended criteria.

• Domain expertise - interpretable models can be easier to
understand for domain experts who do not need to have an
understanding of machine learning algorithms. Second,
it can facilitate collaboration between data scientists
and domain experts and enable better-informed decision-
making.

• Knowledge discovery - interpretability can help uncover
patterns and insights in data that may not be apparent
through other methods. This can generate new hypotheses
and insights that can drive innovation and improvement
within the company.

Notably, high interpretability (high model transparency)
typically comes at the cost of performance. If a company wants
to achieve the highest performance but still wants to explain
the ML model’s behavior in human terms, model explainability
may be the way to choose. In the case of complex back-box
models, it could not be possible to fully understand how the
inner mechanics impact the prediction. Fortunately, thanks to
model-agnostic methods (partial or SHAP dependence plots, as
well as surrogate models), it is possible to explain the model’s
behavior [52]. However, post hoc explanations may not be
reliable and can be misleading; hence there is a trade-off in
using both approaches [53].

During the implementation in Nokia, interpretability was
approached as an additional value rather than a necessity.
Involved practitioners wanted to know what factors drive ML
algorithm decisions and compare them with their experience.
After making some inroads using available R packages (e.g.,
iml, DALEX) supporting the interpretability or explainability
of ML models, it was perceived as a valuable feature of the
employed ML models. It helped to find inspiration for further
improvement actions and opportunities to refine the software
development process in a complementary way, i.e., not by
further improvement of the ML models but by indicating the
most important sources of the observed quality issues. Thus,
the interpretability or explainability of ML models has the
potential to deliver additional business value to the company
from the perspective of management (global explanations), as
well as developers or testers (global explanations can be used
as guidelines, while local explanations can be used to deter-
mine which explanatory variables affect a model’s prediction
for a single observation). As a result, Nokia practitioners see
this valuable opportunity created by an ability to interpret or
explain models’ predictions as a substantial added value.

Furthermore, the interpretability of machine learning is
essential for ensuring the accuracy, fairness, and accountability
of machine learning models, as well as gaining confidence
among practitioners. Even if the goals for the implemented
solution do not include interpretability, it is worth considering
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as a path for improvement as regulations and expectations
might change in the future.

Consideration 10)

Prepare a cost evaluation.

Cost-effectiveness is a critical aspect of any project from
the business perspective (adhering to the value-based software
engineering (VBSE) [54] concept). Unfortunately, the cost
and benefits of ML SDP are not yet well understood, and
the scientific research on the topic is scarce [44]. Second,
cost considerations must be handled separately from predictive
performance [47]. Nevertheless, the publications that do exist
provide several models for cost-benefit evaluations and show
very promising results (e.g., [55]).

A general cost model we used to present the business case
of ML SDP introduction in Nokia was based on a publication
by Herbold [44]. The proposed model includes aspects such as
the initial investment needed to set up the solution, expenses
related to running the simulations, additional quality assurance
effort, and escaped defects. For our purpose, we calculated
the ROI16 value, which showed a very positive outlook.
Using popular economic ratios has helped to gain management
support for the project.

Different scenarios can be evaluated based on the solution’s
expected efficiency and approximations of mentioned costs.
In our case, Nokia possessed extensive analytics on software
effort estimations, containment metrics, cost of poor quality,
and similar values. Thus, it helped us tremendously to provide
as accurate as possible evaluations. If such information is not
readily available, approximations need to be estimated based
on the best knowledge and subject matter expertise, resulting
in a lower level of confidence. However, the facilitation
of a data-driven decision process will substantially increase
the understanding of challenges and risks that need to be
considered.

In our example, the most important conclusions we derived
were the following:

• Lightweight, easy, and fast solutions to gain initial in-
roads have shown a better cost-benefit ratio than more
effective but heavier solutions.

• It was vital to include the solution’s lifetime in the
calculations. Naturally, planning to use the ML SDP
solution for an extended time will be more attractive than
short-term or one-time models.

• Cost of the escaped defect is a notable influencing factor
on profitability. The more expensive one defect is, the
more saving can be expected from ML SDP.

• The estimated profitability of the project ranged between
ROI 3.5 and 4 depending on the projected lifetime and
used assumptions, showing the implemented ML SDP
solution has a positive monetary impact and can be cost-
effective.

16https://www.investopedia.com/terms/r/returnoninvestment.asp

In summary, from the industry application perspective,
demonstrating the investment needed by ML SDP will bring
monetary return is critical. Without showing the expected
gains, chances of success are diminished, as profitability is
a vital success criterion in industry [54].

Consideration 11)

Manage stakeholders.

Stakeholder management is critical to any successful busi-
ness endeavor, as stakeholders can considerably impact the
project’s outcomes [17]. The following steps were performed:

• The first step we took in stakeholder management was
identifying all individuals or groups with an interest or
stake in the project.

• Second, we analyzed the stakeholder needs, interests, and
expectations regarding the project (also in the context of
requirements gathering, as in Consideration 1)).

• In consequence, a management strategy was developed
based on assessing stakeholder requirements and prior-
ities, containing plans for engaging and communicating
with relevant parties throughout the project.

• Finally, a resource plan with team roles and responsibil-
ities has been created and approved.

Effective stakeholder management requires proactive engage-
ment and communication, a deep understanding of stakeholder
needs and interests, and a willingness to adjust strategies as the
project progresses. By prioritizing stakeholder management,
project teams can build stronger relationships with stakehold-
ers and increase the likelihood of project success.

A few observations on managing stakeholders for ML SDP
implementations are shared below:

• From the stakeholder management perspective, in vivo
studies can be much more challenging than academic ef-
forts as more people are involved. Researchers, practition-
ers, and management can have vastly different priorities
and expectations for the project.

• Researcher bias should be carefully considered (as stud-
ied by Shepperd et al. [14]).

• Most participants were very optimistic about ML SDP
and expressed satisfaction with the results and value
provided by our lightweight solution.

In the end, project progress was much more straightforward,
with efficient engagement, communication, and understanding
of stakeholder needs and interests.

Consideration 12)

Plan for long-term evolution.

It is also worthwhile to plan for the long-term evolution of
the ML SDP field in the coming years and evaluate possible
scenarios and consider their feasibility in a specific context to
seek further opportunities.

8

https://www.investopedia.com/terms/r/returnoninvestment.asp


For example, the project in Nokia attempts to validate if the
current approach to test planning done by test architects (TAs)
can be supplemented by adding an ML SDP solution. Models
can consider historical aspects, handle several programs simul-
taneously, and operate much quicker than humans; however,
they can make many more mistakes and be less trustworthy in
business-critical situations. Based on the achieved predictive
performance and our cost-benefit analysis, there is solid justifi-
cation for implementing such an ML SDP support mechanism
for the test architects on system-level testing. Consequently, in
the future, it may be feasible to substitute human interference
completely and entirely rely on ML SDP to make the best test
coverage decisions. Our results show this transition could be
possible in the future after a full-scale verification of the hybrid
model in vivo over several releases and a thorough evaluation
from a cost perspective. In our example, the specific Nokia-
based supposition for the described technology progression
can be seen in Table II.

TABLE II
STEP-WISE EVOLUTION OF ML SDP INTRODUCTION.

Step 1: Step 2: Step 3:
Current state Our solution Future
Test Architects TAs + ML SDP Pure ML SDP

Predictive
accuracy

baseline improved improved

Auto data
acquisition

limited yes yes

Historical
data

limited yes yes

Report
generation

manual automatic automatic

Multiple
projects

limited limited yes

Running
time

full-time low low

Installation
cost

high low moderate

Maintenance
cost

high low moderate

Continuously improved by the academic community, meth-
ods such as new algorithms, boosting, ensembles, hyperparam-
eter tuning methods, cross-validation, outlier detection, and
similar need to be combined with environment-focused mecha-
nisms to tailor Nokia’s needs after the solution is implemented
and operational. Gradual effort towards better performance
can, at some point, allow ML SDP to be a single test planning
mechanism. Thus, acknowledging the long-term future and
feasibility of pure ML SDP solutions has heavily impacted the
projects’ technology assessment (Consideration 4)) and cost
evaluation (Consideration 10)) steps.

Consideration 13)

Plan project closure.

At the end of a project, several key tasks should be planned
to ensure a successful conclusion and handover [17].

• First of all, review the project goals and requirements and
measure the achievements against the success criteria (as

in Consideration 1)).
• A handover of the responsibility towards designated

practitioners needs to be done. It should be planned in
advance, and the transfer of knowledge about ML and the
used framework needs to be secured (Consideration 2)).

• Run a dedicated retrospective meeting to draw final
conclusions on the process, gather lessons learned, and
elicit stakeholder feedback (Consideration 11)).

• Reflect upon the next steps: conclude the technology
acceptance model (Consideration 4)) and review the
whole SDLC impact to identify further improvement
opportunities (Consideration 3)).

• Finally, consider publishing the results and experience
reports to benefit the wider community.

III. PRACTICAL IMPORTANCE

To provide further insight into our analysis, we have evalu-
ated each of the presented considerations in two categories to
create a control-impact matrix17 — illustrated in Figure 2 and
detailed scoring in Table III. We used this effective problem-
solving and prioritization tool to organize the proposed solu-
tions according to the level of impact on the project’s success
and the amount of influence the researchers can have on the
identified factors. Each factor is evaluated on a scale from
1-low to 4-high, and the multiplication of those two values
shows the relative priority.

• Impact - subjective measure reflecting how critical a
particular consideration is to the end success of the ML
SDP introduction.

• Control - subjective measure reflecting how much influ-
ence the project leaders can have over the outcome of the
consideration.

Fig. 2. Exemplary control-impact matrix.

The provided analysis illustrates which considerations have
the highest impact and control, offering the most significant
increase in the chances of final success at the lowest amount
of time and effort spent:

17https://www.sixsigma-institute.org/Six Sigma DMAIC Process
Analyze Phase Control Impact Matrix.php
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• High Impact and High Control: 1) Collect requirements
and goals, 2) Build upon solid theoretical and practical
foundations, and 6) Choose appropriate data set.

• High Impact and Low Control: 5) Conduct risk analysis,
10) Prepare a cost evaluation, 11) Manage stakeholders,
and 13) Plan project closure.

• Low Impact and High Control: 6) Choose appropriate
data set, and 8) Apply appropriate learners and metrics.

• Low Impact and Low Control: 3) Consider the entire
SDLC, 4) Conduct technology assessment, 9) Build for
interpretability, and 12) Plan for long-term evolution.

TABLE III
CONTROL-IMPACT EVALUATION.

# Consideration Control Impact Priority
1) Collect requirements and goals. 3 3 9
2) Build upon solid foundations. 4 3 12
3) Consider the entire SDLC. 2 1 2
4) Conduct technology assessment. 2 1 2
5) Conduct risk analysis. 2 3 6
6) Choose appropriate data set. 3 2 6
7) Choose appropriate tooling. 2 4 8
8) Apply appropriate learners and metrics. 3 2 6
9) Build for interpretability. 2 2 4
10) Prepare a cost evaluation. 2 4 8
11) Manage stakeholders. 2 3 6
12) Plan for long-term evolution 2 2 4
13) Plan project closure. 2 3 6

Note: above considerations are an example reflecting the
particular context of our research in Nokia. Potential fol-
lowers must prepare their analysis according to the specific
circumstances they are working in, as the results may be very
different. Also, there might be other external aspects inhibiting
introduction progress — factors such as changing business
priorities, economic slowdowns, or technology disruptions that
have not been discussed in our report.

IV. THREATS TO VALIDITY

We have identified several threats to the validity [19], [20],
[56] of our study:

• Construct validity: In the case of our experience report,
several construct validity threats result from the under-
lying study conclusions [8]. Specifically, the technical
aspect of the conducted underlying ML SDP research
was based on approaches previously validated in several
contexts and grounded state-of-the-art methods [8]. For
example, our experience report relies on results using
Matthews Correlation Coefficient (MCC) as a reliable
performance measure [14]–[16]. However, to avoid the
mono-method bias threat and to give an even broader
understanding of the obtained results, several auxiliary
measures like Area Under the Curve (AUC), Classifi-
cation Accuracy (ACC), Recall, Precision, F-beta score
(Fbeta) with beta = 1, were reported and analysed as
well. Furthermore, repeated 10-fold cross-validation was
applied to obtain even more reliable conclusions than
classic 10-fold cross-validation. Finally, statistical tests
and calculated robust non-parametric effect sizes [57]

were conducted to grasp the statistical and practical
significance of the presented results. Mono-operation bias
does not seem to be a large threat since we study the
outcome of the whole software development process on
the system level of Nokia 5G; however, we acknowledge
that other testing levels are beyond the scope of our study.
Interaction of different treatments also does not seem to
be a large threat as all change initiatives in the organiza-
tion are monitored through a panel of experts. There is
a threat of interaction of testing and treatment, as when
we started our improvement project, we indicated that the
quality is essential and needs to be improved. However,
high quality is a widely recognized, long-term goal of
Nokia; hence, we do not expect this threat to be large.
There is also a threat of restricted generalizability across
constructs as our intervention of introducing ML SDP
impacted the test organization but also caused increased
effort and extra resources. In consequence, we cannot
fully distinguish whether the improvement was caused by
the predictions or the allocation of dedicated resources.
However, the increased effort and additional resources
were kept as low as possible. The threat of evaluation
apprehension seems to be limited as the experts from
Nokia, we gathered the feedback from, were accustomed
to providing feedback without exceptional stress, but we
can not entirely rule out the human aspects influencing
their stated opinions. Problems with inaccurate defect
labels (due to the limitations of the SZZ algorithm and
its implementations) are a severe threat to the validity of
the state of the art of defect prediction [58]. Hence, the
underlying project takes advantage of precise mapping of
test cases to specific parts of the code, but this approach
also has its own limitations, as not all failures become
defects. As a result, the most important threat to con-
struct validity seems to be an inadequate preoperational
explication of constructs.

• Internal validity: The passage of time makes things
better or worse, even without intervention. However, in
a relatively short project period of a few months, we
consider the maturity threat to be limited. There is also
the history threat as some specific events may occur
between measurements or collecting subsequent data sets
as the software matures by itself, but again a relatively
short span of time in our case limits the threat. The
instrumentation threat was under control, as we confirmed
that the instruments used to collect data did not change
during the study.
Importantly, assumptions in the underlying research also
constitute internal limitations and threats to validity. All
are based on actual evaluations done within responsible
functions in Nokia and are the best available approxima-
tions within a complex business reality. However, for the
sake of confidentiality, the publication contains slightly
modified values of similar magnitude; hence, the actual
values used in the company are different but comparable
in magnitude. We did not find any other noteworthy
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discrepancies regarding internal validity that needed to
be addressed. We acknowledge that the identified consid-
erations may be influenced by transient challenges faced
in specific areas of the test process, particular capabilities
or insights of the participating practitioners, and currently
emphasized company priorities. However, such factors
also reflect a standard industrial context and must be
included in any ML SDP introduction.

• External validity: It is essential to understand the validity
of the considerations beyond the case that was studied.
There is a serious threat of constructs, methods, and con-
founding as the study takes advantage of the traceability
of test cases to requirement and software components
which is not always the case. The threat of multiple
treatment interference is low as we did not introduce any
other action simultaneously (we also monitored change
actions within the company). The threat of the real-world
setting vs. experimental setting is low as our setup is
embedded within a typical company setting. Finally, there
is a threat of selection biases as we were able to select
only one company (Nokia) as a context for our research.
We based our research on a proprietary industrial data
set and process; therefore, the generalizability of the
prediction performance results is limited, and we can
not claim any similar efforts would achieve identical
outcomes. However, the observations we have made and
documented in the report, as well as the proposed generic
approach to introducing ML SDP, should be generalizable
to a large extent to any large-scale software project,
including other telecommunication companies.
Adapting particular considerations to specific contexts
and using the control-impact matrix for prioritization
should immensely improve the chances of the final suc-
cess of any industry ML SDP implementation. Naturally,
not all suggestions may be applicable to every situation
(for example, ’3) Consider the entire SDLC’ may be
superficial in a company that has a much simpler cycle
than Nokia; however, it may still be worthwhile to
deliberate how to incorporate a holistic approach early in
the project). Last, the results of our exemplary control-
impact matrix are not transferable without proper analysis
and are specific to our project, as has been highlighted
in Section III. Both control and impact evaluations need
to be done by practitioners and subject-matter experts
who understand the target environment’s specifics enough
to weigh their respective importance.

• Reliability: Threats to reliability are concerned with the
extent to which the data and the analysis depend on
the specific researchers. Specifically, the possibility of
missing data and their treatment, as well as misin-
terpreting the observations pose meaningful threats to
reliability. Although a significant effort was put into
building the report, essential aspects still might not have
been noticed. Therefore, the observations made as the
project progressed were cross-checked with direct feed-
back from a group of Nokia practitioners responsible for

the project to more accurately reflect the discussions that
happened during the planning, execution, and analysis of
the project. Furthermore, after the report’s documentation
and editing, the participating stakeholders’ review was
initiated, uncovering further misinterpretations and errors.
Nevertheless, if different participating stakeholders and
Nokia practitioners were involved, the results may not
be exactly the same, which can be expected in industry
studies. Last, to further reduce the reliability threat, a
reproduction package for the underlying study [8] is avail-
able, following the reproducible research practice [59].

V. CONCLUSION

In summary, despite many challenges to overcome [6], [24],
[28], defect prediction methods offer substantial profitability
potential and attractive business cases [23], [29], [55]. There-
fore, provided observations and highlighted risks can benefit
other researchers and practitioners [18], [19] improve the
chances of success for future introductions and help ML SDP
become a standard procedure among software engineering
practitioners.

Our experience report offers a holistic and sequenced ap-
proach to introducing a new ML SDP technology within the
industry on a large software system. Consequently, the thirteen
most important lessons learned we identified and discussed
will help researchers and practitioners to benefit from our
experience. We explain the insights and best practices that
emerged, frameworks that can be used, risks to be mitigated,
and further improvement possibilities for ML SDP industry
adoption. Also, we used the control-impact matrix prioriti-
zation tool to decide where to put the primary focus during
the introduction. In our case, the analysis revealed collecting
requirements and setting appropriate goals, building upon solid
theoretical and practical foundations, and choosing appropriate
tooling to be the most impacting on the project outcome
and in the project’s team control [17]. Thus, they must be
prioritized during the execution to increase the chances of the
final success of the ML SDP solution we are implementing
within the Nokia 5G system-level testing.

Likewise, we hope to see more practitioners publish their
results and learnings on lowering the costs and improving
the quality of developed software products using ML SDP.
Increasing the number of successful implementation examples
in published experience reports, with case studies and lessons
learned [21], brings us closer to achieving widespread and
effective defect prediction processes. Furthermore, available
experience reports like the presented paper help the software
engineering community to support building fully automated,
reliable, and inexpensive ways to guide quality assurance
resources more effectively for software companies worldwide.
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[49] A. Kotriwala, B. Klöpper, M. Dix, G. Gopalakrishnan, D. Ziobro, and
A. Potschka, “Xai for operations in the process industry-applications,
theses, and research directions,” in AAAI Spring Symposium: Combining
Machine Learning with Knowledge Engineering, 2021, pp. 1–12.
[Online]. Available: https://ceur-ws.org/Vol-2846/paper26.pdf

[50] L. von Rueden, S. Mayer, K. Beckh, B. Georgiev, S. Giesselbach,
R. Heese, B. Kirsch, J. Pfrommer, A. Pick, R. Ramamurthy, M. Walczak,
J. Garcke, C. Bauckhage, and J. Schuecker, “Informed machine learning
– a taxonomy and survey of integrating prior knowledge into learning
systems,” IEEE Transactions on Knowledge and Data Engineering,
vol. 35, no. 1, pp. 614–633, 2023.

[51] A. Barredo Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser, A. Bennetot,
S. Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins,
R. Chatila, and F. Herrera, “Explainable Artificial Intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward responsible
AI,” Information Fusion, vol. 58, pp. 82–115, 2020.

[52] “Model explainability with aws artificial intelligence and machine
learning solutions,” Amazon Whitepaper, Tech. Rep., 2023. [On-
line]. Available: https://docs.aws.amazon.com/pdfs/whitepapers/latest/
model-explainability-aws-ai-ml/model-explainability-aws-ai-ml.pdf

[53] C. Rudin, “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead,” p. 206–215, 2019.

[54] B. Boehm, “Value-based software engineering: Reinventing,” SIGSOFT
Software Engineering Notes, vol. 28, no. 2, p. 3, mar 2003.

[55] J. Hryszko and L. Madeyski, “Cost effectiveness of software defect
prediction in an industrial project,” Foundations of Computing and
Decision Sciences, vol. 43, no. 1, pp. 7–35, 2018.

[56] M. Staron, Action Research in Software Engineering - Theory and
Applications. Springer, 2020.

[57] B. Kitchenham, L. Madeyski, D. Budgen, J. Keung, P. Brereton,
S. Charters, S. Gibbs, and A. Pohthong, “Robust Statistical Methods
for Empirical Software Engineering,” Empirical Software Engineering,
vol. 22, no. 2, pp. 579–630, 2017.

[58] S. Herbold, A. Trautsch, F. Trautsch, and B. Ledel, “Problems with
SZZ and features: An empirical study of the state of practice of defect
prediction data collection,” Empirical Software Engineering, vol. 27,
no. 2, p. 42, 2022.

[59] L. Madeyski and B. Kitchenham, “Would wider adoption of reproducible
research be beneficial for empirical software engineering research?”
Journal of Intelligent & Fuzzy Systems, vol. 32, no. 2, pp. 1509–1521,
2017. [Online]. Available: https://doi.org/10.3233/JIFS-169146

13

https://ceur-ws.org/Vol-2846/paper26.pdf
https://docs.aws.amazon.com/pdfs/whitepapers/latest/model-explainability-aws-ai-ml/model-explainability-aws-ai-ml.pdf
https://docs.aws.amazon.com/pdfs/whitepapers/latest/model-explainability-aws-ai-ml/model-explainability-aws-ai-ml.pdf
https://doi.org/10.3233/JIFS-169146

	Introduction
	Considerations
	Practical importance
	Threats To Validity
	Conclusion
	References

