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Abstract—As software products become larger and more
complex, the test infrastructure needed for quality assurance
grows similarly, causing a constant increase in operational and
maintenance costs. Although rising in popularity, most Artificial
Intelligence (AI) and Machine Learning (ML) Software Defect
Prediction (SDP) solutions address singular test phases. In
contrast, the need to address the whole Software Development
Life Cycle (SDLC) is rarely explored. Therefore in this paper, we
define the problem of extending the SDP concept to the entire
SDLC, as this may be one of the significant next steps for the
field. Furthermore, we explore the similarity between the defined
challenge and the widely known Multidimensional Knapsack
Problem (MKP). We use Nokia’s 5G wireless technology test
process to illustrate the proposed concept. Resulting comparison
validates the applicability of MKP to optimize the overall test
cycle, which can be similarly relevant to any large-scale industrial
software development process.

Index Terms—artificial intelligence, software defect prediction,
software testing, continuous integration, software development
life cycle, Nokia 5G.

I. INTRODUCTION

Software companies worldwide struggle to deliver high-
quality products within the estimated time and budget. The
success ratio seems to decrease with the size of the project
and its complexity [1]. Furthermore, the telecommunications
industry has the second lowest chance of a favorable outcome,
only slightly higher than government initiatives. An excellent
example of a grand, complex telecommunication system is the
5G technology developed by Nokia. The company employs
approximately 90 thousand people in 130 countries [2]. Con-
sequently, it faces considerable process challenges due to the
tremendous scale and complexity resulting from the number
of interfacing components, possible hardware combinations,
used frequency spectrum, and the cooperation of several
development units distributed worldwide.

Finding new opportunities to improve the quality and min-
imize the cost of the software development life cycle (SDLC)
has been the goal of software engineering practitioners and
researchers for decades [3]. One exceptionally promising
concept is software defect prediction (SDP) using artificial
intelligence (AI) and machine learning (ML) models that in-
dicate the areas of the code where faults are most probable [4].
Unfortunately, no universal model can be applied for all data
sets to develop accurate predictions due to the “no free lunch”

theorems [5]. Furthermore, in vivo application of ML SDP
lags academic research [6]. This paper aims to describe the
challenge of scaling ML SDP for grand and complex software
projects, using the example of Nokia 5G system-level testing.
Second, we discuss the dream state of a general ML SDP
solution that would address the whole SDLC in a real-world
setting. Last, we invite researchers and practitioners to explore
the described problem further.

Our contributions are the following:
1) Definition of Test Selection and Prioritization (TSP)

Problem to be complemented by Software Defect Pre-
diction (SDP) Problem (specific to any organizations that
offer precise tracking of test cases to requirements and
software modules). The outcome is TSPSDP .

2) Formulation of the TSPSDP Problem as the Multidi-
mensional Knapsack Problem (MKP). The outcome is
MKTSPSDP .

The presented ML SDP approach is complementary to the
search-based software testing (SBST) [7]. SBST techniques
are effective at generating tests with high code coverage [8],
which may not be sufficient to create the best test strategy
considering budget limitation without utilizing defect pre-
diction [9]. Therefore, our proposal focuses on the synergy
between various high-level testing phases by optimizing the
results of several ML SDP models for the whole SDLC.

II. 5G TEST CHALLENGE

The 5G gNB (or gNodeB) is a wireless base station respon-
sible for establishing and maintaining the connection between
the user equipment (UE) and the core network [10]. The
whole 5G technology must adhere to strict 3rd Generation
Partnership Project (3GPP) requirements [10] such as band-
width, coverage, and latency, while at the same time offering
complex mobility and carrier aggregation scenarios. Testing
such functionalities at the early stages of product development
focuses on the software and hardware configuration of the
gNB or verifying the outgoing transmission characteristics
using spectrum analyzers. On the system-level, test scenarios
need to be verified end-to-end using real UEs, real core
network, and a real over-the-air (OTA) interface. Many user
stories like gNB reconfiguration, call set-up, max throughput,
or stability can be sufficiently tested with simulators and
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simple lab infrastructure. However, complex high-speed cell-
edge scenarios can only be verified by flying a UE attached to
a drone that circles a set of several gNBs or driving a van with
multiple UEs through a dense urban environment [11]. There-
fore, to effectively verify the overall system-level wireless
telecommunication performance, testing must be done not only
in simulators and conducted mode (by physically connecting
the antenna to the user equipment) but also in real over-the-air
conditions [12].

Second, there are thousands of potential software and hard-
ware configurations with countless dedicated functional and
non-functional requirements regarding robustness, operability,
performance, power consumption, resilience, and similar. Such
variation of possibilities poses a significant challenge in terms
of planning and optimization of test scopes to be run during
different test phases [13]. Furthermore, Nokia’s customer
base includes a multitude of customers with already live 5G
networks [2]. Each brings specific needs and requirements,
translated to thousands of features and software/hardware
configurations. Consequently, the 5G system consists of a
rough estimate of over 60 million lines of code in C/C++
language, with each new release introducing new and more
advanced functionalities. Due to the complexity and size of
the system, it is difficult to predict all possible interactions
deterministically, and exhaustive testing is not feasible [14].

Nokia uses the Continuous Development, Integration, and
Testing concept to build its products. Continuous Development
allows thousands of developers to commit their code to a com-
mon software line (Trunk) as frequently as possible with the
smallest possible increments. Continuous Integration merges
new commits into functionalities on hardware as quickly as
possible. Continuous Testing executes various automated test
frameworks as part of the software delivery pipeline to obtain
immediate feedback on the quality and allow most defects
to be found quickly after the development and integration
stages. Finally, Continuous Delivery prepares the final soft-
ware package, including changes after commit, integration,
and testing for production. Software builds are created in short
cycles, ensuring that the product can be reliably released to
the customer at any time.

Importantly, the CDIT adheres to the International Software
Testing Qualifications Board (ISTQB) guidelines [14]. One of
the main principles of test theory emphasizes the importance
of testing early. The shorter the time between introducing and
discovering the defect, the cheaper it is to find and correct.
Therefore, each testing step needs to be efficient in finding
the faults it has been designed to find and include all potential
escapes from previous phases [15]. Each stage is also more
expensive to execute as it executes more code, benchmarks
over more extended periods of time, increases the number
of repetitions, or replaces simulators with actual hardware
to be more equivalent to the real life environment. Fig. 1
shows examples of test environments used in Nokia — from
1) server farms running automated tests on parts of the code
and enabling continuous development, 2) real 5G gNBs tested
in conducted mode, through 3) anechoic chambers used for

testing the radio interface in OTA mode, to 4) massive walls
with mounted antennas for advanced propagation and mobility
scenarios. Planning the scope for each of the multiple phases
is difficult and expensive.

Fig. 1. Examples of Nokia test infrastructure [2].

III. PROBLEM DEFINITION

We treat SDP as it directly complements the concept of test
selection and prioritization [16]. We apply this simplification
as our case offers precise tracking of test cases to requirements
and software modules. Therefore, we generalize that each
failed test case pinpoints the defect precisely (in product or
testware). Moreover, different test cases can fail the exact
requirement when run in different environments (with different
associated costs). Therefore, an important matter is deciding
which test case to run to catch a predicted defect while
reducing the cost of the whole process. For example, if the
same defect may be caught on a simulator or full-scale 5G
setup, it is imperative to catch it early [14]. However, for
testing done in parallel, cost optimization for the same defect
can be achieved by considering the real-time capacity of each
phase’s infrastructure.

Second, supporting the test case selection process can be
achieved in many ways; manually by test architects, using
search-based software engineering (SBSE) [17], ML-based
solutions [18] including reinforcement learning [19], or future
means yet to be discovered. In our example, we chose the ML
solution as this is where the company’s current interest lies.
Each method has its pros and cons, and similarly, employing



ML-based solutions to the overall large-scale SDLC needs to
be explored to design the best-performing approaches [20].

Currently, industrial ML SDP solutions focus on comple-
menting the existing processes by employing a single oracle
to optimize the containment in a singular test phase [21].
Despite the difficulties of in vivo validation [22]–[25], there
is abundant research on the topic [18], [26]–[29], Moreover,
with concepts like explainable artificial intelligence [30], just-
in-time (continuous) defect or build outcome prediction [31]–
[33], cross-project defect prediction [34], cross-company de-
fect prediction [35] in homogeneous and heterogeneous defect
prediction [36] settings, we have more tools to expand the
problem to further dimensions. Therefore, attempts to define
the big-picture challenge are important. Nevertheless, we have
analyzed the existing primary research in the context of
industry validation of SDP and have not found a similarly
defined problem in the reviewed literature.

Most importantly, we wanted to build our problem definition
on solid theoretical foundations to facilitate initial analysis.
Therefore, we chose to compare it to an already well-known
problem. From a big-picture perspective, testing such a grand
system as the 5G gNB resembles the multidimensional knap-
sack problem (MKP) [37], [38]. The MKP is an NP-hard
extension to the standard binary knapsack selection problem
that has been a popular focus of study for decades. The
goal is to find a subset of items (in our case, defects) that
maximizes the total gain (or avoided cost). The main difference
is that instead of having a single knapsack, there are multiple,
each with distinct characteristics and constraints. Naturally,
the subset of selected items can not violate capacity (lab
infrastructure occupancy or the number of available testers)
of each respective knapsack (test phase).

Fig. 2 shows a simplified representation of multiple layers
of testing, each constituting an individual knapsack (test phase,
described in Section II). Therefore, the upward arrows on the
graph represent a group of testers responsible for maintaining,
executing, and analyzing the results of a dedicated test scope
reported in a common test repository and using a dedicated
lab infrastructure. Second, the test scope reflects a set of
requirements that must be validated at a specific time on a
particular software build. Finally, defects found by each group
are reported in a fault report repository to be corrected.

Naturally, reaching 100% phase containment in a grand and
complex product is not feasible using any of the aforemen-
tioned techniques. Considering the ever-growing regression,
the whole testing process aims to find a balance reflecting the
desired quality and current business priorities [39]. At Nokia,
this task is performed by a group of test architects analyzing
the requirements and suggesting appropriate tests to be run in
each phase. Therefore, our hypothesis is:

Can ML-based SDP successfully complement test case
assignment to particular test phases and provide sufficient

explanation on made decisions?

The MKP problem for ML SDP at the entire SDLC can be
defined as follows.

Fig. 2. Graphical representation of Nokia 5G test process.

(MKP) maximize:
z =

n∑
j=1

pjxj (1)

Subject to:
n∑

j=1

wijxj ⩽ ci, i = 1, 2, ......,m (2)

xj ∈ {0, 1}, j = 1, 2, ......, n (3)
Where1:

Variable Explanation (see also Fig. 3)
z Value of the number of items found in all knapsacks. → Value

of the number of defects found during the whole SDLC.
n Number of items. → Number of predicted defects.
p Profits of each item. → Value gained by catching the defect or

avoiding the cost of an escaped defect. In cases like Nokia, this
can be tens of thousands of dollars; in safety-critical systems,
it can be much more than what can be counted with money.

x A vector of binary variables indicating whether an item → de-
fect is selected. Based on this vector, a test suite for each
knapsack is selected.

m Resources, meaning the number of knapsacks → test phases
or lab infrastructure elements. Depending on the development
process, the value can reflect the whole cycle or a subset (for
example, phases used inside of one of the Development Units,
see Fig. 2).

c The capacity of each knapsack. → The capacity of each
test phase or infrastructure element (together with specific
containment characteristics, cost of execution, etc.).

w Resources consumed from each resource i. → Effort for
each defect finding (specifically with different logging and
troubleshooting capacity, of flakiness of results). Specifically,
each defect consumes more resources depending on in which
knapsack it is found.

i Counter for resources. → Counter for knapsacks.
j Counter for items. → Counter for defects.

Additionally, for the solution to be feasible in vivo, there
are several necessary preconditions. For example:

• Understanding the characteristics of the test phases, e.g.,
capacity, cost of execution, cost of escape.

1There are numerous possibilities to expand the concept with new variables
and adapt it to the specifics of the tested product. For example, the constraints
can change over time, reflecting the temporary capacity of each phase.
Second, it can also be expanded to other variations of the MKP, like the
multidimensional multiple-choice knapsack problem [40] to include more than
one constraint.



Fig. 3. Exemplary assignment of predicted faults to different test phases.

• Test repository, with automatic execution, reporting, and
precise tracking of requirements to software modules.

• Online code metrics, change metrics, and software fault
report repository to serve as real-time data sources.

• ML SDP framework integrated into company databases.
• Effective SDP oracles on each of the steps constituting the

whole SDLC or its selected subset (see Fig. 1), combined
into a general intelligence synergizing the entire process.

• Possibility to analyze, interpret, and act upon the results
to modify in real time the test suite on affected levels.

• Technology and organizational readiness to implement
AI-based solutions on a wide scale.

• A positive cost-benefit analysis [41].

IV. INDUSTRIAL IMPACT AND PRACTICAL IMPORTANCE

The complexity of the products we build can surpass
our ability to test them efficiently. Consequently, companies
release the software with less-than-desirable quality and cost
(despite employing available scaling methodologies [42]).

Currently, the tedious task of planning test cases at each
phase is usually done by groups of test architects that try to
fit the scope into each test phase adhering to the purpose and
characteristics of each test environment. Therefore, machine
learning software defect prediction algorithms must aspire to
achieve better results than a group of subject matter experts
in terms of efficiency and cost. Moreover, in a commercial
context, the solution should be able to explain its decisions to
said experts with XAI [30] to attain sufficient confidence.

ML SDP offers plenty of learning algorithms, metrics,
improvements, and configurations to choose from, and each
satisfies its specific purpose better than others. Unfortunately,
the academic effort is currently focused on singular test
phases [21], despite such a scenario usually applying to only
small-scale projects. Nokia is at the other end of the spectrum
(followed by potentially more complex products like airplanes,
autonomous cars, space shuttles, etc.). In our example, with
hundreds of defects being found and corrected every day, the
return on investment [41] of a solution addressing the whole
SDLC and not a singular phase would be enormous.

Moreover, each defect escaped to the customer significantly
increases the cost of poor quality. On the other hand, specific
limited capacity testing, troubleshooting, or reproducing a
particularly difficult fault can require a comparable or even
more significant expenditure. Product quality management
professionals estimate such costs based on expert knowledge,
experience, and working assumptions. But no data-driven
decisions can be made where particular defects can be caught
in an automated and deterministic way for the whole process,
as the overarching intelligence has yet to be created. High-
level benefits of such a solution would be:

• Improved phase containment, resulting in increased pre-
dictability and more reliable capacity planning.

• Fewer defects escaping to the customer as different
algorithms would detect different issues [43].

• Holistic approach to testing and gaining coverage synergy
between various test phases.

• Less operational cost, faster time-to-market, and similar
business-driven results of an efficient SDLC.

• Increased ability to balance the development process
between prioritizing cost, time, and quality.

Treating the described issue as MKP is an imperfect sim-
plification by modeling a complex and constrained commer-
cial reality to a well-understood theoretical problem. Com-
panies looking to adopt ML SDP techniques seek singular
instances where algorithms are most effective and where the
new methods are effective and cost-efficient [44]. In the
following steps, maximizing the overall value of the defects
predicted by ML SDP in each test phase by looking at
the whole process can increase quality and minimize cost
significantly, impacting its practical importance even further.
Also, developed mechanisms will not only effectively predict
the defects at each stage but should account for and utilize
the intricacies of the whole machinery. For Nokia, it means
considerable process improvements in the currently developed
5G and fast-approaching 6G — the next generation of wireless
telecommunication network [45].

V. CONCLUSIONS

We have defined a real-world problem for grand and com-
plex software testing challenges in terms of a well-known
MKP definition. Consequently, we can better understand the
next step in scaling ML SDP, which will decrease the cost
and increase the quality of software products (formulated
as MKTSPSDP ). Moreover, the described approach has
significant advantages over singular instances of ML SDP
application. By employing MKP, we can utilize multiple
theoretical and practical solutions like metaheuristics [38],
domain solutions from the SBSE current [7], and in our case
effective ML SDP algorithms to optimize defect detection
among phases and benefit from varying capacity and cost of
execution.

Defining the next steps for the field of ML SDP is of signif-
icant importance to practitioners and academics alike. Under-
standing where to concentrate future research and undertake
the first attempts to govern several phases or even the entire
SDLC can accelerate the pace of industry application, as it is
more holistic and attractive from a business perspective [23],
[46]. Thus, the first practical question to be raised is how the
research community can create adequate data sets accurately
reflecting the multi-stage test processes of large and complex
software products to make further exploration possible.
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