
Information and Software Technology 159 (2023) 107192

A
0
n

I
A
S
a

b

A

D
4

K
S
M
S
E
R
I

1

a
a
P
s
s
p
f
p
a
a
p
t
u
n

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

ndustrial applications of software defect prediction using machine learning:
business-driven systematic literature review

zymon Stradowski a,b, Lech Madeyski b,∗

Nokia, Szybowcowa 2, Wrocław, 54-206, Dolnoslaskie, Poland
Wrocław University of Science and Technology, Wyb. Wyspianskiego 27, Wrocław, 50-370, Dolnoslaskie, Poland

R T I C L E I N F O

ataset link: https://doi.org/10.5281/zenodo.7
76403

eywords:
oftware defect prediction
achine learning

ystematic literature review
ffort and cost minimisation
eal-world

ndustry

A B S T R A C T

Context: Machine learning software defect prediction is a promising field of software engineering, attracting
a great deal of attention from the research community; however, its industry application tents to lag behind
academic achievements.
Objective: This study is part of a larger project focused on improving the quality and minimising the cost of
software testing of the 5G system at Nokia, and aims to evaluate the business applicability of machine learning
software defect prediction and gather lessons learnt.
Methods: The systematic literature review was conducted on journal and conference papers published between
2015 and 2022 in popular online databases (ACM, IEEE, Springer, Scopus, Science Direct, and Google Scholar).
A quasi-gold standard procedure was used to validate the search, and SEGRESS guidelines were used for
transparency, reporting, and replicability.
Results: We have selected and analysed 32 publications out of 397 found by our automatic search (and seven
by snowballing). We have identified highly relevant evidence of methods, features, frameworks, and datasets
used. However, we found a minimal emphasis on practical lessons learnt and cost consciousness — both vital
from a business perspective.
Conclusion: Even though the number of machine learning software defect prediction studies validated in the
industry is increasing (and we were able to identify several excellent papers on studies performed in vivo),
there is still not enough practical focus on the business aspects of the effort that would help bridge the gap
between the needs of the industry and academic research.
. Introduction

Machine learning software defect prediction (ML SDP) is understood
s a set of algorithms that learn by analysing historical data to predict
reas of the code that are at increased risk of containing defects.
rediction models are created based on a set of features (usually
oftware metrics, but also change metrics or test repository data) in a
upervised or unsupervised manner [1]. Furthermore, there are several
ossible applications of such models attempting to benefit not only
rom historical data within a singular software release but also from
revious releases, projects, or even different companies. Although very
ttractive to software businesses and gaining much attention from the
cademic research community, the field has not yet reached its full
otential in commercial applications. Due to the ‘‘no free lunch’’ (NFL)
heorem [2,3] and many other factors such as high complexity, low
nderstandability, and expensive maintenance, many companies have
ot yet introduced ML SDP into their daily operations.

∗ Corresponding author.
E-mail address: lech.madeyski@pwr.edu.pl (L. Madeyski).

Therefore, we decided to study published research on industry
examples of the usage of ML SDP from the perspective of software en-
gineers. The goal is to understand current achievements and synthesise
the findings and lessons from such applications to aid similar efforts in
the future. In particular, Nokia is an example of a company seeking to
improve the quality and minimise the cost of software testing of the 5G
technology that it is developing [4] and this study is a baseline for this
endeavour.

This paper consists of five sections. Section 1 describes the intro-
duction to the research area and highlights the main objectives and
contributions. Section 2 defines the research methodology, the research
questions, the selection criteria, and the relevance assessment frame-
work. Section 3 consists of a result analysis, focused on the evaluation
of business adoption. Section 4 presents the discussion of the results
obtained and the identified threats to validity. Finally, Section 5 offers
a summary and conclusion.
vailable online 8 March 2023
950-5849/© 2023 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).

ttps://doi.org/10.1016/j.infsof.2023.107192
eceived 10 July 2022; Received in revised form 10 January 2023; Accepted 2 Ma
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

rch 2023

https://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
mailto:lech.madeyski@pwr.edu.pl
https://doi.org/10.1016/j.infsof.2023.107192
https://doi.org/10.1016/j.infsof.2023.107192
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2023.107192&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Information and Software Technology 159 (2023) 107192S. Stradowski and L. Madeyski

1

e
f
f

1.1. Contributions

Our systematic literature review aims to identify, evaluate, and
synthesise primary research results to create a precise summary of
evidence-based practise in the industry adoption of ML SDP. The most
important contributions of the study are highlighted below:

• A list of papers on machine learning software defect prediction in
software engineering published from 01.01.2015 to 08.04.2022.

• A list of selected papers focused on the industry application of ML
SDP solutions.

• A synthesis of the current state-of-the-art provided by studies sat-
isfying our assessment criteria, describing the details of real-life
business applications.

• Answers to our research questions defined in Section 1.2.
• Strategic, contextual, and methodological description to allow

similar studies to be performed by other researchers in their own
research or business context.

• A SEGRESS checklist for transparency and reporting purposes, as
well as all artefacts enabling replicability.

• A set of guidelines and recommendations to identify further re-
search opportunities in the area of ML SDP.

• Finally, this literature review serves as a continuation of the
systematic mapping study conducted by Stradowski and Madeyski
[5], following a survey study by the same authors [4]. Thus, it
is part of the business-driven effort to map and review existing
solutions to be able to develop a solution that directly satisfies
the business requirements of Nokia. The overarching project aims
to improve the quality and minimise the cost of 5G technology
software testing at Nokia.

.2. Research questions

We use Goal Question Metric (GQM) defined by Basili et al. [6] to
stablish a structured, goal-oriented approach and build a measurement
ramework for our research purposes. The GQM goal was formulated as
ollows:
Analyse the research literature on machine learning software defect

prediction
for the purpose of understanding
with respect to business applicability
from the perspective of a team (including both a software engineering

practitioner and researcher) working for Nokia
in the context of the research literature indexed by prominent online

databases.
We have broken down our goal into six research questions (RQs)

that allow us to measure the outcome of our study. Our RQs were
formulated as follows:

RQ1. What methods are used for ML SDP in commercial applications?
RQ2. Which features are used for ML SDP in commercial applications?
RQ3. What frameworks are used for ML SDP in commercial applica-

tions?
RQ4. What datasets are used for ML SDP in commercial applications?
RQ5. What cost considerations are used for ML SDP in commercial

applications?
RQ6. What learnings come from the commercial applications of ML

SDP?

1.3. Related work

There is a wide range of valuable secondary research on the topic of
ML SDP: Catal and Diri [7], Hall et al. [8], Shepperd et al. [9], Malhotra
[10], Wahono [11], Meiliana et al. [12], Durelli et al. [13], Son et al.
[14], Pachouly et al. [15]. However, only a limited set of publications
offers a broader discussion of the current state of its application in
2

industry.
• Although not in the form of an SLR, Lanza et al. [16] offer a com-
pelling critique of the approach to evaluating defect prediction
as part of empirical software engineering research. Most impor-
tantly, the authors argue that fields such as defect prediction can
be truly validated only if used in vivo, and much more effort
should be put into employing proposed predictors to work on
real-world problems.

• The work by Garousi and Felderer [17] threads on the topic of
low industry and academia collaboration in software testing by
analysing three industrial and two academic conferences (based
on their representativeness and popularity). The study compares
the focus of selected conferences by generating and differentiat-
ing word clouds based on presentation titles. The results show
significant discrepancies in the interest of academia in exploring
theoretical issues and seeking ways to improve the effectiveness
of testing by practitioners. In addition, the authors offer insight
into the reasons for low collaboration and provide suggestions on
how to improve in the future.

• Bowes et al. [18] compare the performance of four ML classifiers
to investigate individual predicted defects and analyse the level
of prediction uncertainty. The publication contains a detailed
description of the background and a review of the literature dis-
cussing the impact of the characteristics of datasets on predictive
performance. Furthermore, it considers how the vast majority of
research is based on NASA and PROMISE repositories, and how
validation on in vivo datasets is essential.

• Li et al. [19] surveyed almost 70 representative software defect
prediction papers published between January 2014 and April
2017 to review, analyse, and discuss the state-of-the-art. Among
many other insights, the authors conclude that the lack of avail-
ability of proprietary and commercial data to validate proposed
solutions leaves the question of in vivo applicability of models
built using data from open source projects unanswered. Further
in-depth investigation is advised.

• The key contribution of the study done by Sarker [20] is to
provide the principles of different machine learning techniques
together with their respective applications in various real-world
scenarios. The examples given come from multiple domains such
as cybersecurity, Internet of Things, Transportation, Healthcare,
E-Commerce, and more; however, none come strictly from the
software engineering field.

• Stradowski and Madeyski [5] performed a systematic mapping
study of all publications in machine learning software defect pre-
diction. They used keywords from 742 primary studies included in
Scopus until February 2022 to confirm that the usage of commer-
cial datasets is significantly smaller than the established NASA,
PROMISE, and datasets based on open-source projects. However,
the mapping study has also shown meaningful emerging trends in
considering business needs in analysed studies such as ‘‘just-in-
time’’, ‘‘cost-effectiveness’’, ‘‘software life cycle’’, and ‘‘customer
satisfaction’’.

2. Methods

The research described in this paper adheres to evidence-based
software engineering principles and is inspired by the guidelines for
systematic literature reviews by Kitchenham et al. [21,22]. The goal
is to find as many primary studies relevant to our research questions
as feasible, using an unbiased search strategy. First, we clarify our
research questions, then search and identify relevant primary studies,
synthesise results from the selected sources, and finally explore and
answer the designed research questions. Furthermore, we used the SEG-
RESS guidelines [22] and provided the details in a dedicated checklist

available in Appendix B.

Information and Software Technology 159 (2023) 107192S. Stradowski and L. Madeyski

S
8
a

t
a
d
a

Table 1
Search strings.
Database Search string

ACM [Abstract: ‘‘software’’] AND [Abstract: ‘‘machine learning’’] AND
[[Abstract: ‘‘defect’’] OR [Abstract: ‘‘fault’’] OR [Abstract: ‘‘bug’’]] AND
[[Abstract: ‘‘model’’] OR [Abstract: ‘‘prediction’’] OR [Abstract:
‘‘forecast’’]] AND [[Abstract: ‘‘industry’’] OR [Abstract: ‘‘commercial’’] OR
[Abstract: ‘‘real-world’’]] AND [Publication Date: (01/01/2015 TO *)]

Google Scholar ((‘‘software’’) AND (‘‘machine learning’’) AND (‘‘defect’’ OR ‘‘fault’’ OR
‘‘bug’’) AND (‘‘model’’ OR ‘‘prediction’’ OR ‘‘forecast’’) AND (‘‘industry’’ OR
‘‘commercial’’ OR ‘‘real-world’’)) + manual date filter

IEEE ((‘‘software’’) AND (‘‘machine learning’’) AND (‘‘defect’’ OR ‘‘fault’’ OR
‘‘bug’’) AND (‘‘model’’ OR ‘‘prediction’’ OR ‘‘forecast’’) AND (‘‘industry’’ OR
‘‘commercial’’ OR ‘‘real-world’’)) + manual date filtering

Science Direct TITLE(‘‘machine learning’’) AND TITLE-ABS-KEY (((defect OR fault OR
bug) AND (prediction OR model OR forecast) AND (industry OR
commercial OR real-world))/due to limitations of advanced search +
manual date filter

Scopus TITLE-ABS-KEY((‘‘software’’) AND (‘‘machine learning’’) AND (‘‘defect’’ OR
‘‘fault’’ OR ‘‘bug’’) AND (‘‘model’’ OR ‘‘prediction’’ OR ‘‘forecast’’) AND
(‘‘industry’’ OR ‘‘commercial’’ OR ‘‘real-world’’)) AND (PUBYEAR > 2014)

Springer ((‘‘software’’) AND (‘‘machine learning’’) AND (‘‘defect’’ OR ‘‘fault’’ OR
‘‘bug’’) AND (‘‘model’’ OR ‘‘prediction’’ OR ‘‘forecast’’) AND (‘‘industry’’ OR
‘‘commercial’’ OR ‘‘real-world’’)) + manual date filter
Table 2
Search results.

Database # of papers Search level

ACM 50 (most relevant) Full text
Google Scholar 50 (most relevant) Full text
IEEE 81 Title, abstract, keywords
Science Directa 22 Title, abstract, keywords
Scopus 178 Title, abstract, keywords
Springer 16 Title

aDespite Science Direct has full text search capabilities, we decided to limit it to the
title, abstract, and keywords. This way, we were able to build the exact search string
as in other databases, as the full text search offers a much more limited string to be
used.

2.1. Information sources and search strategy

We created our multi-term search strings improving the work done
by Stradowski and Madeyski [5]. In particular, we added industry-
related keyword requirements and devised a dedicated search string
for each targeted database (see Table 1). Furthermore, we limited the
date of publication to no older than 01.01.2015. Despite the possibility
of excluding potentially relevant studies [5] due to strategic objectives,
Nokia is primarily interested in recent studies and current trends. Based
on Dieste et al. [23], we used the following databases: ACM Digital
Library,1 Google Scholar,2 IEEE Xplore,3 ScienceDirect,4 Scopus,5 and
pringer Link.6 We performed the final search in all databases on April
th, 2022, finding 397 papers (see Tables 2 and 3). A CSV file with
ggregated publications is available in Appendix A.

For each publication, the following data were automatically ex-
racted and compiled into an aggregated CSV (see Appendix A) file:
uthors, title, year of publication, abstract, and database. Entries from
atabases that offer more sophisticated export solutions have more data
vailable, such as DOI, keywords, or publisher.

1 dl.acm.org
2 scholar.google.com
3 ieeexplore.ieee.org
4 sciencedirect.com
5 scopus.com
6

3

link.springer.com
Table 3
Search results — details.

Database # of papers
found

% of papers
found

of papers
selected

% of papers
selected

ACM 50 12.59% 23 20.35%
Google Scholar 50 12.59% 14 12.39%
IEEE 81 20.40% 27 23.89%
Science Direct 22 5.54% 2 1.77%
Scopus 178 44.84% 47 41.59%
Springer 16 4.03% 0 0.00%

Table 4
Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

The paper describes an empirical
primary study in software
engineering.
The paper is focused on predicting
defects in a software system using
machine learning techniques.
The paper discusses using software
defect prediction methods in an
industrial setting on an industrial
database.

The paper was not a peer-reviewed
article, conference proceeding, or a
book chapter.
The paper’s language was other than
English.
The paper was published before
01.01.2015 or appeared in the
searched databases after 08.04.2022.
The same results were already
published in another paper.

2.2. Eligibility criteria and selection process

The criteria for studies to be included in our SLR are based on the
inclusion and exclusion criteria presented in Table 4 and based on the
suggestions by Kitchenham et al. [21].

We decided to focus only on recent studies and limit the pub-
lication dates. ML SDP is a fast-evolving field, with the number of
publications growing every year [5]. Secondly, there is evidence that
emerging coding language constructs during the last years caused sig-
nificant modification of projects in the used public datasets, as shown
by Grodzicka et al. [24]. Lastly, Nokia is a cutting-edge technology
company wanting to introduce the most innovative solutions, expand
the state-of-the-art, and benefit form the newest trends in ML SDP.

We aimed to exclude all work that focuses only on open source and
widely tested datasets such as NASA, PROMISE etc., and do not provide
any validation in an industrial setting. After applying the inclusion and
exclusion criteria to the titles and abstracts of 397 papers retrieved by
our automated search in 6 databases, 113 primary studies remained

https://dl.acm.org
https://scholar.google.com
https://ieeexplore.ieee.org
https://sciencedirect.com
https://scopus.com
https://link.springer.com

Information and Software Technology 159 (2023) 107192S. Stradowski and L. Madeyski
Fig. 1. Primary studies identification and selection.
for further analysis. After removing 25 duplicates, 88 studies remained
for full-text examination. Next, after reading the full text, another 59
articles were excluded, leaving 29 primary studies to be included in the
final review (a complete list is available in the supplementary material
in Appendix A).

Our agreement on the selection criteria applied to the initial list of
88 papers was good/substantial (see [21, Table 6.2]), with the Kappa
coefficient [21] as below:

𝜅 = 0.73

Also, during our search and in Stradowski and Madeyski [5] we
have identified 13 near-miss studies that appeared to meet the inclu-
sion criteria, but were excluded as not directly addressing the topic
of ML SDP: [NM1,NM2,NM3,NM4,NM5,NM6,NM7,NM8,NM9,NM10,
NM11,NM12,NM13]

From Stradowski and Madeyski [5] we added two publications
([SLR5,SLR6]) that were not found by our automatic search. Next, we
performed backward snowballing [25] through all references form the
original 29 selected papers and in the work by Bowes et al. [SLR7] we
found another relevant publication: [SLR8]. As a result, we received
a hybrid solution in which string-based database searches and snow-
balling complemented each other and identified a broad spectrum of
relevant primary literature. Fig. 1 illustrates the overview of the study
selection process.

2.3. Outcome data evaluation

We established our ‘‘quasi-gold standard’’ (QGS) (see also
[21,26,27]) baseline in the systematic mapping study by Stradowski
and Madeyski [5]. 14 of the selected QGS publications also matched
the selection criteria for this study (provided in Appendix A), and our
automated search has found 12 of these publications. We used two
criteria to assess the automated search — sensitivity and precision,
which were calculated as follows:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑅𝑓𝑜𝑢𝑛𝑑 × 100% 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑅𝑓𝑜𝑢𝑛𝑑 × 100%
4

𝑅𝑡𝑜𝑡𝑎𝑙 𝑁𝑡𝑜𝑡𝑎𝑙
Where 𝑅𝑓𝑜𝑢𝑛𝑑 is the number of relevant studies retrieved, 𝑅𝑡𝑜𝑡𝑎𝑙 is
the total number of relevant studies, and 𝑁𝑡𝑜𝑡𝑎𝑙 is the total number of
studies retrieved. The results of our search are as follows:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 12
14

×100% = 85.71% 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 12
397

×100% = 3.02%

We satisfy the threshold for sensitivity recommended by Zhang et al.
[26], as 85.71% is above the 70%–80%. Hence, we accepted the search
strategy. That said, we do not aim to confer conclusions for the whole
population of all published research in the field, but rather to synthesise
and learn from the sources we were able to gather.

2.4. Relevance assessment

Next, a relevance assessment was performed to determine the
strength of the evidence and recommendations generated by our sys-
tematic review [28]. For a business-driven effort intending to support
industrial adoption of ML SDP, it is important to evaluate the quality,
quantity, and certainty of evidence in the field, as well as how appli-
cable it is to the business context. Therefore, we scored all 32 selected
studies in relation to all our RQs [21] from the perspective of Nokia.
The questionnaire we used aims to evaluate relevance and significance
and assign a subjective score. The grades that can be given to a study
in each category are as follows:

• 1, if the study provided ample and highly relevant evidence,
• 0.5, if the study provided adequate and moderately relevant

evidence,
• 0, if the study provided little information or not relevant evi-

dence.

Secondly, the criteria used for evaluation were designed to reflect
on business applicability and are as follows:

• For ’RQ1. What methods are used for ML SDP in commercial
applications?’ we evaluated the number of tested methods, as well
as novelty and effectiveness.

Information and Software Technology 159 (2023) 107192S. Stradowski and L. Madeyski
Fig. 2. Number of selected industrial ML SDP publications per year.
• For ’RQ2. Which features are used for ML SDP in commercial ap-
plications?’ we evaluated how many different features are taken
into consideration to build the models.

• For ’RQ3. What frameworks are used for ML SDP in commercial
applications?’ we evaluated the completeness of the description
of how the tooling works and how it was used in the real-world
setting.

• For ’RQ4. What datasets are used for ML SDP in commercial
applications?’ we evaluated the approach to in vivo validation
from the perspective of how much original insight it brings.

• For ’RQ5. What cost considerations are used for ML SDP in
commercial applications?’ we evaluated any evidence of cost and
benefit evaluation of the introduced solution.

• For ’RQ6. What learnings come from the commercial applications
of ML SDP?’ we evaluated the emphasis of sharing any guidelines
and good practises that were highlighted during the study for
future researchers and practitioners to learn from.

Two independent researchers evaluated the search papers based on
relevance assessment questions to mitigate personal bias, and a sum
of grades was calculated. It is important to note that we included all
selected primary studies in our SLR independent of the results in each
category. Industry research is scarce enough, and we did not wish to
limit it beyond our selection criteria and decided that all publications
are valuable in this regard (detailed results are available in Section 3).
However, we offer our risk of bias and certainty assessment in the next
section to highlight the risks that we have observed.

2.5. Study risk of bias assessment

Any systematic review needs to provide an overall assessment of
the risk of bias (RoB) for the primary study and each domain it reflects
upon [22].

The approach we used relies on the suggestions by Dybå and
Dingsøyr [29]. Out of 11 original questions we have selected the
five most relevant for our business-driven review. We have assessed
each study with the first three questions as ‘‘Yes’’ and ‘‘No’’, while
the remaining questions in terms of a four-level scale (‘‘Very low’’,
‘‘Low RoB’’, ‘‘Moderate RoB’’, and ‘‘High RoB’’) as recommended in
the SEGRESS guidelines by Kitchenham et al. [22]. The evaluation was
done by two researchers independently, and the results are available in
supplementary material in Appendix A.

(1) Is the paper based on research?
(2) Is there a clear statement of the aims of the research?
5

(3) Is there an adequate description of the research context?
(4) Is there a clear statement of findings?
(5) Is the study of value for practice?

Secondly, we expect that the risk of bias within the main focus
of our study (research done in industry settings) cannot be neglected
and needs to be understood by Nokia. Due to many external factors
and limitations that need to be accounted for in vivo, purely academic
studies have more opportunities to mitigate reporting biases.

Also, we suggest the risk of bias due to missing results in our
analysis is high (see also threats to validity in Section 4.3), as there are
no reliable methods for identifying research done in vivo besides auto-
matic search and manual selection by keywords and full-text reading,
as well as no secondary research to benchmark with. As a consequence,
we do not generalise our findings but focus on individual learnings
and conclusions derived from analysed papers, accounting in that the
overall certainty of conclusions is lowered.

2.6. Data extraction and synthesis

Fig. 1 illustrates the overview of the selection process, where 397
publications were found based on our defined search terms in six
online databases. After screening and application of the selection cri-
teria, 32 primary studies remained for further analysis. During the
advanced search execution, we automatically extracted the following
data structure and combined it into a singular CSV file:

• Title,
• Authors,
• Year,
• Abstract,
• Database.

Secondly, we manually combined a BibTeX reference file. During syn-
thesis, we have accumulated and combined the inputs from both re-
searchers for data inclusion/exclusion, RoB, and quality of evidence
evaluation. Next, we have built graphs and charts from the evaluations
of selected primary studies to formulate and visualise responses to
the posed research questions. All mentioned artefacts are available
in Appendix A.

3. Results

All 32 selected papers (see Fig. 1) were read in full and evaluated
according to our relevance assessment Section 2.4. The number of

papers per year is presented in Fig. 2.

Information and Software Technology 159 (2023) 107192S. Stradowski and L. Madeyski

,
,

Fig. 3. Relevance assessment of papers from the perspective of methods used in ML
SDP in commercial applications.

Fig. 4. Relevance assessment of papers from the perspective of features used in ML
SDP in commercial applications.

Full list of papers is available below and in references section
Systematic Literature Review: [SLR9,SLR10,SLR11,SLR12,SLR13,SLR14,
SLR15,SLR16,SLR3,SLR17,SLR18,SLR19,SLR7,SLR20,SLR21,SLR22,SLR23
SLR24,SLR25,SLR26,SLR27,SLR28,SLR29,SLR30,SLR31,SLR32,SLR1,SLR2
SLR4,SLR5,SLR6,SLR8]

3.1. Study characteristics and individual results

We have built a simple statistic showing our relevance assessment
of all included publications based on our full-text reading to answer
the research questions. Secondly, we chose and summarised the three
most impactful works for each research question to highlight the most
notable implications of the review effort. Notably, a handful of stud-
ies were chosen in more than one category, which shows that they
accurately addressed multiple challenges of industrial applications.

RQ1. What methods are used for ML SDP in commercial applications?

Our evaluation of the relevance of the research from the perspective
of the methods used is presented in Fig. 3. There were many good
studies, either providing a comprehensive explanation of the techniques
used, using very sophisticated methods that had not been tried before
in any setting, or employing a wide variety of classifiers to select the
best performing one. Overall, methods score was the highest of the six
RQs.

Three selected papers from the perspective of the methods used
include the following:

• Melo et al. [SLR22] created a guide to support the prediction of
change proneness for maintenance teams to enable the identifi-
cation of change-prone classes in the early phases of software
development to improve software quality, based on the back-
end source code of a WEB application. The guide proposes a
straightforward step-wise approach: phase 1 designing the data
set - choosing the independent variables, choosing the dependent
variables, and collecting features; phase 2 - applying prediction
- statistical analyses, normalisation, outlier detection, feature se-
lection, resampling and cross-validation, tuning the prediction
6

Table 5
Top18 most frequently used classifiers in analysed papers.

Classifier # of uses Classifier # of uses Classifier # of uses

NB 11 KNN 5 BN 2
RF 11 J48 4 Bagging 2
LR 10 CNN 3 GB 2
SVM 9 AdaBoost 3 MLP 2
DT 6 XGBoost 2 LSTM 2
NN 6 DL 2

model, ensuring the reproducibility. The guideline is then vali-
dated in vivo on a web application’s back-end source code, using
ten classifiers: LR, LightGBM, XGBoost, DT, RF, KNN, Adaboost,
Gradient Boost, SVM with Linear Kernel and SVM with RBF
kernel. Notably, the case study used Python 3.7 on the Anaconda
platform and Jupyter Notebook 5.6.0, which is readily available
to any practitioner.

• The highest number of different techniques was analysed by Mal-
hotra and Sharma [SLR21]. The study on fault prediction mod-
els for identifying fault-prone classes in web applications com-
pares 14 machine learning techniques and explores their relation-
ship with 18 object-oriented metrics. The study uses open-source
Apache Click and Apache Rave projects developed under the
Apache Software Foundation to rank the predictive ability of
different fault prediction models and then statistically compare
them. The techniques used in the study are: Statistical classifiers
(BN, LR), Decision tree (DT, REPT, RT, J48), Support Vector
Machines (SVM, VP, SMO), Neural Networks (MLP), and Ensem-
ble learning (Bag, RF, LB, AB). MLP turned out to be the most
effective methodology on the data set used, validated with a
significant pair-wise difference.

• We chose to highlight the study carried out by Altinger et al.
[SLR12], as it analyses fault prediction on high-quality industry-
grade software using the readily available WEKA tool (see also in
RQ3 Section 3.1). Authors use as many as seven different classi-
fiers to analyse the effects of under- and oversampling the training
data, concluding that different classifiers are affected differently.
Furthermore, the paper is one of the first ones applying ML SDP
to commercial software from the automotive industry.

While counting the most popular methods, we have consolidated
variants of the same classifiers. We found 108 instances of classifiers in
our selected studies, 38 unique ones, and 17 that occurred more than
once (see Table 5). The most popular classifiers among our selected
industry papers are the same as suggested by Pachouly et al. [15] as
most popular among all ML SDP studies.

RQ2. What features used for ML SDP in commercial applications?

Our evaluation of the relevance of research from the perspective of
the metrics used is visualised in Fig. 4. The metrics discussed in the
reviewed papers were naturally dependent on the subject studied. The
majority provided a sufficient explanation of their meaning and how
they were used; however, only a subset specifically addressed how they
are gathered in the industrial examples, as it may be substantially more
difficult than in more artificial settings. (see Fig. 4).

Three selected research studies from the perspective of the used
features include below papers:

• dos Santos and Figueiredo [SLR23] conducted an
exploratory study of software features for defect prediction. The
authors analyse three groups: class-level metrics, entropy metrics,
and change metrics. However, the study is barely an industry
project (the analysed dataset contains five large Java projects:
Eclipse JDT and PDE, Equinox, Lucene, and Mylyn); it offers a
clear explanation of seven used ML algorithms and, even more
importantly, an exhaustive presentation of three types of metrics.

Information and Software Technology 159 (2023) 107192S. Stradowski and L. Madeyski
Class-Level Metrics contain 17 items in two groups: Chidamber
& Kemerer and Object-Oriented. Secondly, the entropy level
includes five metrics related to entropy. Finally, eight change
metrics are also used. Although it is difficult to imagine that
such metrics would be available in an entirely industrial setting,
it showcases the potential possibilities. Furthermore, the study
also highlights the importance of the understandability of the fea-
tures, which may be valuable for implementation in commercial
settings.

• A study by Wang and Khoshgoftaar [SLR28] attempts to de-
termine the most optimal set of software features for defect
prediction. The experiments are conducted based on software
metrics and defect data collected from a vast telecommunications
software system. The software measurement dataset contains 42
software metrics, including 24 product metrics, 14 process met-
rics, and four execution metrics. Out of the three classes of
feature selection, the wrapper-based subset selection approach
performed best, filter-based subset evaluators second, and the
feature ranking performed worst.

• Shippey et al. [SLR10] published a paper specifically on the au-
tomatic identification of code features for SDP. Furthermore, the
authors validate their method in vivo using a large international
telecommunications company based in the UK. They successfully
apply Abstract Syntax Tree (AST) n-grams to identify features of
defective Java code and improve defect prediction performance.
The models were created with the default set of static code
metrics calculated by the JHawk program, which contains many
method-level and software code metrics. The results show that
in some systems, the AST n-grams are meaningfully related to
faults with substantial effect sizes and that AST n-grams can
significantly affect the performance of SDP models.

There is an overwhelming number of metrics used in the analysed
materials, so we decided against synthesising all in detail. However,
having our overarching business introduction goals in mind, we focused
on selecting the ones that emerged as considered the most important
by the authors and coincided with the conclusions done by Pachouly
et al. [15]. The most important training metrics are focused on process,
source code, and historical defects. The metrics used in the industry
seem to be very widely distributed and we were not able to identify
specific ones that repeat as considered to be most effective or most
frequently used.

Notably, metrics used in the industry seem to be restricted mainly
by the availability and limitations of the environment the study is run
in. A further consideration is available in the RQ2 part of the discussion
in Section 4.1.

RQ3. What frameworks used for ML SDP in commercial applications?

Our evaluation of the relevance of research from the perspective
of the frameworks used is visualised in Fig. 5. We consider the frame-
works used in the analysed literature to be well described. Many have
been designed from the beginning to be used in a specific industrial
setting and fit a particular business purpose. However, the downside
of such an approach may be low transferability. Only few were more
generic and verified in vivo among more standard datasets. A broader
usage in different circumstances allowed accurate verification and more
improvement opportunities. See Fig. 5.

Three selected papers from the perspective of the used frameworks
include:

• A study by Kawalerowicz and Madeyski [SLR6] describes a con-
tinuous build outcome prediction in a real software project util-
ising Jaskier [30] — a tool built for that purpose by the authors.
The tool uses ML models that predict the continuous integra-
tion (CI) build results based on historical results combined with
metrics gathered and calculated in real-time from the software
7

Fig. 5. Relevance assessment of papers from the perspective of frameworks used in
ML SDP in commercial applications.

repository. In the experiment, 310 project days coming from a
total of 9 developers were analysed to show whether the predic-
tion of the result of the build can reduce the number of failed
builds. Notably, the tool itself is open-source and ‘‘consists of
three developer clients (for Visual Studio, VSCode and command
line), a web service to facilitate the data exchange between the
clients and prediction model living in the cloud or on on-premises
machine learning server’’, which offers significant potential for
customisation and industry implementation.

• Bowes et al. [SLR27] addressed the claim that, despite the vast
amount of research done on ML SDP, it has not been transferred to
industrial practise. Therefore, the authors introduce the Ensemble
Learning for Fault Finding (ELFF) tool to improve the availability
of defect prediction tools that practitioners can use during their
day-to-day operations. It contains two main parts — the back-
end that gathers historical defect information, collects source
code metrics, and performs defect prediction, and the front-end
offers results visualisation with an integrated development en-
vironment. Importantly, ELFF was validated in vivo in a large
telecommunication project and was positively evaluated by its
users.

• A study by Hryszko and Madeyski [SLR8] was carried out in
Volvo Group on a document management system, to which the
researchers employ their machine learning-based tool (DePress
Madeyski and Majchrzak [31]) to analyse the cost-effectiveness
of software defect prediction in an industrial setting. The tool
used is an open-source software measurement framework jointly
developed by Wroclaw University of Science and Technology and
Capgemini for defect prediction in commercial software. DePress
is built on KNIME and allows the development of graphical work-
flows with a graphical interface. The desired data is collected
from the SVN version control system and Jira as the defect report
application. The obtained results show that even using default set-
tings, low investment, and high effectiveness give a cost-efficient
solution that significantly improves software quality.

While counting the most popular frameworks, we have all papers
and excreted the information on the frameworks used for building the
models. We found 16 categories in our selected studies, highlighted in
Table 6. Unfortunately, many authors provide insight into how their
tooling works without indicating how it was written. From established
frameworks, WEKA, Scikit-Learn, and Keras, TensorFlow combination
are the most popular among our selected papers.

RQ4. What datasets are used for ML SDP in commercial applications?

Our evaluation of the relevance of research from the perspective of
the datasets used is visualised in Fig. 6. The quality of the description
varied as many studies only briefly described the dataset used (being
unable to disclose even the name of the company or for the sake of
brevity). Also, we obtained a wide plethora of industries studied from

Information and Software Technology 159 (2023) 107192S. Stradowski and L. Madeyski
Table 6
Breakdown of used frameworks in analysed papers.

Framework # of
studies

Framework # of
studies

WEKA 7 PyTorch 1
Own tool, no information 5 Word2Vec, Doc2Vec 1
Own tool, Python 5 Azure ML Studio 1
Keras, Tensorflow 3 MATLAB 1
No information 3 DGCNN 1
Scikit-Learn 2 JIT-SDP 1
Code2Vec 1 Java apps. and R scripts 1

Fig. 6. Relevance assessment of papers from the perspective of datasets used in ML
SDP in commercial applications.

maritime, finance, automotive, to telecommunication, which was by far
the most popular source of data. See Fig. 6.

We selected four papers from the perspective of the datasets used
to be highlighted.

• Pradhan et al. [SLR1] studied defect prediction for large-scale
software systems. The research focuses on challenges resulting
from the scale of hundreds of millions of lines of code based on an
example of Cisco’s IOS-XE, consisting of more than 2200 software
components and tens of thousands of source files. To address said
challenges, the authors propose that software defect prediction
for large-scale software should include four components: data
definition, quality attributes selection, ML algorithm, and SDP life
cycle. Using this approach, several models are presented, with
the remark that the solutions are specific to the dataset used in
the study, but general conclusions on the importance of these
challenges should apply to all large-scale software.

• An approach used in a subset of studies, with an excellent exam-
ple from Shippey et al. [SLR10], is first to train the method and
validate using a popular database like NASA, Eclipse, PROMISE,
and secondly to use an in vivo dataset. Such an approach allows
for benefiting from benchmarks with other studies on the same
sets, as they are well understood and explored, and validating in
a real-life setting in the second step to confirm industry appli-
cability. The authors highlight that the Eclipse open-source Java
system analysed in their study was chosen as already used exten-
sively in defect prediction studies and allowed validation of the
proposed technique for locating faulty code. Secondly, the authors
collected fault data from two commercial telecommunications
systems to test the solution to different problems.

• Another excellent example of employing such a step-wise ap-
proach is the work done by Bowes et al. [SLR7]. The authors high-
light that datasets can significantly affect predictive performance
and aim to analyse datasets with varied characteristics from
different contexts. The research compares the performance of four
classifiers across NASA, open source, and commercial datasets
(unnamed UK-based telecommunications company), uncovering
significant inconsistencies in performance. Most importantly, de-
fect prediction models may perform similarly when judged by
performance measures but may identify different defects. Thus,
8

Fig. 7. Relevance assessment of papers from the perspective of cost considerations used
in ML SDP in commercial applications.

ensembles of classifiers are recommended, as using only one
classifier is not likely to comprehensively detect defects.

• The industry study by Zong [SLR25] focuses on a
classification-based software defect prediction model for an un-
named finance software system. The authors point out that fi-
nancial software systems are different from traditional in several
ways and that there is no available benchmark for software defect
prediction in the finance industry. Therefore, the acquisition and
use of commercial data is the only way to validate the proposed
solution. The authors then propose a binary classification defect
prediction model with features specific to finance software sys-
tems. Moreover, they discuss how to apply the prediction output
and how it benefits the software development process.

One of the most concerning observations we have made is that
majority of the studies were unable to disclose the commercial datasets
that were used and did not introduce them to the public domain for
further research (as was done, for example, by Jureczko and Madeyski
[32]). Without more industry datasets being available publicly for
further investigation, the overall business adoption of ML SDP will
be slowed down and replications impossible. Therefore, publishing the
datasets, e.g., in services like Zenodo, should be of utmost importance.
Second, we suggest that authors who do not have the possibility to
publish the dataset should state this clearly in the paper rather than
not comment on these circumstances at all.

Full or partial dataset publication was found in the following 17 (out
of 32) of the analysed papers that have been published between 01.01.
2015 and 08.04.2022: [SLR2,SLR3,SLR11,SLR23,SLR14,SLR4,SLR6,
SLR26,SLR20,SLR21,SLR22,SLR31,SLR30,SLR15,SLR9,SLR29,SLR24].

RQ5. What cost considerations are used for ML SDP in commercial
applications?

Our evaluation of the relevance of research from the perspective
of cost considerations used is visualised in Fig. 7. The topic of cost-
effectiveness of implemented solutions was very rarely discussed in
the reviewed publications. The majority opened with a justification
of the research, but was limited to generic statements without fur-
ther consideration during the implementation in the real environment.
Therefore, we selected and summarised only two publications that offer
a comprehensive understanding of the cost considerations behind the
conducted research. See Fig. 7.

We selected only two papers that offer a wider commentary on the
cost consciousness of studied topic:

• In the Volvo study already highlighted for the used framework,
Hryszko and Madeyski [SLR8] committed a complete publication
on cost-effectiveness and placed a significant focus on providing
financial justification for using software defect prediction in com-
mercial settings. The investment cost is calculated based on tool
acquisition, training, data collection, and prediction preparation.
Benefits are calculated as a multiplication of the average person-
hour work cost saved by test engineers. As a result, the simulated

Information and Software Technology 159 (2023) 107192S. Stradowski and L. Madeyski
Fig. 8. Relevance assessment of papers from the perspective of lessons learnt used in
ML SDP in commercial applications.

estimations show that quality assurance costs can be reduced by
almost 30%, the estimated Return on Investment (ROI) is a stag-
gering 73 (7300%), and Benefits Cost Ratio (BCR) equals 74. This
is an excellent illustration of how SDP can benefit commercial
companies in their quality assurance effort.

• The study by Kang et al. [SLR32] focuses on predicting just-
in-time software defects to reduce post-release quality costs in
the maritime industry. The authors offer a description of the
proprietary software systems used on large ships that are used for
maritime transportation, including workstations, displays, con-
trollers, and control networks, the details behind the proposed
solution, and an analysis of the results. However, a genuinely
distinguishing factor for the publication is a cost–benefit analysis.
Two of the five research questions focus on increasing test effi-
ciency and reducing post-release quality cost. Both considerations
adhere precisely to the business reasoning needed for similar
solutions to be applied in the industry, making this publication
a prime example of how to increase in vivo applicability of
academic research.

RQ6. What learnings come from the commercial applications of ML
SDP?

Our evaluation of the relevance of research from the perspective
of the lessons learnt is visualised in Fig. 8. By definition, reviewed
publications executed in vivo contain valuable insight into leanings or
commercial applications. Most offered such suggestions as part of the
typical description of the proceedings; therefore, we sought dedicated
discussions on aspects such as lessons learnt or commentary on received
feedback. Additionally, some are named and organised in the form of
a guideline that practitioners can follow. See Fig. 8.

Three selected papers from the perspective of the lessons learnt
include the following:

• Dam et al. [SLR11] provided a whole paper in the form of a
lessons learnt from applying ML SDP in practice. The study was
run on the PROMISE repository and an open-source project by
Samsung. The models are built with Long Short Term Mem-
ory network, which directly matches the Abstract Syntax Tree
representation of the source code of both projects. The authors
offer six extensive lessons learnt from developing the model and
validating the results on topics like explainability, training time,
or heterogeneity of code bases. Furthermore, the paper underlines
the importance of feedback received from practitioners using the
proposed solution.

• In the study Zhao et al. [SLR18] 11 real-world online service
systems from two large commercial banks were analysed, demon-
strating the effectiveness of their tool for real-time incident pre-
diction with alerts. In addition to describing the approach and
implementation, the study includes dedicated sections on inter-
pretability, success stories, and lessons learnt. All three contain
valuable insight for practitioners aiming to start similar efforts.
9

Interpretability adheres to XAI (the only other publication that
touches upon XAI is dos Santos and Figueiredo [SLR23] — the
need to explain prediction results and help engineers understand
incidents in practice. Success stories cover four cases of the
tool that accurately forecast incidents in real-world operations.
Finally, the lessons learnt offer three observations that are specif-
ically highlighted for practitioners who want to use such an
approach in the future.

• Already praised for its cost–benefit section, work by Kang et al.
[SLR32] also offers a comprehensive description of the lessons
learnt. Employing just-in-time software defect prediction to re-
duce post-release quality costs in the maritime industry has led
the authors to many insightful conclusions and meaningful rec-
ommendations. The highlights include the proven applicability of
SP to a made-to-order sector where each application has different
requirements and the need for software architecture to support
separate modules that provide commonality and offer variability.
Furthermore, the section describes interviews conducted with var-
ious stakeholders to elicit feedback (on management aspects like
implementation cost estimations and developers on the additional
overhead). Finally, there are also seven distinct guidelines for
practitioners aiming to employ defect prediction in the future.

3.2. Reporting biases and certainty of evidence

As described in Section 2.5, the risk of bias in reviewed studies
is relatively high. Researchers frequently mentioned the limitations
posed during the research in the industry as a significant portion of
influencing factors were outside of their control. Nevertheless, our main
effort to introduce ML SDP in Nokia system-level testing of 5G will
have similar limitations increasing the overall risk and endangering
the provided certainty of evidence. Therefore, considering the business
goals behind our effort, we focus primarily on the subject and content
of the primary publications.

Our risk of bias evaluation had the following Kappa coefficients [21]
measuring the consensus between both researchers:

𝜅(1) = 0.65 𝜅(2) = 1 𝜅(3) = 1 𝜅(4) = 0.81 𝜅(5) = 0.72

The overall agreement was good/substantial to very good/almost
perfect (see [21, Table 6.2]); nevertheless, each risk evaluation dis-
agreement on the five selected questions described in Section 2.5 has
been discussed and resolved.

Secondly, reporting bias may be negatively influenced by additional
stakeholders interested in the results in industry settings. Both prac-
titioners participating in the experiments and management approving
any cost related to the activities expect high returns. That may put
further pressure on researchers. Another significant constraint repre-
sents the limited time spent on in vivo research as it is expected to
be brief and practical rather than thorough and complete. Therefore,
publications on any newly proposed solutions should be twofold. One
in a purely academic setting, satisfying rigorous requirements for the
risk of bias and certainty of the evidence, and the second with in vivo
validation highlighting the validated results, but also risks resulting
from additional limitations and confirmation bias.

All in all, uncertainty is embedded in all business endeavours and
can never be fully understood. Therefore, increased reporting risks
and threats to validity in business-driven efforts need to be clearly
discussed, but also accepted to a certain degree.

4. Discussion

In order to derive meaningful conclusions that practitioners can ben-
efit from this research, we have discussed each RQ from the perspective
of business applicability and, where possible, we also referenced similar
studies. Importantly, to further validate our results and review the dis-
cussion, we invited three experienced practitioners from Nokia to help

Information and Software Technology 159 (2023) 107192S. Stradowski and L. Madeyski
Fig. 9. Bubble plot of publication relevance assessments.
Fig. 10. Box plot of publication evaluations.
us during the discussion effort. The purpose of inviting practitioners
was to increase the value of the proposed recommendations and share
further insight from an industry perspective.

Secondly, we would like to highlight again the discrepancy in the
quality and quantity of evidence between methods, features, frame-
works, and datasets (RQ1–RQ4), which were much more comprehen-
sive than cost considerations and lessons learnt (RQ5 and RQ6). The
discrepancy can be observed in the below bubble plot (Fig. 9). The
bubble size reflects the number of the most frequent evaluations for
each criterion, and it is clearly visible that we found much more
evidence for the first four categories.

We created a box plot to visualise the distribution of grades and
their skewness by displaying the data quartiles, averages, and variabil-
ity outside the upper and lower boundaries (Fig. 10). All RQs have an
extensive distribution and variability, showing a meaningful difference
in our perceived relevance. Also, the discrepancy in the evaluations
between RQ1–R4 (methods, features, frameworks, and datasets) and
the much lower amount of evidence for RQ5–RQ6 (cost considerations
and lessons learnt) can be observed. Although all categories have
publications what were evaluated with the highest possible score (‘‘2’’),
none of the methods, features, and frameworks categories received the
lowest one (‘‘0’’) .

Over the years, ML SDP branched out into many tracks tackling
different obstacles for creating meaningful and accurate models form
10
existing data (examples provided below), however, we found limited
traces of utilising those aspects in the reviewed industrial papers:

• Semi-supervised learning [33] — no papers,
• Prediction without historical data [34] — no papers,
• Cross-project defect prediction [35] — two papers:

[SLR9,SLR5],
• Cross-company defect prediction [36] — one paper: [SLR9],
• Heterogeneous defect prediction [37] — no papers,
• Noise in data [38,39] — despite majority of papers highlight

significant data imbalance, only standard mitigation techniques
are used,

• Just-in-time defect prediction [40] — [SLR32,SLR5,SLR6].

Finally, we would like to highlight that the ML-based approach to
SDP also has several limitations that hamper industrial application in
comparison to search-based [41] and rule-based techniques [42]. We
have identified similar obstacles to the ones described by Pachouly
et al. [15], Pradhan et al. [SLR1], Tantithamthavorn and Hassan [43]:

• Challenging availability of data in terms of its quantity and
quality,

• Many performance measurement misinterpretation pitfalls,
• Difficult to achieve interpretability of predictions,
• Demanding implementation and longer calculation times.

Information and Software Technology 159 (2023) 107192S. Stradowski and L. Madeyski

i
a

r

4.1. Answers to research questions

Based on the search, selection, and relevance assessment process
execution described in Section 2, as well as the observations provided
in Section 3, together with practitioners from Nokia we have drawn
several conclusions for machine learning in software defect prediction
highlighted below.

RQ1. What methods are used for ML SDP in commercial applications?

We found the methods used in our reviewed papers to provide
very valuable conclusions (Section 3). However, a significant part of
the papers offered an analysis of only one method, which we find
incomplete. A better approach to proposing a new technique or its
adaptation to new datasets is to benchmark against well-established
practises. Thus, we evaluated most highly the solutions where results
from several techniques were compared to select the best in given
circumstances, to account for the ‘‘no free lunch’’ (NFL) theorems [2,3].
In the reviewed papers, we also observed that almost all prevalent
techniques were validated in industry. Thus, majority of techniques
can potentially find a practical application with satisfactory results, as
from a business perspective, the key differentiators for each dataset are
the features used (and available) and the framework that should allow
several methods to be executed and compared [SLR21]. Even more so
when different methods find different errors, as pointed out by Bowes
et al. [SLR7].

Second, we have not observed significant differences between the
set of methods used in our industry-focused study and the findings of
other literature reviews in the field. There are many good SLRs (see
Section 1.3) to compare our data with; however, we chose Pachouly
et al. [15] as the most recent and directly attempting to answer a
subset of our RQs. The aforementioned publication is not industry-
focused, but it allows insight into whether similar conclusions can be
drawn in academic and practical considerations. Most importantly, we
confirm also in industry research the most popular methods are Linear
Regression, Naive Bayes, Logistic Regression, Decision Tree, SVM, KNN,
and Random Forest (see Table 5).

Importantly, we have found several deep learning applications
in the industry [SLR11,SLR15,SLR16,SLR3,SLR17,SLR29,SLR30,SLR2].
Despite differences in the approaches used, the mentioned studies
confirm the applicability of deep learning techniques in industry and
show significant future potential. Employing multiple layers requires
greater effort during introduction and maintenance, but often rewards
via higher predictive performance, which may be attractive to more
risk-averse commercial environments such as software products for
healthcare, automotive, or finance.

Lastly, on a broader scale, the purpose of ML SDP is to comple-
ment more traditional test processes. Therefore, out of all the main
performance measures [44] practitioners tent to value fewer false-
positives (misclassification or error rate) as well as very high accuracy
or precision of the prediction. Dealing with false-positives is always
noise for an R&D organisation, whereas every true fault may be an
added value confirming, or in the best case, uncovering a new existing
defect.

RQ2. Which features are used for ML SDP in commercial applications?

Similarly to the methods reviewed, we found the features used in the
publications to be satisfactory; however, they were slightly closer to the
middle value of ‘‘1’’ (Section 3). A significant part of the models was
trained on a very high number of features (as many as 18 in [SLR21] in
14 in [SLR32]). Also, we agree with Pachouly et al. [15] that ‘‘most of
the studies employed the following features to train the model: process-
related metrics, attributes taken from historical defects, source code
metrics in general, and object-oriented metrics’’.

The difficulty comes from the availability of metrics that can be
gathered in vivo and, what can be even more difficult, what is histori-
11

cally available. From this perspective, in many cases, it is the model m
that needs to be robust enough to work with what is available to
be reusable. 0f course, dedicated solutions optimised to work in one
particular dataset and one company, this difficulty can be overcome
with more ease, and cooperation with practitioners to introduce more
metrics is more feasible. A review of software metrics for fault pre-
diction using ML approaches with PROMISE repository dataset done
by Meiliana et al. [45] has shown that, on average, three software
metrics are sufficient to build practical software prediction models.

Therefore, we conclude that from a features perspective, there is
no need to include a large number of metrics that improve final
performance by a small difference, but balance with what is possible
and available in the target context.

RQ3. What frameworks are used for ML SDP in commercial applica-
tions?

Many excellent frameworks were described in the reviewed pub-
lications. None were evaluated on a ‘‘0’’, with majority on ‘‘1’’ and
‘‘1.5’’ (Section 3). However, the publications varied in the number of
details offered on the internal mechanics of the tool. A good practise
seems to be not to try to fit the tool description and the result analysis
in one article, but to split it into two separate publications that offer
more information on each (for example, the research in [SLR6] and
the tool in [30]). One distinguishing factor for the offered solution
is proven compatibility with popular frameworks like Jenkins, or any
Microsoft-based platforms that are widely used in the industry. Offering
a straightforward interface towards an already used solution largely
decreases the implementation difficulty and automatically provides
access to already existing data without additional modifications.

Furthermore, many publications focus only on how the tool works
and not on how other researchers and practitioners could use it (see
RQ6 below). We did not encounter the same newly proposed tooling
for use by different researchers, as each created their own. However, a
significant part of the research reused the well-established TensorFlow7

([SLR15]) and WEKA8 ([SLR13,NM1,SLR28,SLR32]).
Unfortunately, only two authors ([SLR23,SLR18]) reflected on the

concept of explainable AI (XAI), which can be critically important in
specific industries and is considered a very attractive concept from the
perspective of practitioners. Finally, after reviewing all the tools, we
conclude that the dream state for a reusable tool would be an online,
standalone, non-intrusive software that is easy to install, has a clear
user-friendly interface, offers XAI interpretations, has defined interfaces
to well-known databases that are already popular in industry, and has
implementation-focused documentation. Any tool offering at least part
of these characteristics has a better chance of being implemented on a
larger scale.

RQ4. What datasets are used for ML SDP in commercial applications?

Considering that the automatic search query and the selection pro-
cess used by design scrutinised the datasets on which the solutions were
validated, the relevance evaluation of the evidence was moderately
high. Interestingly, despite the fact that the methods and features
having higher overall scores, datasets had the most studies evaluated
at the maximum grade of ‘‘2’’ (Section 3). Therefore, we received a
wide spread of industries from finance, finance through transportation,
automotive, to telecommunications. The latter was the most frequently
used, showing an increased interest in pursuing ML-based solutions
within the industry.

7 TensorFlow is an end-to-end open-source platform for machine learn-
ng offering multiple tools and libraries allowing to build and deploy ML
pplications. URL: https://www.tensorflow.org/.

8 Weka is an open-source software collection of machine learning algo-
ithms and tools for data mining tasks. URL: https://www.cs.waikato.ac.nz/

l/weka/.

https://www.tensorflow.org/
https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/

Information and Software Technology 159 (2023) 107192S. Stradowski and L. Madeyski

o
e
h
w
r
t
t
s
p
i
t
H
o
t
c
l
b
W
s
o

d
a
c
r
t
a
c
c
p
o

Notably, we identified a particularly efficient approach to vali-
date the solution proposed in the study on a few different datasets
([SLR10,SLR11,SLR7,SLR5]). The approach was to first validate on
well-explored sets like NASA or PROMISE. The benefit came from the
sets being very well known and having plenty of research to benchmark
against. The solution was then used on a lesser-known open-source
project to pilot and study the performance in circumstances closer
to a real environment. Finally, the proposed methods were tested
on an industrial dataset to verify the solution in vivo and have a
complete set of research results. Solutions validated in such a way
have the best chances of being most effective in various circumstances.
Secondly, many of the reviewed papers purposefully aimed to validate
the solutions on many datasets, but came from one category of several
open-source projects or a few sets of data from the same company or
industry. Of course, the more datasets the solution is validated against,
the better.

Nevertheless, as studied by Stradowski and Madeyski [5], Lanza
et al. [16], Li et al. [19] the overall statistics of all ML SDP primary
publications show that industry application is relatively low. Due to
the ‘‘no free lunch’’ (NFL) theorems [2,3] and the fact that datasets
can be very different and verification in one instance does not bring
full benefit from the perspective of industry application. Therefore,
validation on several datasets is critically essential, and we would like
to suggest that researchers more frequently reach out to companies
asking if they would be interested in validating new methods on
proprietary data. We acknowledge that many attempts will fail, but
there are chances that some success will increase the chances that more
solutions can be validated in vivo. Moreover, even if the data cannot
be directly cleared for publication, there are ways to anonymise results,
not disclose the company’s name, or build an artificial dataset with
similar characteristics.

RQ5. What cost considerations are used for ML SDP in commercial
applications?

Cost considerations had the worst relevance evaluation scores out
f all six categories. As many as 33 publications had a ‘‘0’’ from both
valuations, eight had one evaluation of ‘‘0.5’’, and only one had the
ighest score of ‘‘2’’ (Section 3). Therefore, only very little evidence
as analysed. Each business implementation requires a certain level of

eturn on investment calculation, and even the most basic project char-
ers include cost–benefit analysis [46]. If the published research helped
o understand how many defects can be avoided by implementing SDP
olutions and at what cost, it could increase the business adoption of
roposed solutions. On the other hand, it is worth acknowledging that
t may be difficult to estimate how expensive the development of the
ooling, gathering the data, and maintaining such a solution could be.
owever, in some cases, this decision is more straightforward than in
thers. For example, if there is an expensive infrastructure needed to
est, if finding defects is very difficult or time consuming, or each es-
aped defect is costly, then the cost of development could be relatively
ow in comparison. Secondly, if there are existing suitable tools that can
e used with only modifications, that significantly reduces expenditure.
e have observed that, at least in the reviewed papers, researchers

eldom leave an invitation to use their tooling and frameworks by
thers.

The cost considerations that could be offered in ML SDP research
oes not need to be very precise or sophisticated. Accurate calculations
nd decisions must be made within the industry. However, researchers
ould greatly help to make initial feasibility decisions by providing
ough estimates of implementation costs based on the experiences of
he author. Even rough estimates in working hours or Full-Time Equiv-
lent (FTE) per month that is needed to set up the tool, practitioners
ould compare it to the cost of escaped failure in their industry and
ontext. Secondly, the simplest way that we would recommend in a
reliminary financial benefit analysis is a Return on Investment (ROI)
r Internal Rate of Return (IRR) calculation [46].
12
We did not find any other research we could compare our conclu-
sions regarding cost considerations in research for ML SDP introduction
in business. We hope this could be improved in the future, and we
strongly encourage academics to offer this information in their primary
and secondary studies. Following the observations on low industry-
academia collaboration by Garousi and Felderer [17], we agree that
the majority of research lacks cost–benefit analysis, discussing the time
and effort needed for implementation and what potential savings it can
bring. As businesses need to be cost-effective, we identify it to be a key
enabler to bridge the gap and judging by our results, there is significant
room for improvement.

RQ6. What learnings come from the commercial applications of ML
SDP?

Identification of lessons learnt is essential in process improvement
initiatives in many business situations [47]. Unfortunately, the research
publications we reviewed were evaluated relatively low in this aspect
(Section 3). Naturally, all publications reported on the methods and
results, but usually offered very scarce insight into the implementation
process itself. In comparison, the evidence on methods, features, frame-
works, and datasets was satisfactory. But any specific lessons learnt
offered by the authors and practitioners designing and maintaining
their solutions are very beneficial to similar future efforts.

From an implementation perspective, the most important aspects
to understand could be: how difficult is setting up the tool, what
competence is needed (like programming skills in Python, R, and
specific libraries, as well as specific predictive modelling techniques),
what other tools are needed and what maintenance effort is needed.
Without such considerations explained in the publication, the value
is diminished to the method described and the results obtained, with
limited potential to be repeated in another business context.

In addition, technical implementation difficulties are not the only
ones worth discussing. Another important consideration is dealing with
the change management issues encountered and overcome during the
introduction of a new process. Such insight can make all the difference
in industry application. Secondly, an outstanding practise we found (for
example, [SLR27]) is to gather feedback from practitioners on using the
researched solutions, where even simple input from practitioners on the
time, effort and satisfaction of the obtained results can offer meaningful
insight.

In the following, we highlighted the key points that were raised in
the reviewed papers from the perspective of practical lessons learnt, not
only in standard research description but also emphasised as such.

• Dam et al. [SLR11] start the article with a motivating example,
where the authors begin with an example which illustrates the
difficulties of using the already existing approaches, justifying the
need for their research.

• An ’implications for practitioners’ section offered by dos Santos
and Figueiredo [SLR23] emphasised that practitioners should not
expect the same models to explain defect predictions for different
projects and recommend within project training.

• Bowes et al. [SLR27] reported training practitioners on their tool
and implementing weekly email questionnaires to collect input
and enable evaluation and improvement of their solution.

• An important lesson learnt raised by Kang et al. [SLR32] is the
need to gather feedback from experts on how much overhead was
added by the introduction of the tool.

• The second recommendation by Kang et al. [SLR32] is based
on the feedback received from management that provided cost
estimates that were beneficial to understanding the effect of cost
reduction as it was essential to obtain managerial support for
implementation.

• Lastly, the entire publication by Melo et al. [SLR22] is a compre-
hensive step-wise guideline on change-proneness prediction. The
guideline approach is the best form of publication if the authors

aim for their proposed method to be tested in vivo.

Information and Software Technology 159 (2023) 107192S. Stradowski and L. Madeyski

M
i
f

4

w
f

Addressing the above topics in publications would increase the
chances of adoption and make it easier and more successful when it
takes place. Therefore, we recommend academics to include a lessons
learnt section in their publications, for example done by Kang et al.
[SLR32], Zhao et al. [SLR18].

Finally, we would like to highlight what works well, and thus what
are the benefits, in terms of progress towards the wider industrial
application of ML SDP solutions:

• The first positive aspect is that there are several studies in vivo
across many industries published over recent years. Therefore,
there seems to be an interest among companies and practitioners
in implementing the said solutions (see Fig. 2).

• The researchers are able to obtain good predictive results, de-
spite using a wide plethora of different algorithms. The solutions
created so far in academic settings are sufficient enough for
researchers to find effective solutions in different contexts (see
Section 3).

• Established ML frameworks, like WEKA, Scikit-Learn, Keras, and
TensorFlow, are the most popular among our selected papers,
showing their usefulness in vivo.

• Proposed ML frameworks can be successfully integrated into
the existing testing machinery for automatic SDP for example:
ELFF [SLR27], Jaskier [SLR6], DePress [SLR8] or [NM9,NM10]).

• Despite not being frequently explored, the studies that do exist
on cost-considerations show high profitability potential [SLR32,
SLR8].

L-based approach to SDP also has several risks that may hamper
ndustrial application. The papers in the scope of our SLR indicated the
ollowing (see Section 4 for more details):

• Limited availability and quality of in vivo data that is feasible ML
SDP (including replicability aspects).

• In the analysed literature, we have not encountered sufficient con-
sideration of the researcher bias, discussed in detail by Shepperd
et al. [9], but there is no evidence as well that this important
factor could be neglected in industrial settings.

• Using inadequate performance measurement metrics, for exam-
ple, not dealing with class-imbalance problem.

• Consideration of only singular test phases of the test cycle.
• Not sufficient explanation and reporting of the actual imple-

mentation of the solutions (including scarcely provided lessons
learned).

• Lack of a satisfactory explanation of the predictions.
• In the analysed literature, we have not encountered any discus-

sion about processes of new technology introduction and relevant
change management.

• Not sufficient consideration of the costs and benefits of the intro-
duced solutions.

.2. Further recommendations

Together with the invited practitioners from Nokia (Section 4)
e have defined the following recommendations based on the main

indings described in Section 4.1:

• From the perspective of utilised ML methods, details of model
operation seems not to be crucial. The most important factors for
industry application are focused on low error rate, interpretability
of results, and ability to benchmark different models for reuse
purposes. We have not found justification for maximising the
accuracy metrics as critically important.

• We have not identified clear need to include a large number of
features that minimally improve final performance. A more feasi-
13

ble approach is to use what is already available in the company.
• Tools offering a subset of the below characteristics have a higher
chance of being reusable in the industry: online, standalone, non-
intrusive, easy to install, comprehensive documentation, user-
friendly, defined interfaces to well-known databases, and allow-
ing XAI interpretation.

• When working on new solutions, researchers should reach out to
local companies asking them to implement them in vivo. There
are chances that some of the proposals can be accepted; even if
the data cannot be directly cleared for publishing. Furthermore,
there are ways to randomise, not publish specific details, or not
disclose the company’s name.

• Researchers could immensely increase the chances of their solu-
tions being implemented in vivo if the publications would support
the initial feasibility decisions by providing rough estimates of
implementation costs based on the authors’ experiences. Even
rough estimates that allow to understand the effort behind the
application is a great addition.

• Including a lesson learnt section in empirical papers offers sig-
nificant value to any further attempts to replicate the solution
in other contexts. Any commentary on the difficulties faced,
received feedback, or effort needed could increase the chances of
further internalisation of ML SDP in the industry.

Second, based on the observations made during our selection pro-
cess, introducing a clear statement in the title, abstract, and keywords
of the published studies could significantly increase accessibility — a
prime example is Arrieta et al. [NM2], where ‘‘An Industrial Case Study
on Elevators Dispatching Algorithms’’ is included in the title. It high-
lights not only validation in a real-world setting, but also circumstance
and context.

Third, as the incentive for companies to publish their research
in academia is low and the entry threshold of publishing is high, a
portion of evidence is available in grey literature. Various sources offer
a wide selection of less rigorous reports on the usage of ML SDP in
different companies. Following Kitchenham et al. [48] including such
publications in future SLR research would be very valuable.

Another vital concern to raise is the issue of reproducible research in
the context of in vivo validation [49]. We did not specifically review for
reproducibility; however, disclosing company-owned data, processes,
or research results can be more complex than in studies done on public
sets. Therefore, gradual validation on academic and open-source sets
that have no disclosure limitations is critical before the in vivo studies
are conducted which may not get full publishing opportunities.

Next, any ML SDP effort in an industrial setting must be considered
from a top-down perspective. Starting with a consideration of what the
company’s mission is, what the business goals are, and how the intro-
duced solution may contribute to the company’s success. Therefore, the
solution should be robust enough to suit current needs, processes, tools,
and data.

Our last recommendation is focused on our research done for Nokia
and reflects on the significant potential for software practitioners to
benefit from this literature review. In particular, we will use the results
of the study and the selected contributions from the analysed literature
(works like Rana et al. [50]) in our future effort to address the chal-
lenges in improving the quality and minimising the cost of software
testing of 5G systems at Nokia as described by Stradowski and Madeyski
[4].

4.3. Threats to validity

The threats to validity discussed below, include only the issues that
have not been explained in the previous sections (mainly Section 2
and Section 3). Each highlighted risk had a mitigation reference, or
confirmation that it has not been addressed. We followed the most
common categories of threats from Zhou et al. [51] to disclose possible

inadequacies and increase the overall quality of the conducted SLR:

Information and Software Technology 159 (2023) 107192S. Stradowski and L. Madeyski

5

r
o
r
t
s
g
a
o

m

• Construct validity: the most crucial threat to the correctness of
measures for the researched concepts was the possibly incomplete
and incorrect information in the selected primary studies. We
do not directly mitigate the threats related to the heterogeneity,
publication bias, researcher bias, or generalisability of the pri-
mary studies. The industrial settings may vary significantly and
usually require a deep contextual and technical understanding of
its operations. Therefore, it may also be challenging to synthesise
the goals and outcomes precisely and understandably to a wider
audience. To limit the impact and increase the applicability of
conclusions to our case, we invited an experienced practitioners
from Nokia to participate and review the discussion of our results.

• External validity: We do not wish to claim our conclusions can
be generalised to the whole challenge of business applicability of
ML SDP. We did not use all possible means to establish a golden
standard, nor did we analyse all potential threats to validity.
The goal of our research, translated to study questions, was to
understand the methods, features, frameworks, and cost consid-
erations used in published research done in industry settings and
to gather lessons learnt. This goal comes from our overarching
aim to improve the quality and minimise the cost of software
testing of the 5G technology at Nokia [4,5]. Notably, we would
like to also highlight a risk resulting from the lack of comparable
business-driven studies to benchmark against. Nevertheless, the
conclusions we draw from our six RQs apply to any practitioners
interested in ML SDP and not only to those in Nokia. The findings
come from multiple industries and different quality assurance pro-
cesses, reflecting the overall state of ML SDP adoptions. Secondly,
the results should also be interesting for researchers willing to
understand and advance the industry adoption of ML SDP.

• Internal validity: it is possible that some relevant papers were
not included in our review. The first reason is the efficiency
and specificity of the electronic databases we used. Secondly,
some relevant research might have been missed due to search
string imperfection. Also, our sensitivity of 85.71% is acceptable;
however, does not give certainty. Thus, we applied the snow-
balling technique to limit the impact and decrease the overlooked
research pool. However, it is worth pointing out that we failed to
identify a well-established way of distinguishing research done in
an industrial context (see Section 4.2).

• Conclusion validity: We have contacted the authors of the 14
main works highlighted in Section 3 to confirm our interpreta-
tions. For the sake of reproducibility, we described our research
process in detail in Section 2. Secondly, all gathered data is
available Appendix A, and a dedicated SEGRESS checklist in Ap-
pendix B. However, a significant conclusion validity threat arises
from the researcher bias and manual selection criteria application
and manual evaluation of the primary research. To mitigate indi-
vidual biases, we have performed a cross-check of the assessments
by two researchers. Nevertheless, other researchers might obtain
a slightly different subset of publications and relevance evaluation
scores.

. Conclusions

Despite a positive attitude towards academics [52], practitioners
arely include academic research on software defect prediction in vivo
perations. The reasons behind this are the low number of in vivo
esearch being published (partly due to the low interest of companies
o do so), no established way to differentiate industry-based studies for
earchability, and the in vivo context is very specific and not easily
eneralisable to other circumstances. Therefore, we decided to conduct
more extensive SLR study to evaluate the current research in terms

f business applicability and suggest opportunities for improvement.
Our research concentrated on analysing and understanding the
14

ethods, features, frameworks, cost considerations, and lessons learnt
offered in published research performed in real-world commercial set-
tings. Out of 397 publications on machine learning software defect pre-
diction found by automatic search through six online databases, we se-
lected and investigated 32 studies. The research offers ample evidence
regarding the methods, features, frameworks, and datasets, showing
significant academic advancements in the field. On the other hand,
reviewed papers provided very little evidence of the cost-effectiveness
of the proposed solutions, and scarce lessons learnt that could help
practitioners implement similar approaches in the future. The most
important lessons learnt we identified include: gathering feedback from
users in a structured manner, comparing several methods and features
to identify the most effective combinations, validating proposed so-
lutions on mixed datasets (research, open-source, and industry), and
performing return on investment (ROI) calculations.

We hope that our study is a step towards bridging the gap and
increasing the availability of real-world examples in published re-
search. Secondly, it serves as a baseline and preparation for the next
phase of employing machine learning software defect prediction in
Nokia to increase the quality and lower the cost of 5G technology
development [4].

CRediT authorship contribution statement

Szymon Stradowski: Data curation, Methodology, Investigation,
Writing – original draft, Writing – review & editing, Visualization.
Lech Madeyski: Conceptualization, Funding acquisition, Methodology,
Investigation, Writing – review & editing, Supervision.

Declaration of competing interest

One or more of the authors of this paper have disclosed potential or
pertinent conflicts of interest, which may include receipt of payment,
either direct or indirect, institutional support, or association with an
entity in the biomedical field which may be perceived to have potential
conflict of interest with this work. For full disclosure statements refer to
https://doi.org/10.1016/j.infsof.2023.107192. Lech Madeyski reports
financial support was provided by Polish Ministry of Science and
Higher Education. Szymon Stradowski reports a relationship with Nokia
Solutions and Networks Oy that includes: Employment and equity or
stocks.

Data availability

Research data are available in Supplementary Material: https://doi.
org/10.5281/zenodo.7476403.

Acknowledgements

This research was financed by the Polish Ministry of Education and
Science ‘Implementation Doctorate’ program (ID: DWD/5/0178/2021).

Appendix A. Raw results

Original forms are available in Supplementary Material: https://doi.
org/10.5281/zenodo.7476403

Appendix B. SEGRESS checklist

See Table B.7.

https://doi.org/10.1016/j.infsof.2023.107192
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403
https://doi.org/10.5281/zenodo.7476403

Information and Software Technology 159 (2023) 107192S. Stradowski and L. Madeyski
Table B.7
SEGRESS item checklist.
SEGRESS item checklist

Topic Item# Details Location

Title 1 Identification of report topic and type as a systematic review. Title, title page
Abstract 2 Provision of a structured summary of the entire report. Abstract, page 1
Opening Introduction of the larger problem, broad context for the

work, and importance of the work.
Section 1, page 2

Rationale 3 Rationale for the review in the context of existing knowledge
and how it contributes to the larger problem.

Section 1.1, page 2

Objectives 4 Stating the research questions addressed by the review and
how they contribute to the larger problem.

Section 1.2, page 3

Eligibility criteria 5 Specify the inclusion and exclusion criteria based on the
topic of interest.

Section 2.2, page 8

Information sources 6 Definition of all sources searched to identify studies. Section 2.1, page 6
Search strategy 7 Provision of the full search strategies for all databases and

snowballing.
Section 2.1, page 6

Selection process 8 Description of methods used to decide whether a study met
the inclusion criteria.

Section 2.2, page 8

Data collection process 9 Specification of the methods used to collect data from
reports.

Section 2.1, page 6

Data items 10 Listing and definition of all outcomes for which data were
sought.

Section 2.4, page 10

Study risk of bias
assessment

11 Specification of the methods used to assess risk of bias in the
included studies.

Section 2.5, page 11

Effect measures 12 Specification of each outcome of the effect measures. Not used
Analysis and synthesis
methods

13 Description of the processes used to decide which studies
were eligible for each synthesis.

Section 3, page 12

Reporting bias assessment 14 Presentation of the methods used to assess risk of bias due
to missing results in a synthesis.

Section 3.2, page 24

Certainty assessment 15 Presentation of the methods used to assess certainty in the
body of evidence.

Section 3.2, page 24

Study selection 16 Description of the results of the search and selection process
including near-misses.

Section 2.2, page 8

Study characteristics 17 Citation of each included study and presentation of its
characteristics.

Appendix A, page 42

Risk of bias in studies 18 Presentation of the assessments of risk of bias for each
included study.

Section 3.2, page 24

Results of individual
studies

19 Provision of summary statistics and for each study. Section 3, page 12

Results of analyses and
syntheses

20 Presentation of the results of all statistical analyses and
syntheses conducted.

Section 3, page 12

Reporting biases 21 Presentation of the assessments of risk of bias due to missing
results.

Section 4.3, page 35

Certainty of evidence 22 Presentation of the assessments of certainty in the body of
evidence for each outcome.

Section 4.3, page 35

Discussion 23 Interpretation of the results in the context of other evidence. Section 4, page 25
Registration and protocol 24 Registration information for the review. Not registered
Support 25 Description of sources of financial or non-financial support

for the review.
Section 5, page 36

Competing interests 26 Declaration of any competing interests of review authors. Section 5, page 37
Availability of data,
code, and other materials

27 Reporting which other deliverables can be publicly found
and where.

Appendix A, page 49
References

[1] S. Dhall, A. Chug, Software defect prediction using supervised learning algo-
rithm and unsupervised learning algorithm, IET Conference Publications (2013)
173–179, http://dx.doi.org/10.1049/cp.2013.2313.

[2] D.H. Wolpert, The lack of a priori distinctions between learning algorithms,
Neural Comput. 8 (7) (1996) 1341–1390, http://dx.doi.org/10.1162/neco.1996.
8.7.1341.

[3] D.H. Wolpert, W. Macready, No free lunch theorems for optimization, IEEE Trans.
Evol. Comput. 1 (1) (1997) 67–82, http://dx.doi.org/10.1109/4235.585893.

[4] S. Stradowski, L. Madeyski, Exploring the challenges in software testing of the
5G system at Nokia: A survey, Inf. Softw. Technol. (2022) 107067, http://
dx.doi.org/10.1016/j.infsof.2022.107067, URL: https://www.sciencedirect.com/
science/article/pii/S0950584922001768.

[5] S. Stradowski, L. Madeyski, Machine learning in software defect prediction:
A business-driven systematic mapping study, Inf. Softw. Technol. (2023)
107128, http://dx.doi.org/10.1016/j.infsof.2022.107128, URL: https://www.
sciencedirect.com/science/article/pii/S0950584922002373.
15
[6] V.R. Basili, G. Caldiera, H.D. Rombach, The Goal Question Metric Approach,
1994.

[7] C. Catal, B. Diri, A systematic review of software fault prediction studies, Expert
Syst. Appl. 36 (4) (2009) 7346–7354, http://dx.doi.org/10.1016/j.eswa.2008.10.
027.

[8] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell, A systematic literature
review on fault prediction performance in software engineering, IEEE Trans.
Softw. Eng. 38 (6) (2012) 1276–1304, http://dx.doi.org/10.1109/TSE.2011.103.

[9] M. Shepperd, D. Bowes, T. Hall, Researcher bias: The use of machine learning
in software defect prediction, IEEE Trans. Softw. Eng. 40 (6) (2014) 603–616.

[10] R. Malhotra, A systematic review of machine learning techniques for software
fault prediction, Appl. Soft Comput. 27 (2015) 504–518, http://dx.doi.org/10.
1016/j.asoc.2014.11.023.

[11] R. Wahono, A systematic literature review of software defect prediction: Research
trends, datasets, methods and frameworks, Journal of Software Engineering 1 (1)
(2015) 1–16.

[12] K.S. Meiliana, H.L.H.S. Warnars, F.L. Gaol, E. Abdurachman, B. Soewito, Software
metrics for fault prediction using machine learning approaches: A literature

http://dx.doi.org/10.1049/cp.2013.2313
http://dx.doi.org/10.1162/neco.1996.8.7.1341
http://dx.doi.org/10.1162/neco.1996.8.7.1341
http://dx.doi.org/10.1162/neco.1996.8.7.1341
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1016/j.infsof.2022.107067
http://dx.doi.org/10.1016/j.infsof.2022.107067
http://dx.doi.org/10.1016/j.infsof.2022.107067
https://www.sciencedirect.com/science/article/pii/S0950584922001768
https://www.sciencedirect.com/science/article/pii/S0950584922001768
https://www.sciencedirect.com/science/article/pii/S0950584922001768
http://dx.doi.org/10.1016/j.infsof.2022.107128
https://www.sciencedirect.com/science/article/pii/S0950584922002373
https://www.sciencedirect.com/science/article/pii/S0950584922002373
https://www.sciencedirect.com/science/article/pii/S0950584922002373
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb6
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb6
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb6
http://dx.doi.org/10.1016/j.eswa.2008.10.027
http://dx.doi.org/10.1016/j.eswa.2008.10.027
http://dx.doi.org/10.1016/j.eswa.2008.10.027
http://dx.doi.org/10.1109/TSE.2011.103
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb9
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb9
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb9
http://dx.doi.org/10.1016/j.asoc.2014.11.023
http://dx.doi.org/10.1016/j.asoc.2014.11.023
http://dx.doi.org/10.1016/j.asoc.2014.11.023
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb11
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb11
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb11
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb11
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb11

Information and Software Technology 159 (2023) 107192S. Stradowski and L. Madeyski

[

[

[

[

review with PROMISE repository dataset, in: 2017 IEEE International Conference
on Cybernetics and Computational Intelligence, CyberneticsCom, 2017, pp.
19–23, http://dx.doi.org/10.1109/CYBERNETICSCOM.2017.8311708.

[13] V.H.S. Durelli, R.S. Durelli, S.S. Borges, A.T. Endo, M.M. Eler, D.R.C. Dias, M.P.
Guimarães, Machine learning applied to software testing: A systematic mapping
study, IEEE Trans. Reliab. 68 (3) (2019) 1189–1212, http://dx.doi.org/10.1109/
TR.2019.2892517.

[14] L. Son, N. Pritam, M. Khari, R. Kumar, P. Phuong, T. Pham, Empirical study
of software defect prediction: A systematic mapping, Symmetry 11 (2019) 212,
http://dx.doi.org/10.3390/sym11020212.

[15] J. Pachouly, S. Ahirrao, K. Kotecha, G. Selvachandran, A. Abraham, A systematic
literature review on software defect prediction using artificial intelligence:
Datasets, data validation methods, approaches, and tools, Eng. Appl. Artif. Intell.
111 (2022) 104773, http://dx.doi.org/10.1016/j.engappai.2022.104773.

[16] M. Lanza, A. Mocci, L. Ponzanelli, The tragedy of defect prediction, prince of
empirical software engineering research, IEEE Softw. 33 (6) (2016) 102–105,
http://dx.doi.org/10.1109/MS.2016.156.

[17] V. Garousi, M. Felderer, Worlds apart - industrial and Academic Focus Areas in
software testing, IEEE Softw. 34 (5) (2017) 38–45.

[18] D. Bowes, T. Hall, J. Petrić, Software defect prediction: Do different classifiers
find the same defects? Softw. Qual. J. 26 (2) (2018) 525–552, http://dx.doi.org/
10.1007/s11219-016-9353-3.

[19] Z. Li, X.-Y. Jing, X. Zhu, Progress on approaches to software defect prediction,
IET Softw. 12 (3) (2018) 161–175, http://dx.doi.org/10.1049/iet-sen.2017.0148.

[20] I. Sarker, Machine learning: Algorithms, real-world applications and research
directions, SN Comput. Sci. 2 (160) (2021) http://dx.doi.org/10.1007/s42979-
021-00592-x.

[21] B. Kitchenham, D. Budgen, P. Brereton, Evidence-Based Software Engineering
and Systematic Reviews, CRC Press, 2016.

[22] B.A. Kitchenham, L. Madeyski, D. Budgen, SEGRESS: Software engineering
guidelines for reporting secondary studies, IEEE Trans. Softw. Eng. (2023) http:
//dx.doi.org/10.1109/TSE.2022.3174092.

[23] O. Dieste, A. Griman, N. Juristo, Developing search strategies for detecting
relevant experiments, in: First International Symposium on Empirical Software
Engineering and Measurement, Vol. 4, ESEM 2007, 2009, pp. 513–539, http:
//dx.doi.org/10.1007/s10664-008-9091-7,

[24] H. Grodzicka, A. Ziobrowski, Z. Łakomiak, M. Kawa, L. Madeyski, Code smell pre-
diction employing machine learning meets emerging Java language constructs,
in: Data-Centric Business and Applications: Towards Software Development, Vol.
4, Springer International Publishing, Cham, 2020, pp. 137–167, http://dx.doi.
org/10.1007/978-3-030-34706-2_8.

[25] C. Wohlin, Guidelines for snowballing in systematic literature studies and a
replication in software engineering, in: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering, EASE ’14,
ACM, New York, NY, USA, 2014, pp. 1–10, http://dx.doi.org/10.1145/2601248.
2601268.

[26] H. Zhang, M.A. Babar, P. Tell, Identifying relevant studies in software engineer-
ing, Inf. Softw. Technol. 53 (6) (2011) 625–637, http://dx.doi.org/10.1016/j.
infsof.2010.12.010.

[27] T. Lewowski, L. Madeyski, Code smells detection using artificial intelli-
gence techniques: A business-driven systematic review, in: N. Kryvinska, A.
Poniszewska-Marańda (Eds.), Developments in Information & Knowledge Man-
agement for Business Applications : Vol. 3, Springer International Publishing,
Cham, 2022, pp. 285–319, http://dx.doi.org/10.1007/978-3-030-77916-0_12.

[28] H. Munir, M. Moayyed, K. Petersen, Considering rigor and relevance when
evaluating test driven development: A systematic review, Inf. Softw. Technol.
56 (2014) http://dx.doi.org/10.1016/j.infsof.2014.01.002.

[29] T. Dybå, T. Dingsøyr, Strength of evidence in systematic reviews in software
engineering, in: ESEM’08: Proceedings of the 2008 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, 2008, pp.
178–187, http://dx.doi.org/10.1145/1414004.1414034.

[30] M. Kawalerowicz, L. Madeyski, Jaskier: A supporting software tool for continuous
build outcome prediction practice, Advances and Trends in Artificial Intelligence.
From Theory to Practice, 2021, pp. 426–438, http://dx.doi.org/10.1007/978-3-
030-79463-7_36.

[31] L. Madeyski, M. Majchrzak, Software measurement and defect prediction with
depress extensible framework, Found. Comput. Decis. Sci. 39 (4) (2014) 249–270,
http://dx.doi.org/10.2478/fcds-2014-0014.

[32] M. Jureczko, L. Madeyski, Towards identifying software project clusters with
regard to defect prediction, in: Proceedings of the 6th International Conference
on Predictive Models in Software Engineering, PROMISE ’10, ACM, New York,
NY, USA, 2010, pp. 9:1–9:10, http://dx.doi.org/10.1145/1868328.1868342.

[33] M. Li, H. Zhang, R. Wu, Z.-H. Zhou, Sample-based software defect prediction with
active and semi-supervised learning, Autom. Softw. Eng. 19 (2012) 201–230.

[34] C. Catal, U. Sevim, B. Diri, Metrics-driven software quality prediction without
prior fault data, in: Electronic Engineering and Computing Technology, 60, 2010,
pp. 189–199, http://dx.doi.org/10.1007/978-90-481-8776-8_17,

[35] S. Hosseini, B. Turhan, D. Gunarathna, A systematic literature review and meta-
analysis on cross project defect prediction, IEEE Trans. Softw. Eng. 45 (2) (2019)
111–147, http://dx.doi.org/10.1109/TSE.2017.2770124.
16
[36] F. Peters, T. Menzies, A. Marcus, Better cross company defect prediction, in:
2013 10th Working Conference on Mining Software Repositories, MSR, 2013,
pp. 409–418, http://dx.doi.org/10.1109/MSR.2013.6624057.

[37] J. Nam, S. Kim, Heterogeneous defect prediction, in: Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, in: ESEC/FSE
2015, ACM, New York, NY, USA, 2015, pp. 508–519, http://dx.doi.org/10.1145/
2786805.2786814.

[38] O. Alan, C. Catal, Thresholds based outlier detection approach for mining class
outliers: An empirical case study on software measurement datasets, Expert Syst.
Appl. 38 (4) (2011) 3440–3445, http://dx.doi.org/10.1016/j.eswa.2010.08.130,
URL: https://www.sciencedirect.com/science/article/pii/S0957417410009383.

[39] S. Kim, H. Zhang, R. Wu, L. Gong, Dealing with noise in defect prediction, in:
2011 33rd International Conference on Software Engineering, ICSE, 2011, pp.
481–490, http://dx.doi.org/10.1145/1985793.1985859.

[40] X. Yang, D. Lo, X. Xia, J. Sun, TLEL: A two-layer ensemble learning approach
for just-in-time defect prediction, Inf. Softw. Technol. 87 (2017) 206–220,
http://dx.doi.org/10.1016/j.infsof.2017.03.007, URL: https://www.sciencedirect.
com/science/article/pii/S0950584917302501.

[41] A. Perera, A. Aleti, M. Böhme, B. Turhan, Defect prediction guided search-
based software testing, in: Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, ACM, 2020, pp. 448–460, http:
//dx.doi.org/10.1145/3324884.3416612.

[42] B. Dhanalaxmi, G. Naidu, K. Anuradha, A rule-based prediction method for defect
detection in software system, J. Theor. Appl. Inf. Technol. 95 (2017) 3403–3412.

[43] C. Tantithamthavorn, A.E. Hassan, An experience report on defect modelling
in practice: Pitfalls and challenges, in: Proceedings of the 40th International
Conference on Software Engineering: Software Engineering in Practice, in: ICSE-
SEIP ’18, ACM, New York, NY, USA, 2018, pp. 286–295, http://dx.doi.org/10.
1145/3183519.3183547.

[44] M. Rizwan, A. Nadeem, M.A. Sindhu, Analyses of classifier’s performance
measures used in software fault prediction studies, IEEE Access 7 (2019)
82764–82775, http://dx.doi.org/10.1109/ACCESS.2019.2923821.

[45] S.K. Meiliana, H.L.H.S. Warnars, F.L. Gaol, E. Abdurachman, B. Soewito, Software
metrics for fault prediction using machine learning approaches: A literature
review with PROMISE repository dataset, in: 2017 IEEE International Conference
on Cybernetics and Computational Intelligence, 2017, pp. 19–23, http://dx.doi.
org/10.1109/CYBERNETICSCOM.2017.8311708.

[46] J.J. Phillips, Chapter 2 - ROI model, in: Return on Investment in Training and
Performance Improvement Programs (Second Edition), second ed., in: Improving
Human Performance, Butterworth-Heinemann, Boston, 2003, pp. 32–57, URL:
https://www.sciencedirect.com/science/article/pii/B9780750676014500055.

[47] T. Pyzdek, The Six Sigma Handbook: a Complete Guide for Green Belts, Black
Belts, and Managers at All Levels, McGraw-Hill Companies, 2003, pp. 269–273,
http://dx.doi.org/10.1036/0071415963.

[48] B. Kitchenham, L. Madeyski, D. Budgen, How should software engineering
secondary studies include grey material? IEEE Trans. Softw. Eng. 49 (2) (2023)
872–882, http://dx.doi.org/10.1109/TSE.2022.3165938.

[49] L. Madeyski, B. Kitchenham, Would wider adoption of reproducible research be
beneficial for empirical software engineering research? J. Intell. Fuzzy Systems
32 (2) (2017) 1509–1521, http://dx.doi.org/10.3233/JIFS-169146.

[50] R. Rana, M. Staron, J. Hansson, M. Nilsson, W. Meding, A framework for
adoption of machine learning in industry for software defect prediction, in:
Proceedings of the 9th International Conference on Software Engineering and Ap-
plications - ICSOFT-EA, ICSOFT 2014, SciTePress, INSTICC, 2014, pp. 383–392,
http://dx.doi.org/10.5220/0005099303830392.

[51] X. Zhou, Y. Jin, H. Zhang, S. Li, X. Huang, A map of threats to validity of
systematic literature reviews in software engineering, in: 2016 23rd Asia-Pacific
Software Engineering Conference, APSEC, 2016, pp. 153–160, http://dx.doi.org/
10.1109/APSEC.2016.031.

[52] D. Lo, N. Nagappan, T. Zimmermann, How practitioners perceive the relevance
of software engineering research, in: Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, in: ESEC/FSE 2015, ACM, New York,
NY, USA, 2015, pp. 415–425, http://dx.doi.org/10.1145/2786805.2786809.

Systematic Literature Review - References

SLR1] S. Pradhan, V. Nanniyur, P. Vissapragada, On the defect prediction for large
scale software systems – From defect density to machine learning, in: 2020 IEEE
20th International Conference on Software Quality, Reliability and Security
(QRS), 2020, pp. 374–381, http://dx.doi.org/10.1109/QRS51102.2020.00056.

SLR2] J Briem, J Briem, H Sellik, P Rapoport, G Gousios, M Aniche, OffSide: Learning
to identify mistakes in boundary conditions, in: IEEE/ACM 42nd Interna-
tional Conference on Software Engineering Workshops (ICSEW’20), 2020, pp.
203–208, http://dx.doi.org/10.1145/3387940.3391464.

SLR3] X. Cheng, H. Wang, J. Hua, G. Xu, Y. Sui, DeepWukong: Statically detecting
software vulnerabilities using deep graph neural network, ACM Trans. Softw.
Eng. Methodol. 30 (3) (2021) http://dx.doi.org/10.1145/3436877.

SLR4] L. Gomes, R. Torres, M. Côrtes, On the prediction of long-lived bugs: An analysis
and comparative study using FLOSS projects, Inf. Softw. Technol. 132 (2020)
106508, http://dx.doi.org/10.1016/j.infsof.2020.106508.

http://dx.doi.org/10.1109/CYBERNETICSCOM.2017.8311708
http://dx.doi.org/10.1109/TR.2019.2892517
http://dx.doi.org/10.1109/TR.2019.2892517
http://dx.doi.org/10.1109/TR.2019.2892517
http://dx.doi.org/10.3390/sym11020212
http://dx.doi.org/10.1016/j.engappai.2022.104773
http://dx.doi.org/10.1109/MS.2016.156
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb17
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb17
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb17
http://dx.doi.org/10.1007/s11219-016-9353-3
http://dx.doi.org/10.1007/s11219-016-9353-3
http://dx.doi.org/10.1007/s11219-016-9353-3
http://dx.doi.org/10.1049/iet-sen.2017.0148
http://dx.doi.org/10.1007/s42979-021-00592-x
http://dx.doi.org/10.1007/s42979-021-00592-x
http://dx.doi.org/10.1007/s42979-021-00592-x
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb21
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb21
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb21
http://dx.doi.org/10.1109/TSE.2022.3174092
http://dx.doi.org/10.1109/TSE.2022.3174092
http://dx.doi.org/10.1109/TSE.2022.3174092
http://dx.doi.org/10.1007/s10664-008-9091-7
http://dx.doi.org/10.1007/s10664-008-9091-7
http://dx.doi.org/10.1007/s10664-008-9091-7
http://dx.doi.org/10.1007/978-3-030-34706-2_8
http://dx.doi.org/10.1007/978-3-030-34706-2_8
http://dx.doi.org/10.1007/978-3-030-34706-2_8
http://dx.doi.org/10.1145/2601248.2601268
http://dx.doi.org/10.1145/2601248.2601268
http://dx.doi.org/10.1145/2601248.2601268
http://dx.doi.org/10.1016/j.infsof.2010.12.010
http://dx.doi.org/10.1016/j.infsof.2010.12.010
http://dx.doi.org/10.1016/j.infsof.2010.12.010
http://dx.doi.org/10.1007/978-3-030-77916-0_12
http://dx.doi.org/10.1016/j.infsof.2014.01.002
http://dx.doi.org/10.1145/1414004.1414034
http://dx.doi.org/10.1007/978-3-030-79463-7_36
http://dx.doi.org/10.1007/978-3-030-79463-7_36
http://dx.doi.org/10.1007/978-3-030-79463-7_36
http://dx.doi.org/10.2478/fcds-2014-0014
http://dx.doi.org/10.1145/1868328.1868342
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb33
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb33
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb33
http://dx.doi.org/10.1007/978-90-481-8776-8_17
http://dx.doi.org/10.1109/TSE.2017.2770124
http://dx.doi.org/10.1109/MSR.2013.6624057
http://dx.doi.org/10.1145/2786805.2786814
http://dx.doi.org/10.1145/2786805.2786814
http://dx.doi.org/10.1145/2786805.2786814
http://dx.doi.org/10.1016/j.eswa.2010.08.130
https://www.sciencedirect.com/science/article/pii/S0957417410009383
http://dx.doi.org/10.1145/1985793.1985859
http://dx.doi.org/10.1016/j.infsof.2017.03.007
https://www.sciencedirect.com/science/article/pii/S0950584917302501
https://www.sciencedirect.com/science/article/pii/S0950584917302501
https://www.sciencedirect.com/science/article/pii/S0950584917302501
http://dx.doi.org/10.1145/3324884.3416612
http://dx.doi.org/10.1145/3324884.3416612
http://dx.doi.org/10.1145/3324884.3416612
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb42
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb42
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb42
http://dx.doi.org/10.1145/3183519.3183547
http://dx.doi.org/10.1145/3183519.3183547
http://dx.doi.org/10.1145/3183519.3183547
http://dx.doi.org/10.1109/ACCESS.2019.2923821
http://dx.doi.org/10.1109/CYBERNETICSCOM.2017.8311708
http://dx.doi.org/10.1109/CYBERNETICSCOM.2017.8311708
http://dx.doi.org/10.1109/CYBERNETICSCOM.2017.8311708
https://www.sciencedirect.com/science/article/pii/B9780750676014500055
http://dx.doi.org/10.1036/0071415963
http://dx.doi.org/10.1109/TSE.2022.3165938
http://dx.doi.org/10.3233/JIFS-169146
http://dx.doi.org/10.5220/0005099303830392
http://dx.doi.org/10.1109/APSEC.2016.031
http://dx.doi.org/10.1109/APSEC.2016.031
http://dx.doi.org/10.1109/APSEC.2016.031
http://dx.doi.org/10.1145/2786805.2786809
http://dx.doi.org/10.1109/QRS51102.2020.00056
http://dx.doi.org/10.1145/3387940.3391464
http://dx.doi.org/10.1145/3436877
http://dx.doi.org/10.1016/j.infsof.2020.106508

Information and Software Technology 159 (2023) 107192S. Stradowski and L. Madeyski

[

[

[

[

[

[S

[S

[S

[S

[S

[S

[S

[S

[S

[S

[S

[S

[S

[S

[S

[S

[S

[S

[S

[S

[S

[S

[S

N

[

[

[

[

[

[

[

[

[

[N

[N

[N

[N
SLR5] S. Tabassum, L. Minku, D. Feng, G. Cabral, L. Song, An investigation of
cross-project learning in online just-in-time software defect prediction, in: ICSE
2020 Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, 2020, pp. 554–565, http://dx.doi.org/10.1145/3377811.3380403.

SLR6] M. Kawalerowicz, L. Madeyski, Continuous build outcome prediction: A small-
n experiment in settings of a real software project, in: 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories, 2021, pp. 412–425,
http://dx.doi.org/10.1007/978-3-030-79463-7_35.

SLR7] D. Bowes, T. Hall, J. Petrić, Software defect prediction: Do different classifiers
find the same defects? Softw. Qual. J. 26 (2) (2018) 525–552, http://dx.doi.
org/10.1007/s11219-016-9353-3.

SLR8] J. Hryszko, L. Madeyski, Cost effectiveness of software defect prediction in
an industrial project, Found. Comput. Decis. Sci. 43 (1) (2018) 7–35, http:
//dx.doi.org/10.1515/fcds-2018-0002.

SLR9] F. Qin, Z. Zheng, Y. Qiao, K. Trivedi, Studying aging-related bug prediction
using cross-project models, IEEE Trans. Reliab. PP (2018) 1–20, http://dx.doi.
org/10.1109/TR.2018.2864960.

LR10] T. Shippey, D. Bowes, T. Hall, Automatically identifying code features for
software defect prediction: Using AST N-grams, Inf. Softw. Technol. 106 (2019)
142–160.

LR11] H.K. Dam, T. Pham, S.W. Ng, T. Tran, J. Grundy, A. Ghose, T. Kim, C.-J.
Kim, Lessons learned from using a deep tree-based model for software defect
prediction in practice, in: 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories, MSR, 2019, pp. 46–57.

LR12] H. Altinger, S. Herbold, F. Schneemann, J. Grabowski, F. Wotawa, Performance
tuning for automotive software fault prediction, in: 2017 IEEE 24th Interna-
tional Conference on Software Analysis, Evolution and Reengineering, SANER,
2017, pp. 526–530, http://dx.doi.org/10.1109/SANER.2017.7884667.

LR13] M. Jimenez, R. Rwemalika, M. Papadakis, F. Sarro, Y. Le Traon, M. Harman,
The importance of accounting for real-world labelling when predicting software
vulnerabilities, in: ESEC/FSE 2019, ACM, New York, NY, USA, 2019, pp.
695–705, http://dx.doi.org/10.1145/3338906.3338941.

LR14] X. Du, B. Chen, Y. Li, J. Guo, Y. Zhou, Y. Liu, Y. Jiang, Leopard: Identifying
vulnerable code for vulnerability assessment through program metrics, in:
Proceedings of the 41st International Conference on Software Engineering, ICSE
’19, IEEE Press, 2019, pp. 60–71.

LR15] M. Pradel, K. Sen, DeepBugs: A learning approach to name-based bug detection,
Proc. ACM Program. Lang. 2 (OOPSLA) (2018).

LR16] J. Chen, S. Zhang, X. He, Q. Lin, H. Zhang, D. Hao, Y. Kang, F. Gao, Z.
Xu, Y. Dang, D. Zhang, How incidental are the incidents? Characterizing
and prioritizing incidents for large-scale online service systems, in: Proceed-
ings of the 35th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’20, ACM, New York, NY, USA, 2020, pp. 373–384, http:
//dx.doi.org/10.1145/3324884.3416624.

LR17] R. Chopra, S. Roy, R. Malhotra, Transductive instance transfer learning for
cross-language defect prediction, in: 2022 4th Asia Pacific Information Tech-
nology Conference, New York, NY, USA, 2022, pp. 176–182, http://dx.doi.org/
10.1145/3512353.3512379.

LR18] N. Zhao, J. Chen, Z. Wang, X. Peng, G. Wang, Y. Wu, F. Zhou, Z. Feng, X.
Nie, W. Zhang, K. Sui, D. Pei, Real-time incident prediction for online service
systems, in: Proceedings of the 28th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering, ACM, New York, NY, USA, 2020, pp. 315–326.

LR19] W. Zheng, H. Lu, Y. Zhou, J. Liang, H. Zheng, Y. Deng, IFeedback: Exploiting
user feedback for real-time issue detection in large-scale online service systems,
in: Proceedings of the 34th IEEE/ACM International Conference on Automated
Software Engineering, ASE ’19, IEEE Press, 2019, pp. 352–363, http://dx.doi.
org/10.1109/ASE.2019.00041.

LR20] H. Li, X. Yang, Y. Li, L.-Y. Hao, T.-L. Zhang, Evolutionary extreme learning
machine with sparse cost matrix for imbalanced learning, ISA Trans. 100 (2020)
198–209, http://dx.doi.org/10.1016/j.isatra.2019.11.020.

LR21] R. Malhotra, A. Sharma, Analyzing machine learning techniques for fault
prediction using web applications, J. Inform. Process. Syst. 14 (2018) 751–770,
http://dx.doi.org/10.3745/JIPS.04.0077.

LR22] C.S. Melo, M. Cruz, A.D.F. Martins, T. Matos, J.M. da Silva Monteiro Filho,
J.C. Machado, A practical guide to support change-proneness prediction, in:
International Conference on Enterprise Information Systems, 2019.

LR23] G.E. dos Santos, E. Figueiredo, Failure of one, fall of many: An exploratory
study of software features for defect prediction, in: 2020 IEEE 20th International
Working Conference on Source Code Analysis and Manipulation, SCAM, 2020,
pp. 98–109, http://dx.doi.org/10.1109/SCAM51674.2020.00016.

LR24] T. Yu, W. Wen, X. Han, J. Hayes, ConPredictor: Concurrency defect prediction
in real-world applications, in: IEEE Transactions on Software Engineering, IEEE
Trans. Softw. Eng. 45 (2018) 558–575, http://dx.doi.org/10.1109/TSE.2018.
2791521.

LR25] L. Zong, Classification based software defect prediction model for finance soft-
ware system - An industry study, in: Proceedings of the 2019 3rd International
Conference on Software and E-Business, in: ICSEB 2019, ACM, New York, NY,
USA, 2019, pp. 60–65, http://dx.doi.org/10.1145/3374549.3374553.
17
LR26] Y. Kim, S. Mun, S. Yoo, M. Kim, Precise learn-to-rank fault localization
using dynamic and static features of target programs, ACM Trans. Softw. Eng.
Methodol. 28 (2019) 1–34, http://dx.doi.org/10.1145/3345628.

LR27] D. Bowes, S. Counsell, T. Hall, J. Petrić, T. Shippey, Getting defect prediction
into industrial practice: The ELFF tool, in: 2017 IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW), 2017, pp. 44–47,
http://dx.doi.org/10.1109/ISSREW.2017.11.

LR28] H. Wang, T. Khoshgoftaar, A study on software metric selection for software
fault prediction, in: 2019 18th IEEE International Conference On Machine
Learning And Applications (ICMLA), 2019, pp. 1045–1050, http://dx.doi.org/
10.1109/ICMLA.2019.00176.

LR29] H. Sellik, O. Paridon, G. Gousios, M. Aniche, Learning off-by-one mistakes: An
empirical study, in: 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR), 2021, pp. 58–67.

LR30] A. Viet Phan, M. Le Nguyen, L. Thu Bui, Convolutional neural networks
over control flow graphs for software defect prediction, in: 2017 IEEE 29th
International Conference on Tools with Artificial Intelligence, ICTAI, 2017, pp.
45–52, http://dx.doi.org/10.1109/ICTAI.2017.00019.

LR31] A. Phan, L. Nguyen, Convolutional neural networks on assembly code for
predicting software defects, in: 2017 21st Asia Pacific Symposium on Intelligent
and Evolutionary Systems (IES), 2017, pp. 37–42, http://dx.doi.org/10.1109/
IESYS.2017.8233558.

LR32] J. Kang, D. Ryu, J. Baik, Predicting just-in-time software defects to reduce
post-release quality costs in the maritime industry, Softw. - Pract. Exp. 51 (4)
(2021) 748–771, http://dx.doi.org/10.1002/spe.2927.

ear-Miss - References

NM1] L. Jonsson, M. Borg, D. Broman, K. Sandahl, S. Eldh, P. Runeson, Automated bug
assignment: Ensemble-based machine learning in large scale industrial contexts,
Empirical Softw. Engg. 21 (4) (2016) 1533–1578, http://dx.doi.org/10.1007/
s10664-015-9401-9.

NM2] A. Arrieta, J. Ayerdi, M. Illarramendi, A. Agirre, G. Sagardui, M. Arratibel,
Using machine learning to build test oracles: An industrial case study on
elevators dispatching algorithms, in: 2021 IEEE/ACM International Conference
on Automation of Software Test, AST, 2021, pp. 30–39, http://dx.doi.org/10.
1109/AST52587.2021.00012.

NM3] A. Bhattacharyya, C. Amza, PReT: A tool for automatic phase-based regression
testing, in: 2018 IEEE International Conference on Cloud Computing Technology
and Science, CloudCom, IEEE Computer Society, Los Alamitos, CA, USA, 2018,
pp. 284–289, http://dx.doi.org/10.1109/CloudCom2018.2018.00062.

NM4] H. Khosrowjerdi, K. Meinke, A. Rasmusson, Virtualized-fault injection testing:
A machine learning approach, in: 2018 IEEE 11th International Conference
on Software Testing, Verification and Validation, ICST, 2018, pp. 297–308,
http://dx.doi.org/10.1109/ICST.2018.00037.

NM5] G. Gadelha, F. Ramalho, T. Massoni, Traceability recovery between bug reports
and test cases-a Mozilla Firefox case study, Autom. Softw. Eng. 28 (2021)
http://dx.doi.org/10.1007/s10515-021-00287-w.

NM6] H.-Y. Li, M. Li, Z.-H. Zhou, Towards one reusable model for various software
defect mining tasks, in: Advances in Knowledge Discovery and Data Mining:
23rd Pacific-Asia Conference, PAKDD 2019, Macau, China, 2019, Proceedings,
Part III, Springer-Verlag, Berlin, Heidelberg, 2019, pp. 212–224, http://dx.doi.
org/10.1007/978-3-030-16142-2_17.

NM7] D. She, R. Krishna, L. Yan, S. Jana, B. Ray, MTFuzz: Fuzzing with a multi-
task neural network, in: Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, ACM, 2020, http://dx.doi.org/10.1145/3368089.
3409723.

NM8] D. Marijan, A. Gotlieb, A. Sapkota, Neural network classification for improving
continuous regression testing, in: 2020 IEEE International Conference On
Artificial Intelligence Testing (AITest), 2020, pp. 123–124, http://dx.doi.org/
10.1109/AITEST49225.2020.00025.

NM9] M. Gokceoglu, H. Sozer, Automated defect prioritization based on defects
resolved at various project periods, J. Syst. Softw. 179 (2021) 110993, http:
//dx.doi.org/10.1016/j.jss.2021.110993.

M10] D. Elsner, F. Hauer, A. Pretschner, S. Reimer, Empirically evaluating readily
available information for regression test optimization in continuous integration,
in: Proceedings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ACM, New York, NY, USA, 2021, pp. 491–504.

M11] B. Agrawal, M. Mishra, Demo: Automatically retrainable self improving model
for the automated classification of software incidents into multiple classes, in:
IEEE 41st International Conference on Distributed Computing Systems, ICDCS,
2021, pp. 1110–1113, http://dx.doi.org/10.1109/ICDCS51616.2021.00113.

M12] A. Sharif, D. Marijan, M. Liaaen, DeepOrder: Deep learning for test case
prioritization in continuous integration testing, 2021, arXiv abs/2110.07443.

M13] W. Zhang, Efficient bug triage for industrial environments, in: 2020 IEEE
International Conference on Software Maintenance and Evolution, ICSME, 2020,
pp. 727–735, http://dx.doi.org/10.1109/ICSME46990.2020.00082.

http://dx.doi.org/10.1145/3377811.3380403
http://dx.doi.org/10.1007/978-3-030-79463-7_35
http://dx.doi.org/10.1007/s11219-016-9353-3
http://dx.doi.org/10.1007/s11219-016-9353-3
http://dx.doi.org/10.1007/s11219-016-9353-3
http://dx.doi.org/10.1515/fcds-2018-0002
http://dx.doi.org/10.1515/fcds-2018-0002
http://dx.doi.org/10.1515/fcds-2018-0002
http://dx.doi.org/10.1109/TR.2018.2864960
http://dx.doi.org/10.1109/TR.2018.2864960
http://dx.doi.org/10.1109/TR.2018.2864960
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb62
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb62
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb62
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb62
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb62
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb63
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb63
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb63
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb63
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb63
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb63
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb63
http://dx.doi.org/10.1109/SANER.2017.7884667
http://dx.doi.org/10.1145/3338906.3338941
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb66
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb66
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb66
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb66
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb66
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb66
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb66
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb67
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb67
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb67
http://dx.doi.org/10.1145/3324884.3416624
http://dx.doi.org/10.1145/3324884.3416624
http://dx.doi.org/10.1145/3324884.3416624
http://dx.doi.org/10.1145/3512353.3512379
http://dx.doi.org/10.1145/3512353.3512379
http://dx.doi.org/10.1145/3512353.3512379
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb70
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb70
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb70
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb70
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb70
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb70
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb70
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb70
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb70
http://dx.doi.org/10.1109/ASE.2019.00041
http://dx.doi.org/10.1109/ASE.2019.00041
http://dx.doi.org/10.1109/ASE.2019.00041
http://dx.doi.org/10.1016/j.isatra.2019.11.020
http://dx.doi.org/10.3745/JIPS.04.0077
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb74
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb74
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb74
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb74
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb74
http://dx.doi.org/10.1109/SCAM51674.2020.00016
http://dx.doi.org/10.1109/TSE.2018.2791521
http://dx.doi.org/10.1109/TSE.2018.2791521
http://dx.doi.org/10.1109/TSE.2018.2791521
http://dx.doi.org/10.1145/3374549.3374553
http://dx.doi.org/10.1145/3345628
http://dx.doi.org/10.1109/ISSREW.2017.11
http://dx.doi.org/10.1109/ICMLA.2019.00176
http://dx.doi.org/10.1109/ICMLA.2019.00176
http://dx.doi.org/10.1109/ICMLA.2019.00176
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb81
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb81
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb81
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb81
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb81
http://dx.doi.org/10.1109/ICTAI.2017.00019
http://dx.doi.org/10.1109/IESYS.2017.8233558
http://dx.doi.org/10.1109/IESYS.2017.8233558
http://dx.doi.org/10.1109/IESYS.2017.8233558
http://dx.doi.org/10.1002/spe.2927
http://dx.doi.org/10.1007/s10664-015-9401-9
http://dx.doi.org/10.1007/s10664-015-9401-9
http://dx.doi.org/10.1007/s10664-015-9401-9
http://dx.doi.org/10.1109/AST52587.2021.00012
http://dx.doi.org/10.1109/AST52587.2021.00012
http://dx.doi.org/10.1109/AST52587.2021.00012
http://dx.doi.org/10.1109/CloudCom2018.2018.00062
http://dx.doi.org/10.1109/ICST.2018.00037
http://dx.doi.org/10.1007/s10515-021-00287-w
http://dx.doi.org/10.1007/978-3-030-16142-2_17
http://dx.doi.org/10.1007/978-3-030-16142-2_17
http://dx.doi.org/10.1007/978-3-030-16142-2_17
http://dx.doi.org/10.1145/3368089.3409723
http://dx.doi.org/10.1145/3368089.3409723
http://dx.doi.org/10.1145/3368089.3409723
http://dx.doi.org/10.1109/AITEST49225.2020.00025
http://dx.doi.org/10.1109/AITEST49225.2020.00025
http://dx.doi.org/10.1109/AITEST49225.2020.00025
http://dx.doi.org/10.1016/j.jss.2021.110993
http://dx.doi.org/10.1016/j.jss.2021.110993
http://dx.doi.org/10.1016/j.jss.2021.110993
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb94
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb94
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb94
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb94
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb94
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb94
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb94
http://dx.doi.org/10.1109/ICDCS51616.2021.00113
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb96
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb96
http://refhub.elsevier.com/S0950-5849(23)00046-0/sb96
http://dx.doi.org/10.1109/ICSME46990.2020.00082

	Industrial applications of software defect prediction using machine learning: A business-driven systematic literature review
	Introduction
	Contributions
	Research questions
	Related work

	Methods
	Information sources and search strategy
	Eligibility criteria and selection process
	Outcome data evaluation
	Relevance assessment
	Study risk of bias assessment
	Data extraction and synthesis

	Results
	Study characteristics and individual results
	Reporting biases and certainty of evidence

	Discussion
	Answers to research questions
	Further recommendations
	Threats to validity

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A. Raw results
	Appendix B. SEGRESS checklist
	References

