
Costs and Benefits of Machine Learning So�ware Defect
Prediction: Industrial Case Study

Szymon Stradowski
Wroclaw University of Science and Technology & NOKIA

Wrocław, Poland

szymon.stradowski@pwr.edu.pl

Lech Madeyski
Wroclaw University of Science and Technology

Wrocław, Poland

lech.madeyski@pwr.edu.pl

ABSTRACT

Our research is set in the industrial context of Nokia 5G and the

introduction of Machine Learning Software Defect Prediction (ML

SDP) to the existing quality assurance process within the company.

We aim to support or undermine the pro�tability of the proposedML

SDP solution designed to complement the system-level black-box

testing at Nokia, as cost-e�ectiveness is the main success criterion

for further feasibility studies leading to a potential commercial in-

troduction. To evaluate the expected cost-e�ectiveness, we utilize

one of the available cost models for software defect prediction for-

mulated by previous studies on the subject. Second, we calculate

the standard Return on Investment (ROI) and Bene�t-Cost Ratio

(BCR) �nancial ratios to demonstrate the pro�tability of the de-

veloped approach based on real-world, business-driven examples.

Third, we build an MS Excel-based tool to automate the evaluation

of similar scenarios that other researchers and practitioners can use.

We considered di�erent periods of operation and varying e�ciency

of predictions, depending on which of the two proposed scenarios

were selected (lightweight or advanced). Performed ROI and BCR

calculations have shown that the implemented ML SDP can have a

positive monetary impact and be cost-e�ective in both scenarios.

The cost of adopting new technology is rarely analyzed and dis-

cussed in the existing scienti�c literature, while it is vital for many

software companies worldwide. Accordingly, we bridge emerging

technology (machine learning software defect prediction) with a

software engineering domain (5G system-level testing) and busi-

ness considerations (cost e�ciency) in an industrial environment

of one of the leaders in 5G wireless technology.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; Empirical software validation.
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1 INTRODUCTION

Machine learning software defect prediction (ML SDP) is a promis-

ing �eld of software engineering with the potential to improve

quality and lower the costs of the overall software development

life cycle (SDLC). However, its industrial application has lagged

behind academic research in the �eld [37, 52]. Studies show several

reasons behind limiting in vivo applications [10, 11, 29, 51]. One

of the most important causes is the insu�cient understanding of

the cost-e�ectiveness of ML SDP, as integrating value analysis into

software engineering principles and practices is critical from the

business perspective (adhering to value-based software engineering

(VBSE) [4]). Therefore, our research utilizes a general cost model

proposed by Herbold [13] for preliminary evaluation of cost and

pro�t considerations necessary for a favorable business-driven deci-

sion to apply such solutions in the commercial context of Nokia 5G

system-level testing [50]. Second, we present two real-world exam-

ples in order to compare the cost of poor quality (COPQ) resulting

from post-release defects. Speci�cally, we calculate the di�erence

between two COPQs, with and without using ML SDP, complement-

ing the standard quality assurance process within the company.

Third, we o�er a simple Excel-based calculation sheet to automate

building and evaluating similar models that other researchers and

practitioners can use to build their own scenarios (see Appendix A)

and increase the chances of stakeholder support [48].

We follow the case study approach as guided by Runeson et

al. [41, 42]. In Section 1, we describe the rationale, related work,

and highlight the main contributions. Second, Section 2 describes

the business need and selected evaluation method. Next, Section 3

explains the proposed cost framework, followed by Section 4 with

our case study examples and results. Finally, Section 5 and Section 6

o�er the discussion and conclusions.

1.1 Related Work

Our work is grounded on papers exploring the costing of the ML

SDP applications [20, 37, 57] published in recent years and selected

based on systematic mapping study [52], as well as business-driven

literature review [51]:

• Zhang and Cheung investigated the cost-e�ectiveness of ap-

plying defect prediction models in software quality assurance

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License.
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processes [60]. Their study proposed a cost-e�ectiveness crite-

rion based on the assumption that a prediction-based strategy

should at least be more pro�table than inspecting all or ran-

domly sampled modules. Even though such deliberation can

be much more complex in a commercial context, the impli-

cation is valid. Bene�ts must outlay the costs and need to

be treated as a performance measurement for the solution to

be practical. Nonetheless, we also add the presumption that

the cost-e�ectiveness of SDP not only needs to outperform

random sampling but also complement the already existing

quality assurance e�ectiveness and outweigh the cost of com-

mercial introduction.

• A paper by Herbold [13] on the cost and pro�t of software

defect prediction o�ers deep insight into the problem of eval-

uating the related monetary considerations. The proposed

model includes aspects such as quality assurance, post-release

defects, the possibility that quality assurance fails to reveal

predicted defects, and the relationship between software ar-

tifacts and detected failures. Moreover, the author discusses

essential topics such as standard performance metrics being

insu�cient to evaluate the success of SDP e�orts and condi-

tions for cost-saving in terms of de�ned boundaries that must

be ful�lled to allow positive pro�t gain. Most importantly, the

research shows how the cost model can be used holistically

to calculate the cost and pro�t of an ML SDP solution in vivo,

which we use in our study.

• Next, Tunkel and Herbold [56] published a paper exploring the

relationship between performance metrics and the cost-saving

potential of defect prediction models. In this work, authors

measure several performance metrics and their cost-saving

potential in defect prediction. However, no stable relationship

between cost savings and performance metrics was found,

which is attributed to the inability of performance metrics to

account for the fact that a small proportion of large software

artifacts are the main driver of the overall costs. Therefore, any

ML SDP e�ort to �nd the most e�ective prediction model must

consider cost savings directly. We apply the same principle

to our research by calculating popular �nancial ratios for the

ML SDP implementation e�ort within the company.

• Lastly, we were able to �nd only a handful of publications

referencing the costs and bene�ts of ML SDP in industrial

contexts: Monden et al. [33], Rana et al. [39], Hryszko and

Madeyski [15, 16], and Kang et al. [25]. Also, a systematic

literature review focusing on the real-world application of

ML SDP solutions by Stradowski and Madeyski [51] high-

lights this de�ciency in real-world research in greater detail.

Nonetheless, the mentioned publications helped us to bench-

mark our results and learn from the available observations,

recommendations, and discussions.

1.2 Contributions

Our business-driven case studies [30] inNokia facilitate the decision-

making process for implementing ML SDP in an industrial context

by introducing a step-wise framework to build cost-bene�t e�ec-

tiveness. Speci�cally, as monetary consideration [28] is a critical

aspect of any company’s operation, evaluating needed spending

and comparing it to the pro�ts obtained is necessary to prove a

positive business case. Thus, apart from providing a guideline and

discussion, we analyze two real-world examples of system-level

testing of the Nokia 5G solution based on the research done by

Stradowski and Madeyski [30]. Lastly, the performed calculations

using our framework will also be used within Nokia to make a

value-based decision on committing to further research and poten-

tial future commercial deployment of the solution [48]. Thus, our

contributions in this publication can be summarized as below:

• Short description of the related literature on the existing ap-

proaches to cost evaluation of ML SDP.

• Illustration of the context for the provided examples (further

baseline research details can be found in [30]).

• Cost and bene�t calculation using a general cost model pro-

posed by Herbold [13], based on assumptions and estimates

provided by Nokia practitioners.

• Return on investment (ROI) and Bene�t-cost ratios (BCR) for

lightweight and advanced use cases.

• Excel-based framework for reproduction and building custom

scenarios (see Appendix A).

• Discussion and recommendations on good practices to evalu-

ate the cost-e�ectiveness of ML SDP.

2 PROJECT CONTEXT

As explained in Section 1.2, this paper is a subsequent step to an

already executed research in Nokia [30] concerning developing a

lightweight ML-based solution for SDP in the commercial context of

the Nokia 5G quality assurance process (which we will call baseline

research). It is based directly on its outcomes, expands the results

by a cost model, and evaluates its performance in monetary terms

as one of the main success criteria for the company. Moreover, all

provided examples and calculations are derived from real-world set-

tings within Nokia; however, the original estimates were modi�ed

for con�dentiality reasons (we explain all such cases in Section 4).

Also, Figure 1 illustrates particular phases of testing in Nokia.

The company uses continuous delivery, integration, and test (CDIT)

process to build its products (including continuous integration

(CIT), continuous regression (CRT), and continuous delivery regres-

sion tests (CDRT)). CDIT adheres to state-of-the-art test principles

emphasizing shift-left1 and strict phase containment2. Notably, if a

fault slips through the entire process and is found during customer

acceptance and deployment, increased COPQ is incurred.

2.1 Project Results

Nokia is a multi-million dollar telecommunication software and

hardware powerhouse developing wireless telecommunication so-

lutions. Speci�cally, our e�orts focus on system-level testing of the

5G gNB base station [53]. The ML SDP implemented solution has

been designed to be a lightweight framework developed as a feasi-

bility study for the company’s management to enable a data-driven

decision on full-scale commercial implementation and deployment.

Furthermore, a clear understanding of which attributes are essential

for adoption decisions helps to prioritize the features during the

1An approach where software testing is performed to �nd defects as early as possible
in the life cycle, where they are cheaper to �nd and �x than the later stages [19].
2Defect phase containment measures how many defects were caught before they
escape into later phases [18].
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Figure 1: Nokia test process overview [50].

tool design and implementation [39]. The expectations set for our

solution are as follows:

• Cost-e�ective (positive ROI and BCR values are the primary

expectations).

• Utilizing existing data and features (a secondary expectation

to support cost-e�ectiveness).

• E�ective at predicting defects (a secondary expectation of

MCC>0.5 to support cost-e�ectiveness).

So far, the latter two criteria have been satis�ed by the baseline

research [30]. Speci�cally, �ve classic learners (Naïve Bayes, Clas-

si�cation Tree, Random Forest, Light Gradient-Boosting Machine,

and CatBoost Gradient Boosting) were implemented using the MLR3

package3. Also, �ve times repeated 10-fold cross-validation was

used to estimate the performance of the models on unseen data,

where the analyzed data consisted of six sets from the existing

test case repository in Nokia and containing test execution-related

information. Consequently, approximately 800,000 test results from

100,000 test cases over a period of �ve and a half months were ana-

lyzed. For comparison, Matthew’s Correlation Coe�cient (MCC)

was used as a reliable performance measure to benchmark the

model’s e�ectiveness [8, 45, 59] (also �ve other measures — Area

under the Curve (AUC), Classi�cation Accuracy (ACC), Recall, Pre-

cision, and F-beta score (Fbeta) with V = 1, were calculated to

provide a comprehensive view of the results and to allow easier

comparisons with other studies). Nemenyi-Wilcoxon-Wilcox tests

have been performed to validate the results. Lastly, we provided a

simple feature importance analysis to enable interpretability.

The results show that Random Forest and CatBoost had the

highest MCC performance and achieved MCC between 0.674 and

0.874, while AUC was between 0.986 and 0.995. Importantly, we

used the default versions of the classic algorithms without feature

optimization, hyperparameter tuning, or other techniques to boost

the performance further. We are con�dent that even better results

can be obtained and invite other researchers to do so.

Furthermore, the research highlights several conclusions on the

study’s implementation process, feature importance, and opera-

tional aspects. The participating test practitioners welcomed the

solution and saw considerable value in utilizing the obtained re-

sults. Also, during the feedback collection, it was raised by involved

3A description of the framework, together with details on the implantation of used
learners and measures, is available under the link: https://mlr3.mlr-org.com/

management participants that a value mindset is essential and that

a cost-bene�t analysis should be done before any full-scale com-

mercial application of ML SDP solutions is considered.

3 METHODOLOGY

As mentioned, our research aims to evaluate the ROI and BCR

results of ML SDP introduction into the Nokia 5G system-level test

process. The company wants to know if investing in having the

existing quality assurance mechanisms complemented by ML SDP

has a positive business impact. To address this question, we have

created an easy-to-understand framework based on the publication

by Herbold [13], brie�y introduced in Section 1.1 and applied to

our real-world examples in Section 4.

Consequently, we de�ne one research question (RQ1) during this

phase of our implementation:

RQ1: Is introducing ML SDP for defect prediction in an

industrial Nokia 5G system-level testing process cost-

e�ective for the company in terms of ROI and BCR?

Answering our RQ1 allows the company to make a data-driven

decision about further investment into a wide-scale introduction of

ML SDP solutions in a real commercial setting. Furthermore, it can

also encourage other companies and practitioners to do alike.

3.1 Cost-e�ectiveness of SDP

First of all, costing is a critical element of the operation of almost all

commercial companies (see Economics 101 [32]). The main goal of

the costing process is not only to understand how much resources

are spent on particular activities within the company but also to

ensure that new spending leads to building more value over time.

Thus, the gained value should be higher than the incurred spend-

ing to provide a positive business case. The same principle should

apply to ML SDP introduction in a real-world setting. Speci�cally,

the purpose of SDP is to enable the allocation of quality assurance

resources more e�ciently than without it. Furthermore, said ef-

�ciency gain also needs to cover the required spending needed

for the development and maintenance of the new solution itself.

Especially as machine learning can incur massive ongoing technical

debt and maintenance e�orts [44].

Additionally, a vital aspect to consider is change management to

carefully assess any substantial process improvements implemented

on a broader scale [3]. Many interim steps are necessary for the

change to be successfully implemented, from de�ning the purpose

and success criteria, obtaining ambassadors, running pilots, and

organizing feedback sessions and training programs before roll-out,

to securing maintenance and phase-out of the new product. Such

additional e�ort does not come for free within any organization,

and decision-makers need to increase the chances the spending will

bring the money back in terms of expected bene�t.

There are several methods to evaluate the pro�tability of a busi-

ness activity, which can be used depending on the context. Popular

examples include [32]:

• Return on investment (ROI) - a simple ratio dividing the net

pro�t (or loss) from an investment by its total cost.

• Internal rate of return (IRR) - the expected rate bringing the

cost of a project and its cash in�ows into equality.
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• Bene�t-cost ratio (BCR) - summarizing the relationship be-

tween a proposed project’s relative costs and bene�ts.

• Net present value (NPV) - the di�erence between the present

value of bene�ts and the present value of costs.

• Companies may use custom and more sophisticated invest-

ment appreciation methods depending on risk aversion and

long-term strategy.

We decided on ROI and BCR as they are simple to calculate

and understand and, at the same time, allow accurate comparison

of di�erent scenarios. Notably, all methods require an educated

approximation of the cost and expected bene�t of executing the

project. However, for technology companies that create cutting-

edge solutions, precise forecasting of software development work

e�ort [6, 22] and evaluation of the expected returns is usually very

di�cult. Uncertainty and intrinsic risk leave managers with chal-

lenging decisions on future investment opportunities [26]. Our

attempt to evaluate ML SDP introduction in a high-tech company

provides an example of how such rough estimates can be done.

That said, for some high-growth companies, the aim could be only

increased revenue growth thanks to employed ML SDP instead of

cost saving as in our case.

3.2 Estimation Assumptions

First of all, we need to highlight themain similarities and di�erences

in the presumptions made by our study and the ones described in

the surveyed papers (Section 1.1) All conjectures need to be clearly

described and justi�ed before cost-bene�t estimations [47] and can

serve as grounds for comparing results for future ML SDP studies.

The main assumptions are described below:

• Cost projections are not exact and will not provide a straight-

forward answer. The following calculations are a range of

predictions based on several assumptions and approximations

that must be thoroughly analyzed and clearly explained. Fur-

thermore, the outcome of a cost-bene�t study is a broad spec-

trum of possibilities that helps understand the risk and level

of uncertainty, increasing the probability of making correct

business decisions [28]. Hence, the cost-bene�t prediction is

as good as the input data.

• Contrary to Herbold [13], we attempt to estimate the one-time

cost of building a new application. In our case, we chose the

most super�cial way — all needed tools can be built in-house

with only person-hour operational costs as both capacity and

competence are available within the company [35]. However,

we do not consider missed-opportunity costs or similar factors

that may occur in vivo. Accordingly, there are several ways

in which new software spending can be estimated [23], and

each circumstance may require a speci�c approach. That said,

evaluating the cost of any software project is complex and can

not be accurately done context-free.

• We also do not neglect the continuous cost of execution (con-

trary to Herbold [13]) and provide an approximation in terms

of person-hours and resulting monetary spending needed to

run a cycle of SDP simulation on new data in once-every-two-

weeks cadence.

• Nokia estimates escaped defect costs on all levels of testing,

including the containment between internal phases as well as

the customer escapes (see also Figure 1). We use an averaged

subset of available values to evaluate potential gains without

disclosing con�dential details. Internally, the calculation can

be done for speci�c components and test phases for more

precise output.

• Importantly, we attempt to complement an already existing

testing process within the company. In such case, the ML SDP

model e�ectiveness can be compared with the actual results

and not with the random sampling method [26]. The delta

between the actual test results and ML SDP simulation results

can be juxtaposed; a matching result con�rms the actual test

outcomewas correct. Consequently, a contradicting result trig-

gers a post-analysis investigation to check for a false negative.

Each element of the confusion matrix has di�erent implica-

tions from the cost perspective, as can be seen in Table 1:

TP True positive: post-analysis �nds a new defect, preventing

an escaped defect value is gained, and the cost of post-

analysis is incurred.

TN True negative: post-analysis not done, no impact.

FP False positive: post-analysis con�rms there is no defect,

no value is gained, and the cost of post-analysis is in-

curred.

FN False negative: post-analysis not done, defect escapes as

it would without ML SDP.

Table 1: Confusion matrix.

Predicted faulty Predicted not faulty

Actually faulty True positives (TP) False negatives (FN)

Actually not faulty False positives (FP) True negatives (TN)

There might be other scenarios related to quality assurance

imperfection and comparison with ML SDP simulation results;

we provide the above examples as appropriate to our context.

• Following the mentioned concept proposed by Khoshgoftaar

and Allen [26], we consider all elements of the confusion

matrix (Table 1), as each has a di�erent associated consequence

from the quality assurance perspective (for example, false

positive - post-analysis investigation only; false negative - no

investigation, but defect escaped to the customer). However,

we assume each positive prediction has the same cost related

to the post-analysis following the models’ predictions.

• Furthermore, similarly to Khoshgoftaar and Allen [26], we

include the costs of misclassi�cation as an essential factor

to consider. The cost of acting on each type of prediction

will depend on the mechanism that utilizes the model results.

However, at this point, we do not account for any missed op-

portunity cost and see the cost of post-analysis to be the same

for all predictions. This is a possibility for improvement in the

accuracy of the cost model in the future. Similarly, building

a statistical framework that would optimize the prediction

performance to minimize the cost of misclassi�cation could

be done in the future.

• Wepurposefully split the discussion on cost-e�ectiveness from

the predictive performance metrics, as there is no con�rmed

and stable relationship between cost savings and performance

metrics [56]. Therefore, we perform separate calculations for
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costs and bene�ts and do not consider original performance

metrics results directly.

• Also, we consider the n-to-m relationship between defects and

software modules in evaluating the historical data set against

real escaped defect results, which is included in our mean-cost-

per-escaped-defect approximation approach (see Table 5).

• Lastly, the issue where we deviate the most from the original

proposal by Herbold [13] is the calculation of defect cost and,

consequently, how the bene�t is measured. Speci�cally, we

possess detailed calculations of the historical numbers, con-

tainment e�ciency, and costs of customer-escaped defects.

Therefore, we can analyze di�erent scenarios and derive a

conclusion based on comparisons of the achieved results with

and without using ML SDP. Thus, we do not account for the

cost evaluation for the defects that escape while using the

new process but rather treat the prevented defects as achieved

bene�t in operational savings.

Naturally, the above assumptions and limitations have a critical

impact on the applicability of our solution. Both examples (Sec-

tion 4) and provided Excel-based form (Appendix A) bridge the

existing literature and available methods to the complex commer-

cial reality of an emerging ML SDP technology from the �nancial

perspective. Hence, the provided approach is in�uenced by the

environment it originates from, and other contexts require di�erent

assumptions.

3.3 General Cost Model

We account for the below factors of the general cost model proposed

by Herbold [13]:

• 2>BC�# �) is a one-time cost for the development and introduc-

tion of ML SDP into the existing development process.

• 2>BC�-�� is the continuous cost of using the defect prediction

model in the development process.

• 2>BC&� is the cost of the quality assurance post-analysis due

to the predictions made by the model (which also can be called

the cost of intervention [31]).

• 2>BC��� is the COPQ of a software release enhanced by ML

SDP. However, we do not account for this factor directly in cal-

culating the cost of the solution. Thus, in our case, it represents

the cost of defects that were saved due to ML SDP.

• 14=4 5 8C in our case, the di�erence between COPQ with ML

SDP and without ML SDP can be seen as the monetary bene�t

of the solution [2].

2>BC = 2>BC(�% = 2>BC�# �) + 2>BC�-�� + 2>BC&� (1)

14=4 5 8C = 2>BC#$(�% − 2>BC(�% = 2>BC��� (2)

'$� =
14=4 5 8C − 2>BC

2>BC
��' =

14=4 5 8C

2>BC
(3)

We will use the above equations to calculate the costs and bene�ts

of several case study scenarios described in Section 4.

4 BUSINESS-DRIVEN REAL-WORLD
EXAMPLES FROM NOKIA

In this section, we provide an extension of the past research de-

tailed in Section 2.1 by describing and applying a cost model we

used to evaluate the success of the developed solution (on top of

the standard performance metrics — MCC (primary metric), AUC,

ACC, Precision, Recall, and Fbeta). As reported by Tunkel and Her-

bold [56], so far, no relationship between cost savings and the most

widely used performance metrics for ML SDP could be established.

Therefore, cost considerations must be handled separately. We eval-

uate two scenarios resulting from our baseline research [30] with

the methods proposed in the surveyed literature (Section 1.1):

Case 1: Lightweight solution - quick and easy implementation,

utilizing available data, employing default learners with

an acceptable level of performance.

Case 2: Advanced solution - a customized solution striving for

the best possible performance of predictions.

As mentioned, we cannot publish the actual average costs of work

invested in the project due to con�dentiality concerns. However,

for the purpose of our study, we used the person-hour cost of

work by a software developer that is roughly based on the median

salary in IT in Poland4. We decided on a value of 50�*' per hour,

accurately approximating the expense for the Nokia organization.

Second, we publish a rough order of magnitude (ROM) of hours

needed to develop both discussed solutions estimated together with

responsible software architects and product owners.

4.1 Case 1: Lightweight Solution

The �rst scenario results directly from our baseline research and

emphasizes a lightweight approach to bring immediate value with-

out a substantial commitment to additional tool development and

maintenance e�orts. Therefore, the development and installation

values assumed as in Table 2 are relatively low (similarly as sug-

gested by Zhang and Cheung [60]) and cause recurring manual

work for execution, but no additional licensing, servers, etc.

Table 2: 2>BC�# �) is the one-time cost of ML SDP introduction.

Time required [h] Cost [EUR]

Develop & Install 200 10,000

Training 20 1,000

2>BC�# �) = 11, 000�*' (4)

Second, one of the main requirements for the quick and easy

solution was that it uses already available data, and its gathering

and pre-processing is fully automated [17]. The cost relates to a

practitioner observing and ensuring the process goes smoothly

(Table 3). Here, we assume only one simulation run per software

release cycle (the number can be increased in other scenarios with

several rounds of predictions per release cycle, represented by / ).

2>BC�-�� = / × 100�*' (5)

4https://dou.eu/en/salaries?position=Software_Engineer&city=Wroclaw
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Table 3: 2>BC�-�� is the cost of the run simulations.

Time required [h] Cost [EUR]

Data collection 1 50

Modeling 1 50

To estimate the cost of post-analysis, we use internal Nokia

evaluations based on JIRA5 tooling and its e�ort management func-

tionality. We use the exemplary mean value of hours logged as

analyses of a failed test case leading to opening a fault report (in

our example, it is 30 hours) and multiply it by . , representing

the number of predicted defects by the model and post-analysis

(Table 4). Notably, we must accommodate the more realistic require-

ment where the test resources are not in�nite. This can be done by

allocating a predetermined and �xed . (as we did) or having the

cost grow with each additional post-analysis performed. Second,

we do not account for additional test environment utilization and

only consider the post-analysis e�ort to be spent as triggered code

review. Also, we do not account for any further imperfection of

quality assurance, causing the additional code review to miss the

predicted defect, nor account for e�ort awareness, which is planned

to be done in a subsequent step [31].

Table 4: 2>BC&� is the cost of post-analysis for predictions.

Time required [h] Cost [EUR]

Post-analysis 30 1,500

2>BC&� = . × 1, 500�*' (6)

In our example, we decided on . = 10 — for each iteration of

predictions, we select ten cases that ML SDP predicted as failed

but standard testing passed. In such cases, we launch an additional

intervention [31] (in our case, a code review). Signi�cantly, this

initial assumption for the cost-bene�t analysis can be changed

during regular operation and intermediate results so that the value

can increase or decrease based on the observations.

Signi�cantly, the baseline research does not account for the sever-

ity of the found defects. We add this distinction as an improvement

and use historical data to assume that one in every ten faults are

blockers, three out of ten are major, and the remaining six are minor

defects (see Table 5). Nokia quality specialists regularly evaluate

each category in terms of probability, cost, and e�ort; we use com-

parable values in our cost calculations. Also, it is worth noting

that both the cost of the escaped defect and severity probability

can frequently change, which can be easily re�ected by modifying

the values in our calculation sheet (Appendix A). To estimate the

cost of escaped defects, we use internal Nokia evaluations based

on the company’s quality management analysis and IEEE standard

de�nition [1]. For the below calculations, we use weighted mean

value distinguished by severity, as visible in Table 5. Consequently,

we simplify that the mean cost-per-escaped-defect is 8, 000�*'.

The -(�% is the number of defects escaping to the customer using

the additional ML SDP solution, and -#$(�% is the number of

defects escaping to the customer not using the additional ML SDP

5https://www.atlassian.com/software/jira

Table 5: 2>BC��� is the cost of the escaped defects.

Minor Major Blocker

Escaped defect cost [EUR] 5,000 10,000 20,000

Relative probability 60% 30% 10%

Cost of escaped defect [EUR] 8,000

solution. The delta between those two values represents the bene�t

of the introduced SDP mechanism on top of the traditional testing

process. In such an approach, we do not need to estimate the number

of escapes, just the potential savings.

14=4 5 8C = (-(�% − -#$(�% ) × 2>BC��� (7)

2>BC = 2>BC�# �) + 2>BC�-�� + 2>BC&� (8)

Namely, assuming 50% ML SDP e�ciency, for every ten positives

in the model that have passed the real test case execution (were

false negatives during testing), �ve will be true positives, and code

review can con�rm an actual defect.

14=4 5 8C = (10 − 5) × 8000 = 40, 000 [�*'] (9)

2>BC = 11, 000 + 100 + 15000 = 26, 100 [�*'] (10)

'$� =
14=4 5 8C − 2>BC

2>BC
= 0.53 ��' =

14=4 5 8C

2>BC
= 1.53 (11)

Even in such a pessimistic scenario, with only one-time execution

of the ML SDP framework, testing resources limited to only 10,

and 50% ML SDP e�ciency, we get positive ROI and BCR results.

Moreover, one of the ways to approximate the above predictive

e�ectiveness more realistically is to use the Precision metric [60].

The average precision in our baseline research is 0.9, and assuming

such performance to continue, we get much better pro�tability

shown below (see Table 6 for more details on the calculation).

14=4 5 8C = (10 − 1) × 8000 = 72, 000 [�*'] (12)

2>BC = 11, 000 + 100 + 15000 = 26, 100 [�*'] (13)

'$� =
14=4 5 8C − 2>BC

2>BC
= 1.76 ��' =

14=4 5 8C

2>BC
= 2.76 (14)

4.2 Case 2: Advanced Solution

The advanced scenario assumes a �nal commercial solution with

a much higher initial investment needed (see Table 7) than the

lightweight described in Case 1. Secondly, as the framework is

fully automated, there is no cost directly resulting from simulations

(2>BC�# �) = 0). Last, we also assume it o�ers a much higher Pre-

cision of 0.99 (for every 100 positives, 99 are true positives). The

cost of execution, post-analysis, and escaped defects do not change

(see Table 8 for details on the calculation).
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Table 6: Exemplary calculation sheet for the lightweight scenario.

Input data Calculations Results

Man-hour cost [EUR] 50 Cost INIT [h] [EUR] Cost QA [h] [EUR]

Simulations per release 1 Develop & install 200˙ 1̇0,000 Post-analysis 30 1,500 Cost 2̇6,100

No. of post-analyses 10 Training 20 1,000 No. of post-analyses 10

Precision 0.90 11,000 No. of releases 1 Bene�t 72,000

No. of releases 1 15,000

ROI 1.76

Cost of escaped defect [EUR] Cost EXEC [h] [EUR] Cost DEF [EUR]

Critical 20,000 Data gathering 1 50 Cost of escaped defect 8000 BCR 2.76

Critical % 10% Modeling 1 50 No. of releases 1

Major 10,000 No. of releases 1 No. of true positives 9

Major % 30% 100 72,000

Minor 5000

Minor % 60%

8,000

Table 7: 2>BC�# �) is the one-time cost of ML SDP introduction.

Time required [h] Cost [EUR]

Develop & Install 5000 250,000

Training 100 5,000

TOTAL 5100 255,000

2>BC�# �) = 255, 000�*' (15)

With ten post-analyses during each of the ten release cycles we get:

2>BC = 255, 000 + 15000 = 270, 000 [�*'] (16)

14=4 5 8C = 9.9 × 8000 = 79, 200 [�*'] (17)

'$� =
14=4 5 8C − 2>BC

2>BC
= −0.71 ��' =

14=4 5 8C

2>BC
= 0.29 (18)

Interestingly, in a span of ten post-analyses during one release

cycle, the lightweight solution proved considerably more pro�table

than the advanced one (ROI 1.76 to -0.71 and BCR 2.76 to 0.29,

respectively). However, as we do not assume an end date of the

project (product life cycle does not decline or phase-out [43]), we

should include more software release iterations in the calculation.

Nevertheless, after 100 positives were detected by the ML SDP

solution over ten cycles of predictions, the lightweight scenario is

still more lucrative than the advanced one (ROI 3.44 to 0.96 and BCR

4.44 to 1.96, respectively). After 100 cycles (in our bi-weekly cadence,

this is almost four years), the pro�tability of the lightweight and

advanced solutions becomes more comparable (ROI 3.73 to 3.51

and BCR 4.73 to 4.51, respectively). The advanced solution becomes

more pro�table after 151 cycles (5.8 years). Mentioned scenarios

are available in Table 9 and Appendix A to enable further analysis.

In summary, the resulting ROI and BCR mainly rely on:

• Initial investment - the most considerable portion of the solu-

tion cost is the initial spending needed to build a framework.

Depending on how much we want to spend, we might aim

to obtain more or less e�ective predictions; however, from

an economic perspective, �ghting for marginal gains may be

futile in non-safety-critical systems. Thus, building a custom,

advanced solution may not be the best choice in vivo, and

practitioners must carefully evaluate such a decision.

• Lifespan of the SDP solution - the longer the solution is used,

the better pro�tability can be expected at the end (this is an

intrinsic characteristic of the �nancial ratios [32]. Thus, theML

SDP mechanism that we discuss in his work does not include

product decline and is treated as a long-term investment with

consistent returns over each cycle.

• Cost of the escaped defect - the ratio between the cost of post-

analysis and the cost of the escaped defect determines the

pace at which the returns will outgrow the initial spending.

In our case, the ratio is relatively positive; nevertheless, when

drawing conclusions, it is necessary to remember that obtained

results are based on assumptions and averages, showing only

possible future projections.

• Prediction performance - we used the Precision metric, repre-

senting how many positives will turn out to be true positives

after code review. Importantly, our results con�rm the obser-

vation by Herbold [13] that even low-precision models can be

cost-e�ective. Our lightweight scenario (Section 4.1, Table 9)

shows that even if 50% of selected test cases will allow detect-

ing escaped defects, the solution may be e�ective from the

cost perspective. Moreover, other performance metrics can be

used to support alternative means of cost modeling (minding

that no direct relationships have been found [56]).

Conversely, as we possess the approximated costs for quality

assurance and costs for defects, we can also calculate the ratio

between those two values (�), which reveals if the prediction model

would be cost-saving [13]. The ROI will be positive if the cost of

developing the solution is lower than � multiplied by the number

of successful iterations. Also, a range of values can be used if used

approximations have low con�dence.

That said, it is impossible to calculate the actual values of both

costs and bene�ts precisely [6]. Therefore, a calculation sheet based

on ROM estimations such as ours (Appendix A) is necessary to draw

a spectrum of possible scenarios based on di�erent approximations

and assumptions. Consequently, resulting ROI and BCR values

must be calculated and compared to make data-driven business

decisions with the highest obtainable con�dence. Naturally, the
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Table 8: Exemplary calculation sheet for the advanced scenario.

Input data Calculations Results

Man-hour cost [EUR] 50 Cost INIT [h] [EUR] Cost QA [h] [EUR]

Simulations per release 1 Develop & install 5,000 250,000 Post-analysis 30 1,500 Cost 270,000

No. of post-analyses 10 Training 100 5,000 No. of post-analyses 10

Precision 0.99 255,000 No. of releases 1 Bene�t 79,200

No. of releases 1 15,000

ROI -0.71

Cost of escaped defect [EUR] Cost EXEC [h] [EUR] Cost DEF [EUR]

Critical 20,000 Data gathering 0 0 Cost of escaped defect 8000 BCR 0.29

Critical % 10% Modeling 0 0 No. of releases 10

Major 10,000 No. of releases 1 No. of true positives 9.9

Major % 30% 0 79,200

Minor 5000

Minor % 60%

8,000

Table 9: Results per scenario.

Scenario Precision Analyses Releases ROI BCR

Lightweight 0 0.50 10 1 0.53 1.53

Lightweight 1 0.90 10 1 1.76 2.76

Lightweight 2 0.90 10 10 3.44 4.44

Lightweight 3 0.90 10 100 3.73 4.74

Advanced 1 0.99 10 1 -0.71 0.29

Advanced 2 0.99 10 10 0.96 1.96

Advanced 3 0.99 10 100 3.51 4.51

more assurance can be gathered for the made assumptions, the

more accurate and realistic the resulting scenarios will be.

5 DISCUSSION

In our baseline research [30], we used MCC as the main metric [59],

AUC as supporting, and Recall, Precision, and Fbeta as additional

data points not used for comparison. As argued by Tunkel and

Herbold [56] there is no stable relationship between cost savings

and any of the most widely used performance metrics for ML SDP.

Therefore, as we did in this study, cost considerations must be

handled separately and treated as an independent research question

that needs to be investigated.

Second, according to VBSE [4], integrating value considerations

into existing and emerging software engineering principles, prac-

tices, and projects is critical. Even more so, costs and bene�ts need

to be meticulously evaluated and understood for a new technology

introduction within any company. Therefore, the main success cri-

terion for introducing ML SDP in a commercial setting should be

the capability to direct quality assurance resources in a way that

is more cost-e�ective than without it. Our examples in Section 4

show that ML SDP within Nokia 5G can be hugely pro�table. Thus,

we can positively answer our RQ1.

Answer to RQ1 (Is introducing ML SDP for defect pre-

diction in an industrial Nokia 5G system-level testing

process cost-e�ective for the company?): ML SDP can

be cost-e�ective in complementing Nokia’s existing 5G

system-level test process.

Both ROI and BCR ratios are straightforward to interpret. A

positive ROI value means that net returns are favorable and total

returns are greater than the associated costs. A negative ROI indi-

cates that the total expenses outgrow the possible returns. Similarly,

if a project has a BCR greater than 1.0, it is expected to deliver a

positive net present value to the investor; if less than 1.0, it will not

be pro�table. In our case, all results show high pro�tability of the

investment. Even more so, both ratios can be used to compare the

e�ciency of di�erent investment opportunities [9], and our results

show that the lightweight scenario, requiring a less considerable

initial investment but o�ering worse predictive performance, has a

better pro�tability outlook in the longer term. Also, it is essential to

note that the presented scenarios are very conservative to ensure

the conclusions drawn on the potential bene�ts are sound. More

realistic scenarios could increase the number of post-analyses and

simulations per release to increase pro�tability further.

We obtained comparable outcomes to those of Hryszko and

Madeyski [16]. Their in vivo case study in Volvo Group achieved an

impressive ROI of 73 and a BCR of 74. Such results are overwhelm-

ingly positive and show tremendous potential for the pro�tability

of ML SDP solutions in vivo. Also, despite using di�erent metrics,

the few publications discussing the costs and bene�ts of ML SDP

show similarly positive results [25, 33, 39].

One metric so far outstanding from the discussion is the time

consumed by learners to compute the simulations. However, it is

enough to point out that the cost associated with the time of cal-

culations is negligible in our context. In the baseline research, the

shortest calculation with the lightweight solution took one second,

and the longest took 20 seconds for all six data sets combined. No-

tably, the longer-lasting calculations were usually more precise in

predictions. Considering the low cost of execution, without addi-

tional external considerations and requirements, we suggest always

prioritizing more extended computation time, increasing predictive

performance. Secondly, in industrial environments, it is best to use

several ML algorithms to build the models on each data set and

choose the best-performing one [51], not prioritizing computation

time as an essential factor.

As mentioned in this study, we focus on the monetary bene�ts

of ML SDP predictions as input for challenging false positives after
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the testing is done (or by highlighting areas of increased risk), con-

sequently enabling quality assurance to limit the escaped defect

ratio. The second bene�t, which we do not explore at this point,

is described in detail by Elsner et al. [9] in their industrial study

on regression test optimization in the continuous integration pro-

cess, discussing predictive e�ectiveness as omitting test cases as

an unnecessary cost. This is a promising area to explore in further

research in Nokia company. Speci�cally, the pro�tability of the ML

SDP mechanism can be improved by predicting not only the areas

of increased risk but also identifying areas with the lowest probabil-

ity of containing defects. The low-risk areas could be deprioritized

when de�ning the test scopes to substantially decrease the quality

assurance costs. In Nokia, executing the test cases can be hugely

expensive, as some more sophisticated 5G test environments cost

millions of euros to build and maintain [50]. Furthermore, some

test cases are very time-consuming, as speci�c stability scenarios

take several hours or even days to execute. Thus, an additional

veri�cation mechanism for defect prediction can bring considerable

operational savings, as shown in Section 4. Furthermore, based

on the model results, decisions to omit low-risk areas not contain-

ing any defects, detect false positives limiting wasted e�ort, or

o�er con�rmation that discovered faults require a software defect

correction [30] further driving down the operation costs.

Importantly, increasing complexity and shortening the time-to-

market schedules make avoiding more defects di�cult [5, 14], and

all companies worldwide seek new improvement methods for their

quality assurance processes. Consequently, incorporating value

considerations in software development needs to be treated as a

dedicated and thought-through target, ensuring products adhere

to requirements and meet �nancial goals [38]. Our ML SDP so-

lution for augmenting the system-level testing will help achieve

both aspirations. Speci�cally, SDP modeling supports decisions on

software quality assurance resource allocation to the areas most

likely to contain the highest number of defects. Thus, it helps to

reduce the cost of the entire software development process. Namely,

considering more future-oriented solutions applying ML SDP for

the entire SDLC as described by Stradowski and Madeyski [49],

2>BC��� does not necessarily have to be the cost of customer es-

capes. Similar models can be built on particular test phases of the

quality assurance process, where the bene�t would result from the

delta between the cost of executing and �nding defects on di�erent

stages (where the later stages are more expensive [34]).

Notably, a commercial project lifespan can take many years in

the wireless telecommunication industry, and the investment can go

into hundreds of millions of EUR. From this viewpoint, the cost of

developing and installing anML SDP solution can become negligible

in the long term. Even more so, if the delta between the bene�t

of a singular saved defect and its analysis cost is favorable, it is a

question of how many times a new defect needs to be contained for

the investment to be covered. As the answer to the posed research

question RQ1was positive, amore detailed questionwould be RQ1.1:

How do the numbers of releases and post-analyses a�ect ROI in

an industrial Nokia 5G system-level testing process? To answer

the question, we have performed a sensitivity analysis to measure

the degree to which the ROI result is sensitive to the variables

representing the number of releases and post-analyses. A graphical

representation of the calculations is shown in Figure 2. Analysis

shows that increasing the numbers above a certain threshold starts

to bring diminishing results, and balancing the frequency of running

ML SDP is a critical aspect for the company to decide. However, we

do not account here for the feasibility of post-analysis execution

nor the maximum number of defects remaining to be discovered,

which should also be considered while making the �nal decisions.

Figure 2: Sensitivity analysis of how the number of releases

and number of post-analyses (interventions) a�ect ROI.

Last, it is worth noting that the telecommunication industry

seems to be a high-yielding environment for introducing ML SDP

in general. The most important factors that make it so welcoming

are readily available vast amounts of data, high revenues, high cost

of testing, high COPQ, availability of in-house expertise to create

and maintain software solutions using ML, and �nally, high-failure

rate of new projects [54] which increases practitioners interest

in new solutions. Consequently, there has been ample research

applying ML SDP to this particular industrial environment:

• Khoshgoftaar et al. [27] - a joint telecommunication project

of Nortel and Bell Canada.

• Ostrand et al. [36] - AT&T, one of the largest telecommunica-

tion providers in the world.

• Tosun et al. [55] - Turkcell, a large telecommunication com-

pany in Turkey.

• Monden et al. [33] - NTT, Japan’s largest incumbent telecom-

munication operator.

• Jonsson et al. [21] and Rana et al. [39] - Ericsson,major telecom-

munications vendor based in Sweden.

• Bowes et al. [7] and Shippey et al. [46] - unnamed UK-based

telecommunication companies.

• Wang and Khoshgoftaar [58] - unnamed large telecommuni-

cations software system.

• Hanmer and Mendiratta [12], as well as our work [30] - Nokia,

major telecommunications vendor in Finland.

• Kang and Do [24] - telecommunication systems of Samsung

Electronics.
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5.1 Threats to Validity

We have identi�ed several threats to the validity of our study

and undertaken the following actions to mitigate their impact:

Construct validity: to answer our research question, we use

an approach previously validated only in simulations rather than

actual defect prediction models [13]; therefore, it is far from being

established practice. Even more so, industrial contexts can vastly

di�er, and only case-by-case application of the same cost model

across many projects can lead to comparable and reliable conclu-

sions. Our research is one of the �rst steps toward this goal. For

the cost metrics, we used standard economic ratios popularly used

to measure cost-e�ectiveness across the world [32]. Also, as our

study relies on the results of the baseline research, our construct

poses the same limitations and threats to validity as the original —

Stradowski andMadeyski [30]). Importantly, in our case, the models

are built on already available and existing data, with no need for

additional e�ort to prepare or pre-process. External validity: we

based our research on a proprietary industrial data set and process;

therefore, the generalizability of the results is limited. We can not

claim any future e�orts will achieve identical outcomes. However,

we compared our results to similar studies, and the conclusions

are complementary — ML SDP can be very pro�table in industrial

systems. Nonetheless, any pro�tability projection needs to account

for di�erent circumstances and factors. For example, suppose a

company does not possess the internal resources to build an ML

SDP framework. In that case, the cost will increase substantially,

and if the predictive performance is not su�cient or the cost of poor

quality savings is modest, the introduction of a similar solution may

not be as pro�table as in our case. Nevertheless, the framework and

methodology are good benchmarks for future pro�tability analyses.

Internal validity: our cost-bene�t evaluation is based on research

results that could be more optimal from the predictive performance

perspective. There is considerable potential for obtaining better

results by employing techniques like feature analysis, hyperparam-

eter optimization, more sophisticated algorithms, or ensembles. In

such circumstances, the pro�tability could increase even further

if the bene�t of increased predictive performance surpasses the

added cost needed to implement the upgrades. Naturally, this notion

should still be validated with dedicated calculations similar to the

ones described in this article. Importantly, assumptions described

in Section 4 also constitute internal limitations and threats to va-

lidity. All are based on actual evaluations done within responsible

functions in Nokia and are the best available approximations within

our complex business reality. However, for the sake of con�den-

tiality, the publication contains slightly modi�ed values of similar

magnitude (we explain each of such cases in Section 4). Hence, the

actual values used are di�erent but comparable in magnitude.

Conclusion validity: naturally, calculations based on approxi-

mations are not an exact science and do not give 100% con�dence.

Nevertheless, they o�er an opportunity to make data-driven deci-

sions on the pro�tability of investing in ML SDP in a commercial

context. Our incurred cost and potential bene�t approximations

are based on actual projections from dedicated functions within

the company, were validated by subject matter experts, and were

purposefully undervalued to increase con�dence even further. Sec-

ondly, with the proposed framework, such evaluation can be done

quickly, considering di�erent scenarios based on di�erent input

data. Therefore, to decide on future investment of ML SDP within

the company, the conclusions are valid and su�cient for making

business decisions on the following next steps. Lastly, as explained

in Section 1.1, the cost-e�ectiveness of applying defect prediction

models needs to be better explored in academia, so our comparison

opportunities were relatively low.

6 CONCLUSIONS

The general cost model for software defect prediction proposed

by Herbold [13] for preliminary cost-e�ectiveness evaluation has

proved applicable to our scenarios. The calculated ROI was between

0.53 and 3.73 for the lightweight and between -0.71 and 3.51 for

the advanced approach. Consequently, we have shown that a light-

weight software defect prediction [30] is commercially feasible and,

furthermore, may o�er a higher return on investment than heavier

but more prediction-e�ective solutions. Pursuing high performance

is necessary; however, it must be measured against the required in-

vestment and decided on economic merit (value gained to outweigh

the incurred cost [28, 32]). Thus, the minimum viable product [40]

approach to validate the feasibility, make inroads, and gain con�-

dence in future steps is an advantageous way to implement new

technology in complex commercial environments.

Therefore, from the business perspective, demonstrating that

the planned investment will bring monetary gain is critical. On

the other hand, the cost-e�ectiveness of machine learning soft-

ware defect prediction is a rarely explored subject in scienti�c

research [51, 60]. Furthermore, even fewer studies utilized the pro-

posed methods in case studies executed in vivo. Compared to the

abundance of technical publications and new solution proposals,

analyzing the pro�tability aspect of this emerging technology needs

to be much more frequent to increase its commercial applicabil-

ity [48]. Therefore, our work expands the existing knowledge of

industry-validated solutions and provides the costs and bene�ts

analysis that substantiates ML SDP’s commercial potential.

Our real-world, business-driven examples show the meaningful

bene�ts of introducing ML SDP on a large scale to complement

the company’s system-level test process. Consequently, ML SDP

constitutes a positive business case [4] for Nokia to support further

work towards commercial introductionwithin the quality assurance

processes for its 5G products. Moreover, resulting outcomes and

observations can also serve as a tutorial for other researchers and

practitioners to overcome one of the critical factors inhibiting the

transition of ML SDP from academic studies to standard practice.
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