
Preprint of an article: Szymon Stradowski and Lech Madeyski (2023), ”Machine learning in software defect prediction: A business-driven
systematic mapping study”, Information and Software Technology, Volume 155, Pages 107128. DOI: 10.1016/j.infsof.2022.107128
Preprint: https://madeyski.e-informatyka.pl/download/StradowskiMadeyski23bISTpreprint.pdf

Machine learning in software defect prediction: A business-driven systematic
mapping study

Szymon Stradowskia,b,1, Lech Madeyskib,2,∗

aNokia, Szybowcowa 2, Wroc law, 54-206, Dolnoslaskie, Poland
bWroc law University of Science and Technology, Wyb. Wyspianskiego 27, Wroc law, 50-370, Dolnoslaskie, Poland

Abstract

Context: Machine learning is a valuable tool in software engineering allowing fair defect prediction capabilities at a
relatively small expense. However, although the practical usage of machine learning in defect prediction has been studied
over many years, there is not sufficient systematic effort to analyse its potential for business application.
Objective: The following systematic mapping study aims to analyse the current state-of-the-art in terms of machine
learning software defect prediction modelling and to identify and classify the emerging new trends. Notably, the analysis is
done from a business perspective, evaluating the opportunities to adopt the latest techniques and methods in commercial
settings to improve software quality and lower the cost of development life cycle.
Method: We created a broad search universe to answer our research questions, performing an automated query through
the Scopus database to identify relevant primary studies. Next, we evaluated all found studies using a classification
scheme to map the extent of business adoption of machine learning software defect prediction based on the keywords
used in the publications. Additionally, we use PRISMA 2020 guideline to validate reporting.
Results: After the application of the selection criteria, the remaining 742 primary studies included in Scopus until
February 23, 2022 were mapped to classify and structure the research area. The results confirm that the usage of
commercial datasets is significantly smaller than the established datasets from NASA and open-source projects. However,
we have also found meaningful emerging trends considering business needs in analysed studies.
Conclusions: There is still a considerable amount of work to fully internalise business applicability in the field. Per-
formed analysis has shown that purely academic considerations dominate in published research; however, there are also
traces of in vivo results becoming more available. Notably, the created maps offer insight into future machine learning
software defect prediction research opportunities.

Keywords: software defect prediction, machine learning, systematic mapping study, business applicability, effort and
cost minimisation

1. Introduction

Already in 1998 Slaughter et al. [1] made a case for jus-
tification of investments in software quality improvements
to be done with similar consideration as with any other
new project. Despite this and many subsequent efforts, in
2020, the Cost of Poor Software Quality (CPSQ) in the US
alone was estimated at $2.08 trillion [2]. Based on these
data, the Consortium for Information & Software Quality
recommends that software companies strongly emphasise
defect prevention and addressing weaknesses by identify-
ing, isolating and correcting problems as early as possible.
Otherwise, businesses worldwide will continue to lose for-
tunes due to escaped software defects.

Improving the quality and minimising the cost of soft-
ware development life-cycle has been the goal of software

∗Corresponding author
1ORC ID: 0000-0002-3532-3876
2ORC ID: 0000-0003-3907-3357

engineering (SE) practitioners and researchers for decades.
A significant number of research papers have been writ-
ten and published to discover new and more efficient ways
to identify defect-prone areas. However, the challenge
becomes increasingly complex, exacerbated by the con-
stantly growing code-base (illustrative example provided
by Google [3]).

With its commercial popularisation, machine learning
(ML) has become the central area of study and is seen
as having significant potential to impact defect-finding ef-
ficiency. One exceptionally promising concept is software
defect prediction (SDP), using models that indicate the ar-
eas of the code where faults are most probable [4]. As a re-
sult, many ML techniques have been conceived, each with
different effects based on the circumstance [5]. Notably, it
is also claimed that no universal model could be applied
to all datasets to develop effective solutions as in the “no
free lunch” (NFL) theorems [6, 7]. Due to this and several
other causes, like high complexity, low understandability,
and high maintenance, business adoption of the proposed

https://doi.org/10.1016/j.infsof.2022.107128
https://madeyski.e-informatyka.pl/download/StradowskiMadeyski23bISTpreprint.pdf

solutions is comparatively lagging the academic research.
We aim to verify this assertion by conducting a systematic
mapping study evaluating the degree of business adoption
of the up-and-coming machine learning trends.

Our systematic mapping study follows the approach for
evidence-based software engineering research by Kitchen-
ham et al. [8]. The first step is to define the research ques-
tions that allow investigation of the subject. The next
step is to search and identify all relevant primary stud-
ies targeted for assessment. Finally, the primary studies
undergo data extraction and synthesis to create the sys-
tematic map. As a result, this paper is organised into five
main sections. Section 1 serves as the introduction to the
researched topic highlighting the main goals and contribu-
tions. Section 2 describes the research methodology, in par-
ticular, the research questions and selection criteria. Sec-
tion 3 consists of result analysis focusing on quantitative
analysis, techniques, new trends, and evaluation business
adoption attempts. Discussion of the obtained results and
identified threats to validity are presented in Section 4,
while Section 5 contains the summary and conclusions.

Notably, the following systematic mapping study is
business-driven in its nature. Its purpose contributes to
developing a solution that directly satisfies business re-
quirements of the Nokia company. The business require-
ments we want to address are improving the quality and
minimising the cost of software testing of 5G systems, as
defined by Stradowski and Madeyski [9]. Therefore, this
article is part of a more extensive series committed to the
business endeavour of introducing ML SDP in the com-
pany.

1.1. Contributions

Our systematic mapping study is designed to provide
a broad overview of our research area and indicate the
quantity and quality of the existing evidence on business
adoption of ML SDP. The most significant contributions
of the study are similar to the ones given by Hall et al.
[10], albeit specified in emphasising new research trends in
commercial business settings:

• An overview of the most significant secondary stud-
ies in the area of machine learning and software de-
fect prediction.

• A set of 742 primary studies explicitly on the ma-
chine learning software defect prediction.

• A subset of 32 primary studies explicitly including
business adoption examples of machine learning soft-
ware defect prediction.

• Generic overview of the current state-of-the-art ma-
chine learning software defect prediction provided by
studies satisfying our assessment criteria, depicting
the adoption of new trends in real-life business ap-
plications.

• Sufficient contextual and methodological detail to
enable similar studies to be reliably evaluated and

mapped by other researchers and practitioners in-
terested in selecting an appropriate methodology for
a specific context.

• A complete PRISMA 2020 checklist for transparency
and reporting purposes, together with all work-products
needed for replicability. An offering of suggestions
to help identify practical opportunities from the ML
SDP area to commercial applications.

• Importantly, this mapping study serves as a follow-
up to the survey by Stradowski and Madeyski [9] that
analyses the challenges to improve quality and min-
imise the cost of software testing of 5G systems at
Nokia. Our mapping will support Nokia software en-
gineering practitioners in researching challenges they
face in specific commercial circumstances by provid-
ing a classification of relevant literature [11]. This
business-driven effort will be focused on introduc-
ing an ML SDP solution to the system-level test-
ing within the company, and the systematic mapping
study will help understand the current state-of-the-
art.

1.2. Related work

To the best of our knowledge, there were no compre-
hensive secondary studies published on business adoption
of machine learning software defect prediction focusing on
real-life commercial applications published in recent years.
There are, however, several valuable systematic literature
reviews (SLR) and systematic mapping studies (SMS) con-
ducted in isolation from business considerations. They
represent some of the best articles in the field, are widely
cited, and provide insight into the methodology and tech-
niques used in machine learning research. Moreover, high-
lighted articles uncover meaningful ways to assess and cri-
tique research inadequacies.

• Fenton and Neil [12] covered defect prediction studies
up to 1999 and provided a critique of the field, em-
phasising good and bad practices in statistical data
analysis. Even though their research did not fol-
low a systematic review approach, it identified and
documented several pitfalls to avoid for future re-
searchers. The critique also sets a high standard
for state-of-the-art software engineering modelling
for predicting software defects in methodological and
theoretical aspects.

• In 2009, Catal and Diri [13] conducted a system-
atic review of software defect prediction studies fo-
cusing on metrics, methods, and datasets. The re-
view identified 74 software defect prediction papers
in journals and conference proceedings published be-
tween 1990 and 2007. The main recommendations
based on the conclusions were to conduct more stud-
ies on fault prediction models using class-level mea-
surements, increase the usage of public datasets for
fault prediction, and increase the usage of machine
learning-based models overall.

2

• Hall et al. [10] identified and analysed the models
used to predict software defects in source code in 208
studies published between January 2000 and Decem-
ber 2010. The authors emphasised how model per-
formance was affected by its development context,
variables used, and the model’s technique. Inter-
estingly, research suggests that models that perform
well tend to be built around large systems and that
the methodology used to create models is influential
to their predictive performance.

• Shepperd et al. [14] analysed the results of 42 pa-
pers (that collectively report 600 sets of empirical
prediction results) reporting studies comparing ML
algorithms used for software defect prediction. They
found that the explanatory factor that accounted
for the largest percentage of the differences among
studies (as large as 31%) was the research group,
while the main topic of research, i.e., the choice of
the ML algorithm, accounted for only 1.3% of the
variation among studies. They commented that “It
matters more who does the work than what is done”
and “Until this can be satisfactorily addressed, there
seems little point in conducting further primary stud-
ies”. Analysis by Shepperd et al. [14], among oth-
ers, was used by Madeyski and Kitchenham to raise
awareness of the problems caused by unreproducible
research in software engineering, to discuss the con-
cept of reproducible research (RR), advantages of
and problems with RR, and the need for wider adop-
tion of reproducible research in software engineer-
ing [15].

• Malhotra [16] conducted a systematic review of ma-
chine learning research in software defect prediction,
which identified 64 primary studies and seven cate-
gories of machine learning techniques. In general, the
ML models outperformed the linear regression (LR)
benchmark models for SDP. The models based on
the Random Forest, Naive Bayes, and Bayesian Net-
works techniques outperformed the other ML models
in most studies. Notably, most studies were based on
the NASA dataset or publicly available open-source
software. Consequently, more industrial datasets should
be used to demonstrate the practical effectiveness of
the ML techniques.

• Durelli et al. [17] performed a comprehensive sys-
tematic mapping study of research published from
1980 to August 2017. The results outline the ML al-
gorithms most commonly used to automate software
testing activities and offer future researchers an ac-
count of the state-of-the-art ML applied to software
testing. However, the authors also point out that
only a few primary studies evaluated ML-based so-
lutions in industrial settings or used industry-grade
software and that further improvement is needed in
this research area.

• Hosseini et al. [18] has identified 30 primary stud-
ies passing quality assessment on an auspicious from

a business perspective concept of cross-project de-
fect prediction (CPDP). The study shows that Naive
Bayes and Linear Regression are the most widely
used learning techniques in this context, with recall,
precision, f-measure, and AUC being the most fre-
quently used metrics. Importantly, although cross-
project defect prediction generally shows worse per-
formance than within-project defect prediction, it is
still viable in situations where it can not be applied
due to insufficient training data.

• Li et al. [19] conducted a systematic literature re-
view identifying 49 studies containing 2456 individ-
ual experimental results, published between January
2000 and March 2018. The review focused on unsu-
pervised learning techniques in software defect pre-
diction and did not find evidence that unsupervised
classifiers perform worse than their supervised coun-
terparts. Therefore, they may be a more viable op-
tion in certain situations when labelled training data
is scarce and general, and less human intervention is
needed.

• The most recent SLR conducted by Wang et al. [20]
aims to improve the applicability and generalizabil-
ity of machine learning and deep learning studies.
Authors analyze papers published between 2009 and
2020 and observe trends introduced into the field,
focusing on complexity and resulting issues with re-
producibility and replicability. Furthermore, the au-
thors introduced categorization of the rationales be-
hind selecting techniques into five areas to see how
model performance, robustness, interpretability, com-
plexity, and data simplicity affecting the resulting
models.

Overall, there are numerous publications on using ma-
chine learning techniques in software engineering; however,
a seemingly small fraction focuses on its commercial ap-
plication. Notably, not all papers seem to adhere to the
concept of reproducible research [15] to be available for
reuse in other academic or business circumstances. There-
fore, we believe that in future research, significant effort
should be put into embedding business value creation and
replicability principles to academic study. There is poten-
tial for improvement in this regard.

2. Review methodology

As mentioned, the following research adheres to the
guidelines for secondary studies defined by Kitchenham
et al. [8]. First, we clarify our research questions, then
search and identify relevant publications. Next, we syn-
thesise results from the selected studies. Finally, we ex-
plore and answer our research questions through quanti-
tative analysis. We also followed the practice guidelines
for systematic mapping studies by Petersen et al. [21, 11],
as well as considered several relevant practices of system-
atic literature reviews [22]. The overview of the process

3

steps is visible in Figure 1. Furthermore, we used PRISMA
2020 [23, 24] and provided the details in a dedicated check-
list available in Appendix B.

Figure 1: Used systematic mapping process.

2.1. Research questions

Goal Question Metric (GQM) by Basili et al. [25] helped
us to establish a goal-oriented approach and build proper
measures for our research purpose. The GQM goal was
formulated as follows:

• Analyse the research literature on machine learning
software defect prediction

• for the purpose of understanding

• with respect to business applicability

• from the perspective of a team (including both a soft-
ware engineering practitioner and researcher) work-
ing for Nokia

• in the context of the research literature indexed by
Scopus.

We have broken down our GQM goal into seven re-
search questions (RQs). Each question reflects and evalu-
ates the attractiveness of the analysed primary study from
a practitioner’s perspective, pursuing potential solutions
to real-life industry challenges. Accordingly, we based our
analysis on the notion of business applicability to limit the
possible divergence between industry and academic priori-
ties [26]. Therefore, by business applicability we mean the
degree to which the proposed solution is suited to be used
in a commercial environment. We believe a researched
concept can be business applicable and have a chance to
be implemented in a real-life industry environment if it
addresses at least a subset of the rationales provided as
motivation to our research questions. The list of RQs and
their reasoning is available in Table 1.

Lastly, it is helpful when the study is easy to find using
straightforward keywords and is available for access via
popular databases. This requirement was not translated
into a research question, but built into the assumption
with which the search process and selection criteria were
defined (see Section 2.2).

2.2. Search process

Our strategy for a business-driven mapping study was
to include a wide selection of available literature, conduct-
ing an automated database search. Notably, as mapping
studies can have less stringent search requirements Kitchen-
ham et al. [8], it is not critical to include all possible
sources when exploring general trends. Therefore, based
on recommendations by Dieste et al. [27], we established

RQ1. How much research is being published in the field of ML SDP?
Business rationale: To turn into standard practice, the area of
machine learning software defect prediction should attract the at-
tention of the research community, while gaining momentum should
be visible. Answering RQ1, we are able to capture whether such at-
tention and momentum exist to increase interest of researchers and
practitioners to implement such solutions.

RQ2. What innovations are used to increase the effectiveness of ML
SDP?
Business rationale: The researched methods should be innovative
and possess the potential to identify new opportunities and to expand
the state-of-the-art. Innovations are means to build competitive ad-
vantage for commercial companies. Hence, mapping key innovations
is crucial from the business perspective and is helpful for Nokia in
its goal to increase usage of ML SDP in its operations.

RQ3. Which methods are most popular in ML SDP?
Business rationale: The ML method needs to be considered highly
effective in solving many SDP problems, to be considered in indus-
trial practice. Research should identify the most popular and the
most generally applicable methods in the current state-of-the-art.
Consequently, such knowledge aids practitioners in further imple-
mentations in industry.

RQ4. What kind of datasets and projects are used for ML SDP?
Rationale: It would be beneficial for the method to be proven to
deliver satisfactory results on a broad scope of datasets, preferably
also originating from real environments. Evaluating the extent to
which the research is based on real-world business examples allows
analysing in vivo verification of the studied solutions. For Nokia,
understating the characteristics of researched datasets could enable
cross-project defect prediction opportunities and accelerate future
feasibility studies.

RQ5. Are human interactions successfully incorporated into ML
SDP?
Business rationale: Depending on the specifics of the problem
they need to be overcome, practitioners in Nokia need to under-
stand in great detail how the model works and be able to explain
why an ML model arrived at a specific decision, or even may need
to directly interact with the model using their expert knowledge as
input. Therefore, we should identify the opportunities and the ex-
tent of leveraging human and machine intelligence as in eXplanable
ML/AI or Human-in-the-loop (HITL).

RQ6. Are cost-conscious considerations included in ML SDP?
Business rationale: A publication promoting an ML SDP solution
should discuss cost considerations, as monetary estimates and oper-
ational savings are often integral to a project charter starting a new
business initiative. Authors should be mindful of how much intro-
ducing the solution costs and estimating the potential gain that can
be achieved, as value added is one of the most critical factors from
the business applicability perspective. Therefore, it is necessary to
assess to what extent researchers have considered the costs and ben-
efits of the proposed software defect prediction solutions.

RQ7. Are reproducible research principles used for ML SDP?
Business rationale: Documentation describing the method needs
to provide reproducible evidence for its effectiveness. Such evidence
is necessary for any form of a feasibility studies and technology readi-
ness assessments to be initiated in commercial settings. Practitioners
may need to evaluate if the researched software defect predictions can
be consistently reproduced, showing the same results. Reproducibil-
ity issues may have serious consequences across disciplines, but also
in software engineering [15].

Table 1: Research Questions.

4

a search universe based on the journals, conferences, and
book chapters available in Scopus3, as it covers the main
venues such as IEEE, ACM, Springer, Elsevier, etc. More-
over, Scopus offers a functional advanced search engine al-
lowing flexible queries and several export options, suiting
the research aims, scale, and tooling needed in our R&D
project conducted in Nokia.

We created a dedicated string used on the Scopus database
to search through the publications’ titles, abstracts, and
keywords. Secondly, we did not constrain the year of publi-
cation to map the whole SE field up to the date the search
was conducted. We choose keywords based on the de-
fined GQM goal and adhere to the expectation that the
research should be easy to find. Therefore, we decided on
general conditions for the title or keywords or abstract to
include the following words with respective boolean oper-
ators: ”software” and ”machine learning”, and ”defect” or
”fault” or ”bug”, and ”model” or ”prediction” or ”fore-
cast”. Next, we limited the field to ”computer science”
and document types to ”article”, ”conference paper”, and
”book chapter”. Also, we excluded papers that were not
in English as 100% completeness was not critical when ex-
ploring trends. The final version of the used search string
is as follows:

TITLE-ABS-KEY ((”software”) AND (
”machine learning”) AND (”defect” OR
”fault” OR ”bug”) AND (”model” OR ”pre-
diction” OR ”forecast”)) AND (LIMIT-TO
(DOCTYPE , ”cp”) OR LIMIT-TO (DOC-
TYPE , ”ar”) OR LIMIT-TO (DOCTYPE
, ”ch”)) AND (LIMIT-TO (LANGUAGE ,
”English”)) AND (LIMIT-TO (SUBJAREA
, ”COMP”))

We performed the final search on the 23rd of February
2022, finding 1222 papers. All of the results were saved
in BibTeX and CSV formats for further analysis and are
available in Appendix A.

2.3. Inclusion and exclusion criteria

We applied inclusion and exclusion criteria presented
in Table 2 based on Kitchenham et al. [8]. During the
screening of papers, we found seven duplicates that were
removed. Next, based on manual title and abstract fil-
tering, we identified and excluded 473 (39%) studies as
not fulfilling our criteria and not directly adhering to our
research questions. As a result, out of all 1222 studies
selected by the search method presented in Section 2.2,
742 (61%) papers remained for further analysis (see Fig-
ure 2). Considering the number of studies to be analysed,
we decided against using further snowballing [28].

If not necessary, we would advise future researchers to
avoid using ”systematic literature review” and its para-
phrases in the title or abstract if the paper is not, in fact,

3https://www.scopus.com

Inclusion criteria Exclusion criteria

• The paper is an em-
pirical study in soft-
ware engineering (field
of computer science).

• The paper is a primary
study.

• The paper is focused
on predicting defects
in a software system
using machine learning
techniques.

• The paper evaluates,
analyses, or compares
prediction methods
and provides evidence
for efficiency.

• The paper was not a
peer-reviewed article,
conference proceeding,
or book chapter.

• The publication’s lan-
guage was other than
English.

• The paper was made
available in Scopus af-
ter the 23rd of Febru-
ary 2022.

• The same or limited
results were already
published and in-
cluded in another
study.

Table 2: Inclusion and exclusion criteria.

Figure 2: Study identification and selection.

an SLR. Avoiding such confusion would help manual and
automatic searches separate primary and secondary stud-
ies. Also, we would like to reiterate how critically impor-
tant it is to provide complete yet concise, fully describing
the goal and scope of investigation in the titles and ab-
stracts in scientific research papers. Furthermore, it is
beneficial to define the exact area of the research in the
title, as ”software defect prediction” is much more precise
than ”defect prediction”, as the latter may refer to many
fields like biology, geology, electronics, and many more.

2.4. Data extraction

Figure 2 illustrates the overview of the study selection
process. As mentioned, in total, 1222 publications were
found based on our defined search terms. After screen-
ing and selection criteria application, 742 primary studies
remained for further assessment.

During the advanced search execution in Scopus, we
automatically extracted the following data:

• Author, Title, Year, Source, Cited by, DOI, Link,
Publisher, Document type, Source, Abstract, Author
Keywords, Index Keywords

5

• During the screening we added an ’Excl.’ field to
mark if the paper was excluded.

The screened list of papers after was used to build our
maps was saved in CSV and BibTex formats. Secondly,
the ASH tool [29] (see Section 3) was used to download all
studies available directly from the Scopus database auto-
matically. Mentioned artefacts are available in Appendix
A.

3. Results

Our goal was to understand the broad perspective on
the published research in ML SDP. To obtain meaning-
ful results, we carried out the Scopus database search de-
scribed in Section 2. Next, we carried out systematic map-
ping and classification to answer our GQM-based research
questions. As a result, we provide our insight from four dis-
tinct perspectives described below—general overview, key-
word analysis, trend identification, and exemplary busi-
ness applications.

• General overview and simple quantitative analysis [8]
was performed to understand publication year distri-
bution and the number of citations per year.

• Keyword (incl. both author and index keywords [30])
analysis and bibliometric maps were built using VOSviewer4

ver. 1.6.18, as this is a tool created specifically for
larger number items [31].

• Mass publication download and was done with ASH
tool 5 ver. 1.1.04 [29].

• Finally, full text reading of selected papers was done
to confirm and verify industry application examples.

3.1. General overview

The first part of the mapping focused on understand-
ing how many studies are being published each year and
how intensively are they cited was done by simple graph
visualisations.

RQ1.How much research is being published in the field of
ML SDP?

Computer science was the 5th most popular subject area
with 6,56 million papers, after medicine, engineering, physics
and astronomy, biochemistry, genetics and molecular bi-
ology, respectively. The exact search string in computer
science limiting the keywords to only ”software” showed
over 615 thousand records and limited to ”software” AND
”machine learning” 14.5 thousand. Therefore, our study
touches approximately 5% of software-related machine learn-
ing publications in computer science and 0.1% of all software-
related publications in computer science.

4https://www.vosviewer.com/
5https://github.com/LechMadeyski/AutomatedSearchHelper/wiki

Figure 3 shows a graph of the number of studies pub-
lished each year and the number of citations. Interestingly,
there are significant differences showing fluctuation of the
intensity of citations, despite the amount of work pub-
lished in ML SDP. There has been a substantial increase in
published studies with a relatively stagnant citation count
in recent years. For example, in 2008, only 12 published
works were cited 1302 times, more than 130 titles pub-
lished in 2019. However, more citations will scale with
time, and the saturation of topics for research seems to be
still far away. Moreover, the publication count is grow-
ing year on year until 2019. The number of publications
flat-lines for the following periods, indicating a possible
slow down of the research in the area or influencing fac-
tors hampering progress temporarily.

Figure 3: Number of publications and citations.

3.2. Keyword analysis

Next, we have built a map of co-authorship (see Fig-
ure 4), visualising all researchers with more than three
publications on our list. Out of 1574 overall, 164 au-
thors have been classified. A significant portion of the
data points is strongly dispersed, with a high number (42)
of different clusters with almost no connections. Never-
theless, a considerable chain connects more than half of
the authors, indicating good synergy in the field and close
cooperation within the research community.

Exactly 1181 authors have one publication (229 have
two, 164 have three and more), showing that many re-
searchers contribute to the body of knowledge in ML SDP.
Moreover, there are also very prolific authors like Malho-
tra, with 36 works.

3.3. Keyword analysis part I

Figure 5 shows a graphical representation of keywords
provided by the authors. There were 1398 keywords over-
all, and after excluding the ones occurring less than five
times, 87 remained. After using the association strength
for normalisation, 9 clusters were built using VOSviewer
tool for bibliometric mapping by Eck and Waltman [31].
For analysis we used two item attributes: occurrence rate
(the number of times the item appeared on the map), and

6

Figure 4: Map of co-authorship.

total link strength (total strength of the links of an item
with connected items).

Thirdly, the overwhelming majority of keywords are
generic (”test”, ”quality assurance”, ”forecasting”, etc.),
and only a portion reflects any manifestation of the unique-
ness of research, among other publications. Apart from a
small number of data points such as ”neural network”,
”random forest”, or ”naive bayes”, showing more details
about the conducted research. Thus, the map is very
generic and allows one to observe only a narrow spectrum
of meaningful detail. Created view does not allow further
investigation in terms of our RQs. Furthermore, author
keywords do not distinguish many alternative spelling or
plurals, making it cumbersome to map automatically. In
the light of accessability(see Section 2.1, we would advise
highlighting used techniques and environment in author
keywords to enable easier identification.

Interestingly, authors much more frequently use the
phrase ”Software Defect Prediction” (157 occurrences, to-
tal link strength 246) than ”Software Fault Prediction”
(59 occurrences, total link strength 96) and ”Software Bug
Prediction” (only six occurrences). Therefore, we would
advise all future authors to use the prevalent SDP nomen-
clature. Secondly, many keywords do not precisely deter-
mine the study area as keywords like ”defect modelling” or
”fault prediction” can apply to many fields of study apart
from software engineering. Therefore, mindful and pre-
cise usage of keywords supports the accessibility of results
and helps secondary research obtain more accurate results.

Next, we build a similar map based on index keywords6

(available in Appendix A). They differ from the keywords
provided by the authors in two significant ways. Firstly,
following the description from Scopus, “These are key-

6https://service.elsevier.com/app/answers/detail/aid/21730/supporthub/scopus/

Figure 5: Author keyword map.

words chosen by content suppliers and are standardised
based on publicly available vocabularies. Unlike author
keywords, the indexed keywords take into account syn-
onyms, various spellings, and plurals”. Secondly, there is
much more of them available for an average publication.
Therefore, index keywords should provide more observa-
tion and conclusion opportunities during analysis.

Figure 6: Index keyword map.

There were 2883 index keywords, and after excluding
those occurring less than five times, 318 remained in our
map Figure 6. Again, index maps are condensed and domi-
nated by apparent terminology similar to author keywords.
The representation of index keywords was predominantly

7

generic, mainly providing the area or research without the
essential details and not allowing to obtain many specific
insights. Keywords like ”research”, ”engineering”, ”test”,
”system” are a few examples that bring minimal value.
Since we already limited the scope by creating a dedicated
search string followed by manual selection, we decided to
remove generic terms related to the area of our study as
not containing any additional information to our research
(exact list available in Appendix A). Filtering was done
based on our expert knowledge and was not intended to
be meticulously precise, enabling an approximation of the
general trends as enough to answer our RQs.

After filtering, out of 2883 index keywords, 318 meet
the threshold of occurring a minimum of five times. We
manually eliminated 239 as generic, leaving 79 items on
our map, see Figure 7 (to better visualise the clean infor-
mation, we used a different than default layout of ’Attrac-
tion, from default 2 to 0’ and ’Repulsion, from default 0
to -2’).

Figure 7: Clean index keyword map.

Below we provide analysing the occurrence rate and
total link strength of several selected keywords that al-
low further insight into our RQ2-7, based on built maps
(see Section 3.4).

RQ2.What innovations are used to increase the effective-
ness of ML SDP?

We found that ”state-of-the-art methods” occurred
ten times with total link strength 26 and ”state of
the art” occurred nine times with total link strength
19. We also searched for the word ”novel” but to no
avail, despite frequently appearing in the titles and
abstracts. Therefore, we conclude it is difficult to
evaluate the number of innovations published in the
field on keywords alone without considering the time
of publishing (see Section 3.5). Wallwork [32] pointed
out that millions of papers do not have adjectives,
such as ”innovative” or ”novel”, in their titles for a
good reason. The problem with such adjectives is
that they give no indication as to how something is

novel (and if research is not ”novel”, then no one
would want to read about it anyway). Our study
indicates that the same applies to keywords, which
poses a challenge if we want to map the innovations
published in the field.

RQ3.Which methods are most popular in ML SDP?

After deselecting generic terms, techniques were the
most popular keywords used, clearly revealing the
relative popularity of each of them. The top five
techniques are: ”Decision trees” occurring 117 times,
”support vector machines” occurring 57 times, ”neu-
ral networks” occurring 54 times, ”random forests”
occurring 29 times, and ”nearest neighbour search”
occurring 26 times. Worth mentioning is also the
emerging techniques that, if proven to be highly ef-
fective, will gain more popularity in the future, like
”particle swarm optimisation”, ”multilayer neural net-
works”, or ”convolutional neural networks”. There
is also a wider variety of techniques that appear less
than five times in the keywords, thus not present on
our maps but potentially emerging in the following
years.

RQ4.What kind of datasets and projects are used for ML
SDP?

There was only minimal information on the datasets
available in the used keywords. ”Open source soft-
ware” appeared 157 times, ”open source projects”
46 and several other versions were also visible. Sec-
ondly, ”NASA” appeared 89 times with a total link
strength of 1113. Notably, ”real-world projects” and
”real-world data sets” both appeared five times, also
”industry” and its abbreviations have 28 instances,
but none of which satisfied our criterion of occur-
ring at least five times. It shows that in vivo re-
search is being published; however, rarely. We also
observed ”cross-project”, as in cross-project defect
predictions, to be relatively popular with nine oc-
currences and 19 link strength, indicating that this
concept, attractive from the business perspective, is
gaining the researcher’s attention. Additionally, we
found only minimal presence of the PROMISE repos-
itory in the keywords; however, it is frequently men-
tioned in the abstracts.

RQ5.Are human interactions successfully incorporated into
ML SDP?

Human interaction and explainable AI were not high-
lighted on the keyword maps (further discussed in Sec-
tion 3.4).

RQ6.Are cost-conscious considerations included in ML SDP?

The cost-related context was relatively popular within
the keywords used, appearing 44 times in the form of
”cost”, ”cost effectiveness”, ”cost benefit analysis”,
and ”cost reduction”. This indicates a growing in-
terest in including one of the most critical aspects of
commercial operations in academic considerations.
We do not expect that all proposed solutions will be

8

able to introduce a positive return on investment and
provide exhaustive details on the cost of implemen-
tation. However, we believe that it is very beneficial
to highlight these aspects as part of the discussion
on research results, as cost efficiency is an essential
enabler behind the search for more efficient test prac-
tices in software engineering companies [26].

RQ7.Are reproducible research principles used for ML SDP?

Reproducible research was not highlighted on the
keyword maps (further discussed inSection 3.4).

3.4. Keyword analysis part II

As we failed in finding sufficient proof to address the
following two of our RQs using created maps in Section 3.3,
we decided to undertake the following actions with regard
those RQs:

RQ5.Are human interactions successfully incorporated into
ML SDP?

Our maps, based on the keyword inclusion criteria
of occurring at least five times, did not provide ev-
idence for incorporating human interaction in ML
SDP research. We conducted a more exhaustive
search through all available keywords and found no
relevant instances of the word ”human”, and four
instances on the word ”explainable” but in various
versions: two times ”explainable models”, one ”pre-
diction explanation”, and one ”explainable”. Thus,
we conclude that incorporating human interaction is
still relatively uncommon and contains enormous po-
tential in future research as increasingly important
in the business context [33].

RQ7.Are reproducible research principles used for ML SDP?

Our keyword maps did not show any instances of
reproducible research. We found one ”replicated ex-
periment” instance during an exhaustive search through
all available keywords. As this is a well-established
concept, we decided to extend the search to abstracts
to confirm adhering to the reproducible research prin-
ciples. Indeed we found several forms of reference in
the abstracts; however, it was challenging to include
all precisely. As the next step, a targeted deep text
search could be performed among all selected stud-
ies (for example, using the ASH tool [29]) to mea-
sure the extent of concept applicability. However, we
decided against it based on time and effort consid-
erations, concluding that there is unquantified evi-
dence in abstracts and text but not in the keywords.
We conclude that despite a certain portion of pub-
lications allow reproduction, this is not verifiable or
measurable using only keyword maps.

3.5. Keyword analysis part III

To gain an understanding of emerging trends, we cre-
ated four smaller maps representing the periods from 1988-
2010, 2011-2016, 2017-2019, and 2020-2022 to show how

the used keywords were changing with time Figure 8. Such
a split allowed a comparable number of keywords mapped
in each period.

Figure 8: Clean index keyword map per period.

Timed graphs depict how the field of ML SDP has in-
creased in complexity over the years, each period including
more insight into what the research is focused on. Divid-
ing the map into four periods revealed that the field is
growing in complexity and adding considerable detail to
the techniques used in each period. The most influential
trends include:

• 1988-2010: Early research is generic, showing only
the main concepts with limited value to our RQs.
Apart from ”NASA”, ”object-orientated program-
ming”, ”random forest”, ”decision trees”, and ”neu-
ral networks” not much details are available. Natu-
rally, at the initial stage of exploration of ML SDP
by researchers, the effort is focused on feasibility, ex-
ploring main possibilities, and has only a limited set
of opportunities identified.

• 2011-2016: In the following years, signs of deeper
consideration for business settings as ”development
life-cycle” and ”cost consideration” concepts raised
in popularity. Also, bayesian networks and support
vector machines appear as popular techniques. As
in the previous period, ”open source” and ”NASA”
prevail in datasets.

• 2017-2019: The most crucial evolution in the next
three years includes ”state of the art” as the most fre-
quently used techniques have been established. Sec-
ondly, ”customer satisfaction”, ”budget control”, and
”cost” gain popularity as the field becomes more ma-
ture and business adoption becomes more feasible.

• 2020-2022: During the last period, worth highlight-
ing is the emergence of the ”just in time” concept.
Continued cost-consciousness has been displayed by
”cost effectiveness” and ”cost reduction keywords”.
Consistently, the ”open source” and ”NASA” datasets

9

dominate among published studies. Interestingly,
enhancements to neural networks like deep, convolu-
tional, and multi-layer appeared on the graph with
relatively significant connection strength.

Interestingly, we observed a few keywords that have
diminished in the research trends over the last few years.
Most significantly, ”robot learning” and ”nonlinear con-
trol systems” appeared in the first period (1988-2010) but
have not returned in the later ones. Also, the term ”data
mining”, popular in the first three periods, does not ap-
pear in the latest research. This observation shows that
some concepts, although attracting much attention during
a particular time, either die out as not being sustainable
or become an integral part of the research field and stop
being highlighted by the authors.

4. Discussion of results

Research on improving the quality and minimising the
cost of software development using machine learning de-
fect prediction by performing a business-driven systematic
mapping study has led us to several interesting conclu-
sions. We aimed to find traces for detecting an increase in
commercial implementation and results in the created pub-
lication database, and we did find evidence for a limited in
vivo research being published as suggested by Lanza et al.
[34]. The overwhelming majority was based on NASA and
open source projects, as the need for more commercial
benchmarks becomes critical [35]. Considering that the
field is being heavily researched and the state-of-the-art is
constantly expanding, we expect the in vivo research to
gain popularity as more and more difficulties in commer-
cial implementations are being solved. It is an indication
that the gap between industry and academia can converge
in the next years [26].

Also, we gained interesting insights similar to the sys-
tematic mapping study primary studies on using ML in
software testing that was published from June 2017 to Au-
gust 2018 by Durelli et al. [17]. Firstly, we could confirm
the following finding “RQ4: What trends can be observed
among research studies discussing the application of ML to
support software testing activities? A trend we observed
is that the oracle problem tends to be tackled by employ-
ing either ANN- or decision tree based approaches”. The
same techniques appear as most popular ones throughout
our selected studies. Secondly, we concur with “RQ7: We
found that the body of empirical research available at the
intersection of ML and software testing leaves much to be
desired, especially when compared with the level of under-
standing and body of evidence that has been achieved in
other fields”. However, ML SDP has a high potential to
evolve significantly considering the rise of published works
in recent years. Lastly, Durelli et al. [17] conclude that
their results seem to suggest that there is no research
group especially dealing with ML and software testing

(RQ8 [17]). We found such a well-connected group while
mapping out a broader scope of studies, see Figure 5.

4.1. Industry publications

An overwhelming amount of empirical case studies uses
NASA and PROMISE datasets or is based on available
open-source projects. Consequently, based on the cleaned
index keyword map, we selected a subset of publications
that were validated in an industrial context (listed in 5).
We performed a full text screening of the selected papers
to confirm industry validation.

Next, we mapped found industrial publications in Fig-
ure 9. As there are only 32 studies including 324 index key-
words, only 14 meet the threshold of occurring five times.
Therefore, we loosened the occurrence restriction to two,
resulting in 82 items remaining. After filtering out generic
words, 34 items were mapped.

Figure 9: Keyword map for industrial publications.

Significantly, a considerable portion of commercial re-
search is done in the telecommunication industry. There
are also instances of software, finance, and transport com-
panies that were unnamed, alongside huge trademarks such
as IBM, Cisco, Microsoft, Ericsson, or Volvo. Also, there
are interesting cases of utilising open source projects for
training and then verification on industry data.

Nevertheless, a limited amount of research is conducted
in a real-world setting, and low cooperation with commer-
cial partners shows how much effort is still needed to con-
verge the focus of academics and practitioners [26]. The
scarcity of industrially verified approaches may discourage
many commercial projects (see Section 2.1) from poten-
tially revolutionary new solutions. However, it should also
be an encouragement for companies like Nokia Stradowski
and Madeyski [9] and others to promote and publish their
ML SDP efforts.

4.2. Further recommendations

There are a wide plethora of further insights that can
be obtained from our mapping effort for anyone who is

10

looking to understand how much research is has been done
on specific aspects of ML SDP:

• A comparison of dataset ”NASA” with 89 occur-
rences and 1113 total link strength and ”real-world
data sets” with five occurrences and 58 total link
strength (see Figure 10) depicts one of the most sig-
nificant discrepancies to be studied further. Impor-
tantly, it shows how an overwhelmingly large num-
ber of studies use this dataset in comparison to other
sources. In particular, we believe it depicts the de-
mand for further commercial and business-originating
studies to be researched and published.

• Comparison of techniques like ”decision trees” with
117 occurrences and 1530 total link strength and
”convolutional neural networks” with 12 occurrences
and 156 total link strength (see Figure 11) high-
lights not only the perceived popularity of already
well-established techniques but also the potential for
further development of the emerging ones.

• Many other analyses and SLRs can be performed for
interesting keyword areas as ”just-in-time”, ”cross-
project”, ”software life cycle”, or ”customer satisfac-
tion”.

• Building more detailed maps not liming the occur-
rence rate, possibly filtering only selected themes as
techniques, supervised/unsupervised learning, par-
ticular datasets, metrics and more, could be per-
formed to gain further insight into ML SDP field.

• Considering the increasing amount of work published
in the area, the next period 2023-2025 should be
analysed to understand the evolution direction that
has taken place as in Section 3.5.

• Lastly, during our research, we observed a relatively
small number of systematic mapping studies pub-
lished in the field of computer science, whereas we
believe they can lead to meaningful discoveries of ar-
eas with the most significant potential for further re-
search, see Petersen et al. [11]. We hope such studies
will increase in popularity over time, and more areas
within the field can be mapped.

Figure 10: Comparison of ”NASA” and ”real-world projects” in in-
dex keywords.

Figure 11: Comparison of ”decision trees” and ”convolutional neural
networks” in index keywords.

We firmly believe that there is a significant potential
for software practitioners to scale productivity, increase
quality, and reduce costs by improving the usage of aca-
demic research in daily work [9, 36]. Therefore, systematic
mapping studies such as this one, systematic literature re-
views [8], and other methods like rapid reviews [37], should
enable both researchers and practitioners to understand
better what is available and where lay future opportuni-
ties.

In particular, for the challenges faced by Nokia on the
system level testing of 5G technology described by Strad-
owski and Madeyski [9], our study shows a wide plethora
of potential possibilities. Although limited industrial re-
search is being published, many of the created techniques
and methodologies can and should be validated in com-
mercial settings — especially the recently emerging ML
techniques and cost-conscious solutions of just-in-time de-
fect prediction.

4.3. Threats to validity

Any systematic mapping study needs to provide con-
straints on the search process, and any deviations from
the standard practice need to be discussed. To secure the
validity of our research, we addressed the most common
categories of threats from Zhou et al. [38].

• Construct validity: The most significant construct
validity threat arises from the availability of commer-
cial data to be published. It is critical to emphasise
that we explored the business application of ML SDP
only in officially academic journals. Most business-
driven efforts in commercial software engineering are
covered by data-protection laws and are not pub-
lished in academia. Furthermore, we would like to
point out that the incentive for software companies
to make their internal research results available via
academic journals is limited. The second construct
validity threat reflects our assumption that a solu-
tion is business-applicable if it satisfies our criteria
(described as Research Questions). There is a signif-
icant risk that we might have omitted aspects that
may be critical in particular business circumstances,
as we aimed for our criteria to be as general as pos-
sible.

11

• External validity: The systematic mapping study
we performed was done from the business perspec-
tive and aimed to evaluate the extent of applicabil-
ity of ML SDP research in commercial environments.
We do not claim our conclusions can be generalised
outside of the domain of our problem. Neverthe-
less, we have found articles showing similar findings
regarding emerging ML trends in the studied disci-
pline [34, 35].

• Internal validity: It is possible that some rele-
vant papers were not included in our mapping. The
first reason is using only the pre-selected electronic
database (Scopus), which offers advanced search ca-
pabilities, but does not support full-text search. Sec-
ondly, some relevant research might have been missed
due to search string imperfection. While some re-
search papers may address the same concepts with
different naming, we believe the terms are estab-
lished well enough to minimise this risk. We contem-
plated further mitigation by snowballing to decrease
missed research pool; however, we decided against it
as the analysed publications’ completeness was not
our goal. The second major threat we identified was
related to the screening process. The goal was to
manually select all studies that coincidentally fit our
search criteria but do not directly address our sub-
ject. The process was based on title and if that was
not enough to decide on the abstract. Finally, more
than 39% of papers were evaluated as not relevant.
However, the process was considerably prone to mis-
takes. We used only those keywords that appeared
more than five times in our maps to limit the im-
pact of individual errors on the overall picture and
derived conclusions.

• Conclusion Validity: We wanted to ensure that
the data and analysis methods were transparent. The
same results presented in the paper can be repeat-
edly achieved from the provided data and proce-
dures. To enable such reproducibility, we included a
detailed research procedure description in Section 2,
gathered data snapshot and all additional maps in Ap-
pendix A, and a PRISMA 2000 checklist in Ap-
pendix B. The most significant conclusion validity
threat is the manual evaluation and selection criteria
application. To mitigate, we have performed a cross-
check of the evaluations by two researchers. Still,
due to the subjective nature of the process, another
group of researchers might obtain a different subset
of publications under study.

5. Conclusions

As software engineering businesses are especially prone
to defect-caused monetary losses, it is critically important

to deepen the knowledge base and create new defect pre-
diction and modelling methods. To gain insight into im-
proving the quality and minimising the cost of software
development using machine learning software defect pre-
diction, we have identified 742 relevant studies and used
them to map out future opportunities.

The popularity of the keywords used to describe the
content of the study translates not only to the amount
of research of the subject but also to the accessibility of
the state-of-the-art knowledge; therefore, precise keyword
usage is critical to efficient business adoption. Also, we
believe a broad picture overview of the field is fundamental
to its understanding, allows meaningful conclusions, and
uncovers areas for further research. Thus, good keyword
maps can help practitioners and businesses in supporting
decision-making within software engineering practice [17].

Lastly, our systematic mapping of all of the publica-
tions in the field has shown that the amount of research
has grown in recent years, significantly adding new value to
the researched concepts, techniques, and trends. However,
despite the increasing popularity of in vivo research, the
field is still dominated by NASA-based and open source
projects, as commercial datasets available to the research
community are scarce (e.g., a few commercial projects
from Capgemini [39, 40]). Therefore, for Nokia [9], many
opportunities lay in studying the feasibility of proposed
solutions, careful development and deployment in Nokia,
and by publishing research results based on their live sys-
tem, using the novel, state-of-the-art solutions highlighted
by our keyword mapping effort.

CRediT authorship contribution statement

Szymon Stradowski: Data curation, Methodology,
Investigation, Writing – original draft, Writing - review
& editing, Visualisation. Lech Madeyski: Conceptual-
isation, Funding acquisition, Methodology, Investigation,
Writing – original draft, Writing - review & editing, Su-
pervision.

Declaration of competing interest

This research was carried out in partnership with Nokia
(with Szymon Stradowski as an employee).

Acknowledgement

This research was financed by the Polish Ministry of
Education and Science ’Implementation Doctorate’ pro-
gram (ID: DWD/5/0178/2021).

References

[1] S. A. Slaughter, D. E. Harter, M. S. Krishnan, Evaluating the
cost of software quality, Communications of the ACM 41 (1998)
67–73.

12

[2] H. Krasner, The Cost of Poor Software Quality in the US: A
2020 Report, Technical Report, Consortium for Information &
Software Quality, 2020. URL: https://www.it-cisq.org/pdf/
CPSQ-2020-report.pdf, accessed: 25.12.2021.

[3] R. Potvin, J. Levenberg, Why google stores billions of lines of
code in a single repository, Commun. ACM 59 (2016) 78–87.
doi:10.1145/2854146.

[4] T. M. Khoshgoftaar, N. Seliya, Fault prediction modeling for
software quality estimation: Comparing commonly used tech-
niques, Empirical Software Engineering 8 (2003) 255–283. Copy-
right - Kluwer Academic Publishers 2003; Last updated - 2012-
02-08.

[5] K. Meinke, A. Bennaceur, Machine Learning for Software Engi-
neering Models, Methods, and Applications, 2017. doi:10.1145/
3183440.3183461.

[6] D. H. Wolpert, The Lack of A Priori Distinctions Between
Learning Algorithms, Neural Computation 8 (1996) 1341–1390.
doi:10.1162/neco.1996.8.7.1341.

[7] D. Wolpert, W. Macready, No free lunch theorems for opti-
mization, IEEE Transactions on Evolutionary Computation 1
(1997) 67–82. doi:10.1109/4235.585893.

[8] B. Kitchenham, D. Budgen, P. Brereton, Evidence-Based Soft-
ware Engineering and Systematic Reviews, CRC Press, 2016.

[9] S. Stradowski, L. Madeyski, Exploring the challenges in soft-
ware testing of the 5g system at nokia: A survey, Informa-
tion and Software Technology 153 (2023) 107067. doi:https:
//doi.org/10.1016/j.infsof.2022.107067.

[10] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell, A system-
atic literature review on fault prediction performance in soft-
ware engineering, IEEE Transactions on Software Engineering
38 (2012) 1276–1304. doi:10.1109/TSE.2011.103.

[11] K. Petersen, S. Vakkalanka, L. Kuzniarz, Guidelines for con-
ducting systematic mapping studies in software engineering: An
update, Information and Software Technology 64 (2015) 1–18.
doi:https://doi.org/10.1016/j.infsof.2015.03.007.

[12] N. Fenton, M. Neil, A critique of software defect prediction
models, IEEE Transactions on Software Engineering 25 (1999)
675 – 689. doi:10.1109/32.815326.

[13] C. Catal, B. Diri, A systematic review of software fault predic-
tion studies, Expert Systems with Applications 36 (2009) 7346–
7354. doi:https://doi.org/10.1016/j.eswa.2008.10.027.

[14] M. Shepperd, D. Bowes, T. Hall, Researcher Bias: The Use of
Machine Learning in Software Defect Prediction, IEEE Trans-
actions in Software Engineering 40 (2014) 603–616.

[15] L. Madeyski, B. Kitchenham, Would wider adoption of
reproducible research be beneficial for empirical software
engineering research?, Journal of Intelligent & Fuzzy
Systems 32 (2017) 1509–1521. URL: http://madeyski.

e-informatyka.pl/download/MadeyskiKitchenham17JIFS.pdf.
doi:10.3233/JIFS-169146.

[16] R. Malhotra, A systematic review of machine learning tech-
niques for software fault prediction, Applied Soft Comput-
ing 27 (2015) 504–518. doi:https://doi.org/10.1016/j.asoc.
2014.11.023.

[17] V. H. S. Durelli, R. S. Durelli, S. S. Borges, A. T. Endo,
M. M. Eler, D. R. C. Dias, M. P. Guimarães, Machine
learning applied to software testing: A systematic mapping
study, IEEE Transactions on Reliability 68 (2019) 1189–1212.
doi:10.1109/TR.2019.2892517.

[18] S. Hosseini, B. Turhan, D. Gunarathna, A systematic litera-
ture review and meta-analysis on cross project defect prediction,
IEEE Transactions on Software Engineering 45 (2019) 111–147.
doi:10.1109/TSE.2017.2770124.

[19] N. Li, M. Shepperd, Y. Guo, A systematic review of unsu-
pervised learning techniques for software defect prediction, In-
formation and Software Technology 122 (2020) 106287. doi:10.
1016/j.infsof.2020.106287.

[20] S. Wang, L. Huang, A. Gao, J. Ge, T. Zhang, H. Feng, I. Sat-
yarth, M. Li, H. Zhang, V. Ng, Machine/deep learning for soft-
ware engineering: A systematic literature review, IEEE Trans-
actions on Software Engineering (2022) 1–1. doi:10.1109/TSE.

2022.3173346.
[21] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic

mapping studies in software engineering, in: Proceedings of the
12th International Conference on Evaluation and Assessment in
Software Engineering, EASE’08, BCS Learning & Development
Ltd., Swindon, GBR, 2008, p. 68–77.

[22] B. Kitchenham, S. Charters, Guidelines for performing System-
atic Literature Reviews in Software Engineering, Technical Re-
port EBSE 2007-001, Keele University and Durham University
Joint Report, 2007. URL: https://www.elsevier.com/__data/
promis_misc/525444systematicreviewsguide.pdf.

[23] M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C.
Hoffmann, C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, E. A.
Akl, S. E. Brennan, R. Chou, J. Glanville, J. M. Grimshaw,
A. Hróbjartsson, M. M. Lalu, T. Li, E. W. Loder, E. Mayo-
Wilson, S. McDonald, L. A. McGuinness, L. A. Stewart,
J. Thomas, A. C. Tricco, V. A. Welch, P. Whiting, D. Moher,
The prisma 2020 statement: an updated guideline for reporting
systematic reviews, BMJ 372 (2021). doi:10.1136/bmj.n71.

[24] M. J. Page, D. Moher, P. M. Bossuyt, I. Boutron, T. C.
Hoffmann, C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, E. A.
Akl, S. E. Brennan, R. Chou, J. Glanville, J. M. Grimshaw,
A. Hróbjartsson, M. M. Lalu, T. Li, E. W. Loder, E. Mayo-
Wilson, S. McDonald, L. A. McGuinness, L. A. Stewart,
J. Thomas, A. C. Tricco, V. A. Welch, P. Whiting, J. E. McKen-
zie, Prisma 2020 explanation and elaboration: updated guid-
ance and exemplars for reporting systematic reviews, BMJ 372
(2021). doi:10.1136/bmj.n160.

[25] V. R. Basili, G. Caldiera, H. D. Rombach, The Goal Question
Metric Approach, 1994.

[26] V. Garousi, M. Felderer, Worlds Apart - Industrial and Aca-
demic Focus Areas in Software Testing, IEEE Software 34
(2017) 38–45.

[27] O. Dieste, A. Griman, N. Juristo, Developing search strate-
gies for detecting relevant experiments, in: First International
Symposium on Empirical Software Engineering and Measure-
ment (ESEM 2007), volume 14, 2009, p. 513–539. doi:10.1007/
s10664-008-9091-7.

[28] C. Wohlin, Guidelines for snowballing in systematic literature
studies and a replication in software engineering, in: Pro-
ceedings of the 18th International Conference on Evaluation
and Assessment in Software Engineering, EASE ’14, Associ-
ation for Computing Machinery, New York, NY, USA, 2014.
doi:10.1145/2601248.2601268.

[29] M. Sośnicki, L. Madeyski, ASH: A New Tool for Automated
and Full-Text Search in Systematic Literature Reviews, in:
M. Paszynski, D. Kranzlmüller, V. V. Krzhizhanovskaya, J. J.
Dongarra, P. M. Sloot (Eds.), Computational Science – ICCS
2021, Springer International Publishing, Cham, 2021, pp. 362–
369. doi:10.1007/978-3-030-77967-2_30.

[30] Elsevier B.V. , Scopus, 2022. URL: https://service.

elsevier.com/app/answers/detail/a_id/21730/

supporthub/scopus/, accessed: 28.02.2022.
[31] N. J. Eck, L. Waltman, Software survey: Vosviewer, a computer

program for bibliometric mapping, Scientometrics 84 (2010)
523–538. doi:10.1007/s11192-009-0146-3.

[32] A. Wallwork, English for Writing Research Papers, Springer,
2011.

[33] A. Adadi, M. Berrada, Peeking inside the black-box: A survey
on explainable artificial intelligence (xai), IEEE Access 6 (2018)
52138–52160. doi:10.1109/ACCESS.2018.2870052.

[34] M. Lanza, A. Mocci, L. Ponzanelli, The tragedy of defect pre-
diction, prince of empirical software engineering research, IEEE
Software 33 (2016) 102–105. doi:10.1109/MS.2016.156.

[35] J. M. Zhang, M. Harman, L. Ma, Y. Liu, Machine learning
testing: Survey, landscapes and horizons, IEEE Transactions
on Software Engineering 48 (2022) 1–36.

[36] D. Lo, N. Nagappan, T. Zimmermann, How practitioners per-
ceive the relevance of software engineering research, in: Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, ACM, New York, NY,

13

https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf
https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf
http://dx.doi.org/10.1145/2854146
http://dx.doi.org/10.1145/3183440.3183461
http://dx.doi.org/10.1145/3183440.3183461
http://dx.doi.org/10.1162/neco.1996.8.7.1341
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2022.107067
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2022.107067
http://dx.doi.org/10.1109/TSE.2011.103
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2015.03.007
http://dx.doi.org/10.1109/32.815326
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2008.10.027
http://madeyski.e-informatyka.pl/download/MadeyskiKitchenham17JIFS.pdf
http://madeyski.e-informatyka.pl/download/MadeyskiKitchenham17JIFS.pdf
http://dx.doi.org/10.3233/JIFS-169146
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2014.11.023
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2014.11.023
http://dx.doi.org/10.1109/TR.2019.2892517
http://dx.doi.org/10.1109/TSE.2017.2770124
http://dx.doi.org/10.1016/j.infsof.2020.106287
http://dx.doi.org/10.1016/j.infsof.2020.106287
http://dx.doi.org/10.1109/TSE.2022.3173346
http://dx.doi.org/10.1109/TSE.2022.3173346
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
http://dx.doi.org/10.1136/bmj.n71
http://dx.doi.org/10.1136/bmj.n160
http://dx.doi.org/10.1007/s10664-008-9091-7
http://dx.doi.org/10.1007/s10664-008-9091-7
http://dx.doi.org/10.1145/2601248.2601268
http://dx.doi.org/10.1007/978-3-030-77967-2_30
https://service.elsevier.com/app/answers/detail/a_id/21730/supporthub/scopus/
https://service.elsevier.com/app/answers/detail/a_id/21730/supporthub/scopus/
https://service.elsevier.com/app/answers/detail/a_id/21730/supporthub/scopus/
http://dx.doi.org/10.1007/s11192-009-0146-3
http://dx.doi.org/10.1109/ACCESS.2018.2870052
http://dx.doi.org/10.1109/MS.2016.156

USA, 2015, pp. 415–425. doi:10.1145/2786805.2786809.
[37] B. Cartaxo, G. Pinto, S. Soares, The role of rapid reviews in

supporting decision-making in software engineering practice, in:
Proceedings of the 22nd International Conference on Evaluation
and Assessment in Software Engineering 2018, EASE’18, Asso-
ciation for Computing Machinery, New York, NY, USA, 2018,
pp. 24–34.

[38] X. Zhou, Y. Jin, H. Zhang, S. Li, X. Huang, A map of threats
to validity of systematic literature reviews in software engineer-
ing, in: 2016 23rd Asia-Pacific Software Engineering Conference
(APSEC), 2016, pp. 153–160. doi:10.1109/APSEC.2016.031.

[39] M. Jureczko, L. Madeyski, Towards identifying software project
clusters with regard to defect prediction, in: PROMISE’2010:
Proceedings of the 6th International Conference on Predic-
tive Models in Software Engineering, ACM, 2010, pp. 9:1–9:10.
doi:10.1145/1868328.1868342.

[40] L. Madeyski, M. Jureczko, Which Process Metrics Can Sig-
nificantly Improve Defect Prediction Models? An Empirical
Study, Software Quality Journal 23 (2015) 393–422. doi:10.
1007/s11219-014-9241-7.

Systematic Mapping Study References - Industry

[SMS1] E. Arisholm, L. C. Briand, E. B. Johannessen, A systematic
and comprehensive investigation of methods to build and
evaluate fault prediction models, Journal of Systems and
Software 83 (2010) 2–17. doi:https://doi.org/10.1016/j.
jss.2009.06.055, sI: Top Scholars.

[SMS2] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, Neuzz: Ef-
ficient fuzzing with neural program smoothing, 2019, pp.
803–817. doi:10.1109/SP.2019.00052.

[SMS3] J. Shirabad, T. Lethbridge, Mining the maintenance his-
tory of a legacy software system, 2003, pp. 95– 104.
doi:10.1109/ICSM.2003.1235410.

[SMS4] A. Viet Phan, M. Le Nguyen, L. Thu Bui, Convolutional
neural networks over control flow graphs for software defect
prediction, in: 2017 IEEE 29th International Conference
on Tools with Artificial Intelligence (ICTAI), 2017, pp. 45–
52. doi:10.1109/ICTAI.2017.00019.

[SMS5] A. Phan, L. Nguyen, Convolutional neural networks on
assembly code for predicting software defects, 2017, pp.
37–42. doi:10.1109/IESYS.2017.8233558.

[SMS6] S. Lee, C. Jung, S. Pande, Detecting memory leaks through
introspective dynamic behavior modelling using machine
learning (2014). doi:10.1145/2568225.2568307.

[SMS7] T. Yu, W. Wen, X. Han, J. Hayes, Conpredictor: Concur-
rency defect prediction in real-world applications, IEEE
Transactions on Software Engineering PP (2018) 1–1.
doi:10.1109/TSE.2018.2791521.

[SMS8] S. Tabassum, L. Minku, D. Feng, G. Cabral, L. Song, An
investigation of cross-project learning in online just-in-time
software defect prediction, 2020, pp. 554–565. doi:10.1145/
3377811.3380403.

[SMS9] Y. Kim, S. Mun, S. Yoo, M. Kim, Precise learn-to-rank
fault localization using dynamic and static features of tar-
get programs, ACM Transactions on Software Engineering
and Methodology 28 (2019) 1–34. doi:10.1145/3345628.

[SMS10] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson,
W. Meding, The adoption of machine learning techniques
for software defect prediction: An initial industrial valida-
tion, volume 466, 2014. doi:10.1007/978-3-319-11854-3_
23.

[SMS11] D. She, R. Krishna, L. Yan, S. Jana, B. Ray, Mt-
fuzz: fuzzing with a multi-task neural network, Pro-
ceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering (2020). doi:10.1145/
3368089.3409723.

[SMS12] K. Blincoe, A. Dehghan, A.-D. Salaou, A. Neal, J. Lin̊aker,
D. Damian, High-level software requirements and iteration

changes: a predictive model, Empirical Software Engineer-
ing 24 (2019). doi:10.1007/s10664-018-9656-z.

[SMS13] P. Koch, K. Schekotihin, D. Jannach, B. Hofer, F. Wotawa,
T. Schmitz, Combining spreadsheet smells for improved
fault prediction, in: Proceedings of the 40th Interna-
tional Conference on Software Engineering: New Ideas and
Emerging Results, ICSE-NIER ’18, Association for Com-
puting Machinery, New York, NY, USA, 2018, p. 25–28.
doi:10.1145/3183399.3183402.

[SMS14] Z. Zhu, Y. Li, H. Tong, Y. Wang, Cooba: Cross-project bug
localization via adversarial transfer learning, in: IJCAI,
2020.

[SMS15] J. Kang, D. Ryu, J. Baik, Predicting just-in-time software
defects to reduce post-release quality costs in the maritime
industry, Software: Practice and Experience 51 (2021) 748–
771. doi:https://doi.org/10.1002/spe.2927.

[SMS16] J. Briem, J. Smit, H. Sellik, P. Rapoport, G. Gousios,
M. Aniche, Offside: Learning to identify mistakes in
boundary conditions, 2020, pp. 203–208. doi:10.1145/
3387940.3391464.

[SMS17] H. Wang, T. Khoshgoftaar, A study on software metric
selection for software fault prediction, 2019, pp. 1045–1050.
doi:10.1109/ICMLA.2019.00176.

[SMS18] M. Gokceoglu, H. Sozer, Automated defect prioritiza-
tion based on defects resolved at various project peri-
ods, Journal of Systems and Software 179 (2021) 110993.
doi:10.1016/j.jss.2021.110993.

[SMS19] H. Sellik, O. Paridon, G. Gousios, M. Aniche, Learning
off-by-one mistakes: An empirical study, 2021.

[SMS20] E. Hershkovich, R. Stern, R. Abreu, A. Elmishali, Prior-
itized test generation guided by software fault prediction,
2021, pp. 218–225. doi:10.1109/ICSTW52544.2021.00045.

[SMS21] L. Gomes, R. Torres, M. Côrtes, On the prediction of long-
lived bugs: An analysis and comparative study using floss
projects, Information and Software Technology 132 (2020)
106508. doi:10.1016/j.infsof.2020.106508.

[SMS22] M. Kawalerowicz, L. Madeyski, Continuous Build Out-
come Prediction: A Small-N Experiment in Settings of
a Real Software Project, 2021, pp. 412–425. doi:10.1007/
978-3-030-79463-7_35.

[SMS23] M. Kawalerowicz, L. Madeyski, Jaskier: A Sup-
porting Software Tool for Continuous Build Outcome
Prediction Practice, 2021, pp. 426–438. doi:10.1007/
978-3-030-79463-7_36.

[SMS24] W. Afzal, Using faults-slip-through metric as a predictor
of fault-proneness, Proceedings - Asia-Pacific Software En-
gineering Conference, APSEC (2010). doi:10.1109/APSEC.
2010.54.

[SMS25] D. Bowes, S. Counsell, T. Hall, J. Petrić, T. Shippey, Get-
ting defect prediction into industrial practice: the elff tool,
2017, pp. 44–47. doi:10.1109/ISSREW.2017.11.

[SMS26] R. Ramler, T. Natschläger, Applying heuristic approaches
for predicting defect-prone software components, in:
R. Moreno-Dı́az, F. Pichler, A. Quesada-Arencibia (Eds.),
Computer Aided Systems Theory – EUROCAST 2011,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp.
384–391. doi:10.1007/978-3-642-27549-4_49.

[SMS27] R. Ferenc, Bug forecast: A method for automatic bug
prediction, volume 117, 2010, pp. 283–295. doi:10.1007/
978-3-642-17578-7_28.

[SMS28] D. Marijan, A. Gotlieb, A. Sapkota, Neural network classi-
fication for improving continuous regression testing, 2020,
pp. 123–124. doi:10.1109/AITEST49225.2020.00025.

[SMS29] S. Pradhan, V. Nanniyur, P. Vissapragada, On the defect
prediction for large scale software systems – from defect
density to machine learning, 2020, pp. 374–381. doi:10.
1109/QRS51102.2020.00056.

[SMS30] D. Elsner, F. Hauer, A. Pretschner, S. Reimer, Empir-
ically Evaluating Readily Available Information for Re-
gression Test Optimization in Continuous Integration,
Association for Computing Machinery, New York, NY,

14

http://dx.doi.org/10.1145/2786805.2786809
http://dx.doi.org/10.1109/APSEC.2016.031
http://dx.doi.org/10.1145/1868328.1868342
http://dx.doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/https://doi.org/10.1016/j.jss.2009.06.055
http://dx.doi.org/https://doi.org/10.1016/j.jss.2009.06.055
http://dx.doi.org/10.1109/SP.2019.00052
http://dx.doi.org/10.1109/ICSM.2003.1235410
http://dx.doi.org/10.1109/ICTAI.2017.00019
http://dx.doi.org/10.1109/IESYS.2017.8233558
http://dx.doi.org/10.1145/2568225.2568307
http://dx.doi.org/10.1109/TSE.2018.2791521
http://dx.doi.org/10.1145/3377811.3380403
http://dx.doi.org/10.1145/3377811.3380403
http://dx.doi.org/10.1145/3345628
http://dx.doi.org/10.1007/978-3-319-11854-3_23
http://dx.doi.org/10.1007/978-3-319-11854-3_23
http://dx.doi.org/10.1145/3368089.3409723
http://dx.doi.org/10.1145/3368089.3409723
http://dx.doi.org/10.1007/s10664-018-9656-z
http://dx.doi.org/10.1145/3183399.3183402
http://dx.doi.org/https://doi.org/10.1002/spe.2927
http://dx.doi.org/10.1145/3387940.3391464
http://dx.doi.org/10.1145/3387940.3391464
http://dx.doi.org/10.1109/ICMLA.2019.00176
http://dx.doi.org/10.1016/j.jss.2021.110993
http://dx.doi.org/10.1109/ICSTW52544.2021.00045
http://dx.doi.org/10.1016/j.infsof.2020.106508
http://dx.doi.org/10.1007/978-3-030-79463-7_35
http://dx.doi.org/10.1007/978-3-030-79463-7_35
http://dx.doi.org/10.1007/978-3-030-79463-7_36
http://dx.doi.org/10.1007/978-3-030-79463-7_36
http://dx.doi.org/10.1109/APSEC.2010.54
http://dx.doi.org/10.1109/APSEC.2010.54
http://dx.doi.org/10.1109/ISSREW.2017.11
http://dx.doi.org/10.1007/978-3-642-27549-4_49
http://dx.doi.org/10.1007/978-3-642-17578-7_28
http://dx.doi.org/10.1007/978-3-642-17578-7_28
http://dx.doi.org/10.1109/AITEST49225.2020.00025
http://dx.doi.org/10.1109/QRS51102.2020.00056
http://dx.doi.org/10.1109/QRS51102.2020.00056

USA, 2021, p. 491–504. URL: https://doi.org/10.1145/
3460319.3464834.

[SMS31] L. Zong, Classification based software defect prediction
model for finance software system - an industry study,
in: Proceedings of the 2019 3rd International Conference
on Software and E-Business, ICSEB 2019, Association for
Computing Machinery, New York, NY, USA, 2019, p.
60–65. doi:10.1145/3374549.3374553.

[SMS32] B. Agrawal, M. Mishra, Demo: Automatically retrain-
able self improving model for the automated classifica-
tion of software incidents into multiple classes, in: 2021
IEEE 41st International Conference on Distributed Com-
puting Systems (ICDCS), 2021, pp. 1110–1113. doi:10.
1109/ICDCS51616.2021.00113.

15

https://doi.org/10.1145/3460319.3464834
https://doi.org/10.1145/3460319.3464834
http://dx.doi.org/10.1145/3374549.3374553
http://dx.doi.org/10.1109/ICDCS51616.2021.00113
http://dx.doi.org/10.1109/ICDCS51616.2021.00113

.

Appendix A. Raw results

Original forms are available in Supplementary Material:
https://madeyski.e-informatyka.pl/download/MappingStudy22/

ScopusExport.csv

https://madeyski.e-informatyka.pl/download/MappingStudy22/

ScopusExport.bib

Created visualisations are available in Supplementary Ma-
terial:
https://madeyski.e-informatyka.pl/download/MappingStudy22/

MapData.zip

Details of the selected 742 publications exported from the
ASH tool [29] are available in Supplementary Material:
https://madeyski.e-informatyka.pl/download/MappingStudy22/

Publications.zip

The list of all keywords together with the occurrence rate
and link strength are available in Supplementary Material:
https://madeyski.e-informatyka.pl/download/MappingStudy22/

Words.csv

Original mapping artifacts are available in Supplementary
Material:
https://doi.org/10.5281/zenodo.7375768

16

https://madeyski.e-informatyka.pl/download/MappingStudy22/ScopusExport.csv
https://madeyski.e-informatyka.pl/download/MappingStudy22/ScopusExport.csv
https://madeyski.e-informatyka.pl/download/MappingStudy22/ScopusExport.bib
https://madeyski.e-informatyka.pl/download/MappingStudy22/ScopusExport.bib
https://madeyski.e-informatyka.pl/download/MappingStudy22/MapData.zip
https://madeyski.e-informatyka.pl/download/MappingStudy22/MapData.zip
https://madeyski.e-informatyka.pl/download/MappingStudy22/Publications.zip
https://madeyski.e-informatyka.pl/download/MappingStudy22/Publications.zip
https://madeyski.e-informatyka.pl/download/MappingStudy22/Words.csv
https://madeyski.e-informatyka.pl/download/MappingStudy22/Words.csv
https://doi.org/10.5281/zenodo.7375768

Appendix B. PRISMA 2020 checklist

PRISMA 2020 item checklist

Topic Item# Details Location

Title 1 Identify as a systematic review Title, title page
Abstract 2 Do an abstract checklist Abstract, page 1
Rationale 3 Provide rationale for the review in the context of existing

knowledge
Section 1.1, page 3

Objectives 4 State the questions addressed by the review Section 2.1, page 9
Eligibility criteria 5 Specify the inclusion and exclusion criteria Section 2.3, page 11
Information sources 6 Specify all sources searched to identify studies Section 2.2, page 10
Search strategy 7 Provide full search strategies for all databases Section 2.2, page 10
Selection process 8 Describe methods used to decide whether a study met the

inclusion criteria
Section 2.3, page 11

Data collection process 9 Specify the methods used to collect data from reports Section 2.4, page 12
Data items 10 List and define all outcomes for which data were sought Section 3, page 12
Study risk of bias as-
sessment

11 Specify the methods used to assess risk of bias in the
included studies

Section 4.3, page 26

Effect measures 12 Specify for each outcome the effect measures Section 3, page 14
Synthesis methods 13 Describe the processes used to decide which studies were

eligible for each synthesis
Section 3, page 14

Reporting bias assess-
ment

14 Provide the methods used to assess risk of bias due to
missing results in a synthesis

Section 4.3, page 26

Certainty assessment 15 Provide the methods used to assess certainty in the body
of evidence

Section 4.3, page 26

Study selection 16 Describe the results of the search and selection process Section 3, page 12
Study characteristics 17 Cite each included study and present its characteristics Appendix A, page 38
Risk of bias in studies 18 Present assessments of risk of bias for each included

study.
Section 4.3, page 26

Results of individual
studies

19 For each study provide summary statistics and an effect
estimate

Section 3, page 12

Results of syntheses 20 Present results of all statistical syntheses conducted. Section 3, page 12
Reporting biases 21 Present assessments of risk of bias due to missing results Section 4.3, page 26
Certainty of evidence 22 Present assessments of certainty in the body of evidence

for each outcome
Section 4.3, page 26

Discussion 23 Provide a interpretation of the results in the context of
other evidence.

Section 4, page 22

Registration and proto-
col

24 Provide registration information for the review, Mapping not registered

Support 25 Describe sources of financial or non-financial support for
the review,

Section 5, page 27

Competing interests 26 Declare any competing interests of review authors. Section 5, page 27
Availability of data 27 Report which other deliverables can be publicly found and

where
Appendix A, page 38

Table B.1: PRISMA 2020 checklist.

17

	Introduction
	Contributions
	Related work

	Review methodology
	Research questions
	Search process
	Inclusion and exclusion criteria
	Data extraction

	Results
	General overview
	Keyword analysis
	Keyword analysis part I
	Keyword analysis part II
	Keyword analysis part III

	Discussion of results
	Industry publications
	Further recommendations
	Threats to validity

	Conclusions
	Raw results
	PRISMA 2020 checklist

